Remark to Humenberger, H. (2018)

Balanced areas in quadrilaterals-on the way to Anne's Theorem

Published in: The Australian Mathematics Teacher, 74(3), 16-22.

Hans Humenberger

University of Vienna, Austria hans.humenberger@univie.ac.at

In this article two possibilities were mentioned to prove that a point not lying on the axis of symmetry of a kite (which is not a rhombus) cannot have the 'balanced area property'. Here we present another even shorter one (idea by R. Bischof, student teacher at the University of Vienna).

Proof

If I does not lie on the axis of symmetry e one can draw parallels to the sides through I. At least two of these parallels intersect e in the interior of the kite (E, parallel line to $A B$; the parallels to the shorter sides intersect e always in the interior, the parallels to the longer sides may intersect e outside).
The point E has the balanced area property because it lies on the axis of symmetry. Now looking at the areas we have: $|\triangle B E A|=|\triangle B I A|$ (same base and same altitude), and $|\triangle C D E| \neq|\triangle C D I|$ because $I E$ is not parallel to $C D$ (otherwise the kite would be a rhombus). Therefore, the point I cannot have the balanced area property.

