next up previous
Next: 5.3 Ideal Fermi gas Up: 5. Statistical Quantum Mechanics Previous: 5.1 Ideal quantum gas:


5.2 Ideal quantum gas: Grand canonical ensemble

We may derive the properties of a quantum gas in another way, making use of the ($z,V,T$) ensemble in Gibbsean phase space. Recalling the general definition of the grand partition function, $Z(z,V,T) \equiv \sum_{N=0}^{\infty} z^{N} Q(N,V,T)$, we now write $Q$ as a sum (in place of an integral) over states:
\begin{displaymath}
Q(N,V,T) = \frac{m^{3N}}{N! h^{3N}} \int d\vec{\Gamma}
\exp ...
...\exp \left[ -\sum_{\vec{n}} f_{\vec{n}} E_{\vec{n}}/kT \right]
\end{displaymath} (5.5)

The sum $\left\{ f_{\vec{n}} \right\}$ is to be taken over all permitted population numbers of all states $\vec{n}$, again requiring that $\; \sum_{\vec{n}} f_{\vec{n}} = N $. The permitted values of $f_{\vec{n}}$ are: $0$ and $1$ for fermions, and $0,1,2, \dots N $ for bosons. In this manner we arrive at
\begin{displaymath}
Z = \sum_{N=0}^{\infty} z^{N}
\sum_{\left\{ {\large f}_{\vec...
...{\vec{n}}
\left( z e^{-E_{\vec{n}} / kT} \right)^{f_{\vec{n}}}
\end{displaymath} (5.6)

It is easy to show that this is equal to
\begin{displaymath}
Z = \prod_{\vec{n}}
\left[ \sum_{f} \left( z e^{-E_{\vec{n}}}\right)^{f} \right]
\end{displaymath} (5.7)

Now we can insert the possible values of $f$. We find that for

Fermions ($f=0,1$):
\begin{displaymath}
Z=\prod_{\vec{n}} \left[ 1+ze^{-E_{\vec{n}}/kT}\right]
\end{displaymath} (5.8)

and for Bosons ( $f=0,1,2, \dots$):
\begin{displaymath}
Z=\prod_{\vec{n}} \frac{1}{ 1-ze^{-E_{\vec{n}}/kT} }
\end{displaymath} (5.9)

Having secured the grand partition function, we can now apply the well-known formulae for pressure, mean particle number, and internal energy (see Section 4.3) to determine the thermodynamic properties of the system. The mean population number of a given state $\vec{n}$ is
\begin{displaymath}
\langle f_{\vec{n}} \rangle \equiv \frac{1}{Z} \sum_{N}
\sum...
... - \frac{1}{\beta} \frac{\partial}{\partial E_{\vec{n}}} \ln Z
\end{displaymath} (5.10)

Inserting for $Z$ the respective expression for Fermi or Bose particles we once more arrive at the population densities of equ. 5.4.

In the following sections we discuss the properties of a few particularly prominent fermion and boson gases.


next up previous
Next: 5.3 Ideal Fermi gas Up: 5. Statistical Quantum Mechanics Previous: 5.1 Ideal quantum gas:
Franz Vesely
2005-01-25