Franz J. Vesely > Cardano/Tartaglia Formula
 




<



Cardano's Formula (with some help from Tartaglia)

(from mathworld.wolfram.com)

$ z^{3}+a_{2}z^{2}+a_{1}z+a_{0}=0 $   (1)

Put $z \equiv x-a_{2}/3$ and

$ \begin{eqnarray} Q &\equiv& \frac{ 3a_{1}-a_{2}^{2}}{9} & \;\;\;\; (2) \\ R &\equiv& \frac{ 9a_{1}a_{2}-27a_{0}-2a_{2}^{3}}{54} & \;\;\;\; (3) \end{eqnarray} $

Then compute
$ \begin{eqnarray} D &\equiv& Q^{3}+R^{2} & \;\;\;\; (4) \\ S &\equiv& (R+\sqrt{D})^{1/3} & \;\;\;\; (5) \\ T &\equiv& (R-\sqrt{D})^{1/3} & \;\;\;\; (6) \end{eqnarray} $
Note:
(a) as the cubic root of a real, negative number, use the real, negative result;
(b) if the argument in $S$ is complex, take the phase angle in $T$ as the negative of the ph. a. in $S$, such that $T=S^{*}$.

Finally,
$ \begin{eqnarray} z_{1}&=&-\frac{1}{3}a_{2}+(S+T) & \;\;\;\; (7) \\ z_{2}&=&-\frac{1}{3}a_{2}-\frac{1}{2}(S+T)+\frac{1}{2}i\sqrt{3}(S-T) & \;\;\;\; (8) \\ z_{3}&=&-\frac{1}{3}a_{2}-\frac{1}{2}(S+T)-\frac{1}{2}i\sqrt{3}(S-T) & \;\;\;\; (9) \\ \end{eqnarray} $


Back to Notes