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COMPUTATIONAL PHYSICS

The Computational Physics Section publishes articles that help students and their instructors learn about

the physics and the computational tools used in contemporary research. Most articles will be solicited, but

interested authors should email a proposal to the editors of the Section, Jan Tobochnik (jant@kzoo.edu)

or Harvey Gould (hgould@clarku.edu). Summarize the physics and the algorithm you wish to include in

your submission and how the material would be accessible to advanced undergraduates or beginning

graduate students.

Of pendulums, polymers, and robots: Computational mechanics
with constraints
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Computational Physics Group, Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria

(Received 26 March 2013; accepted 17 April 2013)

The motion of point masses under the influence of a potential can be computed by simple methods.

However, if the trajectories are restricted by mechanical constraints such as strings, rails,

crankshafts, and molecular bonds, special numerical techniques must be invoked. The need for

efficient computational strategies is particularly pressing for molecular simulations, where large

systems of compound molecules are tracked. The best strategy is the use of Cartesian coordinates

in combination with constraint forces in the Lagrange formulation. This approach has led to the

extremely successful SHAKE and RATTLE algorithms. The same ideas may be profitably applied

in very different fields such as robotics, mechanics, and geometry, and the study of chaos in simple

systems. VC 2013 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4803533]

I. INTRODUCTION

Theoretical mechanics was born in 1687. At that time, it
was still the main intent of philosophia naturalis to detect
divine harmony in all things natural. The motion of heavenly
bodies, which had puzzled people for thousands of years,
had become exciting again as Halley’s comet swung by in
1682. Accordingly, Newton’s explanation of this motion fas-
cinated learned persons of his time.1 In today’s terminology,
the circulation of planets around the Sun or the regular
swing-by of comets is called “free motion”—the bodies are
not free of forces, but they are free to go where the forces
drive them. According to popular legend, it was the genius
of Newton that allowed him to treat the celestial choreogra-
phy and such mundane motions as the fall of an apple on a
philosopher’s head by the same mathematical formalism.
Humans being what they are, they were quick to apply the
same apparatus to the flight of cannonballs.

But how should we describe the swinging of a pendulum?
And what about carts on rails, pulleys, piston rods, crank-
shafts, and and other parts of man-made machinery? With
the onset of the first industrial revolution in the 18th century,
it became important to understand the motion of mechanical
parts. It is no coincidence that Lagrange first published his
M�echanique Analytique in 1788.2 He derived two versions of
dynamical equations that could be applied to systems with
mechanical constraints. The Lagrange equations of the first
kind are based on the idea that the constraints may be
replaced by suitable forces which are designed to enforce the
constraints, and which are simply added to the given physi-
cal forces. In the Lagrange equations of the second kind, the
generalized coordinates used to describe the system are cho-
sen such that some of them correspond to the constraints of

the motion. The respective coordinates are then constant,
and the number of dynamical equations is reduced.

The planar pendulum demonstrates the idea. We can either
describe the movement of the swinging mass by two arbi-
trary (usually Cartesian) coordinates, adding a force that
keeps the distance ‘ to the pivot at a constant value or by the
generalized coordinates ð‘;/Þ. The first method requires
three equations—two equations of motion and an expression
for the restoring force. In the second approach only the coor-
dinate / is subject to a time evolution described by an equa-
tion of motion.

For pedagogical purposes, let us consider a simpler exam-
ple. The uniform motion of a point around a circle of radius
‘ may be described in terms of the dynamical equation
€r ¼ fc=m, with a constraint force that is acting along the
radius vector: fc ¼ �krðtÞ such that it guarantees that
r ¼ jrðtÞj2 � ‘2 ¼ 0 at all times. This condition implies that
_r ¼ 2 r � _r ¼ 0, which means that the tangential velocity is
normal to the radius vector, and €r ¼ 2 j _rj2 þ 2 r � €r ¼ 0. If
we substitute €r ¼ fc=m ¼ �krðtÞ=m and r2 ¼ ‘2, we find
k ¼ mv2=‘2. Lagrange’s first formulation tells us that we
have to integrate the dynamical equation €r ¼ �ðv2=‘2Þr with
a given (constant) tangential speed v.

Alternatively, Lagrange’s second formulation describes this
motion by ‘ ¼ constant and €/ ¼ 0, which leads to a fixed
angular velocity _/ ¼ x. The solution is /ðtÞ ¼ /ð0Þ þ xt.

While savoring the formal elegance of Lagrange’s second
method, we have to consider if it is always the optimal basis
for numerical work. This consideration is particularly impor-
tant in simulations of interest in statistical mechanics, where
the limitations of computers are felt most acutely, making
the computing strategy an essential issue. In the early 1970s,
molecular simulation proceeded from simple structureless
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models such as Lennard-Jones particles to more interesting
objects such as linear diatomics.3–5 Next on the agenda were
polymers, the building blocks of most substances that play a
role in biology and technology.6 But here simulators encoun-
tered a serious difficulty—the interatomic bonds. If we en-
visage the bonds as stiff springs, the force constants that
describe the small oscillations about the average bond
lengths are large in comparison to the other forces acting
between atoms. To correctly simulate these fast and small
oscillations, we would have to use time steps that are less
than the reciprocal vibratory frequencies—much too small
for reasonable simulation times. We might argue on
quantum-mechanical grounds that most bond vibrations have
such high energy that they are frozen at normal temperatures.
In other words, it is a promising Ansatz to treat the bonds as
rigid, and thus model the polymer as a flexible chain of limbs
and joints—a “Kramers chain.”7

The optimal method for simulating such chains is related
to Lagrange’s first method. The apparent disadvantage of the
larger number of equations of motion is more than offset by
the simplicity and computational speed of the methods we
will describe under the headings of “SHAKE” and
“RATTLE.”

But first we will discuss an algorithm that was designed
for unconstrained motion and which has become the basis
for constrained dynamics.

II. THE VERLET ALGORITHM

Except for a few simple cases, Newton’s equation for the
unconstrained motion of a particle under the action of a force
can be solved only numerically. Of the many algorithms that
produce a stepwise solution to the dynamical equation
€r ¼ fðrÞ=m, only a very few are fast enough to be applicable
in high performance simulations.

The atoms of noble gases may be represented by particles
interacting via a Lennard-Jones potential. Following the pio-
neering work of Aneesur Rahman,8 Louis Verlet performed
the first extensive molecular dynamics investigation on such
a model.9 He used a simple and efficient algorithm that now
bears his name, although a similar method had been used as
early as 1905 by the mathematician Carl Størmer in his stud-
ies of the polar aurora.10 Verlet’s version reads

rðtnþ1Þ ¼ 2 rðtnÞ � rðtn�1Þ þ
ðDtÞ2

m
fðtnÞ; (1)

where f is the force and Dt the time step. The local error of
the total energy is fourth order in Dt. Due to its simplicity
and computational speed, the method is popular in simula-
tions of unconstrained motion and is the basis of the SHAKE
algorithm.11

Note that the velocity v � _r does not appear explicitly in
Eq. (1). The approximation for the velocity vðtnÞ ¼ ½rðtnþ1Þ
�rðtn�1Þ�=2Dtþ O½ðDtÞ2� is inaccurate and can be used only
for crude checks of energy conservation. Also, the algorithm
is not self-starting; in addition to the initial position rðt0Þ, we
need rðt�1Þ to tackle the first time step. This need is not a
problem in statistical mechanical simulations where the ini-
tial condition ½rð0Þ; vð0Þ� is of no particular interest. In other
contexts, however, it is desirable to have a method that starts
with given positions and velocities. We could use the versa-
tile and powerful Runge–Kutta algorithm but that would
mean a distinctly lower calculational speed. It turns out that

a slightly different but equivalent formulation of Verlet’s
algorithm, known as the velocity Verlet or Swope algo-
rithm,12 is self-starting and is given by

vðtnþ1=2Þ ¼ vðtnÞ þ
Dt

2m
fðtnÞ; (2a)

rðtnþ1Þ ¼ rðtnÞ þ Dt vðtnþ1=2Þ; (2b)

vðtnþ1Þ ¼ vðtnþ1=2Þ þ
Dt

2m
fðtnþ1Þ: (2c)

This algorithm is the basis for Andersen’s RATTLE
method.13

III. LAGRANGE MULTIPLIERS

Verlet’s and other integration methods apply only to
forces derived from a potential but not to Lagrange’s con-
straint forces. To include the latter, a common strategy is to
first ignore the constraints and proceed one time step as if
the mass point were free to follow the given potential force.
The appropriate Lagrange force is then applied to enforce
the geometric conditions at the end of the time step. The pro-
cedure for one particle and one constraint rðrÞ is as follows:

(1) Proceed one time step using the Verlet algorithm. Given
the initial position rðtnÞ find the preliminary position r0

at time tnþ1 ¼ tn þ Dt. This position does not satisfy the
constraint equation, meaning that the value of r0 � rðr0Þ
differs from zero.

(2) Assume that the Lagrange force acts along the gradient
of rðrðtnÞÞ and make the correction Ansatz

rðtnþ1Þ ¼ r0 � ½kðDtÞ2=m�$rðrðtnÞÞ: (3)

We require that rðrðtnþ1ÞÞ ¼ 0 and obtain

0 ¼ r r0 � k
ðDtÞ2

m
$rðrðtnÞÞ

 !

� rðr0Þ � k
ðDtÞ2

m
$rðr0Þ � $rðrðtnÞÞ; (4)

which yields an approximate equation for the undeter-
mined multiplier k

k ¼ m

ðDtÞ2
r0

$rðr0Þ � $rðrðtnÞÞ
: (5)

(3) Treat Eq. (5) as a first estimate for k and proceed by
iteration:
• Substitute k into Eq. (3) for rðtnþ1Þ to obtain the

improved position r00 ¼ r0 � k½ðDtÞ2=m�$rðrðtnÞÞ.
The value of r00 � rðr00Þ still differs from zero but
should be smaller than r0.

• Substitute r00 and r00 into Eq. (5) for k and obtain
another approximation for rðtnþ1Þ.

• Repeat until the constraint equation is satisfied to
within a given tolerance.

A. Motion restricted to curves or surfaces

In two dimensions, the equation rðrðtÞÞ � jrðtÞj � ‘2 ¼ 0
states the requirement that a moving point stays on a circle.
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More general constraint functions may be defined, stipulating the
restriction to some curvilinear path. Roads and railroad tracks
may be shaped like a clover leaf or a superellipse (see Table I).
Since the age of chariot races, racing tracks have been con-
structed in the form of a stadium or discorectangle.14 To describe
the motion along a curved track, we usually apply the parametric
representation of the curve, adding a relation between the param-
eter and the elapsed time. However, our discussion points to a
road less traveled but equally passable. We have seen that to sim-
ulate the motion along a path defined by a Cartesian constraint
function rðrÞ is an expression for the gradient $rðrÞ. By follow-
ing the momentary tangent for a short time step and then itera-
tively enforcing the constraint, we can reproduce a table of path
points at equidistant times tn. If the constraint force—which does
not appear explicitly in the algorithm—is of interest, it may be
estimated a posteriori from the Newton-Gregory expression15

€rðtn�1Þ � ½rðtnÞ � 2 rðtn�1Þ þ rðtn�2Þ�=ðDtÞ2.
As an example, consider uniform motion along the con-

tour of an ellipse with rðrÞ ¼ ðx=aÞ2 þ ðy=bÞ2 � 1. Let rðtnÞ
and rðtn�1Þ be given. Then the free flight leads to
r0 ¼ 2 rðtnÞ � rðtn�1Þ, and the nonzero value of r0 may be
computed. The local gradient at the trajectory point is
$r ¼ ð2x=a2; 2y=b2Þ, which we can substitute into Eq. (5)
to obtain a first estimate for k. A few iterations will bring the
point rðtnþ1Þ back onto the ellipse.

Table I lists a few well-studied curves and their gradients.
Problem 4 is devoted to the simulation of uniform motion
around a superellipse or Lam�e curve.

It is easy to see that the same mathematics can be applied
to paths that are restricted to a surface embedded in three-
dimensional space. Consider a ball rolling about in a para-
bolic well under the influence of the gravitational accelera-
tion g ¼ ð0; 0; �9:81Þ. The paraboloid’s constraint function
is rðrÞ ¼ aðx2 þ y2Þ � z, and its local gradient is
$r ¼ ð2ax; 2ay; �1Þ. The elementary Verlet step is
rðtnþ1Þ ¼ 2 rðtnÞ � rðtn�1Þ þ gðDtÞ2, and the correction due
to the Lagrange force �k$r can be determined by iteration.
A similar example is the subject of problem 5.

B. Links and joints

As mentioned, an important model system in the physics
of polymers is the “ideal” or Kramers chain. Rigid molecules
may be built of closed loops of bonds with fixed lengths. In
all such cases, the individual elements (“atoms”) will have
one or several bond constraints rij ¼ 0. Again, the strategy is
to move each element i for one time step as if it were free to

move according to the potential forces in the system. Then,
we must determine a posteriori those values of the Lagrange
forces that would have, when added to the physical forces,
enforced the geometrical conditions to hold at the end of the
time step

riðtnþ1Þ ¼ r0i �
ðDtÞ2

mi

X
j

kij
@rij

@riðtnÞ
: (6)

For bond constraints such as rij ¼ jrijj2 � ‘2, where
rij � rj � ri, the partial derivatives are of the simple form
@rij=@ri ¼ �2 rij. If we introduce cij � 2kijðDtÞ2, the
updated positions may be written as

riðtnþ1Þ ¼ r0i þ
1

mi

X
j

cijrijðtnÞ: (7)

The Lagrange multipliers are determined by requiring that
all constraints be intact at time tnþ1.

As an example, let us consider the smallest nontrivial
Kramers chain molecule consisting of three atoms that are
sequentially connected by massless rigid bonds. In each such
trimer molecule, the two constraint equations involving the
three atomic positions and the two bond lengths are
r12ðr12Þ ¼ jr12j2 � ‘2

12 ¼ 0 and r23ðr23Þ ¼ jr23j2 � ‘2
23 ¼ 0.

If we assume that we have already solved the unconstrained
equations of motion to find r01;2;3, we have

r1ðtnþ1Þ ¼ r01 þ
1

m1

c12r12ðtnÞ; (8a)

r2ðtnþ1Þ ¼ r02 þ
1

m2

½�c12r12ðtnÞ þ c23r23ðtnÞ�; (8b)

r3ðtnþ1Þ ¼ r03 �
1

m3

c23r23ðtnÞ: (8c)

We substitute r1;2;3 into the bond equations and obtain the
following system of equations for the unknown Lagrange
multipliers:

����r012� c12r12ðtnÞ
1

m2

þ 1

m1

� �
þ c23r23ðtnÞ

1

m2

����
2

� ‘2
12 ¼ 0;

(9a)

Table I. Various plane curves and their Cartesian constraint functions.

Shape Constraint function rðrÞ Gradient $rðrÞ

Parabola ax2 � y ð2ax;�1Þ

Ellipse
x

a

� �2

þ y

b

� �2

� 1 2
x

a2
;

y

b2

� �

Superellipse
jxj
a

� �n

þ jyj
b

� �n

� 1 n
jxjn�1

an
sgnðxÞ; jyj

n�1

bn
sgnðyÞ

 !

Discorectangle
x2

r2
� 1

2

r2
ðx; 0Þ ðjyj � y0Þ

x2 þ ðy� y0Þ2

r2
� 1

2

r2
ðx; sgnðyÞðjyj � y0ÞÞ ðy0 < jyj � y0 þ rÞ

Bean curve x4 þ x2y2 þ y4 � xðx2 þ y2Þ ð4x3 � 3x2 þ 2xy2 � y2; 4y3 þ 2yðx2 � xÞÞ
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����r023� c23r23ðtnÞ
1

m3

þ 1

m2

� �
þ c12r12ðtnÞ

1

m2

����
2

� ‘2
23 ¼ 0:

(9b)

Writing r012 � jr012j
2 � ‘2

12 and 1=l12 � 1=m1 þ 1=m2, these
equations become

r012� 2
c12

l12

½r12ðtnÞ � r012�þ 2
c23

m2

½r23ðtnÞ � r012�þ ð � � �Þ
2 ¼ 0;

(10a)

r023þ 2
c12

m2

½r12ðtnÞ � r023� � 2
c23

l23

½r23ðtnÞ � r023�þ ð � � �Þ
2 ¼ 0;

(10b)

where ð � � �Þ2 are terms that are quadratic in cij.
In general, Eq. (10) is a system of quadratic equations;

however, there are two good reasons to hope that the com-
puting expense will be manageable. First, the matrix is
sparse and often has useful symmetry. And second, the
unknowns cij are small so that the linear terms dominate in
the equations. In the following sections, we discuss the most
important solution methods.

IV. SHAKE

To describe the idea of Ryckaert et al.,11 we again con-
sider the trimer we discussed earlier.

(1) Given the positions riðtn�1Þ and riðtnÞ at the last two
time steps, apply Verlet’s method to integrate the equa-
tions of motion for one time step without considering the
constraint forces, that is, with c12 ¼ c23 ¼ 0; the result-
ing positions are denoted as r0i. Because these prelimi-
nary position vectors do not satisfy the constraint
equations, the values of r12ðr012Þ and r23ðr023Þ have non-
zero values which we denote as r012 and r023.

(2) Make the correction Ansatz

r001 ¼ r01 þ
1

m1

c12r12ðtnÞ; (11a)

r002 ¼ r02 þ
1

m1

½�c12r12ðtnÞ þ c23r23ðtnÞ�; (11b)

r003 ¼ r03 �
1

m3

c23r23ðtnÞ; (11c)

where cij denotes the temporary—to be improved—val-
ues of the Lagrange parameters, and r00i is the improved
position that should eventually converge to riðtnþ1Þ. To
find a first estimate of cij, we require that the corrected
positions satisfy the constraint equations as in Eq. (10).
However, we now neglect the quadratic terms, giving

r012� 2
c12

l12

½r12ðtnÞ � r012� þ 2
c23

m2

½r23ðtnÞ � r012� ¼ 0; (12a)

r023þ 2
c12

m2

½r12ðtnÞ � r023� � 2
c23

l23

½r23ðtnÞ � r023� ¼ 0: (12b)

In principle, we could solve this system of linear equa-
tions exactly to obtain an improved estimate for cij, to be
substituted iteratively in the correction Eq. (11).

(3) At this point, another simplification is introduced. The
exact solution of the linearized equation (12) at each iter-
ation step involves a matrix inversion (see Sec. VI).
Instead, we start from one end of the chain and consider
only one constraint per atom, and one improvement step
per constraint, as we go along. In other words, we first
improve the bond r12 by displacing 1 and 2, and then
repair the next constraint r23, thereby partly disrupting
the first bond again. In terms of Eq. (12), this procedure
means that only the diagonal terms with r12ðtnÞ � r012 and
r23ðtnÞ � r023 are kept. In this way, the matrix inversion
becomes simple and reads

c12 ¼
l12

2

r012

r012 � r12ðtnÞ
and c23 ¼

l23

2

r023

r023 � r23ðtnÞ
:

(13)

By going through the chain several times, the errors
introduced by neglecting the quadratic terms and by con-
sidering only one constraint at a time will normally
decrease sufficiently quickly. The remaining error is due
to the assumption that the Lagrange force acting during
the interval ðtn; tnþ1Þ is parallel to the gradient of r at the
beginning of this interval. Ryckaert et al.11 showed that
the local error induced by this simplification is of the
same order, namely ðDtÞ4, as the error introduced by the
Verlet algorithm itself.

The generalization of the SHAKE technique to long
chains is simple. Applications to very long chain molecules,
particularly biomolecules, abound in the literature.16–18 The
widely used program packages GROMOS

19 and CHARMM
20 con-

tain SHAKE subroutines as a matter of course.
The SHAKE algorithm was a breakthrough in molecular

simulation. However, because it is based on the Verlet algo-
rithm, it does not contain the velocities explicitly. This fea-
ture turned out to be a serious drawback when, around 1980,
simulators started to implement thermostats in their model
systems. The constancy of temperature can only be guaran-
teed by some sort of manipulation of the particle
velocities.21,22

V. RATTLE

To overcome the limitations of SHAKE, Andersen13 sug-
gested using the velocity Verlet algorithm given in Eq. (2).
He pointed out that to arrive at a usable procedure we
only have to introduce two Lagrange multipliers for
each constraint, namely kR

ij to fulfill the bond length
requirement rijðtnþ1Þ ¼ 0, and a separate kV

ij to enforce
vijðtnþ1Þ � rijðtnþ1Þ ¼ 0 so that the relative velocity vij

remains perpendicular to rij. With the notation dij � Dt kij

Andersen’s algorithm becomes

viðtnþ1=2Þ ¼ viðtnÞþ
Dt

2mi
f iðtnÞþ

1

mi

X
j

dR
ij rijðtnÞ; (14a)

riðtnþ1Þ ¼ riðtnÞ þ Dt viðtnþ1=2Þ; (14b)

viðtnþ1Þ ¼ viðtnþ1=2Þ þ
Dt

2mi
f iðtnþ1Þ

þ 1

mi

X
j

dV
ij rijðtnþ1Þ; (14c)
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where the index j runs over those particle numbers that are
linked to particle i by bond constraints.

At each time step, the first task is to find the exact
viðtnþ1=2Þ by iteration. As in SHAKE, we begin by ignoring
the constraints, that is, by setting dR

ij ¼ 0, or viðtnþ1=2Þ �
viðtnÞ þ ðDt=2mÞf iðtnÞ for all particles i ¼ 1…N. Next, we
start the iteration:

(1) Choose a constraint ði; jÞ and compute a preliminary new
interparticle vector according to r0ij ¼ rijðtnÞ
þ vijðtnþ1=2ÞDt. We use r0ij ¼ jr0ijj

2 � ‘2
ij and have for the

first correction to the Lagrange multiplier

dR
ij ¼

lij

2Dt

r0ij
r0ij � rijðtnÞ

: (15)

If we substitute Eq. (15) into Eq. (14a), we find improved
mid-time velocities for particles i and j. The next bond
constraint is treated in the same way, and the entire chain
is repeatedly iterated until the improvements become
negligible and the vectors vnþ1=2 and rnþ1 can be
accepted.

(2) Use riðtnþ1Þ and evaluate the potential forces at tnþ1.
(3) Now we can determine viðtnþ1Þ by iteration. We pick

a constraint ði; jÞ and write for each of the two
particles v0 ¼ vnþ1=2 þ ðDt=2mÞfðtnþ1Þ, for the moment
ignoring the bond forces. To improve on this

estimate, we write viðtnþ1Þ ¼ v0i � ð1=miÞdV
ij rijðtnþ1Þ

and vjðtnþ1Þ ¼ v0j þ ð1=mjÞdV
ij rijðtnþ1Þ. We recall the

requirement rijðtnþ1Þ � vijðtnþ1Þ ¼ 0 and find for the first
estimate of the Lagrange multiplier that

dV
ij ¼

lij

l2
ij

½rijðtnþ1Þ � v0ij�: (16)

Again, all constraints are treated repeatedly until the
velocities viðtnþ1Þ are sufficiently accurate.

Andersen has shown that the local error introduced by the
RATTLE scheme is fourth order in Dt, just as the error of
the basic velocity Verlet formula.13

VI. SPECIAL ALGORITHMS FOR MOLECULAR

SIMULATION

The methods we have described are applicable for both
macroscopic mechanics and in molecular simulations. In the
latter field, several more advanced methods have been devel-
oped to treat particular classes of molecular models, such as
small, rigid entities consisting of a closed cage of bonds, and
very long, flexible polymeric chains.

Both of the algorithms rely on a double iteration. Equation
(12) is a linearly truncated version of the quadratic constraint
equations, so the solution of the quadratic equations calls for
one iterative procedure. The other repetitive operation con-
sists in treating the set of bond constraints several times,
always re-enforcing one constraint at a time.

Because the set of constraints provides us with a system of
coupled equations, an alternative strategy is to apply a stand-
ard method for solving such a system. Such a strategy
involves the inversion of the matrix defined by the set of
equations. SHAKE and RATTLE circumvent the exact ma-
trix inversion by the double recurrence we have described.

We may understand this approach to be a variant of the itera-
tive Gauss-Seidel-Newton method.23

Several algorithms have been proposed which invoke
other, more efficient solution methods. Ciccotti and
Ryckaert,24 who were among the authors of the original
SHAKE method, were also the first to point out that not only
chains but also rigid molecular skeletons may be treated suc-
cessfully by algorithms based on Lagrange’s equations of the
first kind. For example, a stiff molecule made up of three
atoms or atomic groups may be described by three rigid
bonds. They suggested inverting the matrix defined by the si-
multaneous linearized constraint equations exactly, and then
iterating only to arrive at the solution to the full quadratic
equations. Their matrix method24 is applicable to small mol-
ecules such as CS2, benzene, and CCl4. For larger molecules,
the matrix inversion becomes too computationally intensive
due to the fact that matrix inversion is in general a N3 opera-
tion, meaning that the computational load grows with the
cube of the number of constraints. However, certain symme-
try properties of the matrices in question allow for faster
inversion algorithms, which is the starting point for several
acceleration methods such as SETTLE,25 SOR-SHAKE,23

M-SHAKE,26 and P-SHAKE.27

For long flexible chains, we can easily see that the set of
linearized equations [see Eq. (12) for the trimer] is tridiago-
nal. The inversion of such matrices is particularly simple and
fast and is an order N operation.15,28 By using this fact,
Bailey et al.29 developed a very fast algorithm for the dy-
namics of long flexible polymers. They showed that for very
long chains with up to 10,000 vertices, their MILC SHAKE
scheme is 2–3 orders of magnitude faster than the algorithms
we have discussed in the previous sections. For ten elements
per chain, the improvement is still a factor of 3.

VII. APPLICATIONS

A. Double/triple pendulum

By proceeding beyond small angles, we may discuss the
general solution of the simple pendulum in terms of elliptic
integrals, and on the computational side the numerical inver-
sion of higher functions to tabulate /ðtÞ instead of tð/Þ.
Although the usual procedure is to solve the pendulum equa-
tion in terms of the one free generalized coordinate /ðtÞ, it is
worthwhile for pedagogical reasons to try the alternative
route using Cartesian coordinates plus a Lagrange constraint
force (see problem 8.2).

By going one step further and attaching a second mass to
the first, one we obtain a system that is capable of chaotic
behavior. The theory of double- and n-fold pendula is usually
formulated in terms of Lagrange equations of the second
kind or Hamiltonian mechanics, but numerical simulation is
much simpler if written in terms of Cartesian coordinates
and Lagrange-type constraint forces.30,31

Both the SHAKE and RATTLE algorithms may be
employed here, but the latter lends itself more easily to
arbitrary choices of initial angular velocities. Problems 1–3
lead to a basic simulation code for an n-fold pendulum. A
JAVA applet written along those lines, entitled Pendel2, is
available online.32 The applet may be used to investigate
the regular and chaotic behavior of the double or triple pen-
dulum. The respective FORTRAN programs, pnd2s.f for
SHAKE and pnd2r.f for RATTLE, are available for
download.32
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B. Robot arms

Generalized coordinates are commonly used in robotics to
describe the motion of segmented arms. This choice seems
natural because it keeps the number of equations of motion
small. However, there are good arguments favoring the use
of Cartesian coordinates with constraint forces.

Consider a simple manipulator consisting of several rigid
segments (“limbs”) connected by joints with servomotors
and a final element that is to follow a desired trajectory, say,
to carry some object from one place to another, or to paint
some contour. The similarity to the Kramers chain polymer
is obvious. By exploiting this similarity, we may attack a
standard problem of robotics, known as the inverse kinematic
problem, in a new way.

Let the angles between successive limbs change according
to some temporal program /iðtÞ. The end element of the
arm, the “hand,” will then go through a well-defined “world
trajectory” reðtÞ. Inversely, if a desired trajectory is given,
we may ask for those /iðtÞ that produce it—this is the
inverse kinematic problem of robot control. Because manip-
ulators are usually redundant, having more joints than neces-
sary, the problem is underdetermined and we may impose
additional requirements such as obstacle avoidance and min-
imization of angular velocities and accelerations. In terms of
generalized coordinates, solving the inverse problem with
additional requirements may be a formidable task.

By using Cartesian coordinates, the problem is radically
simplified. The constrained kinematics/stochastic optimiza-
tion algorithm of Kastenmeier and Vesely33,34 proceeds as
follows: (a) move the robot hand stepwise through its
required trajectory reðtnÞ; (b) invoke SHAKE to move the
preceding joints according to the constraint of constant limb
lengths; and (c) add small random variations to the joint
positions and apply an optimizing strategy to satisfy the
additional requirements. The motion of a two-dimensional
redundant manipulator is demonstrated by the applet
Robie.32

C. Random walk of a two-dimensional Kramers chain

Ryckaert and Andersen applied their procedures on top of
the Verlet algorithm, thus simulating the deterministic
motion of particles subject to geometrical constraints.11,13

Alternatively, we may do a simple random walk with the
individual parts of a chain and then enforce the bond con-
straints as we have discussed. This physical scenario is a
Kramers chain in a thermal bath, receiving random kicks
from its environment. The applet Kramers illustrates this
kind of motion for the two-dimensional case;32 the respective
Fortran code, kram5bd.f, may be downloaded from the
same site.

Because this example is a particularly simple implementa-
tion of SHAKE, the applet is equipped with many adjustable
parameters, so that the user can develop a feel for the relative
roles of the step size jDrj, the maximum number of SHAKE
iterations, and the tolerance limit of the bond length devia-
tions, that is, constraint violations.

Also interesting are the statistics of the angle /i;iþ1

between consecutive bonds. In particular, for the two-
dimensional stochastic three-chain with two bonds, the
probability density may be shown to be

pð/Þ /
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðcos/Þ2=4

q
. At first sight, this result is

surprising because we expect all bond angles to occur with

the same probability (the atoms are supposed to have no

interaction at all except for the bond constraint). If we were

to replace the rigid constraints by more or less stiff springs,

all the angles / would be equally probable, independently of

the spring constant. A careful analysis shows that this quali-

tative difference is due to the fact that in the rigid bond case

there are degrees of freedom (along the bonds) that are fro-

zen and do not contain thermal energy. Therefore, they do

not count in the partition function. In contrast, each spring

coordinate carries an average energy of kT=2 regardless of

the strength of the spring. The full explanation is given in

Fixman’s 1974 paper.35

D. Motion on curves or surfaces

By formulating the problem in terms of Lagrange equa-
tions of the first kind, we can treat plane curves such as those
listed in Table I without much effort. By using the expres-
sions for r and $r in Eq. (5) and iterating, we obtain a table
of points on the trajectory. Potential forces such as gravity
can be added easily, and the acceleration can be approxi-
mated using the Newton-Gregory approximation15 to the
second time derivative (see Sec. III A). The sample FORTRAN

code, curves.f, provides the basic pattern.32

Table II shows the constraint functions and their gradients
for a few second-order surfaces.36 Again, the tabulated items
suffice to follow the motion of an object gliding along these
surfaces. The principle of the calculation may be appreciated
from the sample FORTRAN code surface.f.

VIII. SUMMARY

Lagrange’s first method may be converted into a veritable
workhorse for the numerical treatment of mechanical motion
with geometrical constraints. Human- and molecular-sized
systems may be tackled with minimal analytical effort and at
moderate computational expense. Present day molecular
simulations are unthinkable without the SHAKE, RATTLE,
and related algorithms. Tedious problems in robotics, such
as multilink manipulators moving in the presence of
obstacles, may be represented by short, modular pieces of
code when they are formulated in Cartesian instead of gener-
alized coordinates. The virtual double or triple pendulum
provides a road into chaos. In addition, the motion along ar-
bitrary tracks or on some given surface is most easily fol-
lowed by introducing Lagrange forces that keep the moving
object on the desired contour.

Table II. Some second-order surfaces and their Cartesian constraint

functions. A pseudo-hyperboloid is generated by rotating the hyperbola z ¼
�a=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
around the z axis.

Shape Constraint function rðrÞ Gradient $rðrÞ

Sphere ðx2 þ y2 þ z2Þ=r2 � 1 ð2x=r2; 2y=r2; 2z=r2Þ
Paraboloid aðx2 þ y2Þ � z ð2ax; 2ay; �1Þ

Hyperboloid
x2 þ y2

a2
� z2

c2
� 1

2x

a2
;

2y

a2
; � 2z

c2

� �

Pseudo-hyperboloid
�affiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p � z

ax

ðx2þy2Þ3=2
;

ay

ðx2þy2Þ3=2
;�1

 !
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IX. SUGGESTED PROBLEMS

Problem 1—Circular motion according to Langrange

Use your favorite programming language to follow a parti-
cle around a circular path. Start at r0 ¼ ð1; 0Þ and assume a
tangential velocity v0 ¼ ð0;�1Þ [or an appropriate rð�DtÞ]
and track the uniform circular motion in discrete time steps
Dt ¼ 0:01. For the first time step, the procedure is as
follows:

(1) Let the point move away along the local tangent
r0 ¼ r0 þ v0Dt [or r0 ¼ 2 r0 � rð�DtÞ].

(2) Use the nonzero value of the constraint function
r0 ¼ jr0j2 � ‘2 to restore the condition rðDtÞ ¼ 0 by
moving the point along the direction of $rðr0Þ / r0.
Hence, r00 ¼ r0 � ða=mÞr0 with a ¼ mr0=2ðr0 � r0Þ.
Iterate until r � 0.

Compare the values of /ðnDtÞ produced in this manner to
the simple expression /ðtÞ ¼ xt.

Problem 2—The pendulum: Circular motion with
gravity

Do the same as in problem 1 but introduce the gravita-
tional force f ¼ ½0;�mg�, where g ¼ 9:81 (and mass m¼ 1.)
Use Verlet’s algorithm for the “free” flight and add the con-
straint force according to the procedure we have given.
There are two levels of difficulty. If we use Verlet’s algo-
rithm, we arrive at a simple program but we have to adjust
the initial condition r�1 to approximate the desired initial ve-
locity (for example, zero). Or we can use the velocity Verlet
algorithm together with Andersen’s constraint method (see
Sec. V) to obtain a slightly more complex code which allows
for the customary initial condition ðr0; v0Þ.

Problem 3—The double pendulum

Add a second bob fixed to the first by a bond with fixed
unit length. SHAKE is simpler, but RATTLE is more appro-
priate for the usual initial conditions.

Problem 4—Uniform motion around Sergels Torg

The landmark Sergels Square in Stockholm was designed
by the Danish architect Piet Hein. Remarkably, it is shaped
as a superellipse with n ¼ 5=2 (see Table I) and aspect ratio
a=b ¼ 6=5. The driving lane around the square has a long
half-axis of about 25 m.37 Use the information listed in Table I
and calculate the lateral acceleration aðtÞ experienced by the
passengers of a car circumnavigating the square at a constant
speed of 50 km/h. Make a table of aðtnÞ and compare it to a
similar table for a stadium-shaped drive with the same total
length and width. Note where the maximum of acceleration
occurs on both tracks.

The same calculation may be performed using an ellipse,
a “bean curve” (see Table I), or other plane curves with
known Cartesian representations.

Problem 5—Model gravitational well

Many science museums offer a hands-on experiment to
visualize the action of the gravitational field around a large
mass. It consists of a polished hyperboloidal surface with a

little starting device to push off a steel ball in an arbitrary
direction. The ball will roll around the central hole in an
orbit that, when seen from above, resembles the familiar el-
liptical path of a planet.

Strictly speaking, the surface is a pseudo-hyperboloid
in the sense that it is produced by rotating the hyperbola
z ¼ �a=q (with q �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
) around the z-axis. The idea

is that the resulting funnel mimicks the action of the 1=q
gravitational potential.

The constraint function for this surface is rðrÞ
¼ �ða=qÞ � z, with gradient $rðrÞ ¼ ðax=q3; ay=q3; �1Þ.
Place the ball at some point r0 on the surface and choose an
initial velocity v0?$rðrÞ. Start the simulation by the simple
Euler integration step15 r0 ¼ r0 þ v0Dtþ gðDtÞ2=2, where
g ¼ ð0; 0; �9:81Þ is the gravitational acceleration. Apply
the correction due to the constraint force �k$rðr0Þ and com-
pute the first trajectory point. From then on the Verlet
expression r0 ¼ 2 rðtnÞ � rðtn�1Þ þ gðDtÞ2 is used for each
free-flight step, followed by the constraint correction.

Note that the x-y trajectories are only roughly similar to
Kepler ellipses because the three-dimensional equation of
motion is not identical to that of motion in a gravitational
field. However, there are circular orbits remaining in a con-
stant z plane, as well as tilted ellipsoidal orbits which
may—contrary to classical Kepler ellipses—precess around
the center axis.
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