Übungen zu Lineare Algebra für PhysikerInnen

Übungstermin 5

1. Ist die Abbildung

$$\rho: \mathbb{C}^3 \to \mathbb{C}^2$$
$$\rho(x, y, z) := (x + iy, 1 + iz)$$

linear? Begründen Sie!

2. Zeigen Sie, dass die Abbildung

$$D: \mathbb{R}^3 \to \mathbb{R}^3$$
$$D(x_1, x_2, x_3) := (x_2, -x_1, x_3)$$

linear ist!

3. Ist die Abbildung

$$\sigma: \mathbb{R}^4 \to \mathbb{R}^3$$

$$\sigma(a, b, c, d) := (a + b, a + c, d)$$

injektiv? Ist sie surjektiv? (Argumentieren Sie direkt mit der Definition der Begriffe "injektiv" und "surjektiv", also ohne Methoden der linearen Algebra heranzuziehen!)

4. Gegeben ist die Abbildung

$$\tau: \mathbb{R}^3 \to \mathbb{R}^4$$

$$\tau(x, y, z) := (x, y, z, x + y + z).$$

- (i) Zeigen Sie, dass τ linear ist!
- (ii) Bestimmen Sie $\operatorname{Kern}(\tau)$! Ist τ injektiv?
- (iii) Bestimmen Sie Bild(τ)! Ist τ surjektiv?
- 5. Sei $\Gamma:\mathbb{R}^2\to\mathbb{R}^3$ jene lineare Abbildung, die (1,0) in (1,1,1) und (0,1) in (1,2,3) überführt.
 - (i) Geben Sie eine Formel für die Wirkung von Γ an: $\Gamma(x,y)=?$
 - (ii) Bestimmen Sie $\operatorname{Kern}(\Gamma)$! Ist Γ injektiv?
 - (iii) Bestimmen Sie $Bild(\Gamma)$! Ist Γ surjektiv?

- 6. Sei \mathcal{P}_2 die Menge aller Polynomfunktionen $p:\mathbb{R}\to\mathbb{R}$ vom Grad ≤ 2 . Wie bereits bekannt (Übungstermin 4), ist \mathcal{P}_2 ein dreidimensionaler reeller Vektorraum. Welche der folgenden Operationen für Polynomfunktionen definieren eine Abbildung $\mathcal{P}_2\to\mathcal{P}_2$? Welche davon sind linear? Begründen Sie Ihre Antworten!
 - (i) $f: p \mapsto f(p)$ mit $f(p): t \mapsto t p(t)$
 - (ii) $g: p \mapsto g(p)$ mit $g(p): t \mapsto (t+1) p'(t)$
 - (iii) $h: p \mapsto h(p)$ mit $h(p): t \mapsto t^2 p''(t)$
 - (iv) $j: p \mapsto j(p)$ mit $j(p): t \mapsto p(t) 3$
 - (v) $k:p\mapsto k(p)$ mit $k(p):t\mapsto \frac{1}{t}\int\limits_0^t p(\tau)d\tau$
- 7. Sei \mathcal{P}_2 die Menge aller Polynomfunktionen $p:\mathbb{R}\to\mathbb{R}$ vom Grad ≤ 2 , und sei

$$\begin{split} \Phi:\mathbb{R}^3&\to\mathcal{P}_2\\ \Phi(a_0,a_1,a_2):=\text{die Polynomfunktion }t\mapsto a_0+a_1t+a_2t^2\,. \end{split}$$

- (i) Zeigen Sie, dass Φ eine lineare Abbildung ist!
- (ii) Zeigen Sie, dass Φ bijektiv also mit (i) ein Isomorphismus ist!
- (iii) Die Ableitung p' jeder Polynomfunktion $p \in \mathcal{P}_2$ ist wieder ein Element von \mathcal{P}_2 . Zeigen Sie, dass die Zuordnung $p \mapsto p'$ eine lineare Abbildung $\mathcal{P}_2 \to \mathcal{P}_2$ ist!
- 8. Für die in Aufgabe 7 beschriebene Situation sei

$$T:=\Phi^{-1}\circ \mathsf{Bilden}\ \mathsf{der}\ \mathsf{Ableitung}\circ\Phi:\mathbb{R}^3\to\mathbb{R}^3.$$

- (i) Geben Sie eine Formel für die Wirkung von T an: $T(a_0, a_1, a_2) = ?$
- (ii) Zeichnen Sie ein kommutatives Diagramm, in dem die Vektorräume \mathcal{P}_2 und \mathbb{R}^3 sowie der Zusammenhang der Abbildungen "Bilden der Ableitung", Φ und T dargestellt wird!
- (iii) Berechnen Sie $T \circ T$ und $T \circ T \circ T$! Wie interpretieren Sie ihr Ergebnis?
- 9. Sei U ein Vektorraum. Für ein festgehaltenes $\xi \in U$ sei

$$\omega: U \to U$$
$$\omega(x) = x - \xi.$$

Welche Bedingung muss ξ erfüllen, damit ω eine lineare Abbildung ist?