Universität Wien, SS 2015

Lineare Algebra für PhysikerInnen

Beispiele für Multiple-Choice-Fragen

Punkteschlüssel:

[Typ 1 aus 4] und [Typ 3 aus 4] \dots 0.8 Punkte [Typ 2 aus 4] \dots 1 Punkt

Bei der schriftlichen Prüfung: MC-Fragen im Wert von 20 Punkten.

- 1. [Typ 2 aus 4] Sei V ein \mathbb{K} -Vektorraum der Dimension n, und seien $v_1,\ldots,v_n\in V$. Dann ist (v_1,\ldots,v_n) genau dann eine Basis von V, wenn
 - (a) [true] (v_1, \ldots, v_n) linear unabhängig ist.
 - (b) [false] jedes aus den v_i gebildete (n-1)-Tupel von Vektoren linear abhängig ist.
 - (c) [true] $L(v_1,\ldots,v_n)=V$ ist.
 - (d) [false] es ein $(\lambda_1, \dots, \lambda_n) \in \mathbb{K}^n$ gibt mit $(\lambda_1, \dots, \lambda_n) \neq (0, \dots, 0)$ und $\sum_{j=1}^n \lambda_j v_j = 0$.
- 2. [Typ 1 aus 4] Unter Verwendung der Einsteinschen Summenkonvention gilt für $x,y\in\mathbb{R}^3$ (mit dem Standard-Skalarprodukt)
 - (a) [false] $\varepsilon_{jkl}x_ky_l=x_jy_j$.
 - (b) [true] $\delta_{jk}x_jy_k = \langle x, y \rangle$.
 - (c) [false] $\delta_{jk}x_jx_k + \delta_{jk}y_jy_k = \langle x+y, x+y \rangle$.
 - (d) [false] $\varepsilon_{jkl} (x \times y)_j x_k y_l = 0$.
- 3. [Typ 2 aus 4] Von vier Abbildungen $f,g,h,k:\mathbb{R}^2\to\mathbb{R}^2$ sind die folgenden Eigenschaften bekannt. Nur zwei von ihnen können linear sein. Welche?
 - (a) [false] h(0,0) = (1,-1).
 - (b) [true] k(t,-t)=(t,t) für alle $t\in\mathbb{R}.$
 - (c) [false] g(0,y)=(y,2) für alle $y\in\mathbb{R}.$
 - (d) [true] f(3,y)=(y,-2) für alle $y\in\mathbb{R}.$

- 4. [Typ 1 aus 4] Sei V ein n-dimensionaler \mathbb{K} -Vektorraum, \mathcal{B} eine Basis von V, $\Phi_{\mathcal{B}}: \mathbb{K}^n \to V$ der kanonische Basisisomorphismus und $f: V \to V$ eine lineare Abbildung. Dann ist die Matrix von f bezüglich \mathcal{B} definiert durch
 - (a) [false] $[f]_{\mathcal{B}} = \Phi_{\mathcal{B}} \circ f \circ \Phi_{\mathcal{B}}^{-1}$.
 - (b) [true] $[f]_{\mathcal{B}} = \Phi_{\mathcal{B}}^{-1} \circ f \circ \Phi_{\mathcal{B}}$.
 - (c) [false] $[f]_{\mathcal{B}} = \Phi_{\mathcal{B}} \circ \Phi_{\mathcal{B}}^{-1}(f)$.
 - (d) [false] $[f]_{\mathcal{B}} = \Phi_{\mathcal{B}}^{-1} \circ \Phi_{\mathcal{B}}(f)$.
- 5. [Typ 2 aus 4] Eine quadratische Matrix A mit $det(A) \neq 0$ kann so invertiert werden:
 - (a) [false] Man notiert die elementaren Zeilenoperationen, die A in E verwandeln, und wendet diese in umgekehrter Reihenfolge auf E an. Damit erhält man automatisch A^{-1} .
 - (b) [true] Man löst das Gleichungssystem Ax = c für einen unbestimmten Vektor c und erhält damit automatisch die Wirkung der Inversen in der Form $c \mapsto x = A^{-1}c$.
 - (c) [true] Man notiert die elementaren Zeilenoperationen, die A in E verwandeln, und wendet diese in der gleichen Reihenfolge auf E an. Damit erhält man automatisch A^{-1} .
 - (d) [false] Sind a_{jk} die Koeffizienten von A, so sind a_{jk}^{-1} die Koeffizienten von A^{-1} .
- 6. [Typ 2 aus 4] Sei V ein endlichdimensionaler Vektorraum, V^* sein Dualraum und V^{**} sein Bidualraum. Dann gilt:
 - (a) [true] V^{**} kann auf natürliche Weise mit V identifiziert werden.
 - (b) [true] V^* ist zu V isomorph.
 - (c) [false] V^{**} kann auf natürliche Weise mit V^* identifiziert werden.
 - (d) [false] V^* kann auf natürliche Weise mit V identifiziert werden.
- 7. [Typ 2 aus 4] Die Determinante als Funktion $\det: M(n \times n, \mathbb{K}) \to \mathbb{K}$ besitzt folgende Eigenschaften:
 - (a) [true] det ist linear in jeder Spalte.
 - (b) [false] \det ist invariant unter der Vertauschung zweier Spalten.
 - (c) [false] det ist linear: $det(\lambda A) = \lambda det(A)$.
 - (d) [true] Ist rg(A) < n, so ist det(A) = 0.

- 8. [Typ 1 aus 4] Die Determinante einer 3×3 -Matrix kann mit Hilfe des Epsilon-Symbols so berechnet werden (angeschrieben unter Benutzung der Einsteinschen Summenkonvention):
 - (a) [false] $\det(A) = \varepsilon_{ikl} a_{1i} a_{1k} a_{1l}$.
 - (b) [false] $\det(A) = \varepsilon_{jkl} \, a_{jk} \, a_{lj} \, a_{kl}$.
 - (c) [true] $\det(A) = \varepsilon_{jkl} a_{1j} a_{2k} a_{3l}$.
 - (d) [false] $\det(A) = \varepsilon_{jkl} \, a_{jj} \, a_{kk} \, a_{ll}$.
- 9. [Typ 2 aus 4] Welche der Aussagen über Gleichungssysteme vom Typ Ax = b mit $A \in M(n \times n, \mathbb{R})$ und $b \in M(n \times 1, \mathbb{R})$ sind wahr?
 - (a) [false] Es gibt unendlich viele Lösungen $\Leftrightarrow \det(A) = 0$.
 - (b) [true] Es gibt eine einzige Lösung $\Leftrightarrow \det(A) \neq 0$.
 - (c) [true] Gilt det(A) = 0 und $b \in Bild(A)$, so gibt es unendlich viele Lösungen.
 - (d) [false] Kennt man den Rang von A, so weiß man, ob es keine, eine oder unendlich viele Lösungen gibt.
- 10. [Typ 2 aus 4] Die Abbildung $\mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$, $\Big((x_1,x_2),(y_1,y_2)\Big) \mapsto 3\,x_1 + 5\,y_2$
 - (a) [true] ist kein Skalarprodukt auf \mathbb{R}^2 .
 - (b) [true] ist nicht bilinear.
 - (c) [false] ist bilinear.
 - (d) [false] ist ein Skalarprodukt auf \mathbb{R}^2 .
- 11. [Typ 2 aus 4] Ist V ein euklidischer Vektorraum und (ψ_1,\ldots,ψ_n) eine Orthonomalbasis von V. Dann gilt

(a) [false]
$$x = \sum_{j=1}^{n} \langle x, x \rangle \, \psi_j$$
 für alle $x \in V$.

(b) [true]
$$x = \sum_{j=1}^{n} \langle \psi_j, x \rangle \psi_j$$
 für alle $x \in V$.

(c) [false]
$$x = \sum_{j=1}^{n} \langle \psi_j, x \rangle x$$
 für alle $x \in V$.

(d) [true]
$$\sum_{j=1}^{n} \langle \psi_j, \psi_k \rangle \psi_j = \psi_k$$
.

- 12. [Typ 1 aus 4] Ist V ein euklidischer Vektorraum, $\mathcal{B}=(\phi_1,\ldots,\phi_n)$ eine Orthonomalbasis von V und $x\in V$. Dann ist der j-te Entwicklungskoeffizient von x bezüglich \mathcal{B} gegeben durch
 - (a) [false] $||x \phi_j||$.
 - (b) [true] $\langle \phi_j, x \rangle$.
 - (c) [false] $||x \phi_j||^2$.
 - (d) [false] $\langle x, x \rangle \phi_j$.
- 13. [Typ 2 aus 4] Sei V ein Vektorraum, $f:V\to V$ eine lineare Abbildung und λ ein Eigenwert von f. Der Eigenraum von f zum Eigenwert λ ist
 - (a) [false] Bild $(f \lambda \operatorname{Id}_V)$.
 - (b) [true] $\{u \in V \mid f(u) = \lambda u\}.$
 - (c) [false] $\{u \in V \mid f(u) = \lambda u \text{ und } u \neq 0\}.$
 - (d) [true] $\operatorname{Kern}(f \lambda \operatorname{Id}_V)$.
- 14. [Typ 1 aus 4] Sei V ein n-dimensionaler euklidischer Vektorraum und $f:V\to V$ eine selbstadjungierte lineare Abbildung. Eine Hauptachsentransformation von f ist
 - (a) [false] die Angabe einer Orthonormalbasis $\mathcal B$ von V mit der Eigenschaft, dass $[f]_{\mathcal B}$ eine orthogonale Matrix ist.
 - (b) [false] eine $n \times n$ -Diagonalmatrix D mit der Eigenschaft, dass $f \circ D$ diagonalisierbar ist.
 - (c) [true] eine orthogonale lineare Abbildung $H:\mathbb{R}^n\to V$ mit der Eigenschaft, dass $H^{-1}\circ f\circ H$ eine Diagonalmatrix ist.
 - (d) [false] eine lineare Abbildung $S:\mathbb{R}^n \to V$ mit der Eigenschaft, dass $S\circ f\circ S$ eine Diagonalmatrix ist.
- 15. [Typ 1 aus 4] Von den folgenden Aussagen über lineare Abbildungen in einem unitären Vektorraum ist eine falsch. Welche?
 - (a) [false] Jede hermitische Abbildung ist normal.
 - (b) [false] Jede normale Abbildung ist diagonalisierbar.
 - (c) [true] Jede hermitische Abbildung ist eine Orthogonalprojektion.
 - (d) [false] Jede Orthogonalprojektion ist normal.

- 16. [Typ 2 aus 4] Sei V ein endlichdimensionaler unitärer Vektorraum und $f = \sum_{k=1}^r \lambda_k P_k$ die Spektraldarstellung eines normalen linearen Operators $f: V \to V$. Dann gilt:
 - (a) [false] $\operatorname{Kern}(P_j) \perp \operatorname{Kern}(P_k)$, sofern $j \neq k$.
 - (b) [true] $Bild(P_j) \subseteq Kern(P_k)$, sofern $j \neq k$.
 - (c) [false] $\operatorname{Kern}(P_j) \subseteq \operatorname{Bild}(P_k)$, sofern $j \neq k$.
 - (d) [true] $\operatorname{Bild}(P_j) \perp \operatorname{Bild}(P_k)$, sofern $j \neq k$.
- 17. [Typ 2 aus 4] Welche der folgenden Aussagen über komplexe quadratische Matrizen sind wahr?
 - (a) [true] Jede hermitische Matrix besitzt nur reelle Eigenwerte.
 - (b) [false] Jede normale Matrix besitzt nur reelle Eigenwerte.
 - (c) [false] Jede antihermitische Matrix besitzt nur reelle Eigenwerte.
 - (d) [true] Jede unitäre Matrix besitzt als Eigenwerte nur komplexe Zahlen vom Betrag 1.