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We view each value yt of a time series y as the realized
value of a random variable.1 The corresponding family of
random variables is called a (stochastic) process.
Our notation does not distinguish between a random
variable and the observed value that it takes. It will always
be clear from the context whether the random variable or
the observed value is meant.
A stochastic process is said to have a trend if not all of its
random variables have the same mean.

Examples of trends:
Upward trend: s<t Þ Eys<Eyt

Downward trend:     s<t Þ Eys>Eyt

Linear trend: Eyt=a+bt, b¹0
Exponential trend: Eyt=exp(a+bt), b¹0

1 In case of a process with domain Z, we usually write yt instead
of y(t).

A process x is called white noise if all of its random
variables have the same mean and the same variance
and are uncorrelated, i.e.,

Exs=Ext "s,tÎZ,
var(xs)=var(xt) "s,tÎZ,

and s¹t Þ cov(xs,xt)=0 "s,tÎZ.
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If the process
yt=a+bt+xt.

is the sum of a linear trend and a white noise with mean
zero and variance ,2s we have

,btaEyt += .)var( 2s=ty
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obtained by averaging each yt with its k nearest neighbors
in the past and its k nearest neighbors in the future has the
same trend as the original process, because
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But its variance is much smaller because
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Thus zt is a suitable estimator for Eyt. FS
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Exercise: Estimate the trend of the log GDP by averaging
over 2k+1 neighboring values. Use k=1.2

S.1 <- (lag(y.ts,k=-1)+y.ts+lag(y.ts,k=1))/3
plot(y.ts,type="p",xlab=" ",ylab=" ")
lines(S.1,col="red")

2 Only the commands are shown, not the promts.
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Exercise: Estimate the trend of the log GDP by averaging
over 2k+1 neighboring values. Use k=7.

S.7 <- y.ts
for (i in 1:7)
     { S.7 <- S.7+lag(y.ts,k=-i)+lag(y.ts,k=i) }
# for loop: everything within the curly brackets
#                 is done 7 times with i taking the values 1 to 7.
S.7 <- S.7/15
plot(y.ts,type="p",xlab=" ",ylab=" ")
lines(S.7,col="red")

The larger the value of k, the smoother is the result. The
graph obtained for k=7 supports the hypothesis of a break
in the 1970s.

Note: The missing values are due to the fact that we cannot
compute averages near the boundary.
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Exercise: Estimate the trend of the log GDP by averaging
over 2k+1 neighboring values. Use different values of k.

Different smoothed versions of the log GDP can be
obtained efficiently by defining a suitable function and
applying this function repeatedly, each time using a
different value of k.

smooth <- function(y,k)
   {  y.sm <- y
      for (i in 1:k) y.sm <- y.sm+lag(y,k=-i)+lag(y,k=i)
      y.sm <- y.sm/(2*k+1)
      return(y.sm)
   }

This function has two arguments. y is the time series to
be smoothed and k determines the degree of smoothing.
The function returns the smoothed time series. All other
variables defined in the function (like i) disappear after
the function is executed.

The function smooth is used like this:

S.7 <- smooth(y.ts,7)
plot(y.ts,type="p",xlab=" ",ylab=" ")
lines(S.7,col="red")

When the function is called, the real arguments y.ts and 7
are passed to the function, where they replace the formal
(or dummy) arguments y and k.
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The smoothed versions S.1, S.4, S.7, S.10 of the log GDP
could be obtained as follows.

K <- c(1,4,7,10)
for (k in K)
     { assign(paste("S",k,sep="."),smooth(GDP.lts,k)) }

Note:
paste("S",7) concatenates the character "S" and the
number 7 after coverting the number to a character.
paste("S",7,sep=".") separates the two elements by ".".
assign("S.7",3.5) assigns the value 3.5 to the name "S.7".

par(mar=c(2,2,1,1))
# setting graphical parameters:
#     mar(i,j,k,l) … lines of margin
#     i: bottom, j: left, k: top, l: right
plot(y.ts,type="p")
COL <- c("red","green","blue","violet")
for (i in 1:length(K)) {
     S <- smooth(y.ts,K[i])
     lines(S,col=COL[i],lwd=2) } This plot is confusing because there are too many lines.
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par(mfrow=c(2,2),mar=c(2,2,1,1))
#     mfrow=c(i,j) … i rows of j plots
for (i in 1:length(K))
    { plot(y.ts,type="p")
       k <- K[i]
       S <- smooth(y.ts,k)
       lines(S,col=COL[i],lwd=2)
    }
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More generally, we can use weighted sums for the
estimation of the trend:
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Such a transformation is called a finite moving
average (MA) filter.

Usually the weights wj are chosen such that
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If, in addition, the filter is symmetric, i.e.,

w-j=wj "j,

then a linear trend can pass without distortion.

Indeed, if

yt=a+bt+xt,
where

Ext=0 "t,

then
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Exercise: Show that the symmetric filter with weights

w0= 2
1 , w1= 3

1 , w2= 12
1-

allows a quadratic trend

yt=a+bt+ct2

to pass without distortion. FQ

Exercise: Find another symmetric filter with k=2 that
allows a quadratic trend to pass without distortion. F2

Exercise: Show that the (symmetric) Spencer filter with
weights

w0,…,w7: 320
74 , 320

67 , 320
46 , 320

21 , 320
3 , 320

5- , 320
6- , 320

3-

allows a cubic trend

yt=a+bt+ct2+dt3

to pass without distortion. F3

Exercise: Apply both the simple MA filter with weights

w-1=w0=w1= 3
1

and the more sophisticated filter from Exercise FQ to the
log GDP and compare the results.

Exercise: Apply both the simple MA filter with weights

w-2=w-1=w0=w1=w2= 5
1

and the Spencer filter to the log GDP and compare the
results.

The figures produced in the last two exercises show that
methods with nice theoretical properties do not necessarily
perform better than more primitive methods. In our case,
even the opposite seems to be true, because the simple
filters basically do the same job as the more sophisticated
filters but produce fewer missing values at each end of the
series.
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A time series yt exhibiting a roughly linear trend could
also be smoothed by applying the Hodrick-Prescott (HP)
filter, i.e., by solving the optimization problem
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The first term vanishes if zt=yt and the second term
vanishes if zt grows linearly, hence there is a trade-off
between goodness of fit and smoothness. The larger the
parameter l, the more will deviations from linearity be
penalized. For a sufficiently large l, the solution zt will
virtually coincide with the least squares line.

Exercise: Apply the HP filter with l=700 to the log GDP.3

library(mFilter)  # the package "mFilter" is loaded
par(mfrow=c(1,1),mar=c(2,2,1,1))
plot(D,y,pch=20) # pch=20: small solid circle
h <- hpfilter(y.ts,type="lambda",freq=700)
lines(D,h$trend,col="red",lwd=2)

3 It might be helpful to run R as an administrator when you install
the package "mFilter".

The tuning parameter l of the Hodrick-Prescott filter plays
a similar role as the parameter k of the MA filter.
However, the HP filter has the advantage that it does not
produce missing values at each end of the series.


