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Abstract

A classical problem in spectral geometry was to determine whether or not
isospectral manifolds are necessarily isometric. It turns out that the answer to
this question is negative and several counterexamples have been given. For the
construction of continuous families of isospectral and non-isometric manifolds,
class preserving automorphisms of nilpotent Lie groups were crucial.

An automorphism of a group is called class preserving if and only if every
element is conjugate to its image. So this condition is related to, but less strict
than the one for an inner automorphism. A nilpotent Lie group admitting a
discrete and cocompact subgroup and a class preserving automorphism which
is not inner can be used to construct a continuous family of isospectral but
non-isometric nilmanifolds. Class preserving automorphisms of a Lie group are
very closely related to almost inner derivations of the corresponding Lie algebra.
These are derivations for which each element is mapped to the Lie bracket of
itself with some other element. The set of all almost inner derivations forms a
Lie subalgebra of the derivation algebra and contains the inner derivations.

Up till now, almost inner derivations of Lie algebras have not been studied in
detail yet. They have almost only been considered from a differential geometric
perspective, where the focus was on constructing some examples. The goal
of this thesis is to study this notion in a purely algebraic way. Although the
motivation from spectral geometry only makes sense for nilpotent Lie algebras,
from an algebraic point of view, there is no reason to restrict to this class only.
Hence, we study almost inner derivations of Lie algebras more generally. We
also consider non-nilpotent Lie algebras and Lie algebras over an arbitrary field,
so not only over the real or complex numbers.

This dissertation consists of three main parts and one appendix. The first part
is an introduction, which provides all preliminaries to understand what follows.
In Chapter 2, we define Lie algebras and develop the necessary notions which
will be important in the study of almost inner derivations. Chapter 3 contains
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iv ABSTRACT

more information about the geometric motivation from spectral theory. We
also present properties of the related notion of class preserving automorphisms
of groups. Finally, in Chapter 4, we describe some interesting techniques for
doing computations on the almost inner derivations of (a class of) Lie algebras.

In the second part, we will focus on the fact that the dimension of the set of
almost inner derivations depends on the field over which the Lie algebra is
defined. Chapter 5 contains an elaborated example, where a Lie algebra is given
by means of the structure constants. The distinction for various fields has to do
with a different factorisation of polynomials. In Chapter 6, we show a procedure
to construct new almost inner derivations by using finite field extensions. In
particular, this gives a way to set up a Lie algebra for which the dimension of
the set of almost inner derivations is distinct when we consider different fields.
Chapter 7 focuses on Lie algebras related to finite groups. We explain the
connection with class preserving automorphisms of finite groups and compare
the results we have for the two notions.

In the last part, we will use the observations from the two other parts to
compute the set of almost inner derivations for different classes of Lie algebras.
In Chapter 8, we give an overview of almost inner derivations for low-dimensional
Lie algebras. The appendix contains tables where the non-vanishing Lie brackets
for a lot of low-dimensional Lie algebras are collected. Each time, we also provide
tables with results, such as the dimension of some subalgebras of the derivation
algebra. The next three chapters are devoted to other classes of nilpotent Lie
algebras. Two-step nilpotent Lie algebras are studied in Chapter 9. Further, we
also consider filiform Lie algebras and free nilpotent Lie algebras (in Chapter 10
respectively Chapter 11). The last chapter contains results for some other
classes of (not only nilpotent) Lie algebras.



Beknopte samenvatting

Een klassiek probleem in de spectraalmeetkunde was om na te gaan of variëteiten
met hetzelfde spectrum ook isometrisch zijn. Verschillende tegenvoorbeelden
tonen aan dat dit niet noodzakelijk het geval is. Voor de constructie van continue
families isospectrale en niet-isometrische variëteiten blijken klassebewarende
automorfismen van cruciaal belang te zijn.

Een automorfisme van een groep is klassebewarend als en slechts als elk element
geconjugeerd is met zijn beeld. Deze voorwaarde is dus heel gelijkaardig aan,
maar minder streng dan die voor een inwendig automorfisme. Een nilpotente
Lie-groep met een discrete en cocompacte deelgroep waarvoor bovendien ook een
klassebewarend automorfisme bestaat dat niet inwendig is, kan gebruikt worden
om een continue familie isospectrale en niet-isometrische nilvariëteiten op te
bouwen. Klassebewarende automorfismen van een Lie-groep zijn in sterke mate
verbonden met bijna-inwendige derivaties van de bijhorende Lie-algebra. Dit
zijn derivaties waarbij elk element afgebeeld wordt op de Lie-haak van zichzelf
met een ander element. De verzameling van alle bijna-inwendige derivaties
vormt een Lie-deelalgebra en bevat alle inwendige derivaties.

Tot nu toe zijn deze bijna-inwendige derivaties van Lie-algebra’s nog niet in
detail onderzocht. Het werd enkel bestudeerd vanuit meetkundig standpunt,
waarbij de focus lag op het construeren van concrete voorbeelden. Het doel
van deze doctoraatsthesis is om dit begrip op een puur algebraïsche manier te
bestuderen. Ook al geldt de motivatie vanuit de spectraaltheorie enkel voor
nilpotente Lie-algebra’s, vanuit algebraïsch opzicht is er geen reden om ons
tot die klasse te beperken. Daarom is het de bedoeling om bijna-inwendige
derivaties van Lie-algebra’s meer algemeen te behandelen en ook Lie-algebra’s
te bekijken die niet nilpotent zijn. Verder bestuderen we niet enkel reële en
complexe Lie-algebra’s, maar ook Lie-algebra’s die gedefinieerd zijn over een
willekeurig veld.

Deze thesis bestaat uit drie grote delen en een appendix. Het eerste deel is
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vi BEKNOPTE SAMENVATTING

een inleiding en bevat alle zaken die nodig zijn om de resultaten uit latere
hoofdstukken te kunnen begrijpen. In Hoofdstuk 2 worden Lie-algebra’s
ingevoerd, net als andere begrippen die belangrijk zijn in de studie van bijna-
inwendige derivaties. Hoofdstuk 3 bevat meer informatie over de meetkundige
motivatie vanuit de spectraalmeetkunde. Daarnaast geven we eigenschappen
van klassebewarende automorfismen voor groepen. In Hoofdstuk 4 beschrijven
we enkele interessante technieken om de bijna-inwendige derivaties te berekenen
voor (een bepaalde klasse van) Lie-algebra’s.

In het tweede deel ligt de nadruk op het feit dat de dimensie van de verzameling
bijna-inwendige derivaties afhangt van het veld waarover de Lie-algebra
gedefinieerd is. Hoofdstuk 5 bevat een uitgewerkt voorbeeld, waarbij een
Lie-algebra voorgesteld is aan de hand van de Lie-haken. Het onderscheid
bij verschillende velden heeft te maken met een andere veeltermontbinding.
In Hoofdstuk 6 tonen we een werkwijze om, aan de hand van eindige
velduitbreidingen, nieuwe bijna-inwendige derivaties te construeren. Dit geeft in
het bijzonder een manier om een Lie-algebra op te stellen waarbij de verzameling
bijna-inwendige derivaties varieert voor verschillende velden. In Hoofdstuk 7 gaat
het over Lie-algebra’s geassocieerd aan eindige groepen. We leggen het verband
met klassebewarende automorfismen van eindige groepen uit en vergelijken de
resultaten die we voor beide begrippen hebben.

Voor het laatste deel gebruiken we de observaties uit de twee andere delen
om de bijna-inwendige derivaties te bepalen voor verschillende klassen van
Lie-algebra’s. In Hoofdstuk 8 berekenen we de bijna-inwendige derivaties voor
laagdimensionale Lie-algebra’s. De appendix bevat een overzicht van de Lie-
haken die niet nul zijn voor heel wat Lie-algebra’s van lage dimensie. Telkens is
er ook een tabel waarin de resultaten weergegeven zijn, zoals de dimensie van
een aantal deelalgebra’s van de derivatie-algebra. De volgende drie hoofdstukken
zijn gewijd aan nilpotente Lie-algebra’s. In Hoofdstuk 9 worden twee-staps
nilpotente Lie-algebra’s bestudeerd. Verder behandelen we ook filiforme en
vrije nilpotente Lie-algebra’s (in Hoofdstuk 10 respectievelijk Hoofdstuk 11). In
het laatste hoofdstuk staan resultaten voor een aantal andere klassen van (niet
enkel nilpotente) Lie-algebra’s.
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Chapter 1

Overview of the thesis

One of the interesting problems in spectral geometry is to determine to what
extent the spectrum of a manifold determines the shape. Hermann Weyl asked
whether or not isospectral manifolds have to be isometric. Milnor ([65]) presented
two flat tori in dimension 16 which are isospectral but not isometric, thereby
answering the question. The following years, several other counterexamples
have been given, all of them consisting of finite families. In 1984, Gordon and
Wilson constructed continuous families of non-isometric manifolds with the
same spectrum. Therefore, they considered a connected and simply connected
nilpotent Lie group G with a discrete cocompact subgroup N in such a way that
the compact nilmanifold N\G has a metric g. To obtain a continuous family
of isospectral and non-isometric nilmanifolds, they used the notion of a ‘class
preserving automorphism of a group’.

An automorphism ϕ of a group G is said to be class preserving if and only if ϕ(x)
is conjugate to x for any x ∈ G. The set of all class preserving automorphisms
of G is denoted with Autc(G). It forms a normal subgroup of Aut(G) which
contains Inn(G), the group of all inner automorphisms. If {ϕt}t is a continuous
family of automorphisms in Autc(G) with ϕ0 = Id, then (N\G,ϕ∗t g) is called
an ‘isospectral deformation’ of (N\G, g), which means that the nilmanifolds
are isospectral. When ϕ ∈ Inn(G), then they are isometric as well. However,
this is not necessarily the case for ϕ /∈ Inn(G). Hence, to obtain isospectral and
non-isometric nilmanifolds, one can search for nilpotent Lie groups admitting
non-inner class preserving automorphisms.

The usual approach to do this is by studying ‘almost inner derivations’, the
analogous notion of class preserving automorphisms for Lie algebras. Gordon
and Wilson ([41]) introduced this concept and described some examples. Since
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2 OVERVIEW OF THE THESIS

then, a few other papers have appeared concerning this subject, but all from
a differential geometric point of view. The goal was to describe Lie algebras
admitting non-inner almost inner derivations and to ‘translate’ it back to Lie
groups, so the notion has not been studied in detail.

In this dissertation, we start an algebraic study of almost inner derivations of
Lie algebras. A derivation D of a Lie algebra g is said to be almost inner if
D(x) ∈ [x, g] for all x ∈ g. The set of all almost inner derivations AID(g) forms
a Lie subalgebra of Der(g) and contains the Lie algebra of inner derivations
Inn(g). The motivation from spectral theory only makes sense for nilpotent Lie
algebras, so this will be our starting point. However, we don’t restrict to this
class. Further, we also consider Lie algebras over general fields instead of only
over R and C. This thesis consists of three parts and one appendix.

Part I The first part is an introduction, which provides the preliminaries to
understand the results. Chapter 2 consists of a short algebraic introduction to
Lie algebra theory. We describe the concepts which will be used in the rest of
this thesis. In Chapter 3, we make the link with Lie groups. This allows us
to go in more detail about the constructions of isospectral and non-isometric
nilmanifolds. Class preserving automorphisms have been studied for (finite
p–)groups as well. We list some of the obtained results in this area and compare
them in later chapters with properties of almost inner derivations of Lie algebras.

In Chapter 4, we first prove some basic properties of almost inner derivations.
Further, we introduce the notion of ‘fixed basis vectors’. With the aid of this
concept, we will prove in some cases that the only almost inner derivations are
the inner ones. The advantage of this technique is that it can be used on the
basis of the structure constants of the given Lie algebra, without having to
compute the derivation algebra. We also describe the correspondence between
Lie algebras and so-called ‘skew-symmetric matrix pencils’. For each (finite-
dimensional) Lie algebra g over a field F, there exists an associated pencil
µ1A1 + · · ·+ µmAm, where µi is an indeterminate and Ai is a skew-symmetric
matrix for all 1 ≤ i ≤ m. We show that the determinant of the matrix pencil
plays an important role in computing the dimension of AID(g). This method
is in particular interesting for 2–step nilpotent Lie algebras, but can also be
used more generally. The techniques make it possible to compute for each Lie
algebra g the set of almost inner derivations AID(g) and to compare it with
Inn(g) and Der(g).

Part II In contrast to what one might expect, the algebraic structure of
Der(g) does not really give much information with respect to the almost inner
derivations. As an example of this, consider a finite field extension k ⊆ K and a
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Lie algebra g over k. We show that Der(g⊗K) ∼= Der(g)⊗K, so the algebraic
structures of Der(g) and Der(g⊗K) are very closely related. However, it often
happens that Der(g⊗K) does not contain almost inner derivations which are
not inner, while Der(g) has a lot of non-trivial almost inner derivations. This
illustrates that the dimension of AID(g) depends on the field k over which g
is defined. The main focus of the second part is to study this phenomenon in
more detail.

Chapter 5 is devoted to the detailed computations of the almost inner derivations
for one example. The Lie algebra g is described using structure constants and
can be considered over an arbitrary field. In this example, we show that the
number of different roots of the determinant of the matrix pencil determines the
dimension of AID(g). This explains why dim(AID(g)) and dim(AID(g ⊗K))
can be different.

In Chapter 6, we show that if AID(g ⊗ K) 6= Inn(g ⊗ K) holds, then also
AID(g) 6= Inn(g). However, the converse statement is not true in general. We
further describe a procedure to construct new almost inner derivations by using
finite field extensions. Therefore, we study the so-called ‘underlying Lie algebras’
g′k and g′K .

As we illustrated in Chapter 3, there have been several results of class preserving
automorphisms of finite p–groups. In Chapter 7, we describe a way to relate
to a finite p–group G a corresponding Lie algebra L(G) over Fp. Hence, in
contrast to the rest of the thesis, this chapter focuses on Lie algebras related to
finite p–groups. For a certain class of 2–step nilpotent p–groups, there is a nice
correspondence between the class preserving automorphisms and the almost
inner derivations. However, this is not true in general, as we will illustrate as
well.

Part III In the last part, we consider the almost inner derivations for different
classes of Lie algebras. We use the observations from the first two parts to
study several research questions. Given a Lie algebra g (over some field), we
determine AID(g) over that field and compute which of the inclusions

Inn(g) ⊆ CAID(g) ⊆ AID(g) ⊆ Der(g) (1.1)

are in fact equalities. Further, we describe how the results for g compare to
other Lie algebras from the same class.

We show that the only almost inner derivations are the inner ones for many
‘standard’ Lie algebras, both nilpotent (such as Lie algebras determined by
graphs and free nilpotent Lie algebras) and non-nilpotent. These ‘negative’
results may give the impression that Lie algebras admitting non-trivial almost
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inner derivations are a rare phenomenon. However, results on low-dimensional
Lie algebras prove that even the opposite is true, but it is not easy to collect
these examples in a class with a lot of structure. Still, we find infinite families of
Lie algebras admitting non-trivial almost inner derivations, such as metabelian
filiform Lie algebras. We also specify families of 2–step nilpotent Lie algebras
{gn}n having a space AID(gn)/Inn(gn) of dimension n, where n ∈ N. Moreover,
we illustrate that many possibilities occur for (1.1). For instance, for all n ≥ 13,
there exists a characteristically nilpotent filiform Lie algebra gn of dimension n
with Inn(gn) 6= AID(gn) = Der(gn).

In Chapter 8, we compute the almost inner derivations for different lists of
low-dimensional Lie algebras. We first consider Lie algebras over an arbitrary
field and obtain a complete result for Lie algebras of dimension at most 3,
solvable Lie algebras of dimension 4 and nilpotent Lie algebras of dimension
at most 6. Let g be an n–dimensional Lie algebra over F. When char(F) 6= 2
and n ≤ 4, all almost inner derivations of g are inner. However, there exists
a 4–dimensional Lie algebra g over an infinite field F of char(F) = 2 with
Inn(g) 6= AID(g) = Der(g). We further perform computations for (non-solvable)
4–dimensional Lie algebras over a field of characteristic zero and 5–dimensional
Lie algebras over C and R. In dimension 5, we find a non-nilpotent Lie algebra g
such that the only almost inner derivations are inner when g is considered over
C, whereas Inn(g) 6= AID(g) = Der(g) holds over R. The different Lie algebras
we work with and the corresponding findings from this chapter are listed in
several tables in the appendix.

In Chapter 9, we study two-step nilpotent Lie algebras. We show that the only
almost inner derivations for Lie algebras determined by graphs are the inner ones.
We also consider Lie algebras of genus 1 and 2. Nilpotent Lie algebras of genus 1
only have trivial almost inner derivations. However, for nilpotent Lie algebras
g with dim([g, g]) = 2, several different possibilities occur. Some Lie algebras
do not admit non-inner almost inner derivations at all, while for other, the
dimensions of AID(g)/Inn(g) is rather large in comparison to the dimension of
g and all intermediate results occur as well. These Lie algebras can be described
using ‘elementary divisors’ and ‘minimal indices’ of the associated matrix pencils.
In this class, we obtain a complete description and classification of all almost
inner derivations for Lie algebras over R or an algebraically closed field of
characteristic not two. We further describe nonsingular Lie algebras and give
an infinite family of Lie algebras {gn}n such that dim(AID(gn)/Inn(gn)) = n.

Further, we consider filiform Lie algebras in Chapter 10. Let g be a metabelian
filiform Lie algebra over an arbitrary field. If g is standard graded, then the only
almost inner derivations are the inner ones. However, when g is not standard
graded, we prove that dim(AID(g)) = dim(Inn(g)) + 1. We also perform
computations for several other filiform Lie algebras over a field of characteristic
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zero, such as the Witt Lie algebras. Based on this last type, we construct for
all n ≥ 13 a characteristically nilpotent Lie algebra gn of dimension n for which
Inn(gn) 6= AID(gn) = Der(gn) holds.

Chapter 11 is devoted to the study of free nilpotent Lie algebras. We first
describe dual Lie algebras as quotients of free 2–step nilpotent Lie algebras. It
turns out that there is no correspondence between the almost inner derivations
of a Lie algebra and its dual. Further, we show that free 3–step nilpotent Lie
algebras (over any field) and free metabelian nilpotent Lie algebras on two
generators (over any infinite field) do not admit non-almost inner derivations.
The main theorem of this chapter is the following. Let F be a field of
characteristic zero and denote fr,c for the free c–step nilpotent Lie algebra
over F on r generators. Then AID(fr,c) = Inn(fr,c) holds.

The last chapter contains results for several other classes of Lie algebras. We
show that (strictly) upper triangular Lie algebras and almost abelian Lie
algebras over an arbitrary field do not admit non-inner almost inner derivations.
The same result holds for Lie algebras over an algebraically closed field of
characteristic zero for which the solvable radical is abelian. In the last section,
we give an overview of the results we obtained for characteristically nilpotent
Lie algebras throughout the dissertation.





Part I

Preliminaries

7



Chapter 2

Lie algebras

The goal of this chapter is to recall the relevant concepts and properties of
Lie algebras which are used throughout this thesis. This overview is purely
algebraic. The geometric motivation and the correspondence with Lie groups is
postponed to Section 3.1. First, we introduce some definitions and examples
and describe different linear maps between the Lie algebras. Then, we also
provide several types of Lie algebras and explain how they can be classified.
Since all facts are standard, we will omit the proofs in most cases. Unless
otherwise stated, we work over an arbitrary field F. More information can be
found in standard books of Lie algebras, such as [26].

2.1 Basic terminology

This section elaborates on the terminology which will be used in later chapters.
A Lie algebra is an algebra for which the bilinear multiplication map satisfies
certain extra conditions. These requirements are motivated by the corresponding
properties of the Lie bracket for vector fields.

Definition 2.1.1 (Lie algebra). Let F be a field. An algebra g over F is a Lie
algebra when the bilinear multiplication map

g× g→ g : (x, y) 7→ [x, y]

satisfies the following properties:

• The bracket is alternate, so [x, x] = 0 holds for all x ∈ g,

8
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• For all x, y and z ∈ g, the Jacobi identity [x, [y, z]]+[y, [z, x]]+[z, [x, y]] = 0
is fulfilled.

The first condition implies skew-symmetry (or anti-commutativity), since

0 = [x+ y, x+ y] = [x, x] + [x, y] + [y, x] + [y, y] = [x, y] + [y, x]

holds for all x, y ∈ g. When char(F) 6= 2, both concepts are equivalent. In this
thesis, we only consider finite-dimensional Lie algebras, where the dimension of
the Lie algebra is its dimension of the vector space over F.
Example 2.1.2. Let (A, ·) be an associative algebra over a field F. Then A
can be turned into a Lie algebra with Lie bracket

[x, y] = x · y − y · x

for all x, y ∈ A.

This construction will be used a lot. Let V be an n–dimensional vector space
over a field F and denote gl(V ) for the set of all linear maps from V to V . Then
gl(V ) is a Lie algebra for which the Lie bracket is defined by

[f, g] = f ◦ g − g ◦ f

for all f, g ∈ gl(V ). Similarly, the vector space Mn(F) of all (n× n)–matrices
becomes a Lie algebra when we define [A,B] = AB −BA for all A,B ∈Mn(F).
Here, AB denotes the matrix multiplication. When we want to stress the Lie
algebra structure of Mn(F), we will denote it with gln(F).
Definition 2.1.3 (Lie subalgebra). Let g be a Lie algebra. A vector subspace
h ⊆ g is a Lie subalgebra if [X,Y ] ∈ h for all X,Y ∈ h.
Example 2.1.4. Let F be a field and n ∈ N0. We consider different subspaces
of gln(F).

(a) Let h3(F) be the set of all (3×3) strictly upper triangular matrices over F.
Since the product of upper triangular matrices is again upper triangular,
h3(F) is a Lie subalgebra of gl3(F) which is called the ‘Heisenberg Lie
algebra’.

(b) Take sln(F) = {A ∈ Mn(F) | tr(A) = 0}. For arbitrary A,B ∈ sln(F), it
follows that

tr([A,B]) = tr(AB −BA)

= tr(AB)− tr(BA) = 0

by properties of the trace operator. Hence, sln(F) is a Lie subalgebra of
gln(F).
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(c) Consider the set of skew-symmetric matrices

son(F) = {A = (aij) ∈Mn(F) | A+A> = 0 and aii = 0 for 1 ≤ i ≤ n}.

Take arbitrary A,B ∈ son(F). We have

[A,B]> = (AB −BA)>

= B>A> −A>B>

= BA−AB = −[B,A].

It can be shown that all diagonal elements of [A,B] are zero as well, so
[A,B] ∈ son(F). This means that son(F) is a Lie subalgebra of gln(F).

The next construction is that of an ideal, a special type of a subalgebra.

Definition 2.1.5 (Ideal). An ideal h of a Lie algebra g is a subspace of g such
that [x, y] ∈ h for all x ∈ g and all y ∈ h.

There is no distinction between right and left ideals, since the Lie bracket is
skew-symmetric. An important example of an ideal is the center of a Lie algebra.

Definition 2.1.6 (Center and centraliser). The center Z(g) of a Lie algebra g
is defined as

Z(g) = {x ∈ g | [x, y] = 0 for all y ∈ g}.

For x ∈ g, the centraliser of x is defined as Cg(x) := {y ∈ g | [x, y] = 0}.

A Lie algebra is a vector space, so we can look at the quotient vector space. Let
g be a Lie algebra with ideal I, then the cosets x+ I = {x+ y | y ∈ I}, with
x ∈ g, form the quotient vector space

g/I = {x+ I | x ∈ g}.

Definition 2.1.7 (Quotient Lie algebra). Let g be a Lie algebra with ideal I.
Then g/I is a Lie algebra, where for all x, y ∈ g, the Lie bracket is defined as

[x+ I, y + I] := [x, y] + I.

Since a Lie algebra is a vector space, it makes sense to consider a basis for it.
This is used in the following definition.
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Definition 2.1.8 (Structure constants). Let g be an n–dimensional Lie algebra
over F with basis B = {e1, e2, . . . , en}. Then there exist values ckij ∈ F (with
1 ≤ i, j, k ≤ n) such that

[ei, ej ] =
n∑
k=1

ckijek.

These values ckij are the structure constants of g with respect to the basis B.

Let g be an n–dimensional Lie algebra. By bilinearity, it suffices to specify
the Lie brackets only for basis vectors. Moreover, we will only denote the Lie
bracket [ei, ej ] when 1 ≤ i < j ≤ n, since [ei, ei] = 0 and [ej , ei] = −[ei, ej ].

Example 2.1.9. We consider the Lie algebras from Example 2.1.4 where n = 2
or n = 3.

(a) Define the matrices

e1 =

0 1 0
0 0 0
0 0 0

 , e2 =

0 0 0
0 0 1
0 0 0

 and e3 =

0 0 1
0 0 0
0 0 0

 ,

then {e1, e2, e3} is a basis for h3(F). It holds that

[e1, e2] = e3 and [e1, e3] = [e2, e3] = 0.

(b) Consider the matrices

e1 =
(

0 1
0 0

)
, e2 =

(
0 0
1 0

)
and e3 =

(
1 0
0 −1

)
.

Then {e1, e2, e3} is a basis for sl2(F) and we have that

[e1, e2] = e3, [e1, e3] = −2e1 and [e2, e3] = 2e2.

(c) Let F be a field with char(F) 6= 2, then {e1, e2, e3} is a basis for so3(F),
where

e1 =

0 0 0
0 0 −1
0 1 0

 , e2 =

 0 0 1
0 0 0
−1 0 0

 and e3 =

0 −1 0
1 0 0
0 0 0

 .

A short computation shows that

[e1, e2] = e3, [e1, e3] = −e2 and [e2, e3] = e1.
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For A ∈ so3(F), the requirement that all diagonal elements of A are zero
is redundant if char(F) 6= 2. However, it is necessary to impose this extra
condition when char(F) = 2. Otherwise, also diagonal matrices in M3(F)
would belong to so3(F).

Usually, only the non-vanishing brackets are mentioned. For instance, we will
say that the 3–dimensional Heisenberg Lie algebra h3(F) is given by [e1, e2] = e3.
The Lie brackets between basis vectors which are not specified are assumed to
be zero, so [e1, e3] = [e2, e3] = 0. In many cases, we will present a Lie algebra
on the basis of the structure constants, since this is an efficient way for doing
computations.

2.2 Maps between Lie algebras

In this section, we introduce the concept of almost inner derivations. Before we
give the definition, we first present some important linear maps from one Lie
algebra to another. We require that the two Lie algebras are defined over the
same field F.
Definition 2.2.1 (Homomorphism). Let g1 and g2 be Lie algebras over the
same field F. A linear map ϕ : g1 → g2 is a homomorphism if

ϕ([x, y]) = [ϕ(x), ϕ(y)]

holds for all x, y ∈ g1.

The bracket on the left side is taken in g1 and the bracket on the right side in
g2.
Example 2.2.2. Let g be a Lie algebra over a field F. For the ‘adjoint
homomorphism’ ad : g→ gl(g), an element x ∈ g is mapped to

ad(x) : g→ g : y 7→ [x, y].

Since the Lie bracket is bilinear, ad(x) is linear and belongs to gl(g) for all
x ∈ g. By the same reasoning, ad is a linear map as well. Let x, y, z ∈ g be
arbitrary. The Jacobi identity implies that

ad([x, y])(z) = [[x, y], z]

= [x, [y, z]]− [y, [x, z]]

= (ad(x) ◦ ad(y))(z)− (ad(y) ◦ ad(x))(z)

= [ad(x), ad(y)](z)
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holds for all x, y, z ∈ g. This means that ad([x, y]) = [ad(x), ad(y)], where the
first bracket is taken in g and the second bracket in gl(g). Hence, the adjoint
map is indeed a Lie algebra homomorphism.

Definition 2.2.3 (Isomorphism). Let g1 and g2 be Lie algebras over the same
field F. A linear map ϕ : g1 → g2 is an isomorphism if it is a bijective
homomorphism. When there exists an isomorphism between g1 and g2, the Lie
algebras are said to be isomorphic.

Example 2.2.4. Consider so3(C) with basis {e1, e2, e3} and given by the Lie
brackets

[e1, e2] = e3, [e1, e3] = −e2 and [e2, e3] = e1.

We define

x1 := e2 + ie3, x2 := −e2 + ie3 and x3 := 2ie1

and find that

[x1, x2] = [e2 + ie3,−e2 + ie3] = 2ie1 = x3,

[x1, x3] = [e2 + ie3, 2ie1] = −2e2 − 2ie3 = −2x1,

[x2, x3] = [−e2 + ie3, 2ie1] = −2e2 + 2ie3 = 2x2.

It follows from these computations that so3(C) and sl2(C) are isomorphic.
However, it can be shown that so3(R) and sl2(R) are not isomorphic as real Lie
algebras.

Two isomorphic Lie algebras are considered to be essentially ‘the same’, since
both Lie algebras have the same structure constants after a change of basis. So
an interesting problem is to determine how many and which essentially different
isomorphism types there are for a given class of Lie algebras. An answer to this
question consists of giving an inventory of the structure constants of several Lie
algebras (possibly with some parameters) in such a way that all Lie algebras in
the given class are isomorphic to at least one Lie algebra of the list. Moreover,
one mostly requires that a Lie algebra is isomorphic to exactly one Lie algebra
from the inventory. If that is the case, we will speak about a ‘classification’.

Classification up to isomorphism is a difficult problem in the study of finite-
dimensional Lie algebras. As the last example illustrates, such a classification
depends on the field. A popular and classical choice is to list the low-dimensional
Lie algebras. In general, it is hard to obtain a full classification, even over
an algebraically closed field of characteristic zero. For example, there are
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already infinitely many essentially different (so non-isomorphic) 3–dimensional
Lie algebras over C. Chapter 8 is devoted to the computation of almost inner
derivations of low-dimensional Lie algebras.

Definition 2.2.5 (Derivation). Let g be a Lie algebra over a field F. A linear
map D : g→ g is a derivation of g if

D([x, y]) = [D(x), y] + [x,D(y)]

holds for all x, y ∈ g.

This identity is called the ‘Leibniz’ rule’. The set of all derivations of an algebra
g forms a vector space, which is denoted by Der(g). Moreover, it is a subspace
of gl(g). We will show that it is a Lie subalgebra as well. Take arbitrary
D,E ∈ Der(g) with x, y ∈ g. Since derivations are bilinear maps, we obtain
that

[D,E]([x, y]) = D(E([x, y]))− E(D([x, y]))

= D([E(x), y] + [x,E(y)])− E([D(x), y] + [x,D(y)])

= [D(E(x)), y] + [E(x), D(y)] + [D(x), E(y)] + [x,D(E(y))]

− [E(D(x)), y]− [D(x), E(y)]− [E(x), D(y)]− [x,E(D(y))]

= [D(E(x)), y] + [x,D(E(y))]− [E(D(x)), y]− [x,E(D(y))]

= [[D,E](x), y] + [x, [D,E](y)].

This means that [D,E] is a derivation too and Der(g) is a Lie subalgebra of
gl(g). Choose an arbitrary x ∈ g. By the Jacobi identity, we find that

ad(x)([y, z]) = [x, [y, z]]

= [[x, y], z] + [y, [x, z]]

= [ad(x)(y), z] + [y, ad(x)(z)]

holds for all y, z ∈ g. Hence, for every x ∈ g, the adjoint homomorphism ad(x)
is a derivation.

Definition 2.2.6 (Inner derivation). Let g be a Lie algebra and x ∈ g. The
map

ad(x) : g→ g : y 7→ [x, y]

is called an inner derivation of g.
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We denote Inn(g) for the set of all inner derivations of g. By bilinearity, Inn(g)
can be generated by the maps ad(ei) : g → g, where ei is a basis vector and
1 ≤ i ≤ n. For all x ∈ g, the map ad(x) is the zero-map if and only if x ∈ Z(g),
which explains the isomorphism

Inn(g) ∼=
g

Z(g) .

Hence, dim(Inn(g)) is easy to compute. The following definition is the main
topic of this thesis. The motivation to study this notion, which was introduced
in [41], is explained in Section 3.1.

Definition 2.2.7 (Almost inner derivation). Let g be a Lie algebra. A
derivation D is almost inner if D(x) ∈ [x, g] for all x ∈ g. The space of all
almost inner derivations of g is denoted by AID(g).

Hence, there exists a map ϕD : g→ g such that D(x) = [x, ϕD(x)] for all x ∈ g.
We will call ϕD a ‘determination map’ for D. This map is not unique as we
may change ϕD(x) to ϕD(x) + y for any y ∈ Cg(x). In most cases, ϕD is not a
linear map.

An almost inner derivation is inner when the map ϕD is constant. Moreover, a
derivation is almost inner if and only if it coincides on each one-dimensional
subspace with an inner derivation. We will say that a linear map D ‘satisfies
the almost inner condition’ when D(x) ∈ [x, g] for all x ∈ g, so a derivation is
almost inner when it satisfies the almost inner condition. We introduce a new
subspace of AID(g) as follows.

Definition 2.2.8 (Central almost inner derivation). An almost inner derivation
D ∈ AID(g) is called central almost inner if there exists an x ∈ g such that
D − ad(x) maps g to the center Z(g). We denote the space of central almost
inner derivations of g by CAID(g).

The next section is devoted to the introduction of some classes of Lie algebras.
Those concepts have an important role in the last part of this thesis, where the
almost inner derivations of special classes of Lie algebras will be computed.

2.3 Solvable and nilpotent Lie algebras

As we will explain in the next chapter, the geometric motivation for almost
inner derivations is in particular important for nilpotent Lie algebras. This and
other related notions are introduced in this section.
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Definition 2.3.1 (Product of ideals). Let g be a Lie algebra over a field F
with ideals I and J . The product [I, J ] of I and J is given by

[I, J ] = 〈[x, y] ∈ g | x ∈ I and y ∈ J〉.

This is the smallest ideal containing [x, y] for all x ∈ I and y ∈ J .

Definition 2.3.2 (Derived series). Let g be a Lie algebra over a field F. The
derived series of g is the series with terms

g(1) = [g, g] and g(k) = [g(k−1), g(k−1)] for k ≥ 2.

Here, g(1) = [g, g] is called the ‘derived algebra’ of g. This gives rise to a
descending series g(1) ⊇ g(2) ⊇ . . . When the derived series of g terminates in
the zero subalgebra, g is called solvable.

Definition 2.3.3 (Solvable Lie algebra). A non-zero Lie algebra g over a field F
is solvable when g(k) = 0 for some k ≥ 1.

A Lie algebra for which [g, g] = 0 is called ‘abelian’. A non-abelian Lie algebra
g is ‘metabelian’ when g(2) = 0.

Definition 2.3.4 (Solvable radical). Let g be a Lie algebra. The (solvable)
radical Rad(g) of g is the maximal solvable ideal of g.

A notion related to solvability is nilpotency. First, the lower central series is
introduced.

Definition 2.3.5 (Lower central series). Let g be a Lie algebra over a field F.
The lower central series of g is the series with terms

γ1(g) = g and γk(g) = [g, γk−1(g)] for k ≥ 1.

We have a descending series γ1(g) ⊇ γ2(g) ⊇ . . . A Lie algebra is called
‘nilpotent’ when there exists a natural number k ∈ N0 such that every Lie
bracket with more than k elements vanishes.

Definition 2.3.6 (Nilpotent Lie algebras). A non-zero Lie algebra g over a
field F is nilpotent when γk(g) = 0 for some k ∈ N0. The smallest possible
c ≥ 2 such that γc+1(g) = 0 is the nilindex or the nilpotency class of g. Then g
is said to be c–step nilpotent.

We will not use the word ‘nilindex’ for abelian Lie algebras.
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Definition 2.3.7 (Type). The type of a nilpotent Lie algebra g is a tuple
(p1, . . . , pc), where pk := dim(γk(g)/γk+1(g)) for all 1 ≤ k ≤ c.

Note that c is the nilindex of g and that p1 + · · ·+ pc = n. It is easy to see that
g(k) ⊆ γk(g) for all k ∈ N0. Hence, any nilpotent Lie algebra is also solvable.
The converse is not true: the two-dimensional non-abelian Lie algebra (with
basis {e1, e2} and given by [e1, e2] = e1) is solvable, but not nilpotent. Note that
the derived algebra [g, g] of a solvable Lie algebra g is nilpotent. Lie algebras of
dimension n with nilindex n− 1 have a special name.

Definition 2.3.8 (Filiform Lie algebra). A Lie algebra g of dimension n is
called filiform if g is nilpotent with nilindex n− 1.

The name ‘filiform Lie algebra’ was first introduced by Vergne ([79]). For a
nilpotent Lie algebra g, it is not possible that [g, g] = g or that [g, g] is of
codimension 1 in g. When [g, g] = g, then γk(g) = g for all k ∈ N0. Suppose
that dim(g) = n and dim([g, g]) = n − 1, say [g, g] = 〈e1, . . . , en−1〉. We find
that

γ3(g) = [g, 〈e1, . . . , en−1〉] = [g, g] = γ2(g)

holds, which is impossible for nilpotent Lie algebras. This implies that for every
nilpotent n–dimensional Lie algebra g, the inequality dim([g, g]) ≤ n− 2 is true.
Moreover, a similar reasoning by induction shows that

dim(γk(g)) ≤ n− k

holds for all 2 ≤ k ≤ n. It follows that for a filiform Lie algebra g, we have
dim(g/γ2(g)) = 2 and

dim
(

γk(g)
γk+1(g)

)
= 1

when 2 ≤ k ≤ n. This means that the type of g is (2, 1, . . . , 1). Hence, filiform
Lie algebras are the nilpotent Lie algebras with maximal possible nilindex. The
lower central series still terminates, but there are as many non-zero terms as
possible. This explains the name ‘filiform’, which means threadlike. Filiform
Lie algebras will be studied in detail in Chapter 10.

Example 2.3.9. Let F be an arbitrary field. For the Heisenberg algebra
g := h3(F), we have that g(1) = γ1(g) = 〈e3〉 and g(k) = γk(g) = {0} for all
k ≥ 2. Hence, g is metabelian with itself as solvable radical. Further, it is
filiform with type (2, 1).
For g := so3(F), we find that g(k) = γk(g) = g for all k ∈ N0. This means that
g is not solvable (and not nilpotent). Moreover, g does not have proper ideals,
so Rad(g) = {0}.
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2.4 Simple and semisimple Lie algebras

In this section, we will introduce simple and semisimple Lie algebras. First, the
notion of a direct sum of Lie algebras is explained.
Definition 2.4.1 (Direct sum of Lie algebras). Let g1 and g2 be two Lie
algebras over the same field F. The direct sum g = g1 ⊕ g2 of the Lie algebras
g1 and g2 is the vector space direct sum consisting of pairs, where

[(x1, x2), (y1, y2)] = ([x1, y1], [x2, y2]),

where x1, y1 ∈ g1 and x2, y2 ∈ g2 and such that [g1, g2] = 0.

It is clear that both g1 and g2 are ideals of g in this case. This construction is
sometimes referred to as the ‘external direct sum’ of g1 and g2, since they don’t
have to be subalgebras of some given Lie algebra.
Definition 2.4.2 (Semidirect product of Lie algebras). Let g1 and g2 be two
Lie algebras over the same field F. Let ϕ : g2 → Der(g1) be a Lie algebra
homomorphism. The semidirect product g1 oϕ g2 of g1 and g2 is the vector
space g1 ⊕ g2, where the Lie bracket is given by

[(x1, x2), (y1, y2)] = ([x1, y1] + ϕ(x2)(y1)− ϕ(y2)(x1), [x2, y2]),

where x1, y1 ∈ g1 and x2, y2 ∈ g2.

Here, g1 is an ideal and g2 is a subalgebra of g1 oϕ g2. When the map ϕ is clear
or not important, it will be omitted.
Definition 2.4.3 (Simple and semisimple Lie algebra). Let g be a Lie algebra
over a field F. Then g is simple if g is non-abelian and has no non-zero proper
ideals. Further, g is called semisimple if it has no non-zero solvable ideals.

Let g be a Lie algebra over an arbitrary field F. If g is simple, then it is
semisimple as well. When char(F) = 0, then g is semisimple if and only if g is a
direct sum of simple Lie algebras. Note that when a Lie algebra g is solvable, it
cannot be semisimple, since g itself is an ideal of g.
Example 2.4.4. Let F be an arbitrary field. Then so3(F) is simple. Further,
sl2(F) is simple if and only if char(F) 6= 2. We find that sl2(F) is isomorphic to
h3(F) when char(F) = 2.

As was conjectured by Killing and Cartan and proven by Levi, a Lie algebra
over a field of characteristic zero can be decomposed as a semidirect product of
a solvable and semisimple Lie algebra. It is also referred to as the Levi-Mal’cev
theorem.
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Theorem 2.4.5 (Levi, 1905). Let g be a finite-dimensional Lie algebra over
a field F of characteristic zero. Then g = r o s is a semidirect product of a
semisimple Lie algebra s and the solvable radical r of g.

This is known as the ‘Levi decomposition’ of a Lie algebra, where the semisimple
subalgebra is called the ‘Levi subalgebra’.





Chapter 3

Motivation and related results

In the previous chapter, we introduced almost inner derivations of Lie algebras,
the main topic of this thesis. The motivation to study this notion finds its origin
in spectral theory. The notions of ‘class preserving automorphisms of a Lie group’
and ‘almost inner derivations of a Lie algebra’ were defined to build isospectral
and non-isometric nilmanifolds. In the first section, we explain this construction
and present some definitions concerning Lie groups and the correspondence
with Lie algebras. Section 3.2 deals with class preserving automorphisms for
finite p–groups. Although there is no direct link with Lie algebras, it turns out
that many of the existing results for groups are similar to the properties for
almost inner derivations of Lie algebras.

3.1 Spectral theory

A classical question in spectral geometry was whether or not isospectral
manifolds are isometric. It turns out that this does not have to be the case
and several counterexamples have been given. Gordon and Wilson wanted to
have continuous families of isospectral non-isometric manifolds instead of only
finitely many. They constructed deformations of nilmanifolds, based on class
preserving automorphisms of Lie groups ([41]). To build specific examples, they
made use of almost inner derivations of Lie algebras. In this section, we consider
this question about isospectral and non-isometric manifolds in more detail and
discuss the counterexamples of Gordon and Wilson. Further, we present basic
notions about Lie groups and define Lie algebras as the tangent space at the
neutral element of a Lie group.

21
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3.1.1 Isospectral manifolds

In spectral geometry, relations between a certain kind of manifolds and spectra
of differential operators are studied. One of the fundamental problems is to
establish to what extent the eigenvalues of some operator determine the geometry
of a given manifold.

Definition 3.1.1 (Riemannian manifold). Let M be a real smooth manifold.
A Riemannian metric g on M assigns for every p ∈M a positive-definite inner
product gp : TpM × TpM → R. Together with this metric g, a real smooth
manifold M is called a Riemannian manifold (M, g).

The main example of a differential operator is the ‘Laplace-Beltrami operator’,
which is defined as the divergence of the gradient and it is denoted with ∆ or
with ∇2.

Definition 3.1.2 (Spectrum). Let (M, g) be a closed Riemannian manifold
where the associated Laplace-Beltrami operator ∆ acts on smooth p–forms. The
spectrum specp(M, g) of the manifold (M, g) is the collection of eigenvalues of
∆, counted with multiplicities.

When two Riemannian manifolds have the same spectrum, they are called
‘isospectral’.

Definition 3.1.3 (Isospectral manifolds). Two closed Riemannian manifolds
(M, g) and (M ′, g′) are isospectral when specp(M, g) = specp(M ′, g′) for all
0 ≤ p ≤ dim(M).

Two Riemannian manifolds are called isometric when there exists an isometry
from one to another.

Definition 3.1.4 (Isometry). Let f : M →M ′ be a diffeomorphism between
two Riemannian manifolds (M, g) and (M ′, g′). Then, f is an isometry if

gp(X,Y ) = g′f(p)(fp(X), fp(Y ))

holds for all p ∈M and for all X,Y ∈ TpM .

One of the central research domains in spectral geometry was whether or not
isospectral manifolds are necessarily isometric. This question going back to
Hermann Weyl can be interpreted as follows: ‘Is it possible to determine the
whole geometry of the manifold by only looking at its eigenvalues?’ It turns
out that the answer is negative. In 1964, a counterexample was given by
Milnor ([65]), who constructed two isospectral and non-isometric flat tori of
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dimension 16. A few years later, Mark Kac gave this problem the popular title
‘Can one hear the shape of a drum?’ ([52]). In other words, is it possible to
determine the shape of the drum membrane when it is known which sounds it
produces? This question remained unsolved until 1992, when Gordon, Webb
and Wolpert constructed ‘drums’ with different shapes, but with identical
eigenspectra ([39, 40]), see Figure 3.1. To obtain these examples, they used
the Sunada method ([77]). Sunada gave a general technique for constructing
pairs of isospectral manifolds with a common finite Riemannian covering. Using
a similar approach, Gordon and Wilson were in 1984 the first to construct
continuous families of isospectral manifolds which are non-isometric. In their
paper ([41]), they used class preserving automorphisms of Lie groups. In the
following subsections, we will present a concise overview of the different notions
and concepts used in their result.

Figure 3.1: Example of different ‘drums’ which sound the same

3.1.2 Lie groups and the correspondence with Lie algebras

In this subsection, we briefly discuss the theory of Lie groups and the
correspondence with Lie algebras.

Definition 3.1.5 (Lie group). A (real) Lie group (G, ∗) is a differentiable
manifold with a group structure such that

G×G→ G : (g, h) 7→ g ∗ h−1

is a differentiable map.

We will focus on real Lie groups, although complex Lie groups also exist.

Example 3.1.6. We give some examples of real Lie groups. Take n ∈ N0.

(a) The group (Rn,+) with the natural manifold structure is a Lie group.
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(b) The groups (R0, ·) and (R+, ·) are Lie groups.

(c) The group (GLn(R), ·) is a Lie group when we consider the manifold
structure from Rn2 .

A subgroup H of a Lie group G is a ‘Lie subgroup’ if H has a manifold structure
such that it is a Lie group itself and such that the inclusion H → G is an
immersion.

Example 3.1.7. We consider some Lie subgroups of GLn(R), where n ∈ N0.

(a) The ‘Heisenberg group’ H3(R) is defined as

H3(R) =


1 x z

0 1 y

0 0 1

 | x, y, z ∈ R

 .

(b) The ‘special linear group’ SLn(R) is defined as

SLn(R) = {A ∈ GLn(R) | det(A) = 1}.

(c) The ‘special orthogonal group’ SOn(R) is defined as

SOn(R) = {A ∈ SLn(R) | AA> = A>A = In}.

Definition 3.1.8 (Lie group morphism). For Lie groups G and H, a Lie group
morphism from G to H is a continuous map f : G → H which is also a
morphism. If f is bijective and f−1 is a Lie group morphism, then f is a Lie
group isomorphism.

A Lie group automorphism is a Lie group isomorphism from a group to itself.
The set of all automorphisms of a given group is denoted with Aut(G) and
forms a group.

Definition 3.1.9 (Inner automorphism). Let G be a Lie group and g ∈ G,
then the inner automorphism for g is given by

Ig : G→ G : h 7→ ghg−1.

It is clear that this is a Lie group automorphism. The notation Inn(G) stands
for the set of all inner automorphisms of the group G. Moreover, Inn(G) is a
normal subgroup of Aut(G). Consider now the group homomorphism

G→ Inn(G) : g 7→ (Ig : G→ G).
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Since the kernel of this morphism is equal to the center Z(G) of G, it follows
from the isomorphism theorems that G/Z(G) ∼= Inn(G).

There is an interesting correspondence between Lie groups and Lie algebras.
Let G be a Lie group with neutral element 1G ∈ G and define g := T1G

G
as the tangent space of 1G. Since Ig(1G) = 1G, we have that Ig induces an
automorphism (Ig)∗ : g→ g. Define

Ad : G→ GL(g) : g 7→ (Ig)∗.

This map is smooth and induces a linear map Ad∗ : g→ TIdGL(g) between the
tangent spaces. Define gl(g) as the vector space of all linear maps from g to g.
Since GL(g) is open in gl(g), we can identify TIdGL(g) with TIdgl(g) and define

ad = Ad∗ : g→ TIdgl(g).

Proposition 3.1.10. Let G be a Lie group with neutral element 1G and take
g := T1G

G. Define a Lie bracket

[., .] : g× g→ g : (x, y) 7→ [x, y] := ad(x)(y)

on g, then g with this Lie bracket defines a Lie algebra.

The Lie algebra g in the construction of the previous result is called ‘the Lie
algebra associated to G’.

Example 3.1.11. We consider the Lie groups from Example 3.1.6 and
Example 3.1.7. Take n ∈ N0.

• The Lie algebra associated to (Rn,+) and GLn(R) is Rn respectively
gln(R). Moreover, (R0, ·) and (R+, ·) both have R as associated Lie
algebra.

• Further, H3(R), SLn(R) and SOn(R) have associated Lie algebras h3(R),
sln(R) respectively son(R), where we use the notations from Example 2.1.4.

For a Lie group morphism f : G→ H, we must have that f(1G) = 1H . Hence,
there is an induced map f∗ : T1G

G→ T1H
H between the associated Lie algebras

T1G
G and T1H

H.

Definition 3.1.12 (Induced Lie algebra morphism). Let G and H be Lie
groups with associated Lie algebras g respectively h. A Lie group morphism
f : G→ H induces a Lie algebra morphism f∗ : g→ h which is called the Lie
algebra morphism induced by f .
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Let G be a Lie group with associated Lie algebra g. For every X ∈ g, there is a
unique Lie group morphism fX : R → G with (fX)∗(1) = X. This motivates
the following definition.

Definition 3.1.13 (Exponential map). Let G be a Lie group with associated
Lie algebra g. The exponential map exp from g to G is defined as

exp : g→ G : X 7→ fX(1).

Example 3.1.14. We provide some examples.

(a) The exponential map from the Lie algebra Rn to the Lie group (Rn,+) is
the identity map.

(b) The exponential map from gln(R) to (GLn(R), ·) is given by

exp : gln(R)→ GLn(R) : A 7→
∞∑
k=0

Ak

k! .

When g is a nilpotent subalgebra of gln(R), this expression can be
simplified. For instance, the exponential map from h3(R) to (H3(R), ·) is
given by

exp : h3(R)→ H3(R) : A 7→ In +A+ A2

2 ,

since Ak = 0 for all k ≥ 3 and all A ∈ h3(R).

Theorem 3.1.15. Let G be a connected and simply connected nilpotent Lie
group. Consider the associated Lie algebra g with the natural manifold structure.
Then the exponential map exp : g→ G is a diffeomorphism.

Hence, the inverse of the exponential map is well-defined when G is a connected
and simply connected nilpotent group.

Definition 3.1.16 (Logarithmic map). Let G be a connected and simply
connected nilpotent Lie group with associated Lie algebra g. We define the
logarithmic map log : G→ g as the inverse of the exponential map.

Example 3.1.17. We again give some examples.

(a) The logarithmic map from the Lie group Rn to the Lie algebra Rn is the
identity map.

(b) The logarithmic map from H3(R) to h3(R) is given by

log : H3(R)→ h3(R) : A 7→ (A− In)− (A− In)2

2 .
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Let G be a connected and simply connected Lie group with associated Lie
algebra g. One can show that Inn(G) and Aut(G) have Inn(g) respectively
Der(g) as Lie algebra. In particular, exp : Der(g) → Aut(g) is the matrix
exponential. For the rest of this section, a Lie group is assumed to be connected
and simply connected.

3.1.3 Isospectral and non-isometric nilmanifolds

In this subsection, we will consider the continuous deformations of nilmanifolds.
First, some other notions have to be explained.
Definition 3.1.18 (Left group action). Let (G, ∗) be a group and X a set. A
left group action ϕ of G on X is a function

ϕ : G×X → X : (g, x) 7→ ϕ(g, x) = g · x

such that for all x ∈ X and for all g, h ∈ G, the equations 1G · x = x and
(g ∗ h) · x = g · (h · x) are satisfied.

Analogously, a right group action of G on X can be defined. We will focus on left
group actions, since every right action can be modified to a left action. Further,
when we assume that the set X is a Lie group and that G has a topology, the
action ϕ is required to be continuous. For instance, a Lie group (G, ∗) acts on
itself via the ‘left translation’ `, which is defined as `g(x) := `(g, x) = g ∗ x for
all g, x ∈ G.
Definition 3.1.19 (Orbit). Consider a left group action of G on X. The orbit
of an element x ∈ X is given by G · x = {g · x | g ∈ G}.

The ‘quotient of a left action’ (or the ‘orbit space’) G\X is the set of all orbits
of X under G. This forms a partition of X, where two elements x, y ∈ X are
equivalent if and only if their orbits coincide. More formally, we have that x ∼ y
if and only if there exists g ∈ G with g · x = y. Another notion is that of a
discrete subgroup of a given group.
Definition 3.1.20 (Discrete subgroup). A subgroup H of a topological group
G is called discrete if the subspace topology of H in G is the discrete topology.

This means that there exists an open cover of H such that every open subset
contains exactly one element of H. For instance, for R with the standard
topology, Z is a discrete subgroup, but Q is not.
Definition 3.1.21 (Cocompact group action). A left action of a group G on a
topological space X is cocompact (also called uniform) if the quotient space
G\X is a compact space.
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Let G be a simply connected nilpotent Lie group and N be a discrete subgroup.
If the subgroup N acts uniformly (via left multiplication) on G, then the quotient
manifold N\G is a compact nilmanifold.

Definition 3.1.22 (Nilmanifold). Let G be a connected and simply connected
nilpotent Lie group. Let N be a discrete, cocompact subgroup of G. The
compact quotient space N\G is called a nilmanifold.

A discrete, cocompact subgroup N of G is also called a ‘lattice’ of G. The
notion of a nilmanifold was first used by Anatoly Mal’cev in 1951 ([62]).

Example 3.1.23. Take k ∈ N0 and consider the abelian Lie group (Rk,+)
with the discrete cocompact subgroup (Zk,+). The resulting nilmanifold is the
k–dimensional torus

T k = Rk

Zk
.

For k = 1, this is the circle and for k = 2, this is the usual 2–dimensional torus.
We have to put a metric on the nilmanifolds to be able to decide when two
nilmanifolds are isospectral. Therefore, we want to take the group structure
into account.

Definition 3.1.24 (Left invariant metric). A metric g on a Lie group G is left
invariant if

gp(u, v) = gqp((`q)∗u, (`q)∗v)

for all p, q ∈ G and all u, v ∈ TpG.

Let g be a left invariant metric on a Lie group G and N a lattice of G. Then g
induces in a unique way a metric on N\G (which we also denote with g) such
that the natural projection (G, g) → (N\G, g) is a Riemannian covering. In
this way, we obtain a Riemannian nilmanifold (N\G, g). For the construction
of isospectral and non-isometric nilmanifolds, Gordon and Wilson introduced
the following notion ([41]).

Definition 3.1.25 (Class preserving automorphism). Let G be a Lie group.
An automorphism ϕ of G is class preserving if and only if for all x ∈ G, there
exists y ∈ G such that ϕ(x) = yxy−1.

This notion was introduced differently in [41], but it is in fact equivalent to this
one (see [36]). The set of all class preserving automorphisms of G is denoted
with Autc(G). Hence, a class preserving automorphism is a generalisation of an
inner one, where y ∈ G can depend on x ∈ G. In [41], it is proven that Autc(G)
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is a Lie subgroup of Aut(G). Take ϕ ∈ Aut(G) and let g be a left invariant
metric on G. Define a metric ϕ∗g by

(ϕ∗g)(X,Y ) := g(ϕ∗X,ϕ∗Y )

for all X,Y ∈ g, then ϕ∗g is again left invariant.

Theorem 3.1.26 ([41]). Let (N\G, g) be a compact Riemannian nilmanifold
with ϕ ∈ Autc(G). Then (N\G, g) is isospectral to (N\G,ϕ∗g).

If {ϕt}t is a continuous family of automorphisms in Autc(G) with ϕ0 = Id,
then (N\G,ϕ∗t g) is called an ‘isospectral deformation’. When ϕ ∈ Inn(G),
the corresponding Riemannian manifolds are isometric as well. However, the
manifolds (N\G, g) and (N\G,ϕ∗g) are rarely isometric if ϕ ∈ Autc(G)\Inn(G).
This description is made more clear in [41] but is rather technical, so we omit it
here. Hence, for suitable subsets of Autc(G)\Inn(G), we obtain a continuous
deformation of N which results in isospectral and non-isometric manifolds. Note
that ϕ induces an isometry from (N\G,ϕ∗g) to (ϕ(N)\G, g), so the result can
also be interpreted as obtaining isospectral nilmanifolds by fixing the metric
and continuously deforming N .

To find concrete examples, it is often easier to consider the analogon of class
preserving automorphisms on the Lie algebra level. Therefore, Gordon and
Wilson also introduced in [41] the concept of an almost inner derivation
(Definition 2.2.7). The relation between the two concepts is expressed in
the following proposition.

Proposition 3.1.27 ([41]). Let G be a connected and simply connected nilpotent
Lie group with nilindex c. Denote the Lie algebra of G with g. Then Autc(G)
is a simply connected nilpotent Lie group with nilindex ≤ c − 1 and with Lie
algebra AID(g).

There have been several articles concerning continuous deformations of
nilmanifolds (see for instance [22, 23, 35, 36, 37, 38, 41, 69]). However, this
was always from of differential geometric point of view and the main focus
was on constructing examples. The approach was to start from a specific Lie
algebra admitting non-inner almost inner derivations and to derive non-inner
class preserving automorphisms. Therefore, almost inner derivations of Lie
algebras have not been investigated in detail. The aim of this dissertation is to
study this concept in a purely algebraic way. Although the motivation from
spectral geometry only makes sense for nilpotent Lie algebras over R or C, there
is no need to restrict to this class.
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3.2 Class preserving automorphisms of groups

Let G be a group. An automorphism ϕ : G → G is called ‘class preserving’
if every element is mapped to a conjugate element. This means that g and
ϕ(g) belong to the same conjugacy class for every g ∈ G. By definition, inner
automorphisms are class preserving. In 1909, Burnside wanted to know if there
exists a finite group with an outer automorphism which is class preserving ([12]).
A few years later, he answered his own question by finding groups of order p6

(for an odd prime p) which contain non-inner class preserving automorphisms
([13]). However, his answer went somewhat unnoticed, so the question was
considered to be unsolved. Many years later, Wall ([84]) constructed an infinite
number of examples of 2–groups, the smallest of which has order 32. Since then,
there have been other results concerning class preserving automorphisms of
finite p–groups (see for instance [46, 63, 86, 87, 88, 89, 90]) or groups in general
(such as [25, 28, 43, 48, 67, 68, 74, 82, 83]). Since inner automorphisms are
class preserving, this last notion is also referred to as ‘almost inner’, ‘pointwise
inner’ or ‘nearly inner’ automorphisms.

In this section, we will list some facts concerning class preserving automorphisms.
However, this collection is not at all a complete overview of all what is known
with respect to this topic. We only mention these statements for which we
can compare the results with properties for almost inner derivations of Lie
algebras. Although we didn’t use the results from this section to prove the
statements about almost inner derivations of Lie algebras, it will become clear
throughout this thesis that many results are very similar. Hence, this section
can be considered as an alternative overview of the rest of this thesis.

3.2.1 Results for general groups

Preliminaries

Let G be a group. An automorphism ϕ : G→ G is called ‘class preserving’ if
every element is mapped to a conjugate element. The set of all class preserving
automorphisms is denoted with Autc(G). It is clear that this is a generalisation of
the inner automorphisms. When ϕ ∈ Autc(G), there exists a map ϕD : G→ G
such that D(g) = gϕD(g) for all g ∈ G. In this case, ϕ is said to be ‘determined’
by ϕD. However, this map ϕD is not unique. The following results are well-
known.

Proposition 3.2.1. Let G be a group, then Autc(G) is a normal subgroup of
Aut(G).
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Proof. Note that ∅ 6= Inn(G) ⊆ Autc(G), so Autc(G) is not empty. Further,
suppose that D,E ∈ Autc(G) are determined by ϕD respectively ϕE . Then
D ◦ E ∈ Autc(G) as well, where

DE(g) = D
(
ϕE(g)−1gϕE(g)

)
= D(ϕE(g))−1D(g)D(ϕE(g))

= D(ϕE(g))−1ϕD(g)−1gϕD(g)D(ϕE(g))

= (ϕD(g)D(ϕE(g)))−1gϕD(g)D(ϕE(g)) = gϕD(g)D(ϕE(g))

holds for all g ∈ G. We also have that D−1 ∈ Aut(G). Choose an arbitrary
g ∈ G and define h := D−1(g). Since g = D(h) = ϕD(h)−1hϕD(h), it turns out
that

D−1(g) = ϕD(h)gϕD(h)−1.

Hence, D−1 ∈ Autc(G), where ϕD−1(g) = ϕD(D−1(g))−1 for all g ∈ G. This
means that Autc(G) is a subgroup of Aut(G). Let D ∈ Autc(G) be determined
by ϕD and take arbitrary E ∈ Aut(G). Choose g ∈ G and consider h := E(g).
Then

E−1DE(g) = E−1(ϕD(h)−1hϕD(h))

= E−1(ϕD(h))−1gE−1(ϕD(h))

holds, which shows that Autc(G) is a normal subgroup of Aut(G).

This proposition shows that the set Outc(G) := Autc(G)/Inn(G) is well-
defined. A group G has non-inner class preserving automorphisms if and only if
Outc(G) 6= 1. Moreover, if G is nilpotent, then Autc(G) and Autc(G)/Inn(G)
are nilpotent as well.

Theorem 3.2.2 ([74]). Let G be a nilpotent group of class c. Then Autc(G)
is a nilpotent group of class c− 1 and Autc(G)/Inn(G) is a nilpotent group of
class less than c.

In Example 3.2.13, we show 2–step nilpotent groups for which Autc(G)/Inn(G)
is non-trivial, but abelian.

Proposition 3.2.3. Let G1 and G2 be groups and consider the direct sum
G := G1 ⊕G2. Suppose that ϕ1 ∈ Autc(G1) and ϕ2 ∈ Autc(G2). For the map
ϕ : G→ G : (g, h) 7→ (ϕ1(g), ϕ2(h)), it holds that ϕ ∈ Autc(G).

Theorem 3.2.4 ([28]). Let G be a finite simple group, then Autc(G) = Inn(G).

For most of the statements in this subsection, similar results for almost inner
derivations of Lie algebras are proven in Section 4.1.



32 MOTIVATION AND RELATED RESULTS

Other results for general groups

It turns out that for free groups, the only class preserving automorphisms are
the inner ones.
Theorem 3.2.5 ([43]). Let G be a free group, then Autc(G) = Inn(G).

The same result holds for free nilpotent groups.
Theorem 3.2.6 ([25]). Let G be a free nilpotent group, then Autc(G) = Inn(G).

Chapter 11 is devoted to the study of almost inner derivations for free nilpotent
Lie algebras. We also have in that case that the only almost inner derivations
are the inner ones.

3.2.2 Results for finite p–groups

Let p be a prime number. We will present some definitions and properties of
finite p–groups. For a finite p–groupG, the set of class preserving automorphisms
Autc(G) is a p–group as well.
Proposition 3.2.7. Let G be a finite p–group. Then Autc(G) is also a p–group.
Definition 3.2.8 (Elementary abelian group). A p–group G is elementary
abelian if G is abelian and every non-trivial element has order p.

An elementary abelian p–group can be considered as a vector space over the
field with p elements. An easy example is (C2 ⊕C2,+) which has four elements.
Definition 3.2.9 (Frattini subgroup). Let G be a group. The Frattini subgroup
Φ(G) of G is the intersection of all maximal subgroups of G. If there are no
maximal subgroups, it is defined as Φ(G) := G.

It can be shown that the Frattini subgroup of G equals the set of non-generators
of G, where g ∈ G is a ‘non-generator’ if 〈H, g〉 6= G for all proper subgroups
H ≤ G.
Definition 3.2.10 (Special and extra special group). A p–group G is called
special if G is elementary abelian or if [G,G] = Φ(G) = Z(G). Further, a
group G is called extra special if G is a non-abelian special p–group for which
|Z(G)| = |[G,G]| = |Φ(G)| = p.

For an abelian group G, it is clear that Autc(G) = Inn(G) holds. It turns out
that for extra special groups, all class preserving automorphisms are inner as
well.
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Theorem 3.2.11 ([78]). Let G be an extra special p–group. Then we have
Autc(G) = Inn(G).

In Chapter 7, we will consider special p–groups in more detail, as well as the
correspondence with almost inner derivations of Lie algebras.

Groups of small order

It can be shown that every non-abelian group of order p3 is extra special. For
groups of order p4, the only class preserving automorphisms are inner.

Theorem 3.2.12 ([55]). Let G be a group of order p4, then Autc(G) = Inn(G).

Since all groups of order p and p2 are abelian, the above observations show that
all class preserving automorphisms are inner for a general p–group of order ≤ p4.
Wall ([84]) found a class of examples of 2–groups G with Outc(G) 6= 1. Therefore,
he used the holomorph of C2m (with m ≥ 3), which is a group obtained as a
semidirect product, where the multiplicative group of units U(C2m) acts by left
multiplication on its additive group C2m .

Example 3.2.13. Take m ≥ 3 and consider the groups

Gm =
{(

b a

0 1

)
| a ∈ C2m and b ∈ U(C2m)

}
. (3.1)

We will represent the matrix (
b a

0 1

)
as the pair (a, b). Note that this group has 2m ·ϕ(2m) = 22m−1 elements, where
ϕ is the Euler function. Wall showed that

Autc(Gm) = Inn(Gm)⊕ 〈D〉.

holds for all m ≥ 3, where

D : Gm → Gm : (a, b) 7→
{

(a, b) if b ≡ ±1 mod 8,
(a+ 4, b) if b ≡ ±3 mod 8,

is a non-inner class preserving automorphism.

There are two non-isomorphic groups of order 32 with non-inner class preserving
automorphisms.
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Theorem 3.2.14 ([11]). Let G be a group of order 25. Then Autc(G) 6= Inn(G)
if and only if G is isomorphic to H1 or H2, with presentations

H1 = 〈a, b, c | a8 = b2 = c2 = 1, bab = a3, cac = a5, bc = cb〉,

H2 = 〈a, b, c | a8 = b2 = c2 = 1, bab = a3, cac = a5, cbc = a4b〉.

Note that H1 is isomorphic to Wall’s example with m = 3. When p is an odd
prime, there exist groups of order p5 with Autc(G) 6= Inn(G) as well ([88]).
Further, there are finite groups G with Autc(G) 6= Inn(G), for which G is not
a p–group ([11]). The smallest example has order 96 = 25 · 3. In [11], the set
Autc(G) was computed for all groups G of order < 512. The authors found
that more than 60 percent of the 56.092 groups of order 256 admit non-inner
class preserving automorphisms, illustrating that this is a common property.
Chapter 8 is devoted to the study of almost inner derivations of low-dimensional
Lie algebras. We will show that for a nilpotent Lie algebra of dimension at most
four, all almost inner derivations are inner as well.

Two-step Camina p–groups

The following notion was introduced in [14] and later named after the author
Camina.

Definition 3.2.15 (Camina pair and Camina group). Let G be a finite group
and N a proper normal subgroup of G. Then (G,N) is a Camina pair if and
only if xN ⊂ xG for all x ∈ G \ N . A group G is called a Camina group if
(G, [G,G]) is a Camina pair.

Hence, for a Camina group, the coset g[G,G] is contained in a conjugacy class
for every g ∈ G \ [G,G]. It is well-known that every extra special p–group is a
Camina group.

Lemma 3.2.16. Let G be an extra special p–group. Then G is also a Camina
p–group.

It was shown in [17] that every finite Camina p–group is nilpotent of class
at most 3. From now on, we will focus on two-step Camina p–groups. The
following results are due to Macdonald.

Theorem 3.2.17 ([60]). Let G be a 2–step nilpotent group with normal subgroup
N such that (G,N) is a Camina pair. Then N = [G,G] and G is a special
p–group.



CLASS PRESERVING AUTOMORPHISMS OF GROUPS 35

For special groups, there exists a criterion to decide whether or not it is a
Camina group.

Theorem 3.2.18 ([60]). Let (G, ∗) be a special p–group. Choose elements
a1, . . . , an ∈ G and h1, . . . , hm ∈ [G,G] in such a way that

G = 〈g1, . . . , gn〉 and [G,G] = 〈h1, . . . , hm〉.

Suppose that
[gi, gj ] = (h1)a

1
ij ∗ · · · ∗ (hm)a

m
ij ,

where akij ∈ Zp for all 1 ≤ i, j ≤ n and 1 ≤ k ≤ m. Define the matrices
Ak := (akij)ij ∈Mn(Fp) and take µ1, . . . , µm ∈ Fp. Then G is a Camina group
if and only if det(µ1A1 + · · ·+ µmAm) = 0 implies that µ1 = · · · = µm = 0.

Two years after he posed the question whether there exist non-inner class
preserving automorphisms, Burnside himself found examples of groups of order
p6, were p is an odd prime ([13]). It turns out that when p ≡ ±3 mod 8, the
group is a 2–step nilpotent Camina p–group.

Example 3.2.19. We look at the example of Burnside. Let p be an odd prime.
Consider

G = 〈x1, . . . , x6 | xp1 = xp2 = xp3 = xp4 = xp5 = xp6 = 1,

[x1, x3] = x5, [x1, x4] = x6, [x2, x3] = x6, [x2, x4] = x2
5〉

Then G is a special Camina group if and only if p ≡ ±3 mod 8.

For Camina p–groups, the number of class preserving automorphisms is easy to
determine.

Theorem 3.2.20 ([86]). Let G be a finite Camina p–group of nilpotency class 2.
Then |Autc(G)| = |[G,G]|n, where n is the number of elements in a minimal
generating set for G.

It turns out that special Camina p–groups are very closely related to nonsingular
Lie algebras. This notion is introduced in Section 4.3 and is also treated in
Section 7.2 and Section 9.3.

Finite p–groups for which all automorphisms are class preserving

In 1999, Mann asked whether all p–groups have automorphisms that are not
class preserving ([64]). Already before that time, several counterexamples had
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been given. For instance, Heineken ([46]) introduced for every p ≥ 3 an infinite
class of special Camina p–groups G with Autc(G) = Aut(G). Malinowska ([63])
found groups G of nilpotency class 3 for which all automorphisms are class
preserving. In [11], the authors found two groups of order < 512 for which
Autc(G) = Aut(G) holds, with order 128 respectively 486. Those groups are
SmallGroup(128, 932) and SmallGroup(486, 31), where we use the notation
from the ‘Small Groups library’ from the computer algebra system GAP.

Example 3.2.21. Consider the group G := C2
4 oD4 of order 27 = 128, which

has presentation

G = 〈a, b, c, d | a4 = b4 = c4 = d2 = 1, ab = ba, cac−1 = a−1b−1, dad = a−1b,

cbc−1 = a2b, bd = db, dcd = c−1〉.

Then G is a 4–step nilpotent group with Autc(G) = Aut(G).

The following result was proven in [89].

Proposition 3.2.22. Let G be a finite p–group of nilpotency class 2 such that
all automorphisms are class preserving. Then |G| ≥ p8.

The author also gave an example of a group of order 38 for which all
automorphisms are class preserving.

Example 3.2.23 ([89]). Consider the group G with presentation

G = 〈x1, . . . , x6 |x9
1 = x9

2 = x3
3 = x3

4 = x3
5 = x3

6 = 1,

[x1, x2] = x3
1, [x1, x3] = x3

2, [x1, x4] = x3
2, [x1, x5] = x3

2,

[x1, x6] = x3
2, [x2, x3] = x3

1, [x2, x4] = x3
2, [x2, x5] = x3

1,

[x2, x6] = x3
2, [x3, x4] = x3

2, [x3, x5] = x3
2, [x3, x6] = x3

1,

[x4, x5] = x3
1, [x4, x6] = x3

1, [x5, x6] = x3
2〉.

Then G is a special Camina 3–group with Autc(G) = Aut(G).

In Section 10.3, we describe for all n ≥ 13 a filiform Lie algebra gn of dimension n
such that Inn(gn) 6= AID(gn) = Der(gn). This phenomenon also exists for non-
nilpotent Lie algebras, as we show in Chapter 8.
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Other results

The following reasoning comes from [86]. Let G be a finite p–group of order pt.
Let {x1, . . . , xn} be a minimal generating set for G. Take ϕ ∈ Autc(G), then
ϕ(xi) ∈ xGi for all 1 ≤ i ≤ n. It follows that

|Autc(G)| ≤
n∏
i=1
|xGi |.

Let |[G,G]| = pm, then the Burnside basis theorem implies that n ≤ t−m. It
follows from the previous inequality that

|Autc(G)| ≤ pmn ≤ pm(t−m). (3.2)

Theorem 3.2.24. Let G be a finite p–group. Then the upper bound of (3.2) is
attained if and only if G is either an abelian p–group, or a non-abelian special
Camina p–group.

In [86], there have been established sharper upper bounds for |Autc(G)|.

Theorem 3.2.25 ([87]). Let G be a 2–step nilpotent finite p–group. Let
{x1, . . . , xn} be a minimal generating set for G. If [xi, G] is cyclic for all
1 ≤ i ≤ n, then Autc(G) = Inn(G).

In Chapter 4, we show a similar inequality for AID(g) and show that there is
an equality for nonsingular Lie algebras. The previous result can be translated
to Lie algebras as well, where we don’t require that the Lie algebra is 2–step
nilpotent. There are also a few results concerning groups with large cyclic
subgroups.

Theorem 3.2.26 ([54]). Let G be a finite p–group having a maximal cyclic
subgroup. Then Autc(G) = Inn(G).

Theorem 3.2.27 ([55]). Let G be a group of order pn having a cyclic subgroup
of order pn−2.

• Suppose that p is odd, then Autc(G) = Inn(G).

• Assume that p = 2 and n ≥ 5 and that G does not have any element of
order 2n−1. Then Autc(G) 6= Inn(G) if and only if G is isomorphic to H1
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or H2, where

H1 = 〈x, y, z |x2m−2
= y2 = z2 = 1, yxy = x1+2m−3

, zyz = y,

zxz = x−1+2m−3
〉

H2 = 〈x, y, z |x2m−2
= y2 = z2 = 1, yxy = x1+2m−3

, zyz = yx2m−3
,

zxz = x−1+2m−3
〉

Theorem 3.2.26 is very similar to the result for almost abelian algebras, see
Section 12.2. However, Lie algebras g with an ideal of codimension 2 can have
non-inner almost inner derivations.



Chapter 4

Background for computations

In the previous chapter, we gave a geometric motivation to study almost inner
automorphisms of some nilpotent Lie groups. Due to computational reasons
however, it is easier to go to the Lie algebra level, where the analogon is an
almost inner derivation of a Lie algebra. In Chapter 2, we already introduced the
definitions of (central) almost inner derivations. In this chapter, some properties
and examples are given. We also present two techniques which are useful in the
computation of AID(g). Some parts of this chapter already appeared in [7] and
[9]. Unless otherwise specified, we consider Lie algebras over a general field F
(so of any characteristic).

4.1 Properties and examples

Let g be a Lie algebra over a field F. Take arbitrary x, y ∈ g and consider
D ∈ Der(g). We then have

[D, ad(x)](y) = D(ad(x)(y))− ad(x)(D(y))

= D([x, y])− [x,D(y)]

= [D(x), y]

= ad(D(x))(y),

where the one but last equation holds since D is a derivation. This shows that

[D, ad(x)] = ad(D(x)) (4.1)

39
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is inner for all D ∈ Der(g) and all x ∈ g. With the aid of this observation, we
will show that Inn(g), CAID(g) and AID(g) become Lie subalgebras of Der(g)
when we use the Lie bracket [D,D′] = DD′ −D′D.

Proposition 4.1.1. We have the following inclusions of Lie subalgebras

Inn(g) ⊆ CAID(g) ⊆ AID(g) ⊆ Der(g).

Proof. Let g be a Lie algebra and choose arbitrary x, y, z ∈ g. The proof goes
in different steps.

• We first show that Inn(g) is a subalgebra of Der(g). Since ad(x) and ad(y)
are derivations, (4.1) implies that [ad(x), ad(y)] = ad([x, y]).

• Further, we prove that AID(g) is a subalgebra of Der(g). Take almost
inner derivations D1, D2 ∈ AID(g), then there exist x1 and x2 in g such
that D1(x) = [x, x1] respectively D2(x) = [x, x2]. Then the Lie bracket of
D1 and D2 is given by

[D1, D2](x) = D1(D2(x))−D2(D1(x))

= D1([x, x2])−D2([x, x1])

= [D1(x), x2] + [x,D1(x2)]− [D2(x), x1]− [x,D2(x1)]

= [[x, x1], x2] + [x,D1(x2)]− [[x, x2], x1]− [x,D2(x1)]

= [[x, x1], x2]− [[x, x2], x1] + [x,D1(x2)−D2(x1)]

= [x, [x1, x2]] + [x,D1(x2)−D2(x1)].

The third equality holds because D1 and D2 are derivations. In the last
step, the Jacobi identity is used. Hence,

[D1, D2](x) = [x, [x1, x2] +D1(x2)−D2(x1)] ∈ [x, g]

holds, which means that [D1, D2] ∈ AID(g) is an almost inner derivation.
Therefore, AID(g) is a subalgebra of Der(g).

• Finally, we show CAID(g) is a subalgebra of Der(g) as well. Take elements
C1, C2 ∈ CAID(g), then there exist y1, y2 ∈ g such that C1 − ad(y1) and
C2 − ad(y2) map g to Z(g). Note that [C1, C2] ∈ AID(g) by the previous
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point. By using (4.1) several times, we obtain

[C1 − ad(y1), C2 − ad(y2)]

= [C1, C2]− [C1, ad(y2)]− [ad(y1), C2] + [ad(y1), ad(y2)]

= [C1, C2]− ad(C1(y2)) + ad(C2(y1)) + ad([y1, y2]).

Hence, [C1, C2]−ad(C1(y2)−C2(y1)−[y1, y2]) = [C1−ad(y1), C2−ad(y2)]
maps g to Z(g), and hence [C1, C2] ∈ CAID(g).

We also have the following results.

Proposition 4.1.2. The subalgebra Inn(g) is a Lie ideal in all subalgebras of
Der(g) containing it. Further, CAID(g) is a Lie ideal in AID(g).

Proof. The first statement immediately follows from (4.1). Let C ∈ CAID(g)
and D ∈ AID(g). We need to show that [D,C] ∈ CAID(g). We already know
from the previous proposition that [D,C] ∈ AID(g). Fix an element x ∈ g such
that C ′ := C − ad(x) maps g to Z(g). Define D′ := [D,C] − ad(D(x)). We
can again apply (4.1) to find that ad(D(x)) = [D, ad(x)], which means that
D′ = [D,C ′]. This leads to

D′(y) = [D,C ′](y)

= D(C ′(y))− C ′(D(y))

for all y ∈ g. Since C ′ maps g to Z(g) and D maps Z(g) to 0, we have that D′
maps g to Z(g).

Remark 4.1.3. We conjecture that AID(g) is always a Lie ideal in Der(g),
for Lie algebras g over an arbitrary field F. However, there is no obvious
algebraic argument for this statement. Moreover, the result seems not to be
known. At least, we didn’t find a counterexample among the checks we did for
low-dimensional Lie algebras.

For a given Lie algebra g over a field F, we want to know which of the inclusions
in the chain Inn(g) ⊆ CAID(g) ⊆ AID(g) ⊆ Der(g) are actually equalities. We
will establish some examples to show different possibilities. It is clear that
Inn(g) = CAID(g) = AID(g) = 0 for abelian Lie algebras. Recall that a Lie
algebra g is called ‘complete’, if Z(g) = 0 and Der(g) = Inn(g). Of course
we have Inn(g) = CAID(g) = AID(g) in this case. In particular semisimple
Lie algebras over a field of characteristic zero, and parabolic subalgebras of
semisimple Lie algebras are complete.
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Consider again an arbitrary field F (of any characteristic). First, we will compute
in detail the almost inner derivations of the Heisenberg Lie algebra h3(F), given
by the Lie brackets [e1, e2] = e3.

Example 4.1.4. For g = h3(F) we have AID(g) = Inn(g).
Take an arbitrary inner derivation ad(x) ∈ Inn(g). Then there exist values
x1, x2, x3 ∈ F such that x = x1e1 + x2e2 + x3e3. By bilinearity and the fact
that ad(e3) = 0, we have that

ad(x) = x1ad(e1) + x2ad(e2),

so Inn(g) is 2–dimensional. Since every derivation is also a linear map, we
can represent it as a matrix. For instance, the inner derivation ad(e1) can be
represented as

ad(e1) =

0 0 0
0 0 0
0 1 0

 ,

where in the j–th column, we write the image of ej with respect to the basis.
This means that ad(e1) maps e1 and e3 to zero and e2 to e3. Note that we
abuse the notation by denoting ad(e1) for both the derivation and the matrix
representing the derivation. Similarly, we can consider an arbitrary derivation
D of h3(F) in matrix form. Then D can be written as a linear combination of
derivations, namely

D := a1ad(e1) + a2ad(e2) + d1D1 + · · ·+ d4D4,

where ai, dj ∈ F (with 1 ≤ i ≤ 2 and 1 ≤ j ≤ 4). The corresponding matrix is

D =

 d1 d3 0
d2 d4 0
−a2 a1 d1 + d4

 .

For example, the derivation D1 corresponds to the matrix

D1 =

1 0 0
0 0 0
0 0 1

 .

This shows that Der(g) = 〈ad(e1), ad(e2), D1, D2, D3, D4〉. Assume that D is
almost inner. Then D(e1) ∈ [e1, g] = 〈e3〉, so that d1 = d2 = 0. In the same
way, D(e2) ∈ [e2, g] = 〈e3〉 implies that d3 = d4 = 0. It follows that D ∈ Inn(g).

In this example, it was easy to prove that for instance D1 is not almost inner,
since the condition D1(x) ∈ [x, g] is not satisfied for x = e1.
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Definition 4.1.5 (Almost inner for a basis). Let g be a Lie algebra over F
with basis B. Then a linear map D : g→ g is B–almost inner if D(x) ∈ [x, g]
holds for all basis elements x ∈ B.

Of course, this definition depends on the chosen basis. However, it gives a
necessary condition for a derivation to be almost inner which is, given the
structure constants of the Lie algebra, very easy to check.

The Lie algebra in the next example has more interesting (i.e. non-inner) almost
inner derivations. In what follows, we will denote Ei,j for the matrix with entry
1 at position (i, j) and 0 otherwise. When we interpret Ei,j as a linear map,
then Ei,j(ek) = 0 for k 6= j, and Ei,j(ej) = ei.

Example 4.1.6. Let g be the filiform nilpotent Lie algebra which has a basis
B = {e1, . . . , e5} and non-zero Lie brackets

[e1, e2] = e3, [e1, e3] = e4,

[e1, e4] = e5, [e2, e3] = e5.

Then we have AID(g) = Inn(g)⊕ 〈E5,2〉.
The proof again follows by a direct computation. An arbitrary derivation is of
the form

D = a1ad(e1) + · · ·+ a4ad(e4) + d1D1 + d2D2 + d3D3 + e5,2E5,2

(with coefficients in F) and can be described as a matrix

D =


d1 0 0 0 0
d2 2d1 0 0 0
−a2 a1 3d1 0 0
−a3 d3 a1 4d1 0
−a4 −a3 + e5,2 a2 + d3 a1 + d2 5d1

 ,

so Der(g) = 〈ad(e1), . . . , ad(e4), D1, D2, D3, E5,2〉. Further, E5,2 is almost inner
with determination map ϕE5,2 : g→ g, where the image of x = x1e1 + · · ·+x5e5
is given by

ϕE5,2(x) =
{
x2
x1
e4 if x1 6= 0,

e3 if x1 = 0.

The derivation E5,2 is not inner. However, we have E5,2(x) = [x, ϕE5,2(x)]
for all x ∈ g, so E5,2 is almost inner (in fact, central almost inner). Consider
the derivation D := d1D1 + d2D2 + d3D3 (with d1, d2, d3 ∈ F). Then D
is B–almost inner if and only if d1 = d2 = d3 = 0. Hence, we have that
CAID(g) = AID(g) = 〈ad(e1), . . . , ad(e4), E5,2〉.
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Let g be a Lie algebra over F with basis B = {e1, . . . , en}. Since an almost inner
derivation has to be B–almost inner, it is clear that

dim(AID(g)) ≤
n∑
i=1

dim[ei, g], (4.2)

so this gives an upper bound for AID(g) which is easy to determine. In general
however, it is not enough to check the condition D(x) ∈ [x, g] only for basis
vectors of g.

Example 4.1.7. Let g be the Lie algebra over a field F which has basis
B := {e1, e2, e3} and is given by [e1, e2] = e2 and [e1, e3] = e3. A short
computation shows that an arbitrary derivation for g looks like

D = a1ad(e1) + a2ad(e2) + a3ad(e3) + e2,3E2,3 + e3,2E3,2 + e3,3E3,3

(with coefficients in F) and with matrix form

D =

 0 0 0
−a2 a1 e2,3
a3 e3,2 a1 + e3,3

 .

This means that Der(g) = 〈ad(e1), ad(e2), ad(e3), E2,3, E3,2, E3,3〉. Consider
the derivation D := E3,3. Then D is B–almost inner since D(ei) = 0 = [ei, 0]
for 1 ≤ i ≤ 2 and D(e3) = e3 = [e3,−e1]. However, D is not an almost
inner derivation. Indeed, choose an arbitrary x = x1e1 + x2e2 + x3e3 ∈ g, then
[e2+e3, x] = −x1(e2+e3) holds. This gives a contradiction, sinceD(e2+e3) = e3.

This example shows that a derivation which is B–almost inner does not have
to be an almost inner derivation. Hence, the condition is necessary, but not
sufficient. The next proposition contains a few more easy facts on almost inner
derivations.

Proposition 4.1.8. Let g and g′ be Lie algebras over the same field F. Then
the following statements hold.

(a) Let D ∈ AID(g). Then D(g) ⊆ [g, g] and D(Z(g)) = 0.

(b) Let I be an ideal of g, then D(I) ⊆ I and D induces D̄ ∈ AID(g/I).

(c) For C ∈ CAID(g) there exists an x ∈ g such that C|[g,g] = ad(x)|[g,g].

(d) If g is 2–step nilpotent, then CAID(g) = AID(g).

(e) If Z(g) = 0, then CAID(g) = Inn(g).
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(f) If g is nilpotent, then AID(g) is nilpotent and all D ∈ AID(g) are nilpotent.

(g) We have AID(g⊕ g′) = AID(g)⊕AID(g′) for the direct sum of two Lie
algebras.

Proof. We will prove each of the statements. Take arbitrary C ∈ CAID(g) and
D ∈ AID(g).

(a) By definition, an almost inner derivation maps g into [g, g]. Further, for
x ∈ Z(g), we have D(x) ∈ [x, g] = 0.

(b) Let y ∈ I, then we have D(y) ∈ [y, g] ⊆ [I, g] ⊆ I. Define

D̄ : g/I → g/I : x+ I 7→ D(x) + I.

This is a well-defined linear map due to the first statement. It is a routine
check to find that D̄ is a derivation and that it satisfies the almost inner
condition with determination map ϕD̄ : g/I → g/I : x+ I 7→ ϕD(x) + I.
Hence, D̄ ∈ AID(g/I).

(c) Since C ∈ CAID(g), there exists an x ∈ g such that C ′ := C − ad(x)
satisfies C ′(g) ⊆ Z(g). We further have

C ′([y, z]) = [C ′(y), z] + [y, C ′(z)]

for all y, z ∈ g, because C ′ is a derivation. This shows that C ′([g, g]) = 0,
so C(y) = ad(x)(y) for all elements y ∈ [g, g].

(d) If g is 2–step nilpotent, then D(g) ⊆ [g, g] ⊆ Z(g) for any D ∈ AID(g).
Hence we have AID(g) ⊆ CAID(g), which gives equality.

(e) Suppose that Z(g) = 0 and C ∈ CAID(g). Then there exists an x ∈ g
such that C(x)− ad(x) = 0. Hence C is inner.

(f) Let D ∈ AID(g) and x ∈ g, then Dk(x) ∈ [x, [g, [. . . , [g, g] · · · ]]], where we
have k times g. If k is higher than the nilpotence class of g, it follows
that Dk(x) = 0, hence D is nilpotent. By Engel’s theorem, AID(g) is
nilpotent.

(g) For the last statement, consider E ∈ AID(g⊕ g′). Then the restrictions
E|g ∈ AID(g) and E|g′ ∈ AID(g′) are almost inner derivations. It is easy
to see that the map E 7→ E|g ⊕ E|g′ gives a one-to-one correspondence
between the Lie algebras AID(g⊕ g′) and AID(g)⊕AID(g′).

Let g be a Lie algebra over a field F. In this dissertation, we study several
research questions.
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• What is AID(g)?
By performing similar computations as for the examples above, we are
able to compute all almost inner derivations of g, just by determining
which derivations satisfy the almost inner condition. However, this is not
very efficient. Therefore, we will elaborate on some techniques to have
more general results. Section 4.2 gives a method to decide that a given
derivation cannot be almost inner. This is in particular useful for Lie
algebras for which the only almost inner derivations are the inner ones.
In Section 4.3, we give a way to restrict the derivations for which we have
to check the almost inner condition.

• Which of the inclusions Inn(g) ⊆ CAID(g) ⊆ AID(g) ⊆ Der(g) are
equalities?
We already saw that for complete Lie algebras, all these sets are equal.
Further, we showed that all almost inner derivations are inner for the
Heisenberg Lie algebra. In Example 4.1.6, we also treated a Lie algebra
g for which AID(g) and Inn(g) are different. Throughout this thesis, we
will study more examples showing that all possibilities occur.

• What is the importance of the field F?
In the second part, we will show that the field over which g is defined, has
an impact on the set of all almost inner derivations.

• How do the results for g compare to other Lie algebras from the same
class?
This is the main question for the last part. We will consider different
classes of (nilpotent) Lie algebras and study whether similar Lie algebras
behave in an analogous way or not.

4.2 Fixed basis vectors

In the previous section, we computed the almost inner derivations of a given Lie
algebra by checking the almost inner condition for all derivations. However, one
does not always need to know the derivation algebra explicitly. Instead one can
use a concept which we will call ‘fixed basis vectors’. This notion is very useful,
also for proving several results on almost inner derivations. Unfortunately,
although the definition is elementary, it is not particularly clear, so we will need
to explain it with some examples. The results of this section also appeared
in [7].

For the rest of this section, g is an n–dimensional Lie algebra over an arbitrary
field F and with chosen basis {e1, . . . , en}. If x =

∑n
j=1 xjej , then we denote

by ti(x) = xi the i–th coordinate of x with respect to the given basis.
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Definition 4.2.1 (Fixed basis vector). Let D be an almost inner derivation
of g determined by a map ϕD : g→ g. A basis vector ei is a fixed basis vector
for D with fixed value α ∈ F if and only if for all 1 ≤ j ≤ n, the following
statement is satisfied:

if ej 6∈ Cg(ei), then ti(ϕD(ej)) = α.

Note that α ∈ F must be the same for all j where this condition applies. As
an example, we look at the Heisenberg Lie algebra h3(F) with basis {e1, e2, e3}
and Lie bracket [e1, e2] = e3.
Example 4.2.2. Consider g = h3(F) and let D be an almost inner derivation
of g with determination map ϕD : g→ g. Then every basis vector ei is fixed.
For i = 1 we have Cg(e1) = 〈e1, e3〉 and the condition just applies for j = 2:
since e2 6∈ Cg(e1), we must have t1(ϕD(e2)) = α. Certainly this is true, with α
given by the map ϕD. The same holds for i = 2, where we have Cg(e2) = 〈e2, e3〉.
For i = 3, we have Cg(e3) = g, so that the condition is trivially satisfied.

The importance of finding fixed basis vectors comes from the following fact.
If each basis vector for every almost inner derivation is fixed, then we have
AID(g) = Inn(g). We already saw that this is the case for h3(F) in Example 4.1.4.
We will prove this more general result in Corollary 4.2.6. Often we can show
that every basis vector is fixed without knowing the structure of Der(g). A
trivial example is the following lemma.
Lemma 4.2.3. Let g be a Lie algebra with basis {e1, . . . , en}, such that for
given 1 ≤ i ≤ n, the number of basis vectors in Cg(ei) is equal to dim(g) or
dim(g)− 1. Then the basis vector ei is fixed.

Proof. In this case the condition for a fixed basis vector is vacuously true, or
can be satisfied uniquely by the α given by the map ϕD.

We used this argument for 1 ≤ i ≤ 3 in the example of g = h3(F) above. We
also want to present an example, where not every basis vector is fixed. For
the Lie algebra g of Example 4.1.6, we will show that there is an almost inner
derivation D determined by a map ϕD such that not every basis vector is fixed.
Example 4.2.4. For the Lie algebra g of Example 4.1.6 and the almost inner
derivation D := E5,2, the basis vector e3 is not fixed.
We already saw that D is determined by ϕD : g → g, where an arbitrary
x = x1e1 + · · ·+ x5e5 ∈ g is mapped to

ϕD(x) =
{
x2
x1
e4 if x1 6= 0,

e3 if x1 = 0.
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Definition 4.2.1 for this ϕD and i = 3 says the following: for all 1 ≤ j ≤ 5, if
ej 6∈ Cg(e3) = 〈e3, e4, e5〉, then t3(ϕD(ej)) = α, each time for the same fixed
α ∈ F. We have ϕD(e1) = 0 and ϕD(e2) = e3, so that

t3(ϕD(e2)) = t3(e3) = 1,

t3(ϕD(e1)) = t3(0) = 0.

This means that there is no fixed α and thus e3 is not fixed.

Lemma 4.2.5. Let D : g → g be an almost inner derivation determined
by a map ϕD : g → g. If ei is a fixed basis vector with fixed value α, then
D′ = D + ad(αei) is an almost inner derivation which is determined by a map
ϕD′ : g→ g such that for all 1 ≤ j, k ≤ n:

tj(ϕD′(ek)) = tj(ϕD(ek)) for i 6= j,

ti(ϕD′(ek)) = 0.

Proof. Clearly D′ is an almost inner derivation, and we have that

(D + ad(αei))(x) = [x, ϕD(x)] + [αei, x] = [x, ϕD(x)− αei].

So D′ is determined by the map ϕ̃D′ : g → g : x 7→ ϕD(x) − αei. Define the
map

ϕD′ : g→ g : x 7→
{
ϕD(x)− αei if x 6∈ {e1, e2, . . . , en},
ϕD(x)− ti(ϕD(x))ei if x ∈ {e1, e2, . . . , en}.

We claim that D′ is also determined by this new map ϕD′ . Indeed, for all
non basis vectors we have ϕD′(x) = ϕ̃D′(x), so we only have to consider basis
vectors. Let ej be a basis vector. Then there are two possibilities.
Case 1: For ej ∈ Cg(ei), we have

D′(ej) = D(ej) = [ej , ϕD(ej)] = [ej , ϕD(ej)− ti(ϕD(x))ei] = [ej , ϕD′(ej)].

Case 2: When ej 6∈ Cg(ei), then ti(ϕD(ej)) = α, from which it follows that
ϕ̃D′(ej) = ϕD′(ej).
In both cases, we see that D′ is determined by ϕD′ . By definition of ϕD′ it is
also easy to see that the requirements tj(ϕD′(ek)) = tj(ϕD(ek)), for j 6= i, and
ti(ϕD′(ek)) = 0 hold.

As an immediate consequence, we obtain the following result.
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Corollary 4.2.6. Let D ∈ AID(g) be determined by a map ϕD. If each basis
vector is fixed, then D ∈ Inn(g).

Proof. Let αi denote the fixed value of ei. Define

D′ := D + ad(α1e1) + ad(α2e2) + · · ·+ ad(αnen) = D + ad(v),

where v :=
∑n
i=1 αiei. Then by iteratively applying Lemma 4.2.5, we find

that D′ is an almost inner derivation D′, determined by a map ϕD′ . Further,
ϕD′(ei) = 0 for all 1 ≤ i ≤ n. This implies that D′(ei) = 0 for all basis vectors
ei and hence D′ = 0 or D = −ad(v) ∈ Inn(g).

The next results are two technical lemmas, providing a way to find fixed basis
vectors. We will use the following notation: Let 1 ≤ i1, i2, . . . , ir ≤ n, then

gi1,i2,...,ir = 〈ei | i 6∈ {i1, i2, . . . , ir}〉

denotes the vector space spanned by all basis vectors not in the set
{ei1 , ei2 , . . . , eir}.

Lemma 4.2.7. Assume that 1 ≤ i, j, k, l,m ≤ n and l 6= m. Moreover assume
that there exist nonzero scalars α, β ∈ F such that

[ej , ei]− αel ∈ gl,m
[ek, ei]− βem ∈ gl,m
[ej , gi] ⊆ gl,m
[ek, gi] ⊆ gl,m.

Then for any almost inner derivation D ∈ AID(g) determined by a map ϕD, we
have that ti(ϕD(ej)) = ti(ϕD(ek)).

Proof. Let a := ti(ϕD(ej)), b := ti(ϕD(ek)) and c := ti(ϕD(ej + ek)). Then
there exist vectors v, v′, v′′ ∈ gi such that

ϕD(ej) = aei + v,

ϕD(ek) = bei + v′,

ϕD(ej + ek) = cei + v′′.

Using these notations, we find that

D(ej + ek) = [ej + ek, cei + v′′] = cαel + cβem + w′′ (4.3)
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for some w′′ ∈ gl,m. On the other hand, we have that

D(ej) +D(ek) = [ej , aei + v] + [ek, bei + v′] = aαel + w + bβem + w′ (4.4)

for some w,w′ ∈ gl,m. Now, as D is a linear map, the two expressions (4.3) and
(4.4) must be equal, and so by comparing the l–th and m–th coordinate, we
find that

cα = aα and cβ = bβ.

As both α and β are nonzero, this implies that a = b. Hence, we have that
ti(ϕD(ej)) = ti(ϕD(ek)).

Suppose that g is a Lie algebra which satisfies the conditions of the lemma. Let
D ∈ AID(g) be an arbitrary almost inner derivation determined by ϕD. As
shown in the proof, we must have that ti(ϕD(ej)) = ti(ϕD(ek)) to ensure that
the almost inner condition is satisfied for ej + ek. We will show this procedure
with the same Lie algebra as in Example 4.1.7.

Example 4.2.8. Consider the Lie algebra g over a field F which has basis
B = {e1, e2, e3} and is given by [e1, e2] = e2 and [e1, e3] = e3. Since we have

[e2, e1] + e2 ∈ g2,3
[e3, e1] + e3 ∈ g2,3
[e2, g1] ⊆ g2,3
[e3, g1] ⊆ g2,3,

we can apply Lemma 4.2.7 with (i, j, k, l,m) = (1, 2, 3, 2, 3). Let D ∈ AID(g)
be determined by ϕD. It follows that t1(ϕD(e2)) = t1(ϕD(e3)), which means
that e1 is a fixed basis vector. Further, e2 and e3 are fixed basis vectors as well
by Lemma 4.2.3. Hence, we can conclude from Corollary 4.2.6 that D is an
inner derivation, so AID(g) = Inn(g).

The second lemma is similar, but the conditions are slightly changed.

Lemma 4.2.9. Assume that 1 ≤ i, j, k, l ≤ n. Moreover, assume that there
exist nonzero scalars α, β ∈ F such that

[ej , ei]− αel ∈ gl
[ek, ei]− βel ∈ gl
[ej , gi] ⊆ gl
[ek, gi] ⊆ gl.

Then for any almost inner derivation D ∈ AID(g) determined by a map ϕD, we
have that ti(ϕD(ej)) = ti(ϕD(ek)).
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Proof. Let a := ti(ϕD(ej)), b := ti(ϕD(ek)) and c := ti(ϕD(βej − αek)). Let
v, v′, v′′ ∈ gi be such that

ϕD(ej) = aei + v,

ϕD(ek) = bei + v′,

ϕD(βej − αek) = cei + v′′.

Then we have that

D(βej − αek) = [βej − αek, cei + v′′] = βcαel − αcβel + w′′ (4.5)

for some w′′ ∈ gl. On the other hand, we have that

βD(ej)−αD(ek) = β[ej , aei+v]−α[ek, bei+v′] = βaαel+w−αbβel+w′ (4.6)

for some w,w′ ∈ gl. By comparing the l–th coordinate of (4.5) and (4.6), we
find that

αβ(a− b) = 0.
Since α and β are non-zero, we find that a = b and ti(ϕD(ej)) = ti(ϕD(ek)).

Example 4.2.10. Let g be the Lie algebra over a field F which has a basis
B = {e1, e2, e3, e4} and is given by [e1, e2] = e4 and [e1, e3] = e4. We have

[e2, e1] + e4 ∈ g4
[e3, e1] + e4 ∈ g4
[e2, g1] ⊆ g4
[e3, g1] ⊆ g4.

Let D ∈ AID(g) be an almost inner derivation determined by ϕD. It follows
from Lemma 4.2.9 with (i, j, k, l) = (1, 2, 3, 4) that t1(ϕD(e2)) = t1(ϕD(e3)).
Hence, e1 is a fixed basis vector. Further, Lemma 4.2.3 implies that the other
basis vectors are fixed as well. This means that D is an inner derivation, so
AID(g) = Inn(g).

With these technical lemmas, it is possible to obtain results on the almost inner
derivations without having to explicitly know the derivation algebra.

4.3 Skew matrix pencils

In the previous section, we introduced fixed basis vectors as a useful tool in the
computation of the almost inner derivations of a Lie algebra. In this section, we
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link Lie algebras with matrix pencils. The results of this section also appeared
in [9]. We work in this section with an arbitrary field F.

For the moment, we only consider 2–step nilpotent Lie algebras. Let g be a 2–step
nilpotent Lie algebra over a field F. We fix a basis B := {x1, . . . , xn, y1, . . . , ym}
of g, where {y1, . . . , ym} is a basis of [g, g]. For any 1 ≤ i, j ≤ n, we have that

[xi, xj ] = c1ijy1 + · · ·+ cmijym,

where ckij ∈ F are the structure constants of g. Define for every 1 ≤ k ≤ m

the skew-symmetric matrix Ak = (ckij)1≤i,j≤n. Let µ1, . . . , µm be algebraically
independent variables over F.

Definition 4.3.1 (Associated pencil). Let g be a 2–step nilpotent Lie algebra
over an arbitrary field F. Then µ1A1 + · · ·+ µmAm (∈ Mn(F[µ1, . . . , µm])) is
called the pencil associated to g with respect to the basis B.

This pencil depends on the choice of basis of g. As for all 1 ≤ k ≤ m the matrix
Ak is skew-symmetric, µ1A1 + · · ·+ µmAm is called a skew matrix pencil. In
Section 9.2, we will elaborate on more theory concerning skew matrix pencils
for the specific case where m = 2. To reduce the number of subscripts, we will
denote the matrix pencil µ1A1 + µ2A2 as µA+ λB.

If D : g → g is an almost inner derivation, then D maps g to [g, g] and the
center Z(g) to zero. Hence, the space C(g) below contains AID(g).

Definition 4.3.2 (Central derivation). Let g be a 2–step nilpotent Lie algebra
over a field F. Then

C(g) = {D ∈ End(g) | D(g) ⊆ [g, g] and D(Z(g)) = 0}

is a subalgebra of Der(g) with AID(g) ⊆ C(g). It is called the algebra of central
derivations.

Since [g, g] ⊆ Z(g) for 2–step nilpotent Lie algebras, it is easy to see that any
D ∈ C(g) is indeed a derivation of g.

We will assume that g is a 2–step nilpotent Lie algebra and fix a basis

{x1, . . . , xn, y1, . . . , ym},

where y1, . . . , ym is a basis of [g, g]. Let µ1A1 + · · ·+ µmAm be the associated
pencil. Every element in v ∈ g can be written as v = x+ y in this basis, where
x = a1x1 + · · ·+anxn and y = b1y1 + · · ·+bmym for all ai, bi ∈ F, with 1 ≤ i ≤ n.
For every D ∈ C(g), we have D(y) = 0 and D(x) = d1(x)y1 + · · · + dm(x)ym
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holds for some d1, . . . , dm ∈ Hom(U,F), where U = 〈x1, x2, . . . , xn〉. Recall that
D ∈ AID(g) if and only if there exists a map ϕD : g→ g such that

D(v) = [v, ϕD(v)]

for all v ∈ g. We may assume that ϕD(v) = ϕD(x) ∈ 〈x1, . . . , xn〉 for v = x+ y
as above. This means that we suppose that v = x and

ϕD(x) = c1(x)x1 + · · ·+ cn(x)xn

for some ci(x) ∈ F, where 1 ≤ i ≤ n. We denote

c(x) = (c1(x), . . . , cn(x))>,

a(x) = (a1, . . . , an)>,

L(x) =

a(x)>A1
...

a(x)>Am

 ∈Mm,n(F),

d(x) =

d1(x)
...

dm(x)

 .

Lemma 4.3.3. Let g be a 2–step nilpotent Lie algebra over F with the notations
as above. A given map D ∈ C(g) is in AID(g) if and only if L(x)c(x) = d(x) has
a solution in the unknowns ci(x) (with 1 ≤ i ≤ n) for all x = a1x1 + · · ·+ anxn
in g.

Proof. We have D ∈ AID(g) if and only if there exists a map ϕD : g→ g such
that for all x = a1x1 + · · ·+ anxn (or, equivalently, for all a1, . . . , an ∈ F), we
have that D(x) = [x, ϕD(x)]. This is the case if and only if we can find ci(x)
for 1 ≤ i ≤ n with

D(x) =

 n∑
i=1

aixi,

n∑
j=1

cj(x)xj

 =
n∑
i=1

n∑
j=1

aicj(x)(c1ijy1 + · · ·+ cmijym).

This is equivalent to the system of linear equations L(x)c(x) = d(x) for all
x = a1x1 + · · ·+ anxn.

We obtain the following result.
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Proposition 4.3.4. Let g be a 2–step nilpotent Lie algebra over F with
associated pencil µ1A1 + · · · + µmAm and the notations as above. Then a
given map D ∈ C(g) is in AID(g) if and only if for all x = a1x1 + · · ·+ anxn
in g and all µ1, . . . , µm ∈ F, we have the condition

(µ1A1 + · · ·+ µmAm)a(x) = 0 =⇒ µ1d1(x) + · · ·+ µmdm(x) = 0. (4.7)

Proof. Suppose that D ∈ AID(g) and (µ1A1 + · · ·+ µmAm)a(x) = 0. Since the
matrices Ak are skew-symmetric for all 1 ≤ k ≤ m, we have

0 = (µ1A1 + · · ·+ µmAm)a(x) = −(µ1a(x)>A1 + · · ·+ µma(x)>Am)>,

so that µ1a(x)>A1 + · · ·+µma(x)>Am = 0. Note that a(x)>Ak is the k–th row
of L(x) for each 1 ≤ k ≤ m. Since D ∈ AID(g), both L(x) and the extended
matrix (L(x) | d(x)) have the same rank by Lemma 4.3.3. Hence for any linear
combination of rows of L(x) which equals zero, the same linear combination of
rows of (L(x) | d(x)) equals zero. It follows that µ1d1(x) + · · ·+ µmdm(x) = 0.
The converse direction can be proven in a similar way.

We illustrate this result with an example.

Example 4.3.5. Let g be the 7–dimensional real Lie algebra with basis
{x1, . . . , x5, y1, y2} and Lie brackets defined by

[x1, x3] = y1, [x1, x4] = y2,

[x2, x4] = y1, [x2, x5] = y2.

The associated matrix pencil, which we denote as µA+ λB, is given by

µA+ λB =


0 0 µ λ 0
0 0 0 µ λ

−µ 0 0 0 0
−λ −µ 0 0 0
0 −λ 0 0 0

 .

It is easy to see that dim(Inn(g)) = 5. Let D ∈ C(g) and x = a1x1 + · · ·+ a5x5.
Then the matrix of D is given by

D =

 0 0
r1 r2 r3 r4 r5
s1 s2 s3 s4 s5

0

 .

We thus have d1(x) = a1r1 + · · · + a5r5 and d2(x) = a1s1 + · · · + a5s5. For
all (µ, λ) 6= (0, 0), the kernel of µA+ λB for this Lie algebra is 1–dimensional,
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generated by a(x) = (0, 0, λ2,−µλ, µ2)>. Therefore condition (4.7) applied to
this vector yields

0 = µd1(x) + λd2(x)

= µ(a1r1 + · · ·+ a5r5) + λ(a1s1 + · · ·+ a5s5)

= µ3r5 + µ2λ(s5 − r4) + µλ2(r3 − s4) + λ3s3

for all µ, λ ∈ F. Hence D ∈ AID(g) if and only if r5 = s3 = 0 and s5 = r4 and
s4 = r3. Thus we have dim(AID(g)) = 6.

Remark 4.3.6. Consider values µ1, . . . , µm ∈ F with det(µ1A1+· · ·+µmAm) 6= 0,
then

(µ1A1 + · · ·+ µmAm)a(x)> = 0
is only satisfied for a1 = · · · = an = 0. This means that d1(x) = · · · = dm(x) = 0,
so condition (4.7) is always valid in that case. Hence, it suffices to consider
those values µ1, . . . , µm ∈ F for which det(µ1A1 + · · ·+ µmAm) = 0.

When n is odd, we have that det(µ1A1 + · · ·+ µmAm) = 0, since Ak is skew-
symmetric for all 1 ≤ k ≤ m. In practice, previous remark is only useful when
n is even.

Example 4.3.7. Consider the Lie algebra g over a field F which has a basis
{x1, . . . , x4, y1, y2} and non-vanishing Lie brackets

[x1, x2] = y1, [x1, x4] = y2 and [x2, x3] = y2.

It is easy to see that dim(Inn(g)) = 4. Let D ∈ C(g) and x = a1x1 + · · ·+ a4x4.
Then the matrix of D is given by

D =

 0 0
r1 r2 r3 r4
s1 s2 s3 s4

0

 .

We also have d1(x) = a1r1 + · · ·+ a4r4 and d2(x) = a1s1 + · · ·+ a4s4. For g,
we have that

det(µA+ λB) = λ4.

It follows from Remark 4.3.6 that we may assume without loss of generality
that λ = 0. A general solution for

0 µ 0 0
−µ 0 0 0
0 0 0 0
0 0 0 0



a1
a2
a3
a4

 =


0
0
0
0
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is given by a(x) = (0, 0, k3, k4)>, where k3, k4 ∈ F. For these vectors, we
find that d1(a(x)) = 0 if and only if r3 = r4 = 0. Hence, we have that
dim(AID(g)) = dim(Inn(g)) + 2 = 6.

Definition 4.3.8 (Nonsingular Lie algebra). Let g be a 2–step nilpotent Lie
algebra over a field F. When the associated pencil µ1A1 + · · ·+ µmAm satisfies
det(µ1A1 + · · ·+ µmAm) = 0 if and only if µ1 = · · · = µm = 0, the Lie algebra
g is called nonsingular.

For nonsingular Lie algebras, it is very easy to compute the almost inner
derivations.

Corollary 4.3.9. Let g be a nonsingular Lie algebra over a field F of type (n,m).
We then have that AID(g) = C(g) and dim(AID(g)) = m dim(Inn(g)) = mn.

Proof. By assumption, the system (µ1A1 + · · · + µmAm)a(x) = 0 only has
the trivial solution x = 0. Hence, condition (4.7) is satisfied and it follows
from Proposition 4.3.4 that AID(g) = C(g). Since the suppositions imply that
[g, g] = Z(g), we have dim(Inn(g)) = n, spanned by ad(x1), . . . , ad(xn) and
dim(C(g)) = mn. It follows that dim(AID(g)) = mn.

In Section 9.3, we will study nonsingular Lie algebras in more detail. Several
examples will be given in other sections as well.

When g is not 2–step nilpotent, we can associate a matrix pencil to g as well.
Consider a nilpotent Lie algebra g over a field F. Fix a basis

{e1, . . . , en, en+1, . . . , en+m, en+m+1, . . . , en+m+l}

such that [g, g] ⊆ 〈en+1, . . . , en+m+l〉 and Z(g) = 〈en+m+1, . . . , en+m+l〉. Then
we have for all 1 ≤ i, j ≤ n+m that

[ei, ej ] = cn+1
ij en+1 + · · ·+ cn+m+l

ij en+m+l,

where ckij ∈ F are the structure constants of g. For every n+ 1 ≤ k ≤ n+m+ l,
we define the skew-symmetric matrix Ak := (ckij)1≤i,j≤n+m. The associated
matrix pencil for g is

µn+1An+1 + · · ·+ µn+m+lAn+m+l.

With the same technique as before, we can check whether or not a linear
map (not necessarily a central derivation) satisfies the almost inner condition.
However, since g is not 2–step nilpotent, we still have to check if it is a derivation.
We will clarify this observation with the aid of an example.
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Example 4.3.10. Let g be the Lie algebra over a field F which has a basis
{e1, e2, e3, e4, e5} and non-vanishing Lie brackets

[e1, e2] = e4, [e1, e4] = e5 and [e2, e3] = e5,

so n = 3 and m = l = 1. When we denote µ := µ4 and λ := µ5, the associated
pencil

µA4 + λA5 =


0 µ 0 λ

−µ 0 λ 0
0 −λ 0 0
−λ 0 0 0


for g is the same matrix pencil as in Example 4.3.7. We can conclude from
Remark 4.3.6 that for instance E5,4 : g→ g satisfies the almost inner condition.
However, it is not a derivation, since

E5,4([e1, e2]) = E5,4(e4) = e5,

but [E5,4(e1), e2] + [e1, E5,4(e2)] = 0. To determine AID(g), we also need the
derivation algebra. An arbitrary derivation for g is given by

D = a1ad(e1) + · · ·+ a4ad(e4) + d1D1 + · · ·+ d5D5 + e5,3E5,3

and has matrix form

D =


d1 0 0 0 0
d2 d4 0 0 0
d3 d5 2d1 0 0
−a2 a1 −d2 d1 + d4 0
−a4 −a3 a2 + e5,3 a1 − d3 2d1 + d4

 ,

which means that Der(g) = 〈ad(e1), . . . , ad(e4), D1, . . . , D5, E5,3〉. It is clear
that no non-zero linear combination of D1, . . . , D5 satisfies the almost inner
condition. Proposition 4.3.4 implies that E5,3 is almost inner. We can conclude
that AID(g) = 〈ad(e1), . . . , ad(e4), E5,3〉.

As a conclusion, skew matrix pencils are particularly important for 2–step
nilpotent Lie algebras. However, it can also be used for other Lie algebras
in testing which linear maps satisfy the almost inner condition, but other
techniques also play a role in determining the derivation algebra. In the next
chapter, we will see another example of a matrix pencil associated to a 3–step
nilpotent Lie algebra.
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Chapter 5

Importance of the field

A Lie algebra g over a field F can be specified by giving the structure constants
with respect to a given basis. When these structure constants are integers, we
can interpret these structure constants and the associated Lie algebra over any
other field. In this case, one might expect that the field itself plays a minor
role in the computation of Der(g) or AID(g). However, as we will show, this is
not the case. In Section 5.1, we will explain how the characteristic of the field
has an impact on the derivation algebra. Section 5.2 deals with how the field
itself influences which derivations are almost inner and which are not. For this,
we will use the associated matrix pencil from Section 4.3 and in particular the
zeros of the determinant.

The observations from this chapter will be shown on the basis of a famous Lie
algebra. Jacobson proved ([50]) that over a field of characteristic zero, a Lie
algebra with a nonsingular derivation is nilpotent. Dixmier and Lister showed
([24]) that the converse of this result is not valid. The example they gave was
the 8–dimensional Lie algebra g over a field F of characteristic zero with basis
{e1, . . . , e8}, given by

[e1, e2] = e5, [e1, e3] = e6, [e1, e4] = e7, [e1, e5] = −e8,

[e2, e3] = e8, [e2, e4] = e6, [e2, e6] = −e7,

[e3, e4] = −e5, [e3, e5] = −e7, [e4, e6] = −e8.

(5.1)

and having only nilpotent derivations. Later, nilpotent Lie algebras whose
derivations are all nilpotent were called ‘characteristically nilpotent’, or in short
CNLAs. In Section 12.4, we will give more information about almost inner
derivations for characteristically nilpotent Lie algebra. Although CNLAs are
mainly studied in characteristic zero, it is in fact not necessary to impose this
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condition. Indeed, the Lie brackets from (5.1) define a Lie algebra for every
field and a CNLA for all fields F with char(F) /∈ {2, 3}.

5.1 Derivations

Let F be an arbitrary field and g a Lie algebra over F with basis B = {e1, . . . , en}.
We denote ckij for the structure constants (so 1 ≤ i, j, k ≤ n). Let D : g→ g be
a derivation. Since D is a linear map, it can be described as a matrix, which we
will denote by D = (dij). By bilinearity of the Lie bracket, it suffices to check
Leibniz’ rule for the basis vectors. Let ei and ej be two arbitrary basis vectors,
then

D([ei, ej ]) = D

(
n∑
l=1

clijel

)
=

n∑
l=1

clijD(el) =
n∑
l=1

n∑
k=1

clijdklek (5.2)

holds. Analogously, we find that

[D(ei), ej ] + [ei, D(ej)] =
[

n∑
l=1

dliel, ej

]
+
[
ei,

n∑
l=1

dljel

]

=
n∑
l=1

dli[el, ej ] +
n∑
l=1

dlj [ei, el]

=
n∑
l=1

n∑
k=1

dlic
k
ljek +

n∑
l=1

n∑
k=1

dljc
k
ilek

=
n∑
l=1

n∑
k=1

(dlicklj + dljc
k
il)ek. (5.3)

Since D is a derivation, equations (5.2) and (5.3) have to be the same, which
means that

n∑
l=1

clijdkl =
n∑
l=1

(dlicklj + dljc
k
il) (5.4)

has to hold for all 1 ≤ i, j, k ≤ n. We can impose without loss of generality
that 1 ≤ i < j ≤ n, so there are in total n2(n − 1)/2 equations which have
to be satisfied at the same time. However, it is possible that some of them
are meaningless or redundant. These equations give relations on the different
matrix entries of the derivation and a solution depends on the characteristic of
the field.
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Consider a field F of char(F) /∈ {2, 3}. Let g be the Dixmier-Lister Lie algebra
over F. A direct computation shows that an arbitrary derivation D of g is a
linear combination

D = a1ad(e1) + · · ·+ a6ad(e6) + d1D1 + · · ·+ d6D6

and has matrix form
0 0

−a2 a1 a4 −a3 0 0
−a3 −a4 a1 a2 0 0

−a4 + d1 + d2 a6 + d4 a5 + d5 a1 + d3 −a3 −a2
a5 − d2 a3 + d3 − d4 a2 + d1 a6 + d6 −a1 −a4

0

 ,

which means that Der(g) = 〈ad(e1), . . . , ad(e6), D1, . . . , D6〉. This was also
computed in [24] and resulted in the same derivation algebra. Note that every
derivation is indeed nilpotent, meaning that g is a CNLA.

When char(F) = 2, we have that

Der(g) = 〈ad(e1), . . . , ad(e6), D1, . . . , D6, D
(2)
1 , D

(2)
2 〉.

For arbitrary x =
∑8
i=1 xiei the additional derivations D(2)

1 , D
(2)
2 : g → g are

given by

D
(2)
1 (x) = x2e2 + x4e4 + x5e5 + x7e7 + x8e8,

D
(2)
2 (x) = x2e3 + x4e1 + x5e6.

We have for instance that D(2)
1 ([e2, e4]) = D

(2)
1 (e6) = 0, but

[D(2)
1 (e2), e4] + [e2, D

(2)
1 (e4)] = 2e6,

so D(2)
1 /∈ Der(g) when char(F) 6= 2. For char(F) = 3, we have

Der(g) = 〈ad(e1), . . . , ad(e6), D1, . . . , D6, D
(3)
1 , . . . , D

(3)
4 〉.

The image of x =
∑8
i=1 xiei for the maps D(3)

1 , . . . , D
(3)
4 : g→ g is

D
(3)
1 (x) = x1e1 − x2e2 − x3e3 + x4e4 + x7e7 + x8e8,

D
(3)
2 (x) = x1e3 − x3e6 + x4e2 − x5e8 + x8e7,

D
(3)
3 (x) = x1e4 − x2e3 + x3e2 − x4e1 + x5e6 − x6e5,

D
(3)
4 (x) = x2e4 + x3e1 − x4e5 + x5e7 + x7e8.

When char(F) ∈ {2, 3}, it is clear that g is not a CNLA anymore. This illustrates
that the derivation algebra depends on the characteristic of the field.
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5.2 Almost inner derivations

In this section, we will compute the almost inner derivations for the Dixmier-
Lister Lie algebra over an arbitrary field F. It turns out that the number of
different solutions of X3 − 1 over F determines the dimension of AID(g). The
matrix pencil P := µ5A5 + µ6A6 + µ7A7 + µ8A8 associated to g is given by

P =



0 µ5 µ6 µ7 −µ8 0
−µ5 0 µ8 µ6 0 −µ7
−µ6 −µ8 0 −µ5 −µ7 0
−µ7 −µ6 µ5 0 0 −µ8
µ8 0 µ7 0 0 0
0 µ7 0 µ8 0 0


and has determinant det(P ) = (µ3

7 − µ3
8)2. Denote µ := µ7

µ8
, then we have that

det(P ) = 0 if µ3 − 1 = (µ − 1)(µ2 + µ + 1) = 0. Hence, the importance and
relevance of the polynomial X3 − 1 is already indicated by the determinant of
the matrix pencil.

Proposition 5.2.1. Let g be the Dixmier-Lister Lie algebra over an arbitrary
field F.

• If X3 − 1 has three different roots over F, then AID(g) = Inn(g).

• If X3 − 1 only has one (not necessarily simple) root over F, then we have
AID(g) = Inn(g)⊕ 〈D1, . . . , D4〉.

Proof. Suppose that char(F) ∈ {2, 3} and take d1, . . . , d6 ∈ F arbitrarily. Let∑6
i=1 diDi + E be an almost inner derivation, where we take

E ∈ 〈D(2)
i : g→ g | 1 ≤ i ≤ 2〉

when char(F) = 2 and E ∈ 〈D(3)
i : g → g | 1 ≤ i ≤ 4〉 for char(F) = 3. Since

E(g) 6⊆ [g, g] when E 6= 0, this implies that E = 0. Hence, it suffices for the
rest of the proof to only look at the space 〈D1, . . . , D6〉 to determine AID(g).

Let z ∈ F be a solution of X3 − 1 = 0, so z3 = 1. This exists over any field F,
since we can take z = 1. Consider D :=

∑6
i=1 diDi, where d1, . . . , d6 ∈ F.

Take an arbitrary x =
∑8
i=1 xiei ∈ g and suppose that D is almost inner. By

definition of D, we have

D(x) = ((d1+d2)x1+d3x4+d4x2+d5x3)e7+(d1x3−d2x1+(d3−d4)x2+d6x4)e8.
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This means that

D(e1 − ze3 − z2e6) = (d1 + d2 − zd5)e7 + (−d2 − zd1)e8. (5.5)

We further see that

[e1 − ze3 − z2e6, x]

= (x2 + zx4)e5 + (zx1 + x3)e6 + (zx2 − z2x4 − x5)(−ze7 + e8),

so the coordinates of e7 and e8 are the same up to a factor −z for every almost
inner derivation. Applying this observation in (5.5) yields

d1 + d2 − zd5 = zd2 + z2d1. (5.6)

For z = 1, this gives d5 = 0. A similar computation shows that

D(e2 − ze4 − z2e5) = (−zd3 + d4)e7 + (d3 − d4 − zd6)e8. (5.7)

We also find that

[e2 + ze4 − z2e5, x]

= (−x1 − zx3)e5 + (−zx2 + x4)e6 + (zx1 − z2x3 − x6)(e7 − ze8).

Since the coordinates for e7 and e8 are the same up to a factor −z, equation
(5.7) implies that

d3 − d4 − zd6 = z2d3 − zd4. (5.8)

For z = 1, it follows that d6 = 0. For the rest of the proof, we will consider
different cases.

• Suppose that X3 − 1 = (X − 1)(X2 + X + 1) = 0 has three different
solutions over F, so there exists β ∈ F such that the set of all solutions is
given by {β, β2 = −β−1, β3 = 1}. Note that char(F) 6= 3, since otherwise
X3− 1 = (X − 1)3 only has one solution (of multiplicity 3). We can insert
z = β respectively z = β2 in (5.6) and obtain

d1 + d2 = βd2 + β2d1 (5.9)

d1 + d2 = β2d2 + βd1.

From these equations, we find that βd2 + β2d1 = β2d2 + βd1 and this
means (β2 − β)(d1 − d2) = 0. By using in (5.9) that d1 = d2, we obtain
2d1 = (β2 +β)d1 = −d1. We conclude that d1 = d2 = 0, since char(F) 6= 3.
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Similarly, by applying z = β respectively z = β2 in (5.8), we obtain

d3 − d4 = β2d3 − βd4 (5.10)

d3 − d4 = βd3 − β2d4.

The last two equations imply that β2d3 − βd4 = βd3 − β2d4 and thus
(β2 − β)(d3 + d4) = 0. We insert in (5.10) the fact that d4 = −d3 and
find that 2d3 = (β2 + β)d3 = −d3 = 0. Since char(F) 6= 3, we have that
d3 = d4 = 0.
As a conclusion, we see that, when X3−1 = 0 has three different solutions
over F, then the derivation D =

∑6
i=1 diDi is almost inner if and only if

d1 = · · · = d6 = 0.

• Suppose that X3 − 1 = 0 only has one root over F. On the one hand, it
is possible that X3 − 1 = 0 has a multiple root 1, which occurs if and
only if char(F) = 3. On the other hand, when char(F) 6= 3, this means
that X2 + X + 1 = 0 is irreducible over F. In both cases, it turns out
that there are non-inner almost inner derivations. We will show for each
1 ≤ i ≤ 4 that Di is almost inner by giving a map ϕDi

: g→ g such that
Di(x) = [x, ϕDi

(x)] for every x ∈ g.
Consider the map ϕD1 : g→ g, where the image of x =

∑8
i=1 xiei is given

by

ϕD1(x) =


e5 if x1 + x3 = 0,
ψ1(x) if x3 6= −x1 and x1x2 6= x3x4,

ψ2(x) otherwise,

where ψ1(x) = 1
x1x2−x3x4

((x1x4−x2x3)e5 + (x2
3−x2

1)e6) and where ψ2(x)
is defined as

1
x2

1 − x1x3 + x2
3

(x3(x1− x3)e2 + x1(x1− x3)e4 + (x1(x6− x3)− x3x6)e5).

Note that ψ2 is well-defined when X2 +X + 1 = 0 has no solutions over
F. For char(F) = 3, we have x2

1 − x1x3 + x2
3 = (x1 + x3)2, but x3 = −x1

is treated in another case. We will show that D1(x) = [x, ϕD1(x)] for
all x ∈ g. Consider an arbitrary x =

∑8
i=1 xiei in g. Therefore, we

distinguish different cases. If x1 + x3 = 0, then

[x, ϕD1(x)] = x1[e1, e5] + x3[e3, e5]

= −x1e8 − x3e7

= x1e7 + x3e8.
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When x3 6= −x1 and x1x2 6= x3x4, we have

[x, ϕD1(x)] = 1
x1x2 − x3x4

(x1(x1x4 − x2x3)[e1, e5] + x2(x2
3 − x2

1)[e2, e6]

+ x3(x1x4 − x2x3)[e3, e5] + x4(x2
3 − x2

1)[e4, e6])

= 1
x1x2 − x3x4

(−x1(x1x4 − x2x3)e8 − x2(x2
3 − x2

1)e7

− x3(x1x4 − x2x3)e7 − x4(x2
3 − x2

1)e8)

= 1
x1x2 − x3x4

((−x2x
2
3 + x2

1x2 − x1x3x4 + x2x
2
3)e7

+ (−x2
1x4 + x1x2x3 − x2

3x4 + x2
1x4)e8)

= 1
x1x2 − x3x4

(x1x2 − x3x4)(x1e7 + x3e8)

= x1e7 + x3e8.

If x3 6= −x1 and x1x2 = x3x4, then [x, ϕD1(x)] = [x, ψ2(x)] is given by

[x, ψ2(x)] = 1
x2

1 − x1x3 + x2
3

(x1x3(x1 − x3)[e1, e2] + x2
1(x1 − x3)[e1, e4]

+ x1(x1x6 − x1x3 − x3x6)[e1, e5] + x1x2(x1 − x3)[e2, e4]

+ x2
3(x1 − x3)[e3, e2] + x1x3(x1 − x3)[e3, e4]

+ x3(x1x6 − x1x3 − x3x6)[e3, e5] + x3x4(x1 − x3)[e4, e2]

+ x3x6(x1 − x3)[e6, e2] + x1x6(x1 − x3)[e6, e4])

= 1
x2

1 − x1x3 + x2
3

(x1x3(x1 − x3)e5 + x2
1(x1 − x3)e7

− x1(x1x6 − x1x3 − x3x6)e8 + x1x2(x1 − x3)e6

− x2
3(x1 − x3)e8 − x1x3(x1 − x3)e5

− x3(x1x6 − x1x3 − x3x6)e7 − x3x4(x1 − x3)e6

+ x3x6(x1 − x3)e7 + x1x6(x1 − x3)e8)
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= 1
x2

1 − x1x3 + x2
3

((x1x3 − x1x3)(x1 − x3)e5

+ (x1x2 − x3x4)(x1 − x3)e6

+ (x3
1 − x2

1x3 − x1x3x6 + x1x
2
3 + x2

3x6 + x1x3x6 − x2
3x6)e7

+ (−x2
1x6 + x2

1x3 + x1x3x6 − x1x
2
3 + x3

3 + x2
1x6 − x1x3x6)e8)

= 1
x2

1 − x1x3 + x2
3

(x2
1 − x1x3 + x2

3)(x1e7 + x3e8)

= x1e7 + x3e8.

Consider further the map

ϕD2(x) =


e5 if x1 + x3 = 0,
ψ3(x) if x3 6= −x1 and x1x2 6= x3x4,

ψ4(x) otherwise,

where ψ3(x) and ψ4(x) are defined as

ψ3(x) = x1

x1x2 − x3x4
((x2 + x4)e5 − (x1 + x3)e6),

ψ4(x) = x1

x2
1 − x1x3 + x2

3
(x3e2 + x1e4 + (x1 − x3 + x6)e5).

Let x =
∑8
i=1 xiei be arbitrary. When x1 + x3 = 0, then

[x, ϕD2(x)] = x1[e1, e5] + x3[e3, e5]

= −x1e8 − x3e7

= x1(e7 − e8).

If x3 6= −x1 and x1x2 − x3x4 6= 0, then we have

[x, ϕD2(x)] = x1

x1x2 − x3x4
(x1(x2 + x4)[e1, e5]− x2(x1 + x3)[e2, e6]

+ x3(x2 + x4)[e3, e5]− x4(x1 + x3)[e4, e6])

= x1

x1x2 − x3x4
(−x1(x2 + x4)e8 + x2(x1 + x3)e7

− x3(x2 + x4)e7 + x4(x1 + x3)e8).
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By rearranging the different terms, we find that

[x, ϕD2(x)] = x1

x1x2 − x3x4
((x1x2 + x2x3 − x2x3 − x3x4)e7

+ (−x1x2 − x1x4 + x1x4 + x3x4)e8)

= x1

x1x2 − x3x4
(x1x2 − x3x4)(e7 − e8)

= x1(e7 − e8). (5.11)

Otherwise, for x3 6= −x1 and x1x2 = x3x4, it follows that

[x, ϕD2(x)] = x1

x2
1 − x1x3 + x2

3
(x1x3[e1, e2] + x2

1[e1, e4]

+ (x2
1 − x1x3 + x1x6)[e1, e5] + x1x2[e2, e4] + x2

3[e3, e2]

+ x1x3[e3, e4] + (x1x3 − x2
3 + x3x6)[e3, e5]

+ x3x4[e4, e2] + x3x6[e6, e2] + x1x6[e6, e4])

= x1

x2
1 − x1x3 + x2

3
(x1x3e5 + x2

1e7 − (x2
1 − x1x3 + x1x6)e8

+ x1x2e6 − x2
3e8 − x1x3e5 − (x1x3 − x2

3 + x3x6)e7

− x3x4e6 + x3x6e7 + x1x6e8)

= x1

x2
1 − x1x3 + x2

3
((x1x3 − x1x3)e5 + (x1x2 − x3x4)e6

+ (x2
1 − x1x3 + x2

3 − x3x6 + x3x6)e7

+ (−x2
1 + x1x3 − x1x6 − x2

3 + x1x6)e8)

= x1

x2
1 − x1x3 + x2

3
(x2

1 − x1x3 + x2
3)(e7 − e8)

= x1(e7 − x8).

This shows that D2(x) = [x, ϕD2(x)] for all x ∈ g and D2 : g → g is an
almost inner derivation.
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Consider the map ϕD3 : g→ g : x =
∑8
i=1 xiei 7→ ϕD3(x), with

ϕD3(x) =


e6 if x2 + x4 = 0,
ψ5(x) if x4 6= −x2 and x1x2 6= x3x4,

ψ6(x) otherwise,

where we have

ψ5(x) = 1
x1x2 − x3x4

((x2
4 − x2

2)e5 + (x2x3 − x1x4)e6).

Further, ψ6(x) is defined as

1
x2

2 − x2x4 + x2
4

(x4(x2− x4)e1 + x2(x2− x4)e3 + (x2(x5− x4)− x4x5)e6).

Let x =
∑8
i=1 xiei be arbitrary. When x2 + x4 = 0, it follows that

[x, ϕD3(x)] = x2[e2, e6] + x4[e4, e6]

= −x2e7 − x4e8

= x4e7 + x2e8.

If x4 6= −x2 and x1x2 − x3x4 6= 0, then we have

[x, ϕD3(x)] = 1
x1x2 − x3x4

(x1(x2
4 − x2

2)[e1, e5] + x2(x2x3 − x1x4)[e2, e6]

+ x3(x2
4 − x2

2)[e3, e5] + x4(x2x3 − x1x4)[e4, e6])

= 1
x1x2 − x3x4

(−x1(x2
4 − x2

2)e8 − x2(x2x3 − x1x4)e7

− x3(x2
4 − x2

2)e7 − x4(x2x3 − x1x4)e8)

= 1
x1x2 − x3x4

((−x2
2x3 + x1x2x4 − x3x

2
4 + x2

2x3)e7

+ (−x1x
2
4 + x1x

2
2 − x2x3x4 + x1x

2
4)e8)

= 1
x1x2 − x3x4

(x1x2 − x3x4)(x4e7 + x2e8)

= x4e7 + x2e8.
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For x4 6= −x2 and x1x2 = x3x4, we have that [x, ϕD3(x)] = [x, ψ6(x)] is
given by

[x, ψ6(x)] = 1
x2

2 − x2x4 + x2
4

(x1x2(x2 − x4)[e1, e3] + x2x4(x2 − x4)[e2, e1]

+ x2
2(x2 − x4)[e2, e3] + x2(−x2x4 + x2x5 − x4x5)[e2, e6]

+ x3x4(x2 − x4)[e3, e1] + x2
4(x2 − x4)[e4, e1]

+ x2x4(x2 − x4)[e4, e3] + x4(x2x5 − x2x4 − x4x5)[e4, e6]

+ x4x5(x2 − x4)[e5, e1] + x2x5(x2 − x4)[e5, e3])

= 1
x2

2 − x2x4 + x2
4

(x1x2(x2 − x4)e6 − x2x4(x2 − x4)e5

+ x2
2(x2 − x4)e8 − x2(−x2x4 + x2x5 − x4x5)e7

− x3x4(x2 − x4)e6 − x2
4(x2 − x4)e7 + x2x4(x2 − x4)e5

− x4(−x2x4 + x2x5 − x4x5)e8 + x4x5(x2 − x4)e8

+ x2x5(x2 − x4)e7)

= 1
x2

2 − x2x4 + x2
4

((−x2x4 + x2x4)(x2 − x4)e5

+ (x1x2 − x3x4)(x2 − x4)e6

+ (x2
2x4 − x2

2x5 + x2x4x5 − x2x
2
4 + x3

4 + x2
2x5 − x2x4x5)e7

+ (x3
2 − x2

2x4 + x2x
2
4 − x2x4x5 + x2

4x5 + x2x4x5 − x2
4x5)e8)

= 1
x2

2 − x2x4 + x2
4

(x2
2 − x2x4 + x2

4)(x4e7 + x2e8)

= x4e7 + x2e8.

This shows that D3 : g→ g is almost inner.
Consider the map ϕD4 : g→ g, where the image of x =

∑8
i=1 xiei is given

by

ϕD4(x) =


−e6 if x2 + x4 = 0,
ψ7(x) if x4 6= −x2 and x1x2 6= x3x4,

ψ8(x) otherwise,
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where ψ7(x) and ψ8(x) are defined as

ψ7(x) = x2

x1x2 − x3x4
((x2 + x4)e5 − (x1 + x3)e6),

ψ8(x) = x2

x2
2 − x2x4 + x2

4
(−x4e1 − x2e3 + (−x2 + x4 − x5)e6).

Take an arbitrary x =
∑8
i=1 xiei. If x4 = −x2, then

[x, ϕD4(x)] = −x2[e2, e6]− x4[e4, e6]

= x2e7 + x4e8 = x2(e7 − e8).

When x4 6= −x2 and x1x2−x3x4 6= 0, it follows from a similar computation
as in (5.11) that

[x, ϕD4(x)] = x2

x1x2 − x3x4
[x, (x2 + x4)e5 − (x1 + x3)e6]

= x2(e7 − e8).

For x4 6= −x2 and x1x2 = x3x4, we find that

[x, ϕD4(x)] = x2

x2
2 − x2x4 + x2

4
(−x1x2[e1, e3]− x2x4[e2, e1]− x2

2[e2, e3]

+ x2(−x2 + x4 − x5)[e2, e6]− x3x4[e3, e1]− x2
4[e4, e1]

− x2x4[e4, e3] + x4(−x2 + x4 − x5)[e4, e6]− x4x5[e5, e1]

− x2x5[e5, e3])

= x2

x2
2 − x2x4 + x2

4
(−x1x2e6 + x2x4e5 − x2

2e8

− x2(−x2 + x4 − x5)e7 + x3x4e6 + x2
4e7 − x2x4e5

− x4(−x2 + x4 − x5)e8 − x4x5e8 − x2x5e7)

= x2

x2
2 − x2x4 + x2

4
((x2x4 − x2x4)e5 + (−x1x2 + x3x4)e6

+ (x2
2 − x2x4 + x2x5 + x2

4 − x2x5)e7

+ (−x2
2 + x2x4 − x2

4 + x4x5 − x4x5)e8)

= x2

x2
2 − x2x4 + x2

4
(x2

2 − x2x4 + x2
4)(e7 − e8).
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Since D4(x) = [x, ϕD4(x)] holds for all x ∈ g that, we can conclude that
D4 : g→ g is an almost inner derivation as well.

Let g be the Dixmier-Lister Lie algebra over F. Then all almost inner derivations
are inner when F = C, whereas we have dim(AID(g)) = dim(Inn(g)) + 4 for
F = R. Hence, the dimension of AID(g) depends on the field F, in particular
on the number of different solutions of the polynomial X3 − 1 = 0 over F.
Intuitively, this dissimilarity between the different fields can be explained as
follows. The dimension of AID(g)/Inn(g) is connected with the factorisation of
det(P ) = (µ3 − 1)2 over F. Denote l for the number of different linear factors
of det(P ). It seems in our example that

dim(AID(g)/Inn(g)) = deg(det(P ))− 2l = 2 · (3− l).

We will see this phenomenon again in Section 9.2 and Section 9.3 while studying
matrix pencils in more detail.



Chapter 6

Finite field extensions

In this chapter, we will consider finite field extensions K : k. Let g be a Lie
algebra defined over k, then it can be considered as a Lie algebra over K as
well. We will use the notations gk respectively gK to specify the Lie algebra we
are working with. In the first section, we investigate the connection between
AID(gk) and AID(gK) and introduce the so-called ‘underlying Lie algebras’ g′k
and g′K . In Section 6.2, we give a way to find new almost inner derivations of
g′k on the basis of AID(gK). Most of this chapter also appeared in [8]. Since we
work with field extensions, it is convenient to use the notation K : k. This is in
contrast to other chapters, where a field is denoted with F.

6.1 Change of base field

Consider a separable field extension of finite degree [K : k] = n. Let gk be a
Lie algebra defined over k, then we obtain a Lie algebra

gK = K ⊗k gk

over K by linearly extending the Lie bracket. The primitive element theorem
ensures that K = k(s) for some s ∈ K. Then B = {1, s, s2, . . . , sn−1} is a vector
space basis of K over k. It follows that

gK = gk ⊕ sgk ⊕ · · · ⊕ sn−1gk (6.1)

holds as vector spaces over k. The typical example is K = C and k = R, where
{1, s} = {1, i} and gC = gR ⊕ igR.

73



74 FINITE FIELD EXTENSIONS

We can also consider gK as a Lie algebra over k, which we will denote with g′k.
Note that, as sets, we have g′k = gK , but dimk(g′k) = n · dimK(gK). Finally,
g′K := K ⊗k g′k is again a Lie algebra over K, with dimK(g′K) = dimk(g′k). The
Lie algebra g′K has the same basis and structure constants as g′k, but is a Lie
algebra over K and not over k. The following property, which follows from the
results of [21], relates the Lie algebras g′K and gK .
Proposition 6.1.1. Consider a finite Galois extension k ⊆ K with [K : k] = n.
Let gk be a Lie algebra over k. Using the notations introduced above, we have
that g′K ∼=

⊕
n gK .

We will explain the constructions of these different Lie algebras for the special
situation when [K : k] = 2, where we require that the fields do not have
characteristic two. In that case, we have K = k(s) for some s ∈ K \ k with
d := s2 ∈ k. Hence, we can write K = k(

√
d). Let gk be a Lie algebra over k of

dimension r, then there exists a basis {e1, e2, . . . , er} and there are structure
constants cpij such that [ei, ej ] =

∑r
p=1 c

p
ijep. The Lie algebra gK = K ⊗k gk

has the same structure constants and the same basis. Further, g′k has basis
{e1, e2, . . . , er, se1, se2, . . . , ser}. Denote fi := sei for all 1 ≤ i ≤ r, then the
structure constants are

[ei, ej ] =
r∑
p=1

cpijep, [ei, fj ] =
r∑
p=1

cpijfp, [fi, fj ] = d

r∑
p=1

cpijep = d[ei, ej ].

In general, it is cumbersome to construct an explicit isomorphism between
g′K and

⊕
n gK , but for n = 2, it is straightforward. The Lie algebra g′K has

basis {e1, e2, . . . , er, f1, f2, . . . , fr} and structure constants as above. We take
for gK ⊕ gK a basis {a1, a2, . . . , ar, b1, b2, . . . , br} with

[ai, aj ] =
r∑
p=1

cpijap, [bi, bj ] =
r∑
p=1

cpijbp, [ai, bj ] = 0.

Let ϕ : g′K → gK⊕gK be the linear map with ϕ(ei) = ai+bi and ϕ(fi) = sai−sbi
for all 1 ≤ i ≤ r. Then ϕ is an isomorphism of vector spaces. Moreover, ϕ is a
Lie algebra morphism. Indeed, take 1 ≤ i, j ≤ r arbitrarily, then we have that

[ϕ(ei), ϕ(ej)] = [ai + bi, aj + bj ]

= [ai, aj ] + [bi, bj ]

=
r∑
p=1

cpij(ap + bp)

= ϕ([ei, ej ]). (6.2)
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Furthermore, also

[ϕ(ei), ϕ(fj)] = [ai + bi, saj − sbj ]

= s

r∑
p=1

cpij(ap − bp)

= ϕ

(
r∑
p=1

cpijfp

)

= ϕ([ei, fj ])

is satisfied. Using (6.2), we find that

[ϕ(fi), ϕ(fj)] = [s(ai − bi), s(aj − bj)] = s2[ai, aj ] + s2[bi, bj ]

= d ([ai, aj ] + [bi, bj ]) = ϕ(d[ei, ej ])

= ϕ([fi, fj ])

and this finalises the proof. This will be illustrated in the next example for
k = R and K = C. Then we can take s = i with i2 = −1.

Example 6.1.2. Consider the real Heisenberg Lie algebra gR, then gC is the
complex Heisenberg Lie algebra. Both of these algebras can be described via
a basis {e1, e2, e3}, where the non-zero Lie brackets are given by [e1, e2] = e3.
The Lie algebras g′R and g′C have a basis {e1, e2, e3, f1 = ie1, f2 = ie2, f3 = ie3}
and non-zero brackets

[e1, e2] = e3, [e1, f2] = f3,

[f1, e2] = f3, [f1, f2] = −e3.

Further, we have that g′C ∼= gC ⊕ gC by Proposition 6.1.1. However, as we will
show later on, g′R and gR ⊕ gR are not isomorphic.

Now, we return to the general situation where [K : k] = n ≥ 2. Suppose that
D ∈ Der(gk), then we can consider DK = 1K ⊗k D where DK : gK → gK is
the K–linear map such that (DK)|gk

= D. This means that DK ∈ Der(gK).
Conversely, if D ∈ Der(gK) and D(gk) ⊆ gk, then D|gk

∈ Der(gk).
Remark 6.1.3. These two “procedures” are inverses of each other. Indeed, for
D ∈ Der(gk), we have that (DK)|gk

= D. Moreover, for D ∈ Der(gK) with
D(gk) ⊆ gk we have

(
D|gk

)
K

= D.

Lemma 6.1.4. We have Der(gK) = K ⊗k Der(gk).
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Proof. We already mentioned that any derivation D ∈ Der(gk) can be viewed as
a derivation DK ∈ Der(gK). From this, the conclusion K⊗kDer(gk) ⊆ Der(gK)
is clear. We now show the other inclusion. Let D ∈ Der(gK). We can write

D|gk
= D1 + sD2 + · · ·+ sn−1Dn,

where Di : gk → gk is a derivation for all 1 ≤ i ≤ n. Take

D′ = 1K ⊗k D1 + s⊗k D2 + · · ·+ sn−1 ⊗k Dn,

then we find that D′ ∈ K ⊗k Der(gk). Since also D|gk
= D′|gk

holds, this
implies that D = D′ ∈ K ⊗k Der(gk).

Hence, there is a nice correspondence between the derivations of gk and gK .
For almost inner derivations, there is a partial result.

Lemma 6.1.5. Let D ∈ Der(gk). If DK ∈ AID(gK), then also D ∈ AID(gk).

Proof. Let B = {1, s, . . . , sn−1} be a basis of K over k and D : gk → gk be a
derivation. Assume that DK ∈ AID(gK), then there exists a map ϕ : gK → gK
such that DK(x) = [x, ϕ(x)] holds for all x ∈ gK . We can write

ϕ(x) := ϕ1(x) + sϕ2(x) + · · ·+ sn−1ϕn(x),

where ϕi : gK → gk for all 1 ≤ i ≤ n. Take an arbitrary x ∈ gk. Then we
obtain

D(x) = [x, ϕ1(x)] + s[x, ϕ2(x)] + · · ·+ sn−1[x, ϕn(x)].
Since D(x) ∈ gk, it follows from equation (6.1) that for all x ∈ gk, we have

D(x) = [x, ϕ1(x)] ∈ gk

and [x, ϕi(x)] = 0 for all 2 ≤ i ≤ n. Hence, this means that D ∈ AID(gk).

Note that the converse of this result does not hold in general, since there exist
examples for which D ∈ AID(gk) holds, but DK /∈ AID(gK). This phenomenon
will be illustrated in Example 6.2.4.

Proposition 6.1.6. If AID(gK) 6= Inn(gK), then also AID(gk) 6= Inn(gk).

Proof. Denote as before B = {1, s, . . . , sn−1} for a basis of K over k. Let
D ∈ AID(gK) with D /∈ Inn(gK), then there exists a map ϕ : gK → gK such
that D(x) = [x, ϕ(x)] for all x ∈ gK . Furthermore, there are maps ϕi : gK → gk
(for all 1 ≤ i ≤ n) such that

ϕ = ϕ1 + sϕ2 + · · ·+ sn−1ϕn.
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Define for each 1 ≤ i ≤ n the map

Di : gk → gk : x 7→ [x, ϕi(x)].

We claim that each Di is a derivation (and thus an almost inner derivation).
Let x, y ∈ gk, then

D([x, y]) = [[x, y], ϕ1([x, y]) + sϕ2([x, y]) + · · ·+ sn−1ϕn([x, y])]

= D1([x, y]) + sD2([x, y]) + · · ·+ sn−1Dn([x, y]).

On the other hand, we have

[D(x), y] + [x,D(y)]

= [[x, ϕ1(x) + · · ·+ sn−1ϕn(x)], y] + [x, [y, ϕ1(y) + · · ·+ sn−1ϕn(y)]]

= [D1(x) + · · ·+ sn−1Dn(x), y] + [x,D1(y) + · · ·+ sn−1Dn(y)]

=
(
[D1(x), y] + [x,D1(y)]

)
+ · · ·+ sn−1([Dn(x), y] + [x,Dn(y)]

)
.

The above equations imply that Di([x, y]) = [Di(x), y] + [x,Di(y)], since D is a
derivation. Hence, we have Di ∈ Der(gk) for all 1 ≤ i ≤ n.

Moreover, we claim that there is at least one 1 ≤ i ≤ n for which Di /∈ Inn(gk).
Suppose on the contrary that Di ∈ Inn(gk) for all 1 ≤ i ≤ n. Then there
exist elements αi ∈ gk such that Di(x) = [x, αi] holds for all x ∈ gk. Denote
α := α1 + sα2 + · · ·+ sn−1αn ∈ K. This means that

D(x) = [x, α1] + s[x, α2] + · · ·+ sn−1[x, αn]

= [x, α1 + sα2 + · · ·+ sn−1αn]

= [x, α]

for all x ∈ gk. Now consider −ad(α) ∈ Der(gK), then D|gk
= −ad(α)|gk

.
Since two derivations of gK are equal when they agree on gk, this implies that
D = −ad(α) is inner. This contradiction shows that for at least one 1 ≤ i ≤ n,
we have Di ∈ AID(gk) \ Inn(gk).

This proposition means that if the Lie algebra over the bigger field gK admits a
non-trivial almost inner derivation, then also the Lie algebra over the smaller
field gk. The converse does not hold in general, see again Example 6.2.4.
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6.2 Constructing new almost inner derivations

We keep using the same notations as in the previous section. We will show
how to find new almost inner derivations of the Lie algebra g′k, determined by
AID(gK). Remember that g′k and gK denote the same set, but they are Lie
algebras over a different field (namely over k respectively over K).
Define the set

E(gK) := {D ∈ AID(gK) | D(gK) is one-dimensional and D(gK) ⊆ Z(gK)}.

We will construct, starting from a fixed element D ∈ E(gK), a collection of
almost inner derivations of g′k which are not inner, even when D itself is an
inner derivation of gK . Take an arbitrary D ∈ E(gK). Since D(gK) is one-
dimensional, ker(D) is of codimension 1. Hence, gK = 〈y〉+ ker(D) for some
y ∈ gK \ ker(D). We also fix a choice of y and let 0 6= z = D(y). Any element
of gK can be written as ay + c, where a ∈ K and c ∈ ker(D). Denote again
B = {1, s, . . . , sn−1} for a basis of K over k, then any element a ∈ K can be
uniquely written as a = a1 +a2s+ · · ·+ansn−1 with ai ∈ k for all 1 ≤ i ≤ n. We
use the notation ti(a) := ai to denote the i–th coordinate of a with respect to
the basis B. We now have that D : gK → gK : ay+c 7→ az. Since D ∈ AID(gK),
there exists a map ϕD : gK → gK such that

D(ay + c) = [ay + c, ϕD(ay + c)].

Associated to D, we introduce n new k–linear maps of g′k, namely

Di : g′k → g′k : ay + c 7→ ti(a)si−1z,

where 1 ≤ i ≤ n. Note that D = D1 + D2 + · · · + Dn. We remark here that
the maps Di do depend on the choice of y. In what follows, we always assume
that for a given D, a fixed y outside of ker(D) has been chosen. We can now
multiply the above maps with powers of s to get a total of n2 different k–linear
maps sj−1Di : g′k → g′k, with 1 ≤ i, j ≤ n.

Lemma 6.2.1. For any D ∈ E(gK), we have that sj−1Di ∈ AID(g′k) for all
1 ≤ i, j ≤ n.

Proof. First note that [gK , gK ] ⊆ ker(D). Indeed, let x, y ∈ gK . Because
D(gK) ⊆ Z(gK) by definition, we have that [D(x), y] + [x,D(y)] = 0 and

D([x, y]) = [D(x), y] + [x,D(y)] = 0.

This last equation implies that Di([x, y]) = 0 and hence, Di is a derivation for
all 1 ≤ i ≤ n. Since D is almost inner, it is determined by a map ϕD : gK → gK .
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Define

ϕDi : g′k → g′k : ay + c 7→

{
0 if a = 0,
ti(a)si−1

a ϕD(ay + c) if a 6= 0.

For a = 0, we have that

Di(ay + c) = 0 = [ay + c, ϕDi
(ay + c)].

When a 6= 0, it follows that

[ay + c, ϕDi(ay + c)] = ti(a)si−1

a
[ay + c, ϕD(ay + c)]

= ti(a)si−1

a
D(ay + c)

= ti(a)si−1z

= Di(ay + c).

This shows that Di ∈ AID(g′k) for all 1 ≤ i ≤ n. Moreover, for each 1 ≤ j ≤ n,
the map sj−1Di : g′k → g′k is an almost inner derivation, determined by the
map ϕsj−1Di

:= sj−1ϕDi
.

In this way, each D ∈ E(gK) gives rise to n2 almost inner derivations sj−1Di of
g′k, where 1 ≤ i, j ≤ n.

Proposition 6.2.2. Suppose that D ∈ E(gK) and define the k–vector space
A := 〈sj−1Di : g′k → g′k | 1 ≤ i, j ≤ n〉, spanned by the maps sj−1Di. Then
dim(A) = n2 and

A ∩ Inn(g′k) =
{
〈sj−1D : g′k → g′k | 1 ≤ j ≤ n〉 if D ∈ Inn(gK),
{0} if D /∈ Inn(gK).

Hence we have dim(A ∩ Inn(g′k)) = n or dim(A ∩ Inn(g′k)) = 0.

Proof. We will first show that the maps sj−1Di are k–linearly independent. So
assume that αi,j ∈ k and that

n∑
i=1

n∑
j=1

αi,js
j−1Di = 0.
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Take 1 ≤ l ≤ n and apply the above to sl−1y, then

 n∑
j=1

αl,js
j−1

 sl−1z = 0.

As sl−1z 6= 0, it follows that
n∑
j=1

αl,js
j−1 = 0. Since B = {1, s, s2, . . . , sn−1} is

a basis of K over k, this implies that all coefficients αl,j = 0, showing that the
maps sj−iDi are k–linearly independent and that dim(A) = n2.

For the second part of the proof, take a map E ∈ A ∩ Inn(g′k). Then there
exist values αi,j for all 1 ≤ i, j ≤ n such that E =

∑n
i=1
∑n
j=1 αi,js

j−1Di. We
further have that E = ad(x) for some x ∈ g′k. Note that E is K–linear as well,
since E can be seen as an inner derivation of gK . Mimicking the observations
from before, we have for every 1 ≤ l ≤ n that

E(sl−1y) =

 n∑
j=1

αl,js
j−1

 sl−1z.

Since E is also K–linear, it must hold that E(sl−1y) = sl−1E(y) and therefore,
we get the equality

n∑
j=1

αl,js
j−1 =

n∑
j=1

α1,js
j−1.

Take an arbitrary 1 ≤ j ≤ n. It follows that α1,j = α2,j = · · · = αn,j and we let
βj = α1,j be this common value. This implies that

E =
n∑
i=1

(
n∑
j=1

βjs
j−1)Di = β(D1 +D2 + · · ·+Dn) = βD,

where β =
∑n
j=1 βjs

j−1 ∈ K. So E = βD for some β ∈ K and therefore
E ∈ Inn(gK) if and only if D ∈ Inn(gK). When this is the case, the above shows
that E ∈ 〈sj−1D | 1 ≤ j ≤ n〉. This finishes the proof, since Inn(gK) = Inn(g′k)
holds as sets.

In many cases, the above proposition allows us to construct Lie algebras over a
non algebraically closed field k with many almost inner derivations which are
not inner. As an example of this, we have the following result.
Corollary 6.2.3. Let K be a field extension of a field k, with [K : k] = n ≥ 2.
Using the notation from above, assume that gk is a c–step nilpotent Lie algebra
for c ≥ 2 with dim(γc(gk)) = 1, then dim(AID(g′k))−dim(Inn(g′k)) ≥ n2−n > 0.

Proof. Let v ∈ γc−1(gk) be an element with [v, gk] 6= 0. Such a v exists, since
we assume that gk is c–step nilpotent. Moreover, γc(gk) = im(ad(v)) ⊆ Z(gk)
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holds, which means that D = ad(v) ∈ E(gK). It follows from Proposition 6.2.2
that A = 〈sj−1Di | 1 ≤ i, j ≤ n〉 is an n2–dimensional subspace of AID(g′k)
intersecting Inn(g′k) in a n–dimensional space, which proves the corollary.

The above corollary can for example be applied when gk is a filiform Lie algebra.
Note that the lower bound of Corollary 6.2.3 is not always very tight, since we
can apply Proposition 6.2.2 for linearly independent maps of E(gK). However, it
is not easy to prove general statements about the exact value of dim(AID(g′k)).
As in Example 6.1.2, we will illustrate the concepts of this section for the
Heisenberg Lie algebras.

Example 6.2.4. Denote gR and gC for the real respectively complex Heisenberg
Lie algebra, then we have AID(gR) = Inn(gR) and AID(gC) = Inn(gC). It follows
from Proposition 6.1.1 that

AID(g′C) ∼= AID(gC⊕gC) = AID(gC)⊕AID(gC) = Inn(gC)⊕Inn(gC) ∼= Inn(g′C),

where we also use Proposition 4.1.8. Let D = ad(e1) and E = ad(e2) be inner
derivations of gC, then both D,E ∈ E(gC).

Take an arbitrary x = a1e1 + a2e2 + a3e3 + b1f1 + b2f2 + b3f3 ∈ g′R. We can
now consider the R–linear maps D1, iD1, E1, iE1 as defined above and these
satisfy

D1(x) = a2e3,

iD1(x) = a2f3,

E1(x) = −a1e3,

iE1(x) = −a1f3.

Lemma 6.2.1 implies that D1, iD1, E1, iE1 ∈ AID(g′R). Further, it is also easy
to see that 〈D1, iD1, E1, iE1〉 ∩ Inn(g′R) = 0, so that we obtain

dim(AID(g′R)) ≥ 4 + dim(Inn(g′R)) = 8,

dim(AID(g′C)) = dim(Inn(g′C)) = dim(Inn(gC ⊕ gC)) = 4.

The map D1 does, like any other derivation, extend to a derivation of g′C.
However, it will no longer be almost inner, since D1(e2 + if2) = e3, but

[e2 + if2, x] = (−a1 + b1)e3 − (a1 + b1)f3.

for all x = a1e1 + a2e2 + a3e3 + b1f1 + b2f2 + b3f3 ∈ g. A similar reasoning
holds for the maps iD1, E1 and iE1.
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In fact, we have dim(AID(g′R) = 8 in this example. By renaming the basis
vectors as

x1 = e1, x2 = e2, x3 = f1, x4 = f2, y1 = e3 and y2 = f3,

we find that the associated matrix pencil

µA+ λB =


0 µ 0 λ

−µ 0 −λ 0
0 λ 0 −µ
−λ 0 µ 0


has determinant (µ2 + λ2)2, which means that g′R is a nonsingular Lie algebra.
Corollary 4.3.9 implies that dim(AID(g′R) = dim(C(g′R)) = 8.



Chapter 7

Lie algebras related to finite
p–groups

As explained in Section 3.1, one can obtain from a (real or complex) Lie group a
Lie algebra (over R respectively C). In this chapter, we will show that it is also
possible to relate to a finite p–group G a Lie algebra LF (G) which is defined
over Fp. In Section 7.1, strongly central series F of groups are introduced to
provide a way to construct LF (G). Further, we already stated some well-known
results for class preserving automorphisms of a finite p–group G in Section 3.2.
The goal of Section 7.2 is to compare some of these properties with the almost
inner derivations of the associated Lie algebra LF (G) over Fp. We look at a
class of two-step nilpotent groups where there is a nice correspondence between
Autc(G) and AID(LF (G)). Further, we also show that this does not work in
general, so the construction is useful to some extent, but not always.

7.1 Strongly central series of groups

In this section, we present a way to associate a Lie algebra L(G) over Fp
to a finite p–group G. The same method has proven its value in the study
of the restricted Burnside problem. There, properties were first stated and
proven for modular Lie algebras (which are Lie algebras over a field of positive
characteristic) and then translated to finite p–groups, so the approach is different.
The notions and results in this section are standard and can be found in classical
books about finite groups, such as [49], [53] or [73].
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Definition 7.1.1 (Strongly central series). Let G be a group. A series F of
subgroups

G = G1 ≥ G2 ≥ · · · ≥ Gn = 1

of G is called strongly central if [Gi, Gj ] ≤ Gi+j for all 1 ≤ i, j ≤ n.

Take an arbitrary 1 ≤ i ≤ n − 1, so [G,Gi] ≤ Gi+1. For all g ∈ G and all
gi ∈ Gi, we have that g−1g−1

i ggi ∈ Gi+1 and thus ggiGi+1 = gigGi+1. Hence,
Gi/Gi+1 ≤ Z(G/Gi+1) and F is a central series. In particular, Gi/Gi+1 is
abelian. Moreover, [G,Gj ] ≤ Gj implies that Gj is normal in G for all 1 ≤ j ≤ n,
so F is a normal series as well.

Let F be a strongly central series. Define

LF (G) :=
n−1⊕
i=1

Gi
Gi+1

(7.1)

as the direct sum of the abelian groups. Let 1 ≤ i, j ≤ n − 1 and consider
homogeneous elements xGi+1 ∈ Gi/Gi+1 and yGj+1 ∈ Gj/Gj+1, with x ∈ Gi
and y ∈ Gj . Introduce a product on LF (G) by the bilinear extension of

[xGi+1, yGj+1] = [x, y]Gi+j+1. (7.2)

The condition that F is strongly central implies that [x, y] ∈ Gi+j and that
[xGi+1, yGj+1] is independent of the chosen representatives.

Theorem 7.1.2. Let G be a group with strongly central series F .

• Then LF (G) is a Lie ring.

• If G is nilpotent of class c, then LF (G) is nilpotent of class ≤ c.

• If G is finite, then the order of G equals the order of the associated Lie
ring LF (G).

We will use finite p–groups. When all quotients Gi/Gi+1 (with 1 ≤ i ≤ n− 1)
have exponent p, then L(G) is a Lie algebra over Fp, the field with p elements.
In the following subsections, we will introduce two different strongly central
series. The first one, the lower central series F0, is easier to work with and has
nice properties, but does not produce a Lie algebra in general. However, this
is the case for the lower exponent–p central series Fp. When it is clear or not
important which strongly central series F we use, we will simply denote L(G)
instead of LF (G).
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7.1.1 Lower central series

The easiest example of a strongly central series is the lower central series, which
we denote with F0. Define γ1(G) := G and γi+1(G) := [G, γi(G)] for all i ∈ N0.

Definition 7.1.3 (Lower central series). Let G be a group. The series F0,
which is defined as Gi := γi(G) for all i ∈ N0 is called the lower central series.

When G is nilpotent, there exists c ∈ N such that γc(G) = {1}. This value c
is called the nilpotency class of G. Note that γi(G) = {1} for all i ≥ c. This
construction is very similar to the lower central series for Lie algebras. The
following result is well-known and states that F0 is strongly central for nilpotent
groups.

Lemma 7.1.4. Let G be a nilpotent group of class c, then it holds for all
1 ≤ i, j ≤ c that [γi(G), γj(G)] ≤ γi+j(G).

The construction of equation (7.1) for the lower central series is called the
‘associated Lie ring’ or the ‘Magnus-Sanov Lie ring’. When G is nilpotent, we
have a stronger statement than in Theorem 7.1.2 concerning the nilpotency
class.

Lemma 7.1.5. Let G be a nilpotent group of class c, then LF0(G) is a nilpotent
Lie ring with nilpotency class c.

Since all finite p–groups are nilpotent, we can use the above results. However,
the Magnus-Sanov Lie ring LF0(G) is not always a Lie algebra over Fp, since
there exist p–groups G for which G/[G,G] is not elementary abelian.

Example 7.1.6. Consider the group G with presentation

G := 〈a, b | a8 = b2 = 1, bab = a5〉.

We have that G is a 2–group with 24 = 16 elements and [G,G] = 〈1, a4〉. We
find that G/[G,G] ∼= C2 ⊕ C4 is not elementary abelian.

This example shows that the associated Lie ring LF (G) is not always a Lie
algebra over Fp. We will introduce a strongly central series Fp such that LFp

(G)
is a Lie algebra for all p–groups G.

7.1.2 Lower exponent–p central series

Another example of a strongly central series is the lower exponent–p central
series, which is only defined for finite p–groups. We first define another notion.
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Let G be a group and denote Gp := 〈gp | g ∈ G〉 for the group generated by the
p–th powers of the elements of G.

Definition 7.1.7 (Lower exponent–p central series). Let G be a finite p–group.
The series Fp, which is defined inductively as G1 := G and Gi+1 := [G,Gi](Gi)p
is called the lower exponent–p central series.

It turns out that the lower exponent–p central series is strongly central.

Lemma 7.1.8. Let G be a nilpotent group and denote Gi for the elements of
the lower exponent p–central series. Then we have that [Gi, Gj ] ≤ Gi+j for all
i, j ∈ N0.

There is a correspondence between the lower exponent–p central series and the
Frattini subgroup (Definition 3.2.9). We collect some facts about the Frattini
subgroup.

Proposition 7.1.9. Let G be a group.

• If G is finite, then the Frattini subgroup Φ(G) is nilpotent.

• If G is a p–group, then G/Φ(G) is an elementary abelian p–group.
Moreover, if H is a normal subgroup of G such that G/H is elementary
abelian, then Φ(G) ≤ H.

It can be shown that for a finite p–group G, we have that G2 = [G,G]Gp
is the Frattini subgroup Φ(G). Since the Frattini subgroup is the smallest
normal subgroup of G such that the quotient group is elementary abelian, the
exponent–p central series is the most quickly descending series. It follows from
the previous observations that when G is a finite p–group, then LFp

(G) is a Lie
algebra over Fp. The lower exponent–p central series can be computed directly
from the lower central series with the help of the following result.

Proposition 7.1.10 ([49], page 242). Let G be a finite group. Then the lower
exponent p–central series can be obtained as

Gi =
i∏

j=1
(γj(G))p

i−j

.

Let G be a finite p–group and consider the lower exponent–p central series.
Theorem 7.1.2 implies that LFp

(G) is nilpotent as well. However, the Lie algebra
can have a smaller nilpotency class than the nilpotency class of G.



RELATING A LIE ALGEBRA OVER FP TO A FINITE P–GROUP 87

Example 7.1.11. Consider the group G from Example 7.1.6, which has
presentation G = 〈a, b | a8 = b2 = 1, bab = a5〉. Then G is two-step nilpotent
and has Frattini subgroup

Φ(G) = [G,G]G2 = {1, a2, a4, a6} = G2.

We further have G3 = {1, a4} and G4 = {1}. This means that

LF2(G) = G1

G2
⊕ G2

G3
⊕ G3

G4

is a 4–dimensional Lie algebra over F2. We can take a basis {e1, e2, e3, e4} for
LF2(G), where

e1 := aG2, e2 := bG2, e3 := a2G3 and e4 := a4G4.

By using (7.2), we find that LF2(G) is abelian. It follows for instance that

[e1, e2] = [aG2, bG2] = [a, b]G3 = a4G3 = 0,

where the last equality holds because a4 ∈ G3.

Since we are only interested in Lie rings which are Lie algebras, we will use
the exponent–p central series in the following sections. Note that there are
also exist other strongly central series, such as the upper exponent–p central
series and the Jennings series, which have a more difficult definition. Let G be
a finite p–group. In the following section, we will study to what extent Autc(G)
determines AID(Fp(G)).

7.2 Relating a Lie algebra over Fp to a finite p–
group

In this section, we start from a finite p–group G for which we know Autc(G).
We wonder if this set gives information about the almost inner derivations of the
associated Lie algebra LFp

(G). It turns out that, for a certain class of 2–step
nilpotent finite p–groups, there is a nice correspondence. However, in general, a
lot of information is lost.

7.2.1 Finite Frattini-in-center groups

Let p be a prime number.



88 LIE ALGEBRAS RELATED TO FINITE P–GROUPS

Definition 7.2.1 (Frattini-in-center group). A group G is Frattini-in-center if
and only if [G,G] ≤ Φ(G) ≤ Z(G).

This definition is equivalent with the condition that the inner automorphism
group Inn(G) ∼= G/Z(G) is abelian and has a trivial Frattini subgroup. Note that
a Frattini-in-center group is 2–step nilpotent. It follows from Proposition 7.1.9
that a finite p–group is Frattini-in-center if and only if G/Z(G) is elementary
abelian.

It turns out that there is a nice relationship between some two-step nilpotent
p–groups and the corresponding Lie algebras over Fp. Let G be a two-step
nilpotent p–group and define the set

L := {f ∈ Hom(G/Z(G), [G,G]) | f(gZ(G)) ∈ [g,G] for all g ∈ G}. (7.3)

Then (L,+) is an abelian group, since [G,G] is abelian. The following result
was used in [87].

Theorem 7.2.2. Let G be a finite 2–step nilpotent group. Consider the map
f : Autc(G)→ L, where D ∈ Autc(G) is mapped to

fD : G/Z(G)→ [G,G] : g/Z(G) 7→ fD(gZ(G)) = g−1D(g).

Then f is an isomorphism.

Proof. Let G be a finite 2–step nilpotent group and take D ∈ Autc(G). Then
there exists a map ϕD : G→ G such that D(g) = gϕD(g) for all g ∈ G. Consider
the map D̃ : G→ [G,G] : g 7→ g−1D(g) and take g, h ∈ G. We then have

D̃(gh) = (gh)−1D(gh)

= h−1g−1D(g)D(h)

= g−1D(g)h−1D(h)

= D̃(g)D̃(h),

where we use that g−1D(g) ∈ [G,G] belongs to the center of G, since G is
two-step nilpotent. This implies that D̃ is a homomorphism. Moreover, all
elements of Z(G) are mapped to the neutral element. Hence, for arbitrary
D ∈ Autc(G), we have that

fD : G/Z(G)→ [G,G] : gZ(G) 7→ g−1D(g) ∈ L,

which implies that f : Autc(G) → L : D 7→ fD is well-defined. We will show
that f is an isomorphism. It follows from the previous observations that the
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map D 7→ fD is a monomorphism of the group Autc(G) into L. Moreover,
suppose that f ∈ L and consider the map D : G→ G : g 7→ gf(gZ(G)). Then
D(g) ∈ gG for all g ∈ G and we find that D ∈ Autc(G) with fD = f .

Suppose that G is a finite p–group which is Frattini-in-center. Denote Fp for
the lower exponent–p central series, then

LFp
(G) = G1

G2
⊕ G2

G3
.

Define gi := Gi

Gi+1
for 1 ≤ i ≤ 2. We can view ` ∈ L as a map ` : g1 → g2 with

`(x) ∈ [x, g] for all x ∈ g1. Define ˜̀ : g1 ⊕ g2 → g1 ⊕ g2 : (x1, x2) 7→ (0, `(x1)),
then ˜̀∈ AID(g). In this way, we can associate to each D ∈ Autc(G) an almost
inner derivation of LFp(G) and vice versa. This gives rise to the following result.
Theorem 7.2.3. Let G be a finite Frattini-in-center p–group with corresponding
Lie algebra g := LFp(G) over Fp. Then there is a one-to-one correspondence
between Autc(G) and AID(g).

Let G be a special group, then LF0(G) and LFp
(G) coincide. Since every special

group is Frattini-in-center, we can use the previous property.
Proposition 7.2.4. Let G be an extra special p–group. For the corresponding
Lie algebra g := LF2(G), we have dim([g, g]) = 1.

For instance, D4 and Q8 both correspond to the Heisenberg Lie algebra over F2.
In Chapter 9, we will show that for a Lie algebra g with dim([g, g]) = 1, then
AID(g) = Inn(g) holds as well. As is illustrated in Theorem 3.2.18, a special
Camina group corresponds to a nonsingular Lie algebra.
Proposition 7.2.5. Let G be a special Camina p–group with corresponding Lie
algebra g := LF2(G). Then g is nonsingular over Fp.

Example 7.2.6. Let G be the group from Example 3.2.19. Then G is a
special Camina group if and only if p ≡ ±3 mod 8. The associated Lie algebra
g := LF2(G) has a basis {e1, . . . , e6} and is given by

[e1, e3] = e5, [e1, e4] = e6,

[e2, e3] = e6, [e2, e4] = 2e5.

The matrix pencil P := µ5A5 + µ6A6 for g has determinant

det


0 0 µ5 µ6
0 0 µ6 2µ5
−µ5 −µ6 0 0
−µ6 −2µ5 0 0

 = (2µ2
5 − µ2

6)2.
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Define µ := µ6
µ5
, then det(P ) = 0 if and only if µ2 − 2 = 0. Note that 2 is a

quadratic non-residue in Fp if and only if p ≡ ±3 mod 8.

In Section 3.2, we gave an example of a special Camina group for which all
automorphisms are class preserving. For the associated (nonsingular) Lie algebra,
we have that C(g) = AID(g). However, there is at least one non-nilpotent
derivation for 2–step nilpotent Lie algebras, which means that Der(g) 6= AID(g).

Example 7.2.7. Consider the group G from Example 3.2.23. Since G is a
special 3–group, the constructions LF0(G) and LF3(G) coincide and define a
nonsingular Lie algebra over F3. Indeed, we find that g has basis B = {e1, . . . , e8}
and is given over F3 by

[e1, e2] = e7, [e1, e3] = e8, [e1, e4] = e8, [e1, e5] = e8, [e1, e6] = e8,

[e2, e3] = e7, [e2, e4] = e8, [e2, e5] = e7, [e2, e6] = e8, [e3, e4] = e8,

[e3, e5] = e8, [e3, e6] = e7, [e4, e5] = e7, [e4, e6] = e7, [e5, e6] = e8.

The determinant of the associated matrix pencil µ7A7 + µ8A8 is

det



0 µ7 µ8 µ8 µ8 µ8
−µ7 0 µ7 µ8 µ7 µ8
−µ8 −µ7 0 µ8 µ8 µ7
−µ8 −µ8 −µ8 0 µ7 µ7
−µ8 −µ7 −µ8 −µ7 0 µ8
−µ8 −µ8 −µ7 −µ7 −µ8 0

 = (µ3
7 + 2µ2

7µ8 + µ3
8)2.

Since (0, 0) is the only tuple (x, y) ∈ F3×F3 for which x3 + 2x2y+ y3 = 0 holds,
we see that g is nonsingular over F3. Consider the linear map

D : g→ g : x 7→
6∑
i=1

xiei + 2x7e7 + 2x8e8

and take 1 ≤ i < j ≤ 6, then

[D(ei), ej ] + [ei, D(ej)] = [ei, ej ] + [ei, ej ] = 2[ei, ej ].

Since [ei, ej ] ∈ Z(g), we also have D([ei, ej ]) = 2[ei, ej ], so D is a derivation. It
is clear that D is not almost inner. Hence, for the Lie algebra g, we have that
AID(g) 6= Der(g).

7.2.2 Other groups

By going from a p–group to the corresponding Lie algebra, one loses important
information. Indeed, each of the abelian p–groups of order pn corresponds
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to the unique abelian Lie algebra over Fp of dimension n. Moreover, there
are also non-abelian p–groups for which the associated Lie algebra is abelian,
as we already saw in Example 7.1.11. Further, we also find groups G with
non-inner class preserving automorphisms such that AID(g) = Inn(g) holds for
the corresponding Lie algebra g.
Example 7.2.8. Consider the group G := H1 from Theorem 3.2.14. This is
isomorphic to Wall’s group and has presentation

G = 〈a, b, c | a8 = b2 = c2 = [b, c] = 1, [a, b] = a2, [a, c] = a4〉.

It holds that G2 = Φ(G) = 〈a2〉 and also G3 = 〈a4〉 and G4 = {1}. This means
that g := LF2(G) is a 5–dimensional Lie algebra over F2. We can take a basis
{e1, . . . , e5}, where

e1 := bG2, e2 := aG2, e3 := a2G3, e4 := a4G4, e5 := cG2.

Then g is given by [e1, e2] = e3 and [e1, e3] = e4. We find for instance that

[e1, e2] = [bG2, aG2] = [b, a]G3 = a6G3 = e3.

This means that LF2(G) = g5,3 has no non-inner almost inner derivations,
whereas G has non-inner class preserving automorphisms.

A similar computation shows that H2 from Theorem 3.2.14 also corresponds
to g5,3 over F2. More extreme is the following example. We have a group G
with Autc(G) = Aut(G) for which the only almost inner derivations for the
corresponding Lie algebra are the inner ones.
Example 7.2.9. Let G be the group with 27 = 128 elements from
Example 3.2.21, then Aut(G) = Autc(G) holds. The corresponding Lie algebra
g := LF2(G) over F2 has basis {e1, . . . , e7} and is given by

[e1, e2] = e4, [e1, e3] = e5, [e1, e6] = e7,

[e2, e5] = e6, [e3, e4] = e6, [e4, e5] = e7.

A direct computation shows that an arbitrary derivation looks like

D = a1ad(e1) + · · ·+ a6ad(e6) + d1D1 + · · ·+ d7D7

and has matrix form

D =



d1 0 0 0 0 0 0
0 d3 d6 0 0 0 0
0 d4 d7 0 0 0 0
a2 a1 0 d1 + d3 d6 0 0
a3 0 a1 d4 d1 + d7 0 0
d2 a5 a4 a3 a2 d1 + d3 + d7 0
a6 d5 d8 a5 a4 a1 d3 + d7


.
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Since d1D1 + · · · + d7D7 is not B–almost inner, we immediately find that
AID(g) = Inn(g).

The other situation also occurs. We start with a group for which all
automorphisms are class preserving and find that AID(g) 6= Inn(g) holds for
the corresponding Lie algebra g.

Example 7.2.10. Consider the group G = C3
2 o C4 with presentation

G = 〈a, b, c, d | a2 = b2 = c2 = d4 = [a, b] = [a, c] = [b, c] = [c, d] = 1,

da = abcd, db = bcd〉.

It follows from Theorem 3.2.14 that Autc(G) = Inn(G). For the basis vectors

e1 := aG2, e2 := dG2, e3 := bG3, e4 := d2G3, e5 := cG4,

we find that g := LF2(G) is given by

[e1, e2] = e3, [e1, e4] = e5 and [e2, e3] = e5.

Hence, g is isomorphic to g5,5, which means that AID(g) 6= Inn(g).

As the above examples illustrate, there is in general no correspondence between
Autc(G) for a finite p–group and AID(LFp(G)) of the corresponding Lie algebra
LFp(G) over Fp.

In the first part of this thesis, we developed the motivation and some techniques
to compute the almost inner derivations for (a class of) Lie algebras. In this
part, we focused on the fact that the dimension of AID(g) depends on the
field F over which g is defined. In the last part, we will use these observations to
compute the set of almost inner derivations for different classes of Lie algebras.
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Chapter 8

Low-dimensional Lie algebras

In this chapter, we compute the almost inner derivations of low-dimensional
Lie algebras. Our approach is the following. We restrict to a given class of Lie
algebras (defined over a certain field) for which there exists a complete list. It
suffices to compute the almost inner derivations for all those Lie algebras, since
every Lie algebra of the given class is isomorphic to (at least) one Lie algebra
of the inventory.

In the first section, we work with Lie algebras over an arbitrary field F. We
show that all almost inner derivations are inner for Lie algebras of dimension at
most three. Further, we calculate the almost inner derivations for all solvable
Lie algebras of dimension 4, where we use the classification of [19]. It turns out
that for char(F) 6= 2, all almost inner derivations are inner as well. However,
there exist Lie algebras g over an (infinite) field F with char(F) = 2 such
that Inn(g) 6= AID(g) = Der(g) holds. Next, we compute the almost inner
derivations of all nilpotent Lie algebras of dimension at most six. Therefore, we
use the classification of [15].

For the second section, we restrict ourselves to a field F of characteristic zero.
We first show that AID(g) = Inn(g) also holds when g is a 4–dimensional
non-solvable Lie algebra. Further, we compute the almost inner derivations for
the Lie algebras of dimension five over C and R. The complex case already
appeared in [7].

We will omit some proofs, since they mainly consist of doing computations. An
overview of all results is listed in the appendix. For each classification, the first
table contains all non-vanishing Lie brackets. We denote most Lie algebras with
gi,j , where i is the dimension of the Lie algebra and j is the number in the

94
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classification used. Some Lie algebras also have parameters, which are described
between parentheses. The second table gives an overview of some properties.
Let g be a Lie algebra from the classification, then c(g) denotes the nilpotency
class of g and d(g) stands for the derived length (when these notions are well-
defined). Further, we will write I(g) and C(g) instead of dim(Inn(g)) respectively
dim(CAID(g)). Similarly, dim(AID(g)) and dim(Der(g)) are denoted with A(g)
and D(g). If the entry in the column with ‘D’ is non-zero, it gives examples of
almost inner derivations, which together with the inner derivations generate
AID(g).

8.1 Over an arbitrary field

8.1.1 Lie algebras of dimension at most 3

Let F be an arbitrary field. Up to isomorphism, there is only one Lie algebra of
dimension 1 (the abelian one, denoted by g1,1). There are, up to isomorphism,
only two Lie algebras of dimension two, namely the abelian one g2,1 (where
all brackets are zero) and the solvable one g2,2 with basis {e1, e2} and given
by [e1, e2] = e2. Note that all derivations of g2,2 are inner. Since abelian Lie
algebras do not have inner derivations (and hence also no almost inner ones),
this means that all almost inner derivations are inner for all Lie algebras of
dimension at most two. In this subsection, we prove that the same holds for all
3–dimensional Lie algebras. Therefore, we consider two cases. For the solvable
Lie algebras of dimension at most 3, we use the classification from [19]. The
non-solvable Lie algebras turn out to be simple in dimension three.

Lemma 8.1.1. Let g be a Lie algebra of dimension 3 over an arbitrary field.
If g is not solvable, then g is simple.

Proof. Let h be a proper ideal of g. This means that dim(h),dim(g/h) ∈ {1, 2},
so h and g/h both are solvable. Hence, g has to be solvable as well. This gives
a contradiction, meaning that g does not have a proper ideal.

We will classify the simple Lie algebras of dimension three. Therefore, we will
need the following terminology. We adapt the definitions to make it useful for
fields of any characteristic.

Definition 8.1.2 (Symmetric and skew matrices). Let A be a matrix with
entries over an arbitrary field F. Then A is called symmetric if A> = A and
alternate (or skew) if A> = −A and all diagonal elements are zero.
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If char(F) 6= 2, the last condition is redundant and every non-zero symmetric
matrix with entries over F is non-alternate. However, it ensures that there
is a difference between the notions when char(F) = 2. If this is the case, a
non-alternate symmetric matrix has at least one diagonal element which is
non-zero.

Lemma 8.1.3. Let F be a field of char(F) = 2. Let A ∈M3(F) be symmetric.
If A is alternate, then A is singular.

Proof. Let A ∈ M3(F) be an alternate symmetric matrix. Hence, there exist
a, b, c ∈ F such that

A :=

0 a b

a 0 c

b c 0

 .

A direct computation shows that det(A) = 2abc = 0, which means that A is
singular.

These notions are used in a theorem of Albert.

Theorem 8.1.4 ([1]). Let A be a matrix with entries over an arbitrary field F.
If A is non-alternate symmetric, then A is congruent to a diagonal matrix.

When char(F) 6= 2, the condition that A is non-alternate is redundant and
the result is well known. However, if char(F) = 2, the fact that A has to be
non-alternate is a necessary condition. Indeed, the alternate symmetric matrix(

0 1
1 0

)
is not congruent to a diagonal matrix. Let

P :=
(
a b

c d

)
∈M2(F)

be an arbitrary nonsingular matrix, so det(P ) = ad+ bc 6= 0, then we have that

P>
(

0 1
1 0

)
P =

(
0 det(P )

det(P ) 0

)
.

The following result is due to Jacobson ([51]). He included a proof for fields of
characteristic not two and stated that, by specifying some details, the proposition
also holds in general. For completeness, a proof is added which is valid for fields
of arbitrary characteristic. Therefore, we use the theorem of Albert from above.
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Proposition 8.1.5. Let g be a simple Lie algebra of dimension 3 over an
arbitrary field F. Then there exist α, β ∈ F∗ and a basis {e1, e2, e3} for g such
that g is given by

[e1, e2] = e3, [e2, e3] = αe1 and [e3, e1] = βe2. (8.1)

Proof. Let g be a simple Lie algebra of dimension 3 over an arbitrary field F.
Define a basis x := {x1, x2, x3} for g and construct

y1 := [x2, x3], y2 := [x3, x1] and y3 := [x1, x2].

Since [g, g] = g, we have that y := {y1, y2, y3} is a basis for g as well. We call
the matrix of change of basis from x to y the ‘structure matrix of x’ and denote
it with Idyx := (aij)ij . This means that we have that yi :=

∑3
j=1 ajixj for all

1 ≤ i ≤ 3. Note that Idyx is nonsingular. The Jacobi identity given by

0 = [x1, y1] + [x2, y2] + [x3, y3]

= (a21 − a12)[x1, x2] + (a31 − a13)[x1, x3] + (a32 − a23)[x2, x3]

implies that Idyx is symmetric. Every non-trivial condition for the Jacobi identity
boils down to the one above, so every nonsingular symmetric matrix can be
used to construct a 3-dimensional simple Lie algebra.

Consider another basis x̄ := {x̄1, x̄2, x̄3} for g. Define Idx̄x := (bij)ij for the
matrix of change of basis from x to x̄ and construct

ȳ1 := [x̄2, x̄3], ȳ2 := [x̄3, x̄1] and ȳ3 := [x̄1, x̄2]

as before. Again, we have that ȳ := {ȳ1, ȳ2, ȳ3} is a basis. Note that

ȳ1 = [x̄2, x̄3]

= [b12x1 + b22x2 + b32x3, b13x1 + b23x2 + b33x3]

= (b22b33 − b32b23)y1 + (b32b13 − b12b33)y2 + (b12b23 − b22b13)y3

= C11y1 + C21y2 + C31y3,

where Cij is the cofactor of the element bij . Similar computations for ȳ2 and
ȳ3 show that Idȳy is given by Idȳy = (Cij)ij . The cofactor expansion of the
determinant implies that

(Idx̄x)> · Idȳy = det(Idx̄x)I3,

where I3 is the identity matrix. Hence, we have that

Idȳx̄ = Idȳy · Idyx · Idxx̄ = det(Idx̄x)(Idx̄x)−> · Idyx · Idxx̄ = det(Idx̄x)(Idxx̄)> · Idyx · Idxx̄.
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A change of basis with nonsingular Idxx̄ thus gives a structure matrix of x̄ which
is (up to a non-zero factor) congruent to the first one. Since Idyx is symmetric
and nonsingular, it follows from Lemma 8.1.3 that Idyx is non-alternate as well.
Hence, we can use Theorem 8.1.4, which states that the structure matrix Idyx is
congruent to a diagonal matrix. By an appropriate scaling, we can choose one
diagonal element to be equal to one. Hence, there exists a basis {e1, e2, e3} for
g and α, β ∈ F∗ such that[e2, e3]

[e3, e1]
[e1, e2]

 =

α 0 0
0 β 0
0 0 1

e1
e2
e3

 .

This implies that the non-vanishing Lie brackets of g are given by

[e1, e2] = e3, [e2, e3] = αe1 and [e3, e1] = βe2

for α, β ∈ F∗, which is what we had to prove.

We denote the Lie algebra from equation (8.1) with g(α, β). Note that the result
from the proposition does not determine the number of isomorphism classes.
It can be made more precise when there is additional information about the
field. For instance, when F is algebraically closed, a simple Lie algebra over F
is isomorphic to g(1,−1). For F = R, there are two isomorphism classes. The
types g(1,−1) ∼= sl2(R) and g(1, 1) ∼= so3(R) correspond to Bianchi types VIII
respectively IX in the Bianchi classification.

Collecting the previous observations from this chapter, we can obtain a complete
list of all 3–dimensional Lie algebras over an arbitrary field.
Theorem 8.1.6. Let g be a Lie algebra of dimension at most 3 over an arbitrary
field F. Then g is isomorphic to (at least) one of the Lie algebras from Table A.1.

We used the results from [19] for the solvable Lie algebras. For the simple ones,
the result follows from Proposition 8.1.5. Lie algebras with different indices
are non-isomorphic. Further, g3,3(ε1) ∼= g3,3(ε2) if and only if ε1 = ε2. We also
have that g3,4(ε1) ∼= g3,4(ε2) if and only if there exists α ∈ F∗ with ε1 = α2ε2.

By computing the almost inner derivations for all Lie algebras from Table A.1,
it is clear that all almost inner derivations are in fact inner ones. Hence, we
showed the following result.
Theorem 8.1.7. Let g be a Lie algebra of dimension at most 3 over an arbitrary
field F. Then we have that AID(g) = Inn(g) holds.

Table A.2 contains for each Lie algebra g an overview of the dimensions of the
different subalgebras of Der(g).
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Remark 8.1.8. We have a few comments about the results from the table.

• For the Lie algebras g3,3(ε) and g3,4(ε), we have to make a case distinction
for ε 6= 0 and ε = 0.

• Up to isomorphism, there is only one nilpotent non-abelian Lie algebra of
dimension 3, namely the Heisenberg algebra g3,4(0).

• For the Lie algebras g3,4(ε∗) and g(α, β) (with ε∗, α, β ∈ F∗), the
dimension of the derivation algebra depends on the characteristic of
the field F. The largest number is the dimension when char(F) = 2; the
smaller number is for char(F) 6= 2.

8.1.2 Solvable Lie algebras of dimension 4

For 4–dimensional Lie algebras over an arbitrary field, it is a lot more complicated
to have a complete list, especially for the non-solvable Lie algebras. Therefore,
we restrict ourselves to the solvable Lie algebras over an arbitrary field. We
again use the classification of [19], but our notation slightly differs.

Theorem 8.1.9. Let g be a solvable Lie algebra of dimension 4 over an arbitrary
field F. Then g is isomorphic to (at least) one Lie algebra of Table A.3.

Due to the conditions on the parameters, Lie algebras with different indices are
not isomorphic. However, Lie algebras with the same indices can be isomorphic
for different values of the parameter(s). Moreover, some of the Lie algebras are
only defined for specific values and/or over specific fields.
Remark 8.1.10. Here is an overview of all conditions on the field F and on the
parameters, taken from [19].

• We have that g4,3(ε1) ∼= g4,3(ε2) if and only if ε1 = ε2.

• It follows that g4,6(ε1, δ1) ∼= g4,6(ε2, δ2) if and only if ε1 = ε2 and δ1 = δ2.

• Note that g4,7(ε1, δ1) ∼= g4,7(ε2, δ2) if and only if there is an α ∈ F∗ with
ε1 = α3ε2 and δ1 = α2δ2.

• The Lie algebra g4,9(ε) is defined when X2 − X − ε has no roots in F.
Suppose that char(F) 6= 2, then g4,9(ε1) ∼= g4,9(ε2) if and only if there
is α ∈ F∗ with ε1 + 1

4 = α2(ε2 + 1
4 ). When char(F) = 2, then we have

g4,9(ε1) ∼= g4,9(ε2) if and only if X2 +X + (ε1 + ε2) has roots in F.
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• The Lie algebra g4,10(ε) is only well-defined when char(F) = 2. We also
require that ε /∈ F2, since we have that g4,10(ε) ∼= g4,13(0) when ε ∈ F2.
Note that we further have g4,10(ε1) ∼= g4,10(ε2) if and only if Y 2+ε2X

2+ε1
has a solution (X,Y ) ∈ F× F with X 6= 0.

• The Lie algebra g4,11(ε, δ) is only defined when char(F) = 2. We also
require that ε 6= 0 and δ 6= 1, since g4,11(ε, 1) ∼= g4,10(ε) holds. Moreover,
g4,11(0, 0) ∼= g4,12 and g4,11(0, δ) ∼= g4,13( δ+1

δ ) when δ /∈ {0, 1}. Note that
g4,11(ε1, δ1) ∼= g4,11(ε2, δ2) if and only if both ε1

ε2
and γ2+(δ1+1)γ+δ1

ε1
are

squares in F, where γ := δ1+1
δ2+1 .

• We have that g4,13(ε2) ∼= g4,13(ε2) if and only if ε1 = ε2.

• Since g4,14(0) ∼= g4,7(0, 0) holds, we require that ε 6= 0. We further have
g4,14(ε1) ∼= g4,14(ε2) if and only if there is an α ∈ F∗ with ε1 = α2ε2.

For each member of the list, we computed the almost inner derivations. The
results are stated in Table A.4. We can summarise these computations as
follows.

Theorem 8.1.11. Let g be a solvable Lie algebra of dimension 4 over an
arbitrary field F.

• For char(F) 6= 2, we have that AID(g) = Inn(g) holds.

• If char(F) = 2 and AID(g) 6= Inn(g), then g is isomorphic to g4,11(ε, δ),
where ε 6= 0 and δ 6= 1 are in such a way that X2 + δε = 0 has no solution
over F.

Although we did all calculations ourselves, we will omit the proofs.
Remark 8.1.12. We mention some comments to explain the results.

• For g4,3(ε), we have to make a case distinction for ε = 0 and ε 6= 0.

• For g4,6(ε, δ), there is a case distinction for ε = 0 and ε 6= 0. However, we
don’t have to do this for δ.

• For g4,7(ε, δ), there are four cases, namely whether or not ε and/or δ
equal zero. When ε = 0 and δ 6= 0, we have that dim(Der(g4,7(0, δ))) = 7
when char(F) = 2 and dim(Der(g4,7(0, δ))) = 6 otherwise. Similarly, for
ε 6= 0 and δ = 0, we have that dim(Der(g4,7(ε, 0))) = 7 when char(F) = 3
and dim(Der(g4,7(ε, 0))) = 6 when this is not the case.
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• For the Lie algebra g4,9(ε), where ε ∈ F is in such a way thatX2−X−ε = 0
does not have solutions over F, we have dim(Der(g4,9(ε))) = 5 when
4ε+ 1 = 0 and dim(Der(g4,9(ε))) = 4 otherwise.

• For most of the Lie algebras, we see that AID(g) = Inn(g). However, for
the Lie algebra g4,11(ε, δ), this is not always the case. It depends on the
parameters ε, δ ∈ F. We will elaborate on this example after the remarks.

• For the Lie algebra g4,12, we have that AID(g) = Inn(g), although the
dimension depends on the characteristic. We have that dim(Inn(g)) = 4
when char(F) 6= 2. Otherwise, we have dim(Inn(g)) = 3.

• For the Lie algebra g4,13(ε), we first consider the case that ε = 0. We have
dim(Der(g4,13(0))) = 6 when char(F) = 2 and dim(Der(g4,13(0))) = 5
otherwise. When ε 6= 0, the dimension of the derivation algebra does not
depend on the characteristic of the field.

• For g4,14(ε) with ε 6= 0, we have that dim(Der(g4,14(ε))) = 6 when
char(F) = 2 and dim(Der(g4,14(ε))) = 5 otherwise.

Four-dimensional Lie algebra g with Inn(g) 6= AID(g) = Der(g)

Lemma 8.1.13. Consider the Lie algebra g := g4,11(ε, δ) over a field F with
char(F) = 2, where ε 6= 0 and δ 6= 1. Take a basis {e1, e2, e3, e4} for g and
non-zero Lie brackets

[e1, e2] = (1 + δ)e2, [e1, e3] = δe3, [e1, e4] = e4
[e2, e3] = εe4, [e2, e4] = e3.

Then a basis for Der(g) is given by {ad(e1), ad(e2), ad(e3), ad(e4), D}, where

D : g→ g : x =
4∑
i=1

xiei 7→ x3e3 + x4e4.

Proof. The statement is easily verified by a direct computation.

It turns out that the derivation D is almost inner for some, but not all fields of
characteristic two. Next result makes this statement more precise.

Proposition 8.1.14. Let F be a field of characteristic 2 and ε, δ ∈ F with ε 6= 0
and δ 6= 1. For the Lie algebra g := g4,11(ε, δ) over F, we have that

Inn(g) 6= AID(g) = Der(g)

if and only if the equation X2 + δε = 0 has no solution over F.
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Proof. We prove the two implications. Note that X2 + δε = 0 has a solution
over F if and only if εX2 + δ = 0 has one.

• Assume that the conditions of the proposition are satisfied. It suffices by
Lemma 8.1.13 to prove that D : g→ g : x =

∑4
i=1 xiei 7→ x3e3 + x4e4 is

almost inner. Consider the map ϕD : g → g : x =
∑4
i=1 xiei 7→ ϕD(x),

where ϕD(x) is given by
0 if x = 0,

1
εx2

2+δx2
1
((x2x4 + x1x3)e3 + (εx2x3 + δx1x4)e4) if x1 6= 0 or x2 6= 0,

1
δεx2

3+x2
4
((x2

4 + εx2
3)e1 + (1 + δ)x3x4e2) otherwise.

Note that the conditions on F and ε, δ ∈ F ensure that the map ϕD is
well-defined. We will show that D(x) = [x, ϕD(x)] for all x ∈ g. Take an
arbitrary x =

∑4
i=1 xiei ∈ g.

– Assume that x1 6= 0 or x2 6= 0. We then have

[x, ϕD(x)] = 1
εx2

2 + δx2
1

[x, (x2x4 + x1x3)e3 + (εx2x3 + δx1x4)e4]

= 1
εx2

2 + δx2
1

(x1(x2x4 + x1x3)δe3 + x1(εx2x3 + δx1x4)e4

+ x2(x2x4 + x1x3)εe4 + x2(εx2x3 + δx1x4)e3)

= 1
εx2

2 + δx2
1

(x3(εx2
2 + δx2

1)e3 + x4(εx2
2 + δx2

1)e4)

= x3e3 + x4e4.

– Suppose that x 6= 0, but x1 = x2 = 0. It follows that

[x, ϕD(x)] = 1
δεx2

3 + x2
4

[x, (x2
4 + εx2

3)e1 + (1 + δ)x3x4e2]

= 1
δεx2

3 + x2
4

(δx3(x2
4 + εx2

3)e3 + ε(1 + δ)x2
3x4e4

+ (x2
4 + εx2

3)x4e4 + (1 + δ)x3x
2
4e3)

= 1
δεx2

3 + x2
4

(x3(δεx2
3 + x2

4)e3 + x4(δεx2
3 + x2

4)e4)

= x3e3 + x4e4.
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• We show that D : g → g : x =
∑4
i=1 xiei 7→ x3e3 + x4e4 is not almost

inner when the condition is not fulfilled. Suppose that D ∈ AID(g) is
almost inner. Let α be a solution of X2 + δε = 0, so α2 = δε. Take an
arbitrary x =

∑4
i=1 xiei ∈ g. Note that

[e3 + αe4, x] = (δx1 + αx2)e3 + (αx1 + εx2)e4.

Since we need thatD(e3+αe4) = e3+αe4, we must have that δx1+αx2 = 1
and αx1 + εx2 = α. By multiplying this last equation by α and using the
first equation, we find that

δε = δεx1 + αεx2 = ε(δx1 + αx2) = ε.

Since ε 6= 0 and δ 6= 1, we obtain a contradiction.

Consider the (infinite) field F = F2(t) in the indeterminate t with ε = 1 and
δ = t. It follows from Proposition 8.1.14 that for the Lie algebra g := g4,11(ε, δ),
we have that

Inn(g) 6= AID(g) = Der(g).

Note that, in a finite field of characteristic 2, every element is a square. This
means that the conditions of the proposition cannot be satisfied for a finite
field of characteristic 2 and hence, we have that all almost inner derivations are
inner.

8.1.3 Nilpotent Lie algebras of dimension at most 6

For 5–dimensional and 6–dimensional Lie algebras, there doesn’t exist (yet)
a complete list which is valid over all fields. Therefore, we restrict ourselves
to nilpotent Lie algebras. We will use the notation and the results from [15],
where the authors provide a full classification of six-dimensional nilpotent Lie
algebras over an arbitrary field. It is the first one which covers all ground fields
(and hence also fields of characteristic two). This list also reveals the nilpotent
Lie algebras of lower dimension. The ones with dimension at most 4 are already
covered in the previous subsection, so we will focus on nilpotent Lie algebras of
dimension 5 and 6. Let F be an arbitrary field. Take α, β ∈ F and denote ∗∼ for
the equivalence relation defined by

α
∗∼ β ⇐⇒ ∃ γ ∈ F∗ : α = γ2β.

The number of equivalence classes for this relation is given by 1 + s, where s is
the (possibly infinite) index of (F∗)2 in F∗. For instance, for an algebraically
closed field or a perfect field of characteristic two, there are only two equivalence
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classes ({0} and F∗), so s = 1. For R, we have that s = 2, with equivalence
classes {0},R+

0 and R−0 .

When char(F) = 2, there is an additional equivalence relation ∗+∼ . For α, β ∈ F,
we have

α
∗+∼ β ⇐⇒ ∃ γ ∈ F∗ : ∃ δ ∈ F : α = γ2β + δ2.

Note that when α
∗∼ β, then also α ∗+∼ β. For a set X and an equivalence

relation ∼, denote X/(∼) for a transversal set that contains precisely one
element from each of the equivalence classes of ∼. Hence, s stands for the
number of elements of F∗/( ∗∼).

Now consider the case that char(F) = 2 and view F as a vector space over F2. In
[15], the map ψ : F→ F : X 7→ X2 +X is studied, which is F2–linear with kernel
F2. The authors claim that the image ψ(F) is a subspace of codimension 1.
While this is true for finite fields, this is not the case in general. Take for
instance F(t) in the indeterminate t. Take an arbitrary element q ∈ F(t). Then
there exist unique a(t), b(t) ∈ F2[t] with gcd(a(t), b(t)) = 1 such that q = a(t)

b(t) .
We further have

ψ(q) = ψ

(
a(t)
b(t)

)
= a(t)
b(t) + a(t)2

b(t)2 = b(t)(b(t) + a(t))
b(t)2 .

Since gcd(a(t), b(t)) = 1, also gcd(b(t)2, a(t)(b(t) + a(t))) = 1 holds. Suppose
that t ∈ ψ(F2(t)), then there exist a(t), b(t) ∈ F2[t] with t = t

1 = ψ
(
a(t)
b(t)

)
. This

implies that b(t)2 = 1 and hence b(t) = 1. It follows that a(t)(a(t) + 1) = t, but
this is impossible. In a similar way, it can be shown that 1, 1 + t /∈ ψ(F2(t)).
Hence, 1 + im(ψ) and t + im(ψ) are different cosets of ψ(F2(t)) which are
different from im(ψ). An analogous reasoning for polynomials of odd degree
shows that F2(t)/ψ(F2(t)) is an infinite-dimensional vector space over F2. Take
α, β ∈ F and denote ψ∼ for the equivalence relation where α ψ∼ β if and only if
α+ψ(F) = β +ψ(F). In other words, when α ψ∼ β, there exists x ∈ F such that
x2 + x+ α+ β = 0. When F is finite, ψ(F) is a subspace of codimension 1, so
there are two equivalence classes for ψ∼. If F is algebraically closed, we have
|F/(ψ∼)| = 1.

In [15], the authors claim that {0, ω} is a set of coset representatives for ψ(F)
in F, where ω is a fixed element of F \ {X2 +X | X ∈ F}. As we showed before,
this is not true. However, this was corrected in [16] and we will use the adapted
statements and use the notation F/(ψ∼).

Theorem 8.1.15 ([15], see also [16]). Let F be an arbitrary field.
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• If char(F) 6= 2, then the isomorphism types of six-dimensional nilpotent
Lie algebras are:

– g6,k with k ∈ {1, . . . , 18, 20, 23, 25, . . . , 28},
– g6,k(ε1) with k ∈ {19, 21} and ε1 ∈ F∗/( ∗∼),
– g6,k(ε2) with k ∈ {22, 24} and ε2 ∈ F/( ∗∼).

• If char(F) = 2, then the isomorphism types of six-dimensional nilpotent
Lie algebras are:

– g6,k with k ∈ {1, . . . , 18, 20, 23, 25, . . . , 28},
– g6,k(ε1) with k ∈ {19, 21} and ε1 ∈ F∗/( ∗∼),

– g6,k(ε2) with k ∈ {22, 24} and ε2 ∈ F/(∗+∼ ),

– g
(2)
6,k with k ∈ {1, 2, 5, 6},

– g
(2)
6,k(ε3) with k ∈ {3, 4} and ε3 ∈ F∗/(∗+∼ ),

– g
(2)
6,k(ε4) with k ∈ {7, 8} and ε4 ∈ F/(ψ∼).

Table A.5 contains the non-vanishing Lie brackets (with respect to the basis
{e1, . . . , e6}) for Lie algebras over a field F of char(F) 6= 2. In the overview,
the nine nilpotent Lie algebras of dimension 5 are added as well. They are
denoted as g5,i, where 1 ≤ i ≤ 9, in such a way that g6,i = g5,i ⊕ F. When
char(F) = 2, there are additional Lie algebras, for which the non-vanishing Lie
brackets are stated in Table A.7. The Lie algebras from Theorem 8.1.15 form a
complete set of representatives of the isomorphism classes of six-dimensional
nilpotent Lie algebras. Two representatives from the equivalence class give rise
to isomorphic Lie algebras, so the classification is irredundant. This means that
a given six-dimensional nilpotent Lie algebra over some field is isomorphic to
exactly one Lie algebra from the list.

As last result already suggests, the number of isomorphism types depends on the
characteristic of the field, which explains why there is no uniform description
for all fields. The next theorem is a summary (and a consequence) of the one
before.

Theorem 8.1.16 ([15]). • Let F be a field with char(F) 6= 2. Denote s
for the (possibly) infinite index of (F∗)2 in F∗. Then the number of
isomorphism types of nilpotent Lie algebras of dimension 6 over F is
26 + 4s.

• Let F be a field with char(F) = 2. Denote r for the (possibly infinite)
number of equivalence classes ψ∼ in F and s for the (possibly infinite)
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index of (F∗)2 in F∗ and t for the (possibly infinite) number of equivalence
classes of ∗+∼ in F. Then the number of isomorphism types of nilpotent Lie
algebras of dimension 6 over F is 26 + 2r + 2s+ 4t.

To determine the almost inner derivations of all six-dimensional nilpotent
Lie algebras, it suffices to do the computations for all Lie algebras from the
classification from Theorem 8.1.15. Tables A.6 and A.8 contain all results.
Although we computed all results ourselves, we will omit the proofs.
Remark 8.1.17. We only mention some remarks about the results in Table A.6
and Table A.8.

• For the Lie algebras g5,i and g6,i (with 1 ≤ i ≤ 9), all values are the same,
except for dim(Der(g)). In the table, the first number is for g5,i and the
second one for g6,i.

• For some other Lie algebras, there are two numbers in the column
dim(Der(g)) as well. That is because the dimension of the derivation
algebra depends on the characteristic of the field F. The largest number
is the dimension when char(F) = 2; the smaller number is for char(F) 6= 2.
Note that the dimension of the almost inner derivations does not depend
on the characteristic. In other words, the linear maps which are derivations
if and only if char(F) = 2 are not almost inner.

• For the Lie algebras g6,22(ε2) and g6,24(ε2), we distinguish the cases
where ε2 = 0 and ε2 6= 0. In the last case, we have ε2 ∈ F∗/( ∗∼) when
char(F) 6= 2 and ε2 ∈ F∗/(∗+∼ ) for char(F) = 2. Here we use the fact that
F/( ∗∼) = F∗/( ∗∼) ∪ {0}.

• The Lie algebras g6,22(ε2) and g6,24(ε2) appear twice in the list. In these
cases, the dimension of the almost inner derivations depend on whether or
not ε2 is a square. It turns out that, for both Lie algebras g, we have that

dim(AID(g)) = dim(Inn(g))

when X2− ε2 = 0 has a solution in F and dim(AID(g)) = dim(Inn(g)) + 4
otherwise. For g6,22(ε), this is worked out in more detail in 8.1.3.

• Table A.6 is a generalisation of Remark 8.6 from [7]. There we made a
similar list for six-dimensional nilpotent Lie algebras over C, using the
classification of [61]. The last column of the table indicates the isomorphic
Lie algebra from Magnin’s classification when we work over C. In that
case, we only have one case for g6,22(ε) and g6,24(ε), since the equation
X2 − ε = 0 always has solutions over C.
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• For the Lie algebras g(2)
6,7(ε4) and g

(2)
6,8(ε4), there are non-inner almost inner

derivations if and only if X2 +X + ε4 = 0 has no solutions over F.

We will elaborate on the computations for the Lie algebra g := g6,22(ε) (with
ε ∈ F). Note that the dimension of Der(g) is different when char(F) = 2 and that
the result depends on whether ε = 0 or not. We give a basis of the derivation
algebra and determine which derivations are almost inner. For the other Lie
algebras, a similar computation can be made, but we omit the details. However,
for the Lie algebras of the list with non-trivial almost inner derivations, we give
examples of almost inner derivations, which together with the inner derivations
form a basis of AID(g).

Detailed computations for g := g6,22(ε)

Consider the Lie algebra g := g6,22(ε), where ε ∈ F. The non-zero Lie brackets
are

[e1, e2] = e5, [e1, e3] = e6,

[e2, e4] = εe6, [e3, e4] = e5.

The associated matrix pencil, which we denote as µA+ λB has determinant

det(µA+ λB) = det


0 µ λ 0
−µ 0 0 ελ

−λ 0 0 µ

0 −ελ −µ 0

 = (ελ2 − µ2)2.

• Consider the case that ε = 0.
When char(F) = 2, an arbitrary derivation D is given by

D = a1ad(e1)+· · ·+a4ad(e4)+d1D1+· · ·+d10D10+e6,1E6,1+· · ·+e6,4E6,4

(with coefficients in F) and has matrix form

D =



d1 0 −d6 −d10 0 0
d2 d5 d7 −d3 0 0
d3 d10 d8 0 0 0
d4 d6 d9 d1 + d5 − d8 0 0
−a2 a1 −a4 a3 d1 + d5 −d4 + d7

e6,1 − a3 e6,2 e6,3 + a1 e6,4 d10 d1 + d8

 ,

which means that dim(Der(g)) = 18.
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For char(F) 6= 2, an arbitrary derivation D looks like

D = a1ad(e1)+· · ·+a4ad(e4)+d1D1+· · ·+d9D9+e6,1E6,1+· · ·+e6,4E6,4

(with coefficients in F) and has matrix form

D =



d1 0 −d6 0 0 0
d2 d5 d7 −d3 0 0
d3 0 d8 0 0 0
d4 d6 d9 d1 + d5 − d8 0 0
−a2 a1 −a4 a3 d1 + d5 −d4 + d7

e6,1 − a3 e6,2 e6,3 + a1 e6,4 0 d1 + d8

 ,

so dim(Der(g)) = 17. Note that g is isomorphic to the Lie algebra from
Example 4.3.7. This means that dim(AID(g)) = dim(Inn(g)) + 2 = 6.
When ε = 0, a basis for AID(g) is

{ad(e1), . . . , ad(e4), E6,1, E6,3},

where the determination maps ϕE6,1 , ϕE6,3 : g→ g are given by

ϕE6,1(x) =
{
x4
x1
e2 + e3 if x1 6= 0,

0 if x1 = 0,

ϕE6,3(x) =
{
−e1 − x2

x3
e4 if x3 6= 0,

0 if x3 = 0.

Note that g is 2–step nilpotent, so only the central derivations can be
almost inner. Take an arbitrary linear combination D := aE6,2 + bE6,4,
with a, b ∈ F, then D is not B–almost inner and hence, it is not almost
inner.

• Suppose that ε 6= 0, then we have dim(Der(g)) = 18 for char(F) = 2 and
dim(Der(g)) = 16 when char(F) 6= 2.
When char(F) = 2, an arbitrary derivation D looks like

D = a1ad(e1)+· · ·+a4ad(e4)+d1D1+· · ·+d10D10+e6,1E6,1+· · ·+e6,4E6,4

(with coefficients in F) and has matrix form

d1 −εd8 −d6 ε(d4 + d7)− d9 0 0
d2 d5 d7 −d3 0 0
d3 d9 d10 −εd2 0 0
d4 d6 d8 d1 + d5 − d10 0 0
−a2 a1 −a4 a3 d1 + d5 εd4 + d9

e6,1 − a3 e6,2 − εa4 e6,3 + a1 e6,4 + εa2 d4 + d7 d1 + d10

 .
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For char(F) 6= 2, a derivation D is given by

D = a1ad(e1)+· · ·+a4ad(e4)+d1D1+· · ·+d8D8+e6,1E6,1+· · ·+e6,4E6,4

and has matrix form

d1 −εd8 −d6 εd4 0 0
d2 d5 d7 −d3 0 0
d3 εd7 d5 −εd2 0 0
d4 d6 d8 d1 0 0
a2 a1 −a4 a3 d1 + d5 −d4 + d7

e6,1 − a3 e6,2 − εa4 e6,3 + a1 e6,4 + εa2 ε(d7 − d4) d1 + d5

 .

We now consider two different cases (which do not depend on the
characteristic, but on the value of ε). Note that we only have to consider
the central derivations.

– Suppose that X2 − ε = 0 does not have a solution over F. Then g is
nonsingular over F. It follows from Corollary 4.3.9 that AID(g) = C(g)
and

dim(AID(g)) = 2 dim(Inn(g)) = 8.
Take i ∈ {1, 4}, then the derivation E6,i : g→ g is almost inner and
a determination map ϕE6,i : g→ g is given by

ϕE6,i
(x) =

{
xi

x2
1−εx2

4
(x4e2 + x1e3) if xi 6= 0,

0 if xi = 0.

For j ∈ {2, 3}, the derivation E6,j : g → g is almost inner with
determination map

ϕE6,j
(x) =

{
xj

εx2
2−x2

3
(x3e1 + x2e4) if xj 6= 0,

0 if xj = 0.

Hence, when X2 − ε = 0 has no solution, a basis for AID(g) is

{ad(e1), . . . , ad(e4), E6,1, E6,2, E6,3, E6,4},

which means that every central derivation is almost inner.
– Assume that X2 − ε = 0 has a solution α ∈ F, so α2 = ε. Take an

arbitrary x =
∑6
i=1 xiei ∈ g.

Consider D := b1E6,1 +b2E6,2 +b3E6,3 +b4E6,4, where b1, . . . , b4 ∈ F.
Suppose that D is almost inner. Note that

[αe1 + e4, x] = (αx2 − x3)e5 + (−εx2 + αx3)e6.
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We have that D(αe1+e4) = (αb1+b4)e6, which means that αx2 = x3.
It follows that

−εx2 + αx3 = (α2 − ε)x2 = 0,

so b1 = b4 = 0. Similarly, we have that

[e2 + αe3, x] = (αx4 − x1)e5 + (εx4 − αx1)e6.

Since D(e2 +αe3) = (b2 +αb3)e6, last equation shows that αx4 = x1.
However, because

εx4 − αx1 = (ε− α2)x4 = 0

holds, we obtain that b2 = b3 = 0.
This means that D = b1E6,1 + b2E6,2 + b3E6,3 + b4E6,4 is almost
inner if and only if b1 = b2 = b3 = b4 = 0. Since

{ad(e1), ad(e2), ad(e3), ad(e4), E6,1, E6,2, E6,3, E6,4}

forms a basis for the central derivations, we find as a conclusion that
all almost inner derivations of g are in fact inner.

The matrix pencil P for this Lie algebra has determinant (ελ2 − µ2)2. Denote
X := µ

λ , then det(P ) = 0 if and only if (X2 − ε)2 = 0. Let l be the number of
different linear factors of the determinant of P . As we observed at the end of
Chapter 5, we have for this Lie algebra that

dim(AID(g)/Inn(g)) = deg(det(P ))− 2l = 2 · (2− l).

Determination maps for the non-inner almost inner derivations

We can do the same computations as in the previous section to obtain the
results from Tables A.6 and A.8. However, we will omit the calculations, since
they are similar to those from the Lie algebra g6,22(ε). This subsection contains
an overview of non-inner almost inner derivations, which form, together with
the inner ones, a basis for AID(g). We also present the determination maps.

• For g ∈ {g5,5, g6,5}, the derivation E5,4 : g → g is almost inner with
determination map

ϕE5,4(x) =
{
x4
x1
e3 if x1 6= 0,

−e2 if x1 = 0.



OVER AN ARBITRARY FIELD 111

• For the Lie algebra g ∈ {g5,6, g6,6}, the derivation E5,2 : g→ g is almost
inner with determination map

ϕE5,2(x) =
{
x2
x1
e4 if x1 6= 0,

e3 if x1 = 0.

• For the Lie algebra g := g6,12, the derivation E6,5 : g→ g is almost inner
with determination map

ϕE6,5(x) =
{
x5
x1
e4 if x1 6= 0,

−e2 if x1 = 0.

• For the Lie algebra g := g6,13, the derivation E6,4 : g→ g is almost inner
with determination map

ϕE6,4(x) =
{
x4
x1
e5 if x1 6= 0,

−e3 if x1 = 0.

• For the Lie algebra g := g6,14, the derivation E5,2 : g→ g is almost inner
with determination map

ϕE5,2(x) =


0 if x2 = 0,
1
x2

(x2e4 + x3e5) if x2 6= 0 and x1 6= 0,
e3 − x4

x2
e5 if x2 6= 0 and x1 = 0.

• For the Lie algebra g := g6,15, the derivation E6,2 : g→ g is almost inner
with determination map

ϕE6,2(x) =
{
x2
x1
e5 if x1 6= 0,

e4 if x1 = 0.

• For the Lie algebra g := g6,17, the derivation E5,4 : g→ g is almost inner
with determination map

ϕE5,4(x) =
{
x4
x1
e3 if x1 6= 0,

−e2 if x1 = 0.

• We already elaborated on the detailed computations for the Lie algebra
g6,22(ε) (with ε ∈ F) in the previous section.
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• For the Lie algebra g := g6,23, the derivation E6,1 : g→ g is almost inner
with determination map

ϕE6,1(x) =
{
−x2
x1
e3 + e4 if x1 6= 0,

0 if x1 = 0.

The derivation E5,4 : g→ g is almost inner with determination map

ϕE5,4(x) =
{
−x2
x1
e3 + e4 if x1 6= 0,

0 if x1 = 0.

• For the Lie algebra g := g6,24(0), the derivation E6,2 : g → g is almost
inner with determination map

ϕE6,2(x) =
{
e3 − x1

x2
e4 if x2 6= 0,

0 if x2 = 0.

The derivation E5,4 : g→ g is almost inner with determination map

ϕE5,4(x) =


x4
x2
e4 if x2 6= 0,

x4
x1
e3 if x2 = 0 and x1 6= 0,

−x4
x3
e1 if x1 = x2 = 0 and x3 6= 0,

−e2 if x1 = x2 = x3 = 0.

• For the Lie algebra g := g6,24(ε) with ε ∈ F, we require that X2 − ε = 0
has no solutions in F. Take i ∈ {1, 2}, then the derivation E6,i : g→ g is
almost inner and a determination map ϕE6,i

: g→ g is given by

ϕE6,i
(x) =

{
xi

x2
2−εx2

1
(x2e3 − x1e4) if xi 6= 0,

0 if xi = 0.

For j ∈ {3, 4}, the derivation E6,j : g → g is almost inner with
determination map

ϕE6,j
(x) =


xj

x2
2−εx2

1
(x2e3 − x1e4) if x1 6= 0,

xj

x2
e3 if x1 = 0 and x2 6= 0,
xj

εx2
4−x2

3
(−x4e1 + x3e2) if x1 = x2 = 0.

• For the Lie algebra g := g
(2)
6,1, the derivation E6,4 : g→ g is almost inner

with determination map

ϕE6,4(x) =
{
x4
x1
e5 if x1 6= 0,

e3 if x1 = 0.
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• For the Lie algebra g := g
(2)
6,2, the derivation E6,4 : g→ g is almost inner

with determination map

ϕE6,4(x) =
{
x4
x1
e5 if x1 6= 0,

e3 if x1 = 0.

• For the Lie algebra g := g
(2)
6,3(ε) with ε ∈ F∗, the derivation E5,2 : g→ g

is almost inner with determination map

ϕE5,2(x) =


1
x1

(x2e4 + x3e5) if x1 6= 0,
e4 + (ε3 + x4

x2
) if x1 = 0 and x2 6= 0,

0 if x1 = x2 = 0.

• For the Lie algebra g := g
(2)
6,7(ε) with ε ∈ F, we require that X2 +X+ε = 0

has no solutions over F. Take i ∈ {1, 4}. The derivation E6,i : g → g is
almost inner and a determination map ϕE6,i

: g→ g is given by

ϕE6,i
(x) =

{
xi

x2
1+x1x4+εx2

4
(x4e2 + x1e3) if xi 6= 0,

0 if xi = 0.

For j ∈ {2, 3}, the derivation E6,j : g → g is almost inner with
determination map

ϕE6,j (x) =
{

xj

x2
3+x2x3+εx2

2
(x3e1 + x2e4) if xj 6= 0,

0 if xj = 0.

• For the Lie algebra g := g
(2)
6,8(ε) with ε ∈ F, we require that X2 +X+ε = 0

has no solutions over F. Take i ∈ {1, 2}. The derivation E6,i : g → g is
almost inner and a determination map ϕE6,i

: g→ g is given by

ϕE6,i(x) =
{

xi

x2
1+x1x2+εx2

2
(x2e3 + x1e4) if xi 6= 0,

0 if xi = 0.

For j ∈ {3, 4}, the derivation E6,j : g → g is almost inner with
determination map

ϕE6,j (x) =


xj

x2
2+x1x2+εx2

1
(x2e3 + x1e4) if x1 6= 0,

xj

x2
e3 if x1 = 0 and x2 6= 0,

xj

x2
3+x3x4+εx2

4
(x4e1 + x3e2) if x1 = x2 = 0.
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8.2 Over a field of characteristic zero

In the last section, we computed the almost inner derivations for all solvable
Lie algebras (over fields of arbitrary characteristic) of dimension at most four.
It turns out that if the characteristic is not two, then we only have the inner
derivations. In this section, we will only look at Lie algebras over fields of
characteristic zero. First, we will consider the non-solvable Lie algebras of
dimension four. Then, we also compute the almost inner derivations for complex
and real (non-decomposable) non-nilpotent Lie algebras of dimension five. The
results over C already appeared in [7].

8.2.1 Lie algebras of dimension 4

There doesn’t exist yet a complete list for all 4–dimensional Lie algebras over an
arbitrary field. We already treated the solvable Lie algebras in the last section,
so it suffices to consider the non-solvable ones. We will restrict ourselves Lie
algebras over a field F of characteristic zero, since in that case, we can make
use of the Levi-Mal’cev theorem.

Lemma 8.2.1. Let g be a non-solvable 4–dimensional Lie algebra over a field F
of characteristic zero. If g is non-solvable, then g is isomorphic to g(α, β)⊕ F,
where α, β ∈ F∗.

Proof. Let g be a 4–dimensional Lie algebra over a field F of characteristic
zero. By the Levi decomposition, we can write g = ro s, where s is semisimple
and r is the solvable radical. Over a field of characteristic zero, there are no
semisimple Lie algebras of dimension 4. Since g is non-solvable, we find from
the previous section that s = g(α, β), for α, β ∈ F∗. Therefore, we must have
that r = F and the semidirect product is in fact a direct sum.

The number of isomorphism classes of non-solvable 4–dimensional Lie algebras
over a field F of characteristic zero can be made more precise by specifying the
field F. For instance, over C, there is only one, whereas there are two classes
over R, isomorphic to g(1,−1) ⊕ F or g(1, 1) ⊕ F. This argument can not be
used for a non-solvable Lie algebra over a field F of prime characteristic.

Example 8.2.2. Let F be a field with char(F) = p and take n ∈ N0. Zassenhaus
([91]) defined a Lie algebra W (1 : n) over F with basis {eα | α ∈ Fpn} and
non-vanishing Lie brackets

[eα, eβ ] = (β − α)eα+β
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for all α, β ∈ Fpn . He proved that W (1 : n) is simple when p > 2 (and n ∈ N0).
For p = n = 2, we find a non-solvable 4–dimensional Lie algebra with basis
{e1, . . . , e4} and given by

[e1, e2] = e2, [e1, e3] = βe3, [e1, e4] = (β + 1)e4,

[e2, e3] = (β + 1)e4, [e2, e4] = βe3, [e3, e4] = e2,

where β2 = β + 1. A direct computation shows that an arbitrary derivation D
is a linear combination

D = a1ad(e1) + · · ·+ a4ad(e4) + d1D1,

which has matrix form

D =


0 0 0 0
a2 a1 a4 a3
βa3 βa4 βa1 + d1 βa2

(β + 1)a4 (β + 1)a3 (β + 1)a2 (β + 1)a1 + d1

 .

Note that D1 is not almost inner. Take an arbitrary x =
∑4
i=1 xiei, then

[e1 + e2 + e3 + e4, x] = (x1 + x2 + x3 + x4)(e2 + βe3 + (β + 1)e4).

However, we find that D1(e1 + e2 + e3 + e4) = e3 + e4.

Proposition 4.1.8 and the observations from the last section imply the following
result.

Proposition 8.2.3. Let g be a Lie algebra of dimension at most 4 over a field F
of characteristic zero. Then AID(g) = Inn(g) holds.

In 8.1.2, we studied an example of a 4–dimensional Lie algebra over a field F of
char(F) = 2 with AID(g) 6= Inn(g).

8.2.2 Lie algebras of dimension 5

We showed before that Lie algebras of dimension n ≤ 4 over a field of
characteristic zero do not have non-inner almost inner derivations. As we
already computed in Example 4.1.6, this is different in dimension five. In this
subsection, we will compute the almost inner derivations for 5–dimensional Lie
algebras over C and R.
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Complex Lie algebras

For complex Lie algebras, we will use the results from [29]. Here, the authors
describe the moduli space for 5–dimensional complex Lie algebras, in terms of
24 families with up to 4 parameters. We will change the notation of that paper
to be consistent with the rest of this chapter.

Theorem 8.2.4 ([29]). Let g be a Lie algebra of dimension 5 over C. Then g
is isomorphic to (at least) one Lie algebra of Table A.9.

Note that the Lie brackets of d2 are not correct in Table 3 and in the definition
on page 429 of [29]. There also exist other lists of 5–dimensional complex Lie
algebras, see for instance [72]. However, the determination of almost inner
derivations is much more efficient when there are less families of Lie algebras.

For each family, or type, we calculate the space AID(g) for all possible
parameters. The computation is easy for the types without parameters. Further,
by choosing all parameters equal to zero, we obtain the nilpotent Lie algebras.
We already know from the previous section that every complex nilpotent Lie
algebra of dimension 5 having a non-inner almost inner derivation is isomorphic
to g5,5 or g5,6. The hardest computations are for the families with several
parameters. There, we often had to consider different cases. A long but
straightforward computation shows that, for non-nilpotent algebras, the only
family with non-inner almost inner derivations is C5,12(p, q, r), where we need
that p = 0. Therefore, we will consider this type in more detail.

Definition 8.2.5 (Lie algebra A(q, r)). The family of 5–dimensional complex
Lie algebras A(q, r) := C5,12(0, q, r) with q, r ∈ C has basis {e1, . . . , e5} and is
defined by the Lie brackets

[e1, e5] = e2, [e2, e5] = (q + r)e2, [e3, e4] = e2,

[e3, e5] = e1 + qe3, [e4, e5] = e3 + re4.

It is straightforward to see that dim(Inn(A(q, r))) = 4 for all q, r ∈ C. We also
have that dim(Der(A(0, 0))) = 8 and dim(Der(A(q, r))) = 7 when (q, r) 6= (0, 0).
A direct computation shows that AID(A(q, r)) = Inn(A(q, r)) if and only if
q · r 6= 0 and q + r 6= 0. Otherwise, we have

dim(AID(A(q, r))) = dim(Inn(A(q, r)) + 1 = 5.

We can determine the Lie algebras A(q, r) with non-inner almost inner
derivations up to isomorphism.

Lemma 8.2.6. Every Lie algebra A(q, r) satisfying q · r = 0 or q + r = 0 is
either isomorphic to A(1, 0), to A(1,−1) or to A(0, 0) ∼= g5,6.
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Proof. It follows from [29] that A(q, r) ∼= A(r, q). Further, A(0, 0) is filiform
nilpotent and isomorphic to g5,6. We may assume that (q, r) 6= (0, 0). Suppose
that q · r = 0. Without loss of generality, we can take q 6= 0 and r = 0. Then
there is a Lie algebra isomorphism ϕ : A(q, 0)→ A(1, 0) given by

q2 0 0 0 0
1− q2 q 0 0 0

0 0 q 0 0
0 0 0 1 1−q2

q

0 0 0 0 q

 .

Secondly, consider the case where q + r = 0 and q 6= 0. Then there is a Lie
algebra isomorphism ϕ : A(q,−q)→ A(1,−1) given by

1 0 q2−1
q

q2−1
q2 0

0 q q2−1
q 0 0

0 0 q 0 0
0 0 0 1 0
0 0 0 0 q

 .

Recall that a Lie algebra g is ‘unimodular’ if and only if tr(ad(x)) = 0 for all
x ∈ g. We find that A(q, r) is unimodular if and only if q+r = 0. Hence A(1,−1)
is unimodular, but A(1, 0) is not, so they cannot be isomorphic. Both A(1,−1)
and A(1, 0) are solvable and non-nilpotent, whereas A(0, 0) is nilpotent.

We can summarise the calculations for the 5–dimensional complex Lie algebras
with the following result.

Proposition 8.2.7. Let g be a complex Lie algebra of dimension 5. If we have
AID(g) 6= Inn(g), then g is isomorphic to one of the Lie algebras

g5,5, g5,6, A(1, 0) or A(1,−1).

In each case, we have that dim(AID(g)) = dim(Inn(g)) + 1 = 5.

We present the determination maps for the non-nilpotent Lie algebras. Take an
arbitrary x =

∑5
i=1 xiei ∈ g.

• For the Lie algebra g := A(1, 0), the derivation E1,5 : g → g is almost
inner with determination map

ϕE1,5(x) =
{

1
x5

(x4 − x3)e1 − e3 − e4 if x5 6= 0,
0 if x5 = 0.
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• For g := A(1,−1), the derivation D : g → g : x 7→ x1e2 + x5(e1 + e4) is
almost inner with determination map

ϕD(x) =


−1
x5

(x1 − x3 − x4)e1 − e3 + e4 if x5 6= 0,
−x1
x4
e3 if x5 = 0 and x4 6= 0,

x1
x3
e4 if x4 = x5 = 0 and x3 6= 0,

e5 if x3 = x4 = x5 = 0.

Real Lie algebras

For 5–dimensional Lie algebras, the first list appeared in [66], albeit without
the structure constants of the algebras. In [70], the authors give a classification
of the non-decomposable Lie algebras. The same list is stated in [30].

Theorem 8.2.8 ([30]). Let g be a non-decomposable non-nilpotent Lie algebra
of dimension 5 over R. Then g is isomorphic to at least one Lie algebra of
Table A.10.

Remark 8.2.9. In [30], the authors put extra conditions on the parameters
u, v, w ∈ R to ensure that every non-decomposable non-nilpotent Lie algebra
of dimension 5 is isomorphic to exactly one Lie algebra of the classification.
However, we did not include these restrictions, since there are a lot of different
cases and the list from Table A.10 is sufficient for doing the computations.

As for the 5–dimensional complex Lie algebras, we calculate the space AID(g)
for all possible parameters. The following result summarises the computations
for the 5–dimensional real Lie algebras.

Proposition 8.2.10. Let g be a real Lie algebra of dimension 5, then

dim(AID(g)) = dim(Inn(g)) + n,

where n ∈ {0, 1, 2}.

• We have that n = 1 if and only if g is isomorphic to one of the Lie algebras

g5,5, g5,6, R5,20(0), R5,26(0, 1) or R5,29.

• Further, n = 2 holds if and only if g is isomorphic to R5,39.

Note that all of the above Lie algebras are pairwise non-isomorphic over R.
The nilpotent Lie algebras g5,5 and g5,6 are discussed in 8.1.3. We present the
determination maps for the non-nilpotent Lie algebras from the first case.
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• For g ∈ {R5,20(0), R5,26(0, 1)}, the derivation E1,4 : g→ g is almost inner
with determination map

ϕE1,4(x) =


−x4
x5
e4 if x5 6= 0,

x4
x2
e3 if x5 = 0 and x2 6= 0,

−x4
x3
e2 if x2 = x5 = 0 and x3 6= 0,

e5 if x2 = x3 = x5 = 0.

• For the Lie algebra g := R5,29, the derivation E3,5 : g→ g is almost inner
with determination map

ϕE3,5(x) =
{
−x2
x5
e1 − e4 if x5 6= 0,

0 if x5 = 0.

For each of these three Lie algebras, we can take the complexification and
compare with the results from Proposition 8.2.7. It turns out that the Lie
algebras g1 := C⊗R R5,20(0) and g2 := C⊗R R5,26(0, 1) are both isomorphic to
A(1,−1). For 1 ≤ i ≤ 2, the isomorphism ϕi : gi → A(1,−1) is given by

1 2 −3 −1 0
0 0 2 1 0
0 0 0 1 0
2 0 −2 −2 0
0 0 0 0 1

 and


0 i 0 0 0
0 0 −1 −1 0
0 0 i 0 i

−1 0 1 1 0
0 0 0 0 i


for ϕ1 respectively ϕ2. Further, ϕ3 : C ⊗R R5,29 → A(1, 0) is a Lie algebra
isomorphism given by 

1 1 0 −1 0
0 0 1 1 0
−1 0 1 0 0
0 0 0 1 1
0 0 0 0 1

 .

For the Lie algebra R5,39, all derivations are almost inner.

Lemma 8.2.11. Let g := R5,39 be the Lie algebra over R with basis {e1, . . . , e5}
and given by

[e1, e4] = e1, [e1, e5] = −e2, [e2, e4] = e2,

[e2, e5] = e1, [e4, e5] = e3.

We have that Inn(g) 6= AID(g) = Der(g).
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Proof. An arbitrary derivation D is given by

D = a1ad(e1) + · · ·+ a4ad(e4) + e3,4E3,4 + e3,5E3,5

and has matrix form

D =


−a4 −a5 0 a1 a2
a5 −a4 0 a2 −a1
0 0 0 −a5 + e3,4 a4 + e3,5
0 0 0 0 0
0 0 0 0 0

 .

It turns out that E3,4 is almost inner. A determination map ϕE3,4 : g → g is
given by

ϕE3,4(x) =
{
x2x4+x1x5
x2

4+x2
5

e1 + x2x5−x1x4
x2

4+x2
5

e2 + e5 if x4 6= 0,
0 if x4 = 0.

Similarly, E3,5 is almost inner with determination map

ϕE3,5(x) =
{
x2x5−x1x4
x2

4+x2
5

e1 − x1x5+x2x4
x2

4+x2
5

e2 − e4 if x5 6= 0,
0 if x5 = 0.

This shows that Inn(g) 6= AID(g) = Der(g).

This result does not hold for the complexification of R5,39. Indeed, for C⊗RR5,39,
the only almost inner derivations are the inner ones. Take D := aE3,4 + bE3,5
(with a, b ∈ C), then D(e1 + e4 + ie5) = (a + ib)e3. However, for arbitrary
x =

∑5
j=1 xjej , we find that

[e1 + e4 + ie5, x] = (−x1 − ix2 + x4)e1 + (ix1 − x2 − x5)e2 + (−ix4 + x5)e3.

When D is almost inner, we must have that x4 = x1 + ix2 and x5 = ix1 − x2.
However, this implies that −ix4 + x5 = 0, so a+ ib = 0. Similarly, it follows
from D(e1 + e4 − ie5) = (a− ib)e3 and

[e1 + e4 − ie5, x] = (−x1 + ix2 + x4)e1 + (−ix1 − x2 − x5)e2 + (ix4 + x5)e3

that a− ib = 0. We conclude that a = b = 0.



Chapter 9

Two-step nilpotent Lie
algebras

In this chapter, we study the almost inner derivations for two-step nilpotent
Lie algebras. Let g be a 2–step nilpotent Lie algebra. We will denote a basis
of g with {x1, . . . , xn, y1, . . . , ym}, where {y1, . . . , ym} is a basis for [g, g]. This
means that g is a nilpotent Lie algebra of type (n,m).

In the first section, we show that for Lie algebras determined by graphs, the
only almost inner derivations are the inner ones. In Section 4.3, we associated
matrix pencils to Lie algebras. This technique is in particular interesting for the
computation of the almost inner derivations of 2–step nilpotent Lie algebras.
In Section 9.2, we make use of this observation to give a complete answer for
the 2–step nilpotent Lie algebras with 2–dimensional commutator algebra. We
partially generalise the used methods for nonsingular Lie algebras. One of
the results is that we can construct Lie algebras g for which AID(g)/Inn(g) is
arbitrary large. In Section 9.4, we construct other examples of Lie algebras
(where the commutator algebra has a larger dimension) with the same property.
The first and last section appeared in [7] and the second in [9]. In each section,
we will specify over which field F we work.

9.1 Lie algebras determined by graphs

Let G(V,E) be a finite simple graph with vertices V = {x1, x2, . . . , xn} and
edges E. If there is an edge between vertex xi and xj with 1 ≤ i < j ≤ n, we
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denote this edge by the symbol yi,j . Let X be the vector space over an arbitrary
field F with the elements of V as basis. Take Y for the vector space with basis
the edges yi,j . We define a two-step nilpotent Lie algebra g over F, where as a
vector space g = X ⊕ Y and where the brackets are given by

[xi, xj ] =
{
yi,j if yi,j ∈ E,
0 if there is no edge connecting xi with xj ,

[xi, yj,k] = 0 for all xi ∈ V and all yj,k ∈ E,

[yi,j , yk,l] = 0 for all yi,j , yk,l ∈ E.
For this class of Lie algebras, the only almost inner derivations are the inner
ones.
Theorem 9.1.1. Let g be a 2–step nilpotent Lie algebra determined by a finite
simple graph. Then AID(g) = Inn(g).

Proof. Let G(V,E) be a finite simple graph with vertices V = {x1, . . . , xn}.
Denote s for the number of edges and choose an order p1, p2, . . . , ps for
the edges. So any pt corresponds to a unique edge yi,j . This means that
{x1, x2, . . . , xn, p1, . . . , ps} is a basis of g. Let D ∈ AID(g) be determined by
the map ϕD. We want to show that any basis vector is fixed for D. For
p1, p2, . . . , ps, this is obvious, since these vectors belong to Z(g). Consider xi
with 1 ≤ i ≤ n. If xi ∈ Z(g), so when xi is an isolated vertex, there is again
nothing to show. Assume that xi 6∈ Z(g), then there is at least one xj 6∈ Cg(xi)
(with 1 ≤ j ≤ n). Hence [xj , xi] = ±pl for some 1 ≤ l ≤ s. Let α = ti(ϕD(xj)).
Consider any other basis vector xk 6∈ Cg(xi). In order to show that xi is fixed,
we must show that also ti(ϕD(xk)) = α. There exists an 1 ≤ m ≤ s with
[xk, xi] = ±pm. As g is determined by a graph, we have that m 6= l. We are in
the following situation

[xj , xi]± pl = 0
[xk, xi]± pm = 0
[xj , gi] ⊆ gl,m
[xk, gi] ⊆ gl,m.

We can apply Lemma 4.2.7 and we find that ti(ϕD(xk)) = ti(ϕD(xj)) = α.
Hence, xi is indeed fixed for all 1 ≤ i ≤ n. Corollary 4.2.6 finishes the proof.

9.2 Lie algebras of genus 1 and 2

Two-step nilpotent Lie algebras have not been classified in general so far. For
certain subclasses however, there is a complete description. If not said otherwise,
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F denotes an arbitrary field. We will always assume that g is a finite-dimensional
Lie algebra over F. In this section, we will study the almost inner derivations of
Lie algebras of genus 1 and genus 2. The ‘genus’ of a Lie algebra g is the number
dim(g)− |S|, where S is a minimal system of generators. If g is nilpotent, then
the genus is given by dim(g)− dim (g/[g, g]) = dim([g, g]).

Let g be a 2–step nilpotent Lie algebra over F. Then γ3(g) = [g, [g, g]] = 0
holds, so [g, g] ⊆ Z(g). A nilpotent Lie algebra has genus 0 if and only if it is
abelian. If [g, g] = 〈z〉 for some z ∈ g, then g has genus 1. An example is the
Heisenberg Lie algebra of dimension 2s+ 1, where s ∈ N0.

Example 9.2.1. Take s ∈ N0. We denote h2s+1 for the ‘Heisenberg algebra of
dimension 2s+ 1’, which has basis {x1, y1, . . . , xs, ys, z} and non-vanishing Lie
brackets

[x1, y1] = · · · = [xs, ys] = z.

It is clear that h2s+1 is 2–step nilpotent of genus 1 for all s ∈ N0.

It turns out that 2–step Lie algebras of genus 1 can be easily classified.

Proposition 9.2.2. Let g be a finite-dimensional 2–step nilpotent Lie algebra
of genus 1. Then g can be written as g = h2s+1 ⊕ a, where s ∈ N0 and a is
abelian.

Proof. Denote n := dim(g). Suppose that g has genus 1, then it is not abelian.
For x1 /∈ Z(g), there exists y1 ∈ g with [x1, y1] = z 6= 0. Since im(ad(x1)) is
1–dimensional, Cg(x1) = ker(ad(x1)) has dimension n− 1. Similarly, we find
that dim(Cg(y1)) = n − 1. Consider gn−2 := Cg(〈x1, y1〉) = Cg(x1) ∩ Cg(y1).
Note that dim(gn−2) = n− 2. There are two possibilities.

• If gn−2 is abelian, then g = 〈x1, y1, z〉 ⊕ a = h3 ⊕ a, where a is an abelian
subspace of Cg(〈x1, y1〉).

• When gn−2 is not abelian, there exist elements x2, y2 ∈ gn−2 with
[x2, y2] 6= 0. Since g has genus 1, we can suppose (possibly after rescaling
x2 or y2) that [x2, y2] = z. Consider gn−4 := Cg(〈x1, y1, x2, y2〉), which
has dimension n− 4.

Inductively, we can repeat the previous reasoning, where we consider after s
steps a subspace gn−2s of g of dimension n − 2s. After at most b(n − 1)/2c
steps, we obtain an abelian subspace and the process ends.

Lemma 4.2.3 and Corollary 4.2.6 imply that AID(h2s+1) = Inn(h2s+1) for all
s ∈ N0. Let g be a 2–step nilpotent Lie algebra of genus 1. It follows from
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the previous observations and Proposition 4.1.8 that the only almost inner
derivations are the inner ones.

The next interesting case is genus 2, so Lie algebras g satisfying dim([g, g]) = 2.
Such algebras can be described in terms of matrix pencils. This has been studied
for several purposes in the literature, see [31, 32, 33, 56, 57, 59, 80]. The results
of this section also appeared in [9].

Let F[λ, µ] be the polynomial ring in two variables.

Definition 9.2.3 (Matrix pencil). Let A,B ∈ Mn(F). A polynomial matrix
µA + λB ∈ Mn(F[λ, µ]) is called a matrix pencil or just a pencil. Two such
pencils µA+λB and µC+λD are called ‘strictly equivalent’ if there are matrices
S, T ∈ GLn(F) satisfying

S(µA+ λB)T = µC + λD.

The pencil is called ‘skew’ if both A and B are skew-symmetric. Two skew-
symmetric pencils µA+λB and µC +λD are called ‘strictly congruent’ if there
is a matrix S ∈ GLn(F) such that S>(µA + λB)S = µC + λD. A pencil is
called ‘regular’ or ‘non-singular’ if its determinant is not the zero polynomial in
F[λ, µ].

It is known that skew-symmetric pencils over an algebraically closed field of
characteristic not two are strictly equivalent if and only if they are strictly
congruent ([33]). The same is true over the field of real numbers ([56]).

In Section 4.3, we already introduced skew matrix pencils and the link with
almost inner derivations. This section contains an overview of known properties
of (skew) matrix pencils.

Let g be a 2–step nilpotent Lie algebra over a field F with dim([g, g]) = 2. We
fix a basis {x1, x2, . . . , xn, y1, y2} of g, where {y1, y2} is a basis of [g, g]. Denote
by A = (aij) and B = (bij) the skew-symmetric matrices of structure constants
determined by

[xi, xj ] = aijy1 + bijy2

for all 1 ≤ i, j ≤ n. Let µ and λ be algebraically independent variables over F.
We will denote the ‘pencil associated to g’ by µA+ λB (∈ Mn(F[µ, λ])). The
following proposition is a special case of [59, Proposition 4.1]

Proposition 9.2.4. Let g and h be two-step nilpotent Lie algebras of genus 2
over an arbitrary field F. If the pencils associated to g and h with respect to
some bases of g and h are strictly congruent, then g and h are isomorphic.
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From this proposition, it follows that it is important for our study to be able to
classify skew pencils up to strict congruence. We will give an overview in the
next subsection.

9.2.1 Elementary divisors and minimal indices

For regular pencils, the classification of skew pencils was given by Weierstrass
in terms of ‘elementary divisors’. For a pencil µA+ λB of rank r, let Gm(µ, λ)
be the greatest common divisor of all its minor determinants of order m. Then
Gm(µ, λ) | Gm+1(µ, λ) for all 1 ≤ m ≤ r − 1. Let i1(µ, λ) = G1(µ, λ) and

im(µ, λ) = Gm(µ, λ)
Gm−1(µ, λ)

for 2 ≤ m ≤ r.

Definition 9.2.5 (Invariant factors and elementary divisors). The homogeneous
polynomials {im(µ, λ)}m are called the invariant factors of the pencil µA+ λB.
Each polynomial im(µ, λ) can be written as a product of powers of prime
polynomials because F[λ, µ] is a unique factorisation domain. These prime
power factors (which are only determined up to scalar multiple) are called
the elementary divisors ea(µ, λ) of the pencil µA + λB for 1 ≤ a ≤ t. An
elementary divisor is said to have ‘multiplicity ν’ if it appears exactly ν times
in the factorisations of the invariant factors im(µ, λ) for 1 ≤ m ≤ r.

Suppose that F is algebraically closed. In this case, the elementary divisors
are all linear. Since the elementary divisors are only determined up to scalar
multiple, each elementary divisor is either of type (bµ + λ)e or of type µf .
The first one is called of ‘finite type’. The second one is called of ‘infinite
type’, which means that the divisor belongs to F[µ]. Elementary divisors
of infinite type exist if and only if det(B) = 0. The elementary divisors
ea(µ, λ) of finite type correspond to the elementary divisors of the pencil
A + λB ∈ F[λ] as follows. Setting µ = 1 in ea(µ, λ), we clearly obtain the
elementary divisors ea(λ) of A + λB. These can be computed by the ‘Smith
normal form’, because F[λ] is a PID. The diagonal elements of the Smith normal
form are just the invariant polynomials. Conversely, from each elementary
divisor ea(λ) of A+ λB of degree e, we obtain the corresponding elementary
divisor ea(µ, λ) by ea(µ, λ) = µeea(λµ ). In case F = R, apart from these
elementary divisors of degree 1, there are also elementary divisors of degree 2
which are of the form (λ− µ(a+ bi))(λ− µ(a− bi)) = λ2 − 2aλµ+ (a2 + b2)µ2,
with a ∈ R and b ∈ R∗.
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Example 9.2.6. Let g be the 6–dimensional real Lie algebra with basis
{x1, . . . , x4, y1, y2} and Lie brackets defined by

[x1, x2] = y1, [x1, x3] = y2,

[x2, x4] = y2, [x3, x4] = −y1.

Then the associated pencil is given by

µA+ λB =


0 µ λ 0
−µ 0 0 λ

−λ 0 0 −µ
0 −λ µ 0

 .

The pencil is regular because det(µA + λB) = (µ2 + λ2)2 is not the zero
polynomial. Note that g is nonsingular when considered over R. The Smith
normal form of A+ λB is given by diag(1, 1, λ2 + 1, λ2 + 1). Hence there is one
elementary divisor e1(µ, λ) = µ2(1 + λ2

µ2 ) = µ2 + λ2 of finite type of multiplicity
2 and there is no elementary divisor of infinite type. When we consider the
complexification g⊗ C of this Lie algebra, then the corresponding pencil has
two elementary divisors, λ− iµ and λ+ iµ, both of multiplicity 2.

For singular pencils, we still need another invariant. Let µA+ λB be a singular
pencil of size n. Then (A + λB)x = 0 has a nonzero solution in F[λ]n. Let
x1(λ) be such a nonzero solution of minimal degree ε1. Of all solutions which
are F[λ]–independent of x1(λ), we select a solution x2(λ) of minimal degree
ε2. It is obvious that ε1 ≤ ε2. By continuing this process we obtain a set
x1(λ), . . . , xk(λ) of solutions, which is a maximal set of elements in F[λ]n
satisfying (A + λB)xi(λ) = 0 for 1 ≤ i ≤ k and being F[λ]–independent. We
have k ≤ n. Note that this set is not uniquely determined, but that different
sets have the same minimal degrees ε1 ≤ ε2 ≤ · · · ≤ εk. Hence the following
notion is well-defined.

Definition 9.2.7 (Minimal indices). Let µA+ λB be a singular pencil. The
associated numbers ε1, . . . , εk are called the minimal indices of the pencil
µA+ λB.

Let xi(λ) be a non-zero solution of degree εi, so (A+ λB)xi(λ) = 0. Note that
the constant term of xi(λ) is not the zero vector since otherwise, we can find a
solution of smaller degree. It follows that(

1
λ
A+B

)
xi(λ)
λεi

= 0

is a solution as well. By taking µ := 1/λ, we obtain a non-zero solution x̃i(µ)
(of the same degree εi) of the equation (µA+B)X = 0. We can do the same
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for every non-zero solution xi (with 1 ≤ i ≤ k) and obtain a fundamental series
x̃1(µ), . . . , x̃k(µ) of linearly independent solutions. By construction, the degrees
for the new series will be the same as the minimal indices. This observation
shows that we can look at non-zero solutions of (µA + B)x = 0 as well to
determine the minimal indices of the matrix pencil µA+ λB.

Example 9.2.8. Let g be the 7–dimensional real Lie algebra with basis
{x1, . . . , x5, y1, y2} and Lie brackets defined by

[x1, x3] = y1, [x1, x4] = y2,

[x2, x4] = y1, [x2, x5] = y2.

This is the same Lie algebra as in Example 4.3.5. The associated pencil is given
by

µA+ λB =


0 0 µ λ 0
0 0 0 µ λ

−µ 0 0 0 0
−λ −µ 0 0 0
0 −λ 0 0 0

 .

Since det(µA+λB) = 0, the pencil is singular. The equation (A+λB)x = 0 has
a non-zero solution x1(λ) = (0, 0, λ2,−λ, 1)>, and the set is maximal. Hence
there is one minimal index ε1 = 2. The Smith normal form of A+ λB is given
by diag(1, 1, 1, 1, 0), so there are no elementary divisors.

The following well-known result classifies skew pencils up to congruence, see
Corollary 6.6 in [33] and Theorem 3.4 in [59].

Proposition 9.2.9. Let F be an algebraically closed field of characteristic not 2
or the field of real numbers. Two skew-symmetric pencils of the same dimension
are strictly congruent if and only if they have the same elementary divisors and
the same minimal indices.

For a skew pencil µA+ λB over an algebraically closed field F, the elementary
divisors occur in pairs and we can arrange them as

µe1 , µe1 , . . . , µes , µes ,

(λ− µα1)f1 , (λ− µα1)f1 , . . . , (λ− µαt)ft , (λ− µαt)ft ,

where α1, α2, . . . , αt ∈ F.

When F = R, the elementary divisors still occur in pairs, and apart from the
above set of elementary divisors (where of course α1, . . . , αt ∈ R), we can also
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have pairs of the form

ξ(a1, b1)m1 , ξ(a1, b1)m1 , . . . , ξ(ap, bp)mp , ξ(ap, bp)mp ,

where a1, . . . , ap ∈ R, b1, . . . , bp ∈ R∗ and ξ(a, b) = (λ−µ(a+ ib))(λ−µ(a− bi))
with a, b ∈ R.

Since elementary divisors occur in pairs, we introduce a notation to indicate such
pairs. Let F be an algebraically closed field or F = R. For given α ∈ F ∪ {∞}
or α ∈ C ∪ {∞} in case F = R and e ∈ N, we denote by (α, e) the following
pairs of elementary divisors

(α, e) :=


µe, µe if α =∞,
(λ− µα)e, (λ− µα)e if α ∈ F,
ξ(a, b)e, ξ(a, b)e if F = R and α = a+ bi ∈ C \ R.

Hence, for a skew pencil µA+ λB over an algebraically closed field F, we can
associate in a unique way a set of elementary divisors as follows:

(∞, e1), . . . , (∞, es), (α1, f1), . . . , (αt, ft),

with α1, . . . , αt ∈ F. For a skew pencil µA + λB over R, we find a set of
elementary divisors of the form

(∞, e1), . . . , (∞, es), (α1, f1), . . . , (αt, ft), (β1,m1), . . . , (βp,mp),

where αi ∈ R and βi ∈ C \ R.

For a given pair of elementary divisors (α, e) as above, there exists a canonical
skew pencil having exactly that one pair of elementary divisors (α, e) (and no
minimal indices or other elementary divisors). For a minimal index ε, there is a
canonical skew pencil having no elementary divisors and exactly one minimal
index ε.

These skew pencils are given by the following cases:
Case 1: For (α, e) = (∞, e), the skew pencil is given by

F (∞, e) :=
(

0 µ∆e + λΛe
−µ∆e − λΛe 0

)
∈M2e(F[µ, λ]),

where

∆e =


1

1

. .
.

1
1

 , Λe =



0
0 1

. .
. 1

0 . .
.

0 1

 ∈Me(F).
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Case 2: For (α, f) = (λ− µα)f , (λ− µα)f , the skew pencil is given by

F (α, f) :=
(

0 (λ− µα)∆f + µΛf
−(λ− µα)∆f − µΛf 0

)
∈M2f (F[µ, λ]).

Case 3: Only in case F = R and for (α,m) = (a + bi,m) = ξ(a, b)m, ξ(a, b)m
(with a+ bi ∈ C \ R), the real skew pencil is given by

C(a, b,m) :=
(

0 Tm
−Tm 0

)
∈M4m(R[µ, λ]),

where

Tm =



0 R

..
.
R µ∆2

. .
.

0 R ..
.

R µ∆2


∈M2m(R[µ, λ])

for m ≥ 2 and

T1 = R =
(
−µb λ− µa
λ− µa µb

)
∈M2(R[µ, λ]).

Case 4: For each minimal index ε ≥ 1, the skew pencil is given by

Mε =
(

0ε+1 Lε(µ, λ)
−Lε(µ, λ)t 0ε

)
∈M2ε+1(F[µ, λ]),

with

Lε(µ, λ) =


λ 0 · · · 0
µ λ 0

. . .
. . .

0 µ λ

0 . . . 0 µ

 ∈Mε+1,ε(F[µ, λ]).

For minimal index ε = 0, the skew pencil is just M0 = (0) ∈ M1(F), the zero
matrix.

Using the notations of above, we have the following result, see [33, 59].

Proposition 9.2.10. Let F be an algebraically closed field of characteristic not
2. Any skew pencil over F with elementary divisors

(∞, e1), . . . , (∞, es), (α1, f1), . . . , (αt, ft)
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and minimal indices ε1, . . . , εk is strictly congruent to the pencil consisting of a
matrix with the blocks

F (∞, e1), . . . , F (∞, es), F (α1, f1), . . . , F (αt, ft), Mε1 , . . . ,Mεk

on the diagonal. Any skew pencil over R having elementary divisors

(∞, e1), . . . , (∞, es), (α1, f1), . . . , (αt, ft), (a1 + b1i,m1), . . . , (ap + bpi,mp)

and minimal indices ε1, . . . , εk is strictly congruent to the pencil consisting of a
matrix with the blocks

F (∞, e1), . . . , F (∞, es), F (α1, f1), . . . , F (αt, ft),

C(a1, b1,m1), . . . , C(ap, bp,mp), Mε1 , . . . ,Mεk

on the diagonal.

Definition 9.2.11 (Canonical Lie algebra). A 2–step nilpotent Lie algebra of
genus 2 over an algebraically closed field F of characteristic not 2 or F = R is
called canonical if its associated skew pencil has a blocked diagonal form as in
Proposition 9.2.10 above.

As an immediate consequence of Proposition 9.2.4, we obtain the following
corollary.

Corollary 9.2.12. Let F be an algebraically closed field of characteristic not 2
or F = R. Any 2–step nilpotent Lie algebra of genus 2 over F is isomorphic to
a canonical one with the same elementary divisors and minimal indices.

It follows that the computation of AID(g) for 2–step nilpotent Lie algebras of
genus 2 over F can be reduced to canonical Lie algebras.

9.2.2 Almost inner derivations of Lie algebras of genus 2

In this subsection, we determine the algebra AID(g) for canonical Lie algebras
in the sense of Definition 9.2.11 over F, where F is either R or an algebraically
closed field of characteristic not 2. We will start with the case that the canonical
pencil only consists of one block. For the proofs, we will make use of the results
from Section 4.3.

Lemma 9.2.13. Let g be a canonical Lie algebra over F with one pair
of elementary divisors (∞, e) and no minimal indices. Then we have that
dim(Inn(g)) = 2e and dim(AID(g)) = 4e− 2.
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Proof. By assumption, the matrix pencil of g is F (∞, e), so that the Lie brackets
of g in the usual basis B are given by

[xi, x2e+1−i] = y1, 1 ≤ i ≤ e,

[xj , x2e+2−j ] = y2, 2 ≤ j ≤ e.

We have that dim(Inn(g)) = 2e. We will compute AID(g) with the aid of
Proposition 4.3.4. A basis for C(g) is given by the maps Di,j : g → g for
1 ≤ i ≤ 2e and 1 ≤ j ≤ 2, defined by

2e∑
k=1

akxk + (b1y1 + b2y2) 7→ aiyj .

We have dim(C(g)) = 4e. Note that the span of D1,2 and De+1,2 has trivial
intersection with AID(g), since αD1,2 + βDe+1,2 is B–almost inner if and only
if α = β = 0. It is easy to see that, except for D1,2 and De+1,2, all Di,j with
1 ≤ i ≤ 2e and 1 ≤ j ≤ 2 are B–almost inner. This means that we have
dim(AID(g)) = 4e−2 if we can show that all of the remaining 4e−2 derivations
are actually almost inner.

Let D ∈ C(g) be B–almost inner. We have det(µA + λB) = µ2e. For µ 6= 0,
condition (4.7) is satisfied, which means that we may assume that µ = 0. Then
the kernel of µA + λB = λB = F (∞, e) is equal to the set of all vectors of
the form a(x) = (k1, 0, . . . , 0, ke+1, 0, . . . , 0)>, where k1, ke+1 ∈ F. For these
vectors, we have d2(a(x)) = 0, so that condition (4.7) is satisfied and the proof
is finished.

Lemma 9.2.14. Let g be a canonical Lie algebra over F with one pair
of elementary divisors (α, f) and no minimal indices. Then we have that
dim(Inn(g)) = 2f and dim(AID(g)) = 4f − 2.

Proof. The Lie brackets of g with respect to the usual basis {x1, . . . , x2f , y1, y2}
and matrix pencil F (α, f) are given by

[xi, x2f+1−i] = y2 − αy1, 1 ≤ i ≤ f,

[xj , x2f+2−j ] = y1, 2 ≤ j ≤ e.

We may pass to the basis {x1, . . . , x2f , y2 − αy1, y1} so that g coincides with
the Lie algebra of Lemma 9.2.13. This finishes the proof.

The next lemma is only for the case F = R.
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Lemma 9.2.15. Let g be a canonical Lie algebra over R with one pair of
elementary divisors (β,m), where β = a + bi and b 6= 0. Then we have that
dim(Inn(g)) = 4m and dim(AID(g)) = 8m.

Proof. The Lie brackets of g with respect to the usual basis {x1, . . . , x4m, y1, y
′
2}

and matrix pencil µA+ λB = C(a, b,m) are given by

[x2i−1, x4m−2i+1] = −by1, 1 ≤ i ≤ m,

[x2i, x4m−2i+2] = by1, 1 ≤ i ≤ m,

[xj , x4m+1−j ] = y′2 − ay1, 1 ≤ j ≤ 2m,

and in addition

[xk, x4m−k+3] = y1, 3 ≤ k ≤ 2m.

for m ≥ 2. We set y2 := y′2 − ay1 to obtain a basis B = {x1, . . . , xn, y1, y2}.
Then a basis for C(g) is given by the maps Di,j : g → g for 1 ≤ i ≤ 4m and
1 ≤ j ≤ 2, defined by

4m∑
k=1

akxk + (b1y1 + b2y2) 7→ aiyj .

We have dim(C(g)) = 8m and det(µA+ λB) = (λ2 + µ2b2)2m. It follows from
Corollary 4.3.9 that AID(g) = C(g).

We again consider Example 9.2.6.

Example 9.2.16. Let g be the 6–dimensional Lie algebra over R with basis
{x1, . . . , x4, y1, y2} and Lie brackets defined by

[x1, x2] = y1, [x1, x3] = y2,

[x2, x4] = y2, [x3, x4] = −y1.

This is a canonical Lie algebra with one pair of elementary divisors (β,m) = (i, 1).
Hence, Lemma 9.2.15 says that dim(Inn(g)) = 4 and dim(AID(g)) = 8. We
already saw in Example 9.2.6 that g is nonsingular over R, so the same result
follows from Corollary 4.3.9.

Lemma 9.2.17. Let g be a canonical Lie algebra over F with minimal index
ε ≥ 1. Then it holds dim(Inn(g)) = 2ε+ 1 and dim(AID(g)) = 3ε.
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Proof. Consider the usual basis B = {x1, . . . , x2ε+1, y1, y2} and matrix pencil
µA+ λB = Mε. The Lie brackets of g are given by

[xi, xi+ε+1] = y2, 1 ≤ i ≤ ε,

[xj+1, xj+ε+1] = y1, 1 ≤ j ≤ ε.

It is easy to see that Z(g) = 〈y1, y2〉, so we have dim(Inn(g)) = 2ε+1. For ε = 1
we have AID(g) = Inn(g) by Theorem 9.1.1, since g is determined by a graph.
For ε ≥ 2, a basis of C(g) is given by the maps Di,j : g→ g for 1 ≤ i ≤ 2ε+ 1
and 1 ≤ j ≤ 2, defined by

2ε+1∑
k=1

akxk + (b1y1 + b2y2) 7→ aiyj .

Hence, we have dim(C(g)) = 4ε+ 2 and AID(g) ⊆ C(g). Suppose that

D =
2ε+1∑
i=1

αiDi,1 +
2ε+1∑
i=1

βiDi,2

is an element of AID(g). Then for any b ∈ F, we have

D

(
ε+1∑
i=1

bixi

)
=

ε+1∑
i=1

αib
iy1 +

ε+1∑
i=1

βib
iy2. (9.1)

Since D ∈ AID(g), there exist cj(b) ∈ F for all ε+ 2 ≤ j ≤ 2ε+ 1 such that

D

(
ε+1∑
i=1

bixi

)
=

ε+1∑
i=1

bixi,

2ε+1∑
j=ε+2

cj(b)xj


=

ε+1∑
i=2

bici+ε(b)y1 +
ε∑
i=1

bici+ε+1(b)y2. (9.2)

We also have

b

(
ε∑
i=1

bici+ε+1(b)
)

=
ε+1∑
i=2

bici+ε(b). (9.3)

Comparing coefficients of y1 and y2 in (9.1) and (9.2) and using (9.3), we find
that

b

ε+1∑
i=1

βib
i −

ε+1∑
i=1

αib
i = 0,
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so that

−α1b+
ε+1∑
i=2

(βi−1 − αi)bi + βε+1b
ε+2 = 0.

Since this holds for all b ∈ F, we obtain α1 = βε+1 = 0 and αi = βi−1 for all
2 ≤ i ≤ ε+ 1. This means that AID(g) is contained in V , which is the subspace

{D =
2ε+1∑
i=2

αiDi,1 +
2ε+1∑
i=1

βiDi,2 ∈ C(g) | βε+1 = 0, αi = βi−1 for 2 ≤ i ≤ ε+ 1}.

Note that dim(V ) = dim(C(g))− (ε+ 2) = 4ε+ 2− (ε+ 2) = 3ε. Hence, we have
that dim(AID(g)) ≤ 3ε and we claim that there holds equality. More precisely,
we will show that each Dj,1 for ε+ 2 ≤ j ≤ 2ε is almost inner. Here we do not
consider D2ε+1,1 because it already coincides with the inner derivation ad(xε+1),
so it is almost inner. Let

x =
2ε+1∑
i=1

aixi + (b1y1 + b2y2)

be an element in g. If aj = 0, then Dj,1(x) = [x, 0] = 0. Otherwise, we have

Dj,1(x) = −aj
a`

[x, x`−ε] = ajy1

for ` := max{j ≤ k ≤ 2ε+ 1 | ak 6= 0}. This shows that Dj,1 is almost inner for
all ε+ 2 ≤ j ≤ 2ε. Consider the subspace W of AID(g) generated by all Dj,1,
where we again take ε+ 2 ≤ j ≤ 2ε. We claim that

W ∩ Inn(g) = 0.

So assume that D =
∑2ε
j=ε+2 αjDj,1 ∈ W ∩ Inn(g) with D = ad(x) for some

x =
∑2ε+1
i=1 kixi. We will show that αj = 0 for all ε+ 2 ≤ j ≤ 2ε and ki = 0 for

all 1 ≤ i ≤ 2ε+ 1. Because of

0 = D(xm) = ad(x)(xm) =
[2ε+1∑
i=1

kixi, xm

]
= −kε+m+1y2 − kε+my1

for 2 ≤ m ≤ ε, we have kε+2 = · · · = k2ε+1 = 0. It follows that

αε+my1 = D(xε+m)

= ad(x)(xε+m)

= [k1x1 + · · ·+ kε+1xε+1, xε+m]

= km−1y2 + kmy1
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for all 2 ≤ m ≤ ε + 1, where we take α2ε+1 = 0. Hence, αj = 0 for all
ε + 2 ≤ j ≤ 2ε and ki = 0 for all 1 ≤ i ≤ 2ε + 1 and we have shown that
W ∩ Inn(g) = 0. We know that dim(Inn(g)) = 2ε + 1 and dim(W ) = ε − 1,
so that Inn(g) ⊕ W is a 3ε–dimensional subspace of AID(g). This implies
dim(AID(g)) ≥ 3ε and hence there holds equality.

Remark 9.2.18. For a minimal index ε = 0, the corresponding Lie algebra g is
just the abelian 3-dimensional Lie algebra (with basis {x1, y1, y2}) over F. In
this case, Inn(g) = AID(g) = 0 holds.

Example 9.2.19. For ε = 2, the canonical Lie algebra g of Lemma 9.2.17 is
isomorphic to the Lie algebra of Example 4.3.5 and Example 9.2.8. In all cases,
we have dim(Inn(g)) = 2ε+ 1 = 5 and dim(AID(g)) = 3ε = 6, which coincides
with the result of Example 4.3.5.

For the next lemma, let g be a 2–step nilpotent Lie algebra over an arbitrary
field F with basis {x1, . . . , xn, y1, . . . , ym, z1, . . . , zp}, where [g, g] = 〈z1, . . . , zp〉.
Define Lie subalgebras by

gx = 〈x1, . . . , xn, z1, . . . , zp〉,

gy = 〈y1, . . . , ym, z1, . . . , zp〉.

Lemma 9.2.20. Let g be a 2–step nilpotent Lie algebra over a field F with the
above basis such that [xi, yj ] = 0 for all 1 ≤ i ≤ n and 1 ≤ j ≤ m. Then we
have

dim(AID(g)) = dim(AID(gx)) + dim(AID(gy)).

Proof. Let D ∈ AID(g) and write e = x + y + z, where x ∈ 〈x1, . . . , xn〉,
y ∈ 〈y1, . . . , ym〉 and z ∈ [g, g]. Then there are maps ϕDx

: gx → gx and
ϕDy : gy → gy such that

D(e) = D(x+ y + z) = [x, ϕDx
(x)] +

[
y, ϕDy

(y)
]
.

This means that Dx : gx → gx, x 7→ D|gx
(x) ∈ AID(gx) with determination

map ϕDx
and Dy : gy → gy, y 7→ D|gy

(y) ∈ AID(gy) is determined by ϕDy
.

Conversely, any almost inner derivation of gx or gy can be extended to an almost
inner derivation of g.

Finally, we can state the main result of this section by combining the previous
lemmas. For clarity, we formulate this result as two separate theorems depending
on the type of field F we are considering. We only give a proof for the last
theorem in case F = R. The proof for the other case is similar.
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Theorem 9.2.21. Let g be a 2–step nilpotent Lie algebra of genus 2 over an
algebraically closed field F of characteristic not 2 with minimal indices ε1, . . . , εk
and elementary divisors

(∞, e1), . . . , (∞, es), (α1, f1), . . . , (αl, ft)

with αj ∈ F for all 1 ≤ j ≤ t. Then we have

dim(AID(g)) = dim(Inn(g)) +
k∑
j=1
εj 6=0

(εj − 1) + 2
s∑
j=1

(ej − 1) + 2
t∑

j=1
(ft − 1).

Theorem 9.2.22. Let g be a 2–step nilpotent Lie algebra of genus 2 over R
with minimal indices ε1, . . . , εk and elementary divisors

(∞, e1), . . . , (∞, es), (α1, f1), . . . , (αt, ft), (β1,m1), . . . , (βp,mp)

with αj ∈ R and βr = ar + bri ∈ C \ R for all 1 ≤ j ≤ l and 1 ≤ r ≤ p. Then
we have

dim(AID(g)) = dim(Inn(g))+
k∑
j=1
εj 6=0

(εj−1)+2
s∑
j=1

(ej−1)+2
t∑

j=1
(ft−1)+4

p∑
j=1

mj .

Proof. We may assume that g is canonical with N := k + s+ t+ p blocks. We
will show the result by induction on N . For N = 1, the claim follows from
the previous lemmas. If we have a canonical Lie algebra g with N + 1 blocks,
we take a basis {x1, . . . , xn, y1, . . . , ym, z1, z2}, where 〈z1, z2〉 = [g, g] and where
{x1, . . . , xn} corresponds to the first N blocks and {y1, . . . , ym} to the last
block. Since we have [xi, yj ] = 0 for all 1 ≤ i ≤ n and 1 ≤ j ≤ m, we can apply
Lemma 9.2.20 to show that the result holds for N + 1 blocks if it holds for N
blocks.

We can apply these theorems to Example 9.2.6 with n = 4.

Example 9.2.23. Let g be the Lie algebra over a field F with basis
{x1, . . . , x4, y1, y2} and Lie brackets defined by

[x1, x2] = y1, [x1, x3] = y2,

[x2, x4] = y2, [x3, x4] = −y1.

Then for F = R, we have that det(µA + λB) = (µ2 + λ2)2 = 0 if and only if
µ = λ = 0, so that AID(g) = C(g) and dim(AID(g)) = 2 · dim(Inn(g)) = 8.
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However, when F is an algebraically closed field of characteristic not 2, there
are no minimal indices and two pair of elementary divisors, namely (α, 1) and
(−α, 1), where α2 = −1. It follows from Theorem 9.2.21 that AID(g) = Inn(g).
Denote l for the number of different linear factors of det(µA+ λB) over F, then
we have that

dim(AID(g)/Inn(g)) = deg(det(µA+ λB))− 2l.

This corresponds to the observations at the end of Chapter 5.

9.3 Nonsingular Lie algebras

In Section 4.3, we already defined nonsingular Lie algebras as 2–step nilpotent
Lie algebras for which the determinant of the associated pencil only has the
trivial solution. Let g be a 2–step nilpotent Lie algebra over F. We fix a basis
{x1, . . . , xn, y1, . . . , ym} of g, where {y1, . . . , ym} is a basis of [g, g]. When g is
nonsingular, we have that AID(g) = C(g) and

dim(AID(g)) = m dim(Inn(g)) = mn,

so the dimension of AID(g) is ‘as large as can be’. This makes nonsingular
Lie algebras interesting for the study of almost inner derivations. When F
is algebraically closed, then g is nonsingular if and only if it is a generalised
Heisenberg Lie algebra. This means that g is not nonsingular if m ≥ 2. When
F is not algebraically closed, there also exist other nonsingular Lie algebras
with m ≥ 2. However, it is not easy to find examples for large m ∈ N. More
information and examples of real nonsingular Lie algebras can be found in [57].

Example 9.3.1. Consider the real Lie algebra with basis {x1, . . . , x4, y1, y2, y3}
and given by

[x1, x2] = [x3, x4] = y1,

[x1, x3] = [x4, x2] = y2,

[x1, x4] = [x2, x3] = y3.

The determinant of the corresponding matrix pencil

det


0 µ1 µ2 µ3
−µ1 0 µ3 −µ2
−µ2 −µ3 0 µ1
−µ3 µ2 −µ1 0

 = (µ2
1 + µ2

2 + µ2
3)2

implies that g is nonsingular over R. It follows from Corollary 4.3.9 that
dim(AID(g)) = 3 dim(Inn(g)) = 12.
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In this section, we will give a way to construct a nonsingular Lie algebra of
genus 2, where dim(g/[g, g]) is arbitrary large. Therefore, we will partially
generalise the results from the previous section to 2–step nilpotent Lie algebras
of genus 2 over an arbitrary field F.

In the previous section, we assumed that F = R or algebraically closed of
characteristic not two. We showed that every 2–step nilpotent Lie algebra of
genus 2 over F is isomorphic to a canonical Lie algebra (consisting of blocks on the
diagonal) with the same elementary divisors and minimal indices. Underneath,
the important steps for this result are discussed.

• Kronecker’s theorem states that matrix pencils are classified up to strict
equivalence by their elementary divisors and the minimal indices (see [32,
Volume II, page 40] and [34, Proposition 6.5]). This result holds for every
subfield of C.

• If two matrix pencils are strictly congruent over F, they are strictly
equivalent over F by definition. The converse is true when F is algebraically
closed of characteristic not two (see [34, Proposition 6.1]) and when F = R
(see [56, Lemma 13.1] and [80, pages 345–347]).

• When two matrix pencils over an arbitrary field F are strictly congruent,
the corresponding Lie algebras are isomorphic (see Proposition 9.2.4).

The crucial step is to find for which fields strict equivalence and strict congruence
are the same. The difficulty is that the proofs from [56] and [80] use specific
properties of R or the fact that F is algebraically closed. Hence, the proofs
cannot be easily adapted for other fields and another strategy has to be found.

In this subsection, we will give a generalisation of the elementary divisors. This
will allow us to construct for an arbitrary field (which is not algebraically closed)
a Lie algebra of genus 2 which is nonsingular over F.

Take an arbitrary field F (of any characteristic) and consider a polynomial
p(x) = xn + cn−1x

n−1 + · · ·+ c1x+ c0 which is irreducible over F. Denote

Cp =


0 · · · 0 −c0
1 −c1

. . .
...

1 −cn−1

 ∈Mn(F)
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for the companion matrix of p(x). We define

Tm :=



0 Cp(µ, λ)

. .
.
Cp(µ, λ) µIn

. .
.

0 Cp(µ, λ) . .
.

Cp(µ, λ) µIn


∈Mmn(F[µ, λ])

for m ≥ 2 and
T1 = Cp(µ, λ) = λIn − µCp.

Proposition 9.3.2. Take m ∈ N and let p(x) = xn+ cn−1x
n−1 + · · ·+ c1x+ c0

be a monic irreducible polynomial over a field F. The elementary divisors of the
matrix pencil

µA+ λB :=
(

0 Tm
−Tm 0

)
∈M2mn(F[µ, λ])

are (µnp(λ/µ))m, (µnp(λ/µ))m.

Proof. It suffices to compute the Smith normal form of the matrix pencil A+λB,
so we can take µ = 1. By permuting the rows and columns of Tm, we obtain
the matrix

T̃m :=



In 0 Cp(1, λ)

Cp(1, λ) In
. . .

. . .

. . . In 0
Cp(1, λ) 0


.

Note that the Smith normal forms of Tm and T̃m are the same. Since T̃m is
Gaussian equivalent to the matrix

In 0 Cp(1, λ)

In
. . . −(Cp(1, λ))2

. . .
...

In
(−1)m+1(Cp(1, λ))m

 ,

it suffices to compute the Smith normal form of Cp(1, λ)m. It is a straightforward
proof by induction on m ∈ N0 to show that this equals diag(1, . . . , 1, p(λ)m).



140 TWO-STEP NILPOTENT LIE ALGEBRAS

We will denote the pair of elementary divisors from the previous proposition as
(p,m).
Remark 9.3.3. This result generalises the elementary divisors from the previous
section.

• For p(x) = x− α and m = f , we have (λ− α)f , (λ− α)f and obtain the
matrix F (α, f).

• For p(x) = x2 + 1 over R, the matrix C(0, 1,m) can be obtained from the
matrix of the proposition by permuting the rows.

Note that the results from 9.2.2 were only stated over R and over an algebraically
closed field of characteristic not two. However, the proofs also work over arbitrary
fields. In particular, consider a Lie algebra g over a field F such that there
are no minimal indices and such that the determinant of the corresponding
matrix pencil splits in distinct linear factors. It follows from Lemma 9.2.14 and
Lemma 9.2.20 that AID(g) = Inn(g). These observations imply the following
result.

Corollary 9.3.4. Let p(x) be a monic polynomial of degree n which is irreducible
over a field F1 and denote F2 for the splitting field of F1. Let gF1 be a canonical
Lie algebra over F1 with one pair of elementary divisors (p,m). Denote gF2 for
the Lie algebra over F2 with the same Lie brackets.

• We have AID(gF1) = C(gF1), so dim(AID(gF1)) = dim(Inn(gF1)) + 2mn.

• If F2 : F1 is separable, then AID(gF2) = Inn(gF2).

Using the results from the previous section, the statement for AID(gF2) can
be made more precise when we know the factorisation of p(x) over F2. The
corollary illustrates two interesting features of almost inner derivations. On the
one hand, when a Lie algebra is considered over different fields (say F1 ⊆ F2),
the difference between AID(gF1) and AID(gF2) can be arbitrary large. Over
F1, we have a nonsingular Lie algebra, for which dim(AID(gF1)) is in a sense
‘as large as possible’. When F2 : F1 is separable, dim(AID(gF2) is ‘as small
as possible’, since the only almost inner derivations are the inner ones. On
the other hand, the dimension of AID(gF1)/Inn(gF1) can be an arbitrary large
(even) number. In the next section, we will give a family of Lie algebras {gn}n
for which dim(AID(gn)/Inn(gn)) = n.
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9.4 Lie algebras with arbitrary large AID(g)/Inn(g)

In the next chapters, we will have many negative results concerning the
existence of non-inner almost inner derivations. However, it is also possible to
construct infinite families of Lie algebras {gn}n such that AID(gn)/Inn(gn) has
an arbitrarily large dimension n, for any given n ∈ N. In the previous section,
we already showed examples of this phenomenon for Lie algebras of genus 2. In
this section, we do the same for another type of 2–step nilpotent Lie algebras.

Consider the following family of 2–step nilpotent Lie algebras gn of dimen-
sion 4n+2 over a general field F, with basis {t1, t2, x1,i, x2,i, y1,i, y2,i | 1 ≤ i ≤ n}
and non-zero Lie brackets

[t1, x1,i] = y1,i, [t1, x2,i] = y2,i, [t2, x2,i] = y1,i

for all 1 ≤ i ≤ n. We have gn = F4n o F2, where F2 is spanned by t1 and t2
and F4n is the subspace spanned by {xp,i, yp,i | 1 ≤ p ≤ 2 and 1 ≤ i ≤ n}.

Proposition 9.4.1. For every n ≥ 2, we have

dim(AID(gn)/Inn(gn)) = n.

Proof. Any element x of gn can be uniquely written in the form

x = α1t1 + α2t2 + v,

where α1, α2 ∈ F and v ∈ F4n = 〈xp,i, yp,i | 1 ≤ p ≤ 2 and 1 ≤ i ≤ n〉. Using
this notation, we define for any 1 ≤ i ≤ n a map

ϕDi : gn → gn : x = α1t1 + α2t2 + v 7→

{
0 if α1 = 0,
−α2
α1
x1,i + x2,i if α1 6= 0.

Define
Di : gn → gn : x 7→ Di(x) := [x, ϕDi(x)].

If α1 = 0, then Di(α1t1 + α2t2 + v) = 0 = α1y2,i. When α1 6= 0, we have that

Di(α1t1 + α2t2 + v) = [α1t1 + α2t2 + v,−α2

α1
x1,i + x2,i]

= −α2y1,i + α1y2,i + α2y1,i

= α1y2,i.

Hence, Di : gn → gn is a linear map having its image in the center of gn and so
Di is a derivation. By construction, Di ∈ AID(gn).
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We claim that {Di + Inn(gn) | 1 ≤ i ≤ n} forms a basis of AID(gn)/Inn(gn).
First, we will show that this is a linearly independent set. Assume that∑n
i=1 βiDi ∈ Inn(gn), then

n∑
i=1

βiDi = ad(α1t1 + α2t2 + v)

for some α1, α2 ∈ F and v ∈ F4n. As
∑n
i=1 βiDi(x1,1) = 0, it follows that

0 = [α1t1 + α2t2 + v, x1,1] = α1y1,1,

so that α1 = 0. Analogously, the fact that
∑n
i=1 βiDi(x2,1) = 0 leads to α2 = 0,

which means that
∑n
i=1 βiDi = ad(v) with v ∈ F4n. This implies that

n∑
i=1

βiy2,i =
n∑
i=1

βiDi(t1) = [v, t1],

0 =
n∑
i=1

βiDi(t2) = [v, t2].

The second equation above shows that v has no component for x2,i (with
1 ≤ i ≤ n) and thus, [v, t1] = 0 holds. Using this in the first equation above
leads to β1 = β2 = · · · = βn = 0.

Next, we have to verify that the set is generating. Let D ∈ AID(gn) be
determined by a map ϕD. We have to show that

D =
n∑
i=1

βiDi + ad(x)

for some β1, β2, . . . , βn ∈ F and x ∈ gn. Many of the basis vectors turn out to
be fixed.

• Every basis vector which belongs to the center of gn is fixed.

• It follows from Lemma 4.2.3 that x1,i is fixed for all 1 ≤ i ≤ n, since its
centraliser is of codimension 1 in gn.

• To see that t2 is fixed, note that the basis vectors not belonging to Cgn(t2)
are the vectors x2,i, with 1 ≤ i ≤ n. Take 1 ≤ i ≤ n, then we can apply
Lemma 4.2.7 with ei = t2, ej = x2,i, ek = x2,j , el = y1,i and em = y1,j .
This shows that tt2(ϕD(x2,i)) = tt2(ϕD(x2,j)), from which it follows that
t2 is fixed.
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• We now will show that t1 is fixed as well. Take arbitrary 1 ≤ i, j ≤ n.
We start with applying Lemma 4.2.7 with ei = t1, ej = x1,i, ek = x1,j ,
el = y1,i and em = y1,j . This gives us that

tt1(ϕD(x1,i)) = tt1(ϕD(x1,j))

for all 1 ≤ i, j ≤ n. We apply the same Lemma 4.2.7 with ei = t1,
ej = x1,i, ek = x2,j , el = y1,i and em = y2,j , where we require that i 6= j.
We find that

tt1(ϕD(x1,i)) = tt1(ϕD(x2,j))
for all 1 ≤ i, j ≤ n with i 6= j. Together with the above (and knowing
that n ≥ 2), we can conclude that

tt1(ϕD(x1,i)) = tt1(ϕD(x1,j)) = tt1(ϕD(x2,k))

for all 1 ≤ i, j, k ≤ n, showing that t1 is fixed.

This means that every basis vector is fixed, except for x2,i, where 1 ≤ i ≤ n.
We apply Lemma 4.2.5 for every fixed basis vector and change D up to an
inner derivation each time. Let x be a basis vector, then we may assume that
ϕD(x) =

∑n
i=1 βi(x)x2,i, where βi(x) ∈ F for all 1 ≤ i ≤ n. We change D

to D + ad(ϕD(t2)). In this way, we may suppose that ϕD(t2) = 0 and also
D(t2) = [t2, ϕD(t2)] = 0. Take x ∈ {xp,i, yp,i | 1 ≤ p ≤ 2 and 1 ≤ i ≤ n}, then
we also have

D(x) = [x, ϕD(x)] = [x,
n∑
i=1

βi(x)x2,i] = 0.

Finally, it follows that

D(t1) = [t1, ϕD(t1)] = [t1,
n∑
i=1

βi(t1)x2,i] =
n∑
i=1

βi(t1)y2,i.

As a conclusion, we find that, after changing D up to an inner derivation, we
obtain

D =
n∑
i=1

βi(t1)Di.

This shows that the set {Di + Inn(gn) | 1 ≤ i ≤ n} forms a basis of
AID(gn)/Inn(gn).

Remark 9.4.2. For n = 1 the basis vector t1 is not fixed. Then the algebra
g1 of the above family has 2–dimensional commutator Lie algebra, so we can
compute the almost inner derivations with the techniques from Section 9.2. For
this algebra, it turns out that dim(AID(g1)/Inn(g1)) = 2.





Chapter 10

Filiform Lie algebras

Last chapter, we studied two-step nilpotent Lie algebras, which are (after the
abelian ones) the ‘most’ nilpotent Lie algebras. This chapter is devoted to
filiform Lie algebras. These are considered to be the ‘least’ nilpotent ones. Since
we work with nilpotent Lie algebras, we can assume that the dimension is at
least three. The following result is well-known.

Theorem 10.0.1. Let g be an n–dimensional filiform Lie algebras over a field F,
then there exists an adapted basis B = {e1, . . . , en} such that

[e1, ei] = ei+1, 2 ≤ i ≤ n− 1,

[ei, ej ] ∈ 〈ei+j , . . . , en〉, 4 ≤ i+ j ≤ n,

[ei+1, en−i] = (−1)iαen 1 ≤ i ≤ n− 2.

The undefined Lie brackets are zero. Moreover, α ∈ F is zero when n is odd.

The above result also implies that dim(Inn(g)) = n− 1 holds. In this chapter,
we will study the almost inner derivations for different types of filiform Lie
algebras. The first section is about metabelian filiform Lie algebras, where we
obtain a complete result. This also includes the classes Ln and Rn discussed in
[42]. In the following section, we determine the almost inner derivations for the
classes Qn and Wn discussed in the same reference. Note that the notation is
different from the one in [42], where the Lie algebras with subscript ‘n’ have
dimension n+ 1 and where the adapted basis is denoted as {e0, . . . , en}. The
last section of this chapter contains computations for a class of filiform Lie
algebras where all derivations are almost inner (but not all inner). These Lie
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algebras were also studied in [10] for a different purpose. Most of the results
from this chapter already appeared in [7] and [8]. However, the statements
from [7] were formulated for complex Lie algebras, whereas they are valid for
Lie algebras over a general field. We will specify at the start of each section
over which field F we work. Therefore, we will not mention the fields in the
definitions and results when it is not really necessary.

10.1 Metabelian filiform Lie algebras

In this section, we will study the almost inner derivations for the filiform Lie
algebras which are also two-step solvable. It turns out that the adapted basis for
metabelian filiform Lie algebras can be described in an easy way. We consider
a general field F (over an arbitrary characteristic).

Definition 10.1.1 (Standard graded filiform Lie algebra). Consider fn, the
n–dimensional Lie algebra with basis B = {e1, . . . , en} and Lie brackets defined
by

[e1, ei] = ei+1, 2 ≤ i ≤ n− 1.

The Lie algebra fn is called the ‘standard graded filiform Lie algebra’ of
dimension n.

This is the standard and most easy example of a filiform Lie algebra. The
smallest example is the Heisenberg Lie algebra f3 = h3(F). In [42], the Lie
algebra fn is denoted as Ln−1.

Proposition 10.1.2. Let n ≥ 3 and denote fn for the standard graded filiform
nilpotent Lie algebra of dimension n, then AID(fn) = Inn(fn) holds.

Proof. The Lie algebra fn has a basis {e1, . . . , en} for which the non-zero Lie
brackets are given by [e1, ei] = ei+1, where 2 ≤ i ≤ n−1. LetD ∈ AID(fn) be an
arbitrary almost inner derivation determined by ϕD. Lemma 4.2.3 implies that
the basis vector ei is fixed for all 2 ≤ i ≤ n− 1. Take arbitrary 2 ≤ j, k ≤ n− 1
with j 6= k. We have

[ej , e1] + ej+1 ∈ gj+1,k+1
[ek, e1] + ek+1 ∈ gj+1,k+1
[ej , g1] ⊆ gj+1,k+1
[ek, g1] ⊆ gj+1,k+1.

It follows from Lemma 4.2.7 that t1(ϕD(ej)) = t1(ϕD(ek)). Since j and k were
arbitrary, we find that e1 is fixed as well. Corollary 4.2.6 yields that D is inner,
which concludes the proof.



METABELIAN FILIFORM LIE ALGEBRAS 147

For other metabelian filiform Lie algebras, this result does not hold. For instance,
we studied in Example 4.1.6 a metabelian filiform nilpotent Lie algebra g with
dim(AID(g)) = dim(Inn(g)) + 1. It turns out that this example generalises to
all metabelian filiform Lie algebras of dimension n ≥ 5 which are not standard
graded. We will look at the adapted basis for metabelian filiform Lie algebras
in more detail.

Proposition 10.1.3 ([5]). Let g be a metabelian filiform Lie algebra g over
a field F. Suppose that g has dimension n ≥ 3, then it has an ‘adapted basis’
B = {e1, . . . , en} such that

[e1, ei] = ei+1, 1 ≤ i ≤ n− 1,

[e2, ej ] = α2,5e2+j + . . .+ α2,n−j+3en, 3 ≤ j ≤ n− 2,

[ek, el] = 0, 3 ≤ k, l ≤ n,

with structure constants {α2,j ∈ F | 5 ≤ j ≤ n}.

Clearly g ∼= fn holds if and only if all structure constants α2,j (with 5 ≤ j ≤ n)
are zero. The second set of equations only defines non-zero brackets if n ≥ 5.
Hence, if the dimension is at most 4, all metabelian filiform Lie algebras are
standard graded.

Example 10.1.4. The Lie algebra Rn−1 (for n ≥ 5) from [42] has an adapted
basis {e1, . . . , en} and is defined by the Lie brackets

[e1, ei] = ei+1, 2 ≤ i ≤ n− 1,

[e2, ek] = ek+2, 3 ≤ k ≤ n− 2.

This is a metabelian filiform Lie algebra with α2,5 = 1 and where all other
structure constants α2,j (with 6 ≤ j ≤ n) are zero.

With the aid of this adapted basis, it is possible to prove a general result
concerning the almost inner derivations of metabelian filiform Lie algebras.
First, we need the following lemma.

Lemma 10.1.5. Let gn be a metabelian filiform Lie algebra of dimension n ≥ 3
with adapted basis B. Suppose that D ∈ AID(gn), then there exist x ∈ g and
λ ∈ F such that

D − ad(x) = λEn,2.

Proof. We proceed by induction on the dimension n of g.
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• Basis step: If n < 5, then gn is a standard filiform Lie algebra and all
almost inner derivations are inner by Proposition 10.1.2. The result holds
with λ = 0.

• Induction step: Assume that n ≥ 5 and that the lemma is valid
for metabelian filiform Lie algebras of smaller dimensions (induction
hypothesis). Consider the adapted basis for gn. Let D ∈ AID(gn) be
an arbitrary almost inner derivation. Then D induces an almost inner
derivation D̄ on gn/〈en〉 ∼= gn−1. We may assume by the induction
hypothesis that, after changing D up to an inner derivation, we have
D̄ = µEn−1,2 for some µ ∈ F. This implies that D(e1) = aen for
some a ∈ F. We replace D with D′ = D + ad(aen−1). Then we have
D′(e1) = D(e1) + [aen−1, e1] = 0 and

D′(ei) = D(ei) + [aen−1, ei] = D(ei)

for all 2 ≤ i ≤ n. In particular, this means that

D′(e2) = D(e2) = µen−1 + λen

for some µ, λ ∈ F. It follows that

D′(e3) = D′([e1, e2]) = [D′(e1), e2] + [e1, D
′(e2)] = µen,

D′(e4) = D′([e1, e3]) = [D′(e1), e3] + [e1, D
′(e3)] = 0

and analogously D′(ei) = 0 for 5 ≤ i ≤ n. To finish the proof, we have to
show that µ = 0.
Suppose that µ 6= 0. Since we have D′(e3) = µen and D′ ∈ AID(g), there
must exist an element

∑n
i=1 aiei ∈ g with [

∑n
i=1 aiei, e3] = µen. This

leads to the equation

a1e4 + a2[e2, e3] = µen,

which expands to

a1e4 + a2(α2,5e5 + α2,6e6 + · · ·+ α2,nen) = µen.

Since we assume that µ 6= 0, this implies

α2,5 = α2,6 = · · · = α2,n−1 = 0.

As a conclusion thus far, we have found that when µ 6= 0, then

[e2, e3] = α2,nen,

[e2, ei] = 0
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for all 4 ≤ i ≤ n. There also exists an element
∑n
i=1 biei ∈ g with

D′(e2) = [
∑n
i=1 biei, e2]. This leads to the equation

µen−1 + λen = b1e3 − b3α2,nen.

This equation does not have a solution, because we suppose that µ 6= 0.
Hence, we obtain a contradiction and µ = 0, which was to be shown.

• Conclusion: By the principle of induction, the statement follows from the
basis and induction step.

The lemma now easily implies the following result.

Proposition 10.1.6. Let gn be a metabelian filiform Lie algebra of dimen-
sion n ≥ 5 with adapted basis B. If gn is different from fn, then

AID(g) = CAID(g) = Inn(g)⊕ 〈En,2〉.

Proof. We only have to show that D = En,2 is an almost inner derivation.
It is clear that it is a derivation, so we will only show that D satisfies the
almost inner condition. Take an arbitrary x =

∑n
i=1 xiei ∈ g. If x1 6= 0, then

D(x) = x2en = [x, x2
x1
en−1]. Otherwise, we have x1 = 0. Since g is not the

standard graded algebra fn, there exists a minimal index i with 5 ≤ i ≤ n such
that α2,i 6= 0. Then, for k = n− i+ 3 ≥ 3 we have D(x) = x2en = [x, 1

α2,i
ek].

Hence D(x) ∈ [x, g] for all x ∈ g and this concludes the proof.

This result does not hold for filiform Lie algebras in general. We will show this
in the next sections by computing the almost inner derivations for different
classes of filiform Lie algebras.

10.2 Other filiform Lie algebras

In this section, we determine the almost inner derivations for the classes Qn and
Wn of filiform nilpotent Lie algebras discussed in [42, Chapter 4]. Note that we
work with a different notation than in [42] for the adapted basis. Throughout
this section, we consider a field F of characteristic zero.

Definition 10.2.1 (Lie algebra Qn). Let n ≥ 6 be even. The Lie algebra Qn
is defined by the Lie brackets

[e1, ei] = ei+1, 2 ≤ i ≤ n− 1,

[ej , en−j+1] = (−1)j+1en, 2 ≤ j ≤ n

2 .
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Let x =
∑n
i=1 xiei ∈ Qn. Define linear maps in End(Qn) by

t0(x) = x2en,

t1(x) = x1e1 + x1e2 +
n−1∑
i=3

(i− 2)xiei + (n− 3)xnen,

t2(x) = −x1e2 +
n−1∑
i=2

xiei + 2xnen,

hs(x) =
n+1−2s∑
i=2

xiei−1+2s, 2 ≤ s ≤ n

2 − 1.

A computation shows that these linear maps are derivations of Qn. We have
the following result, see [42].

Proposition 10.2.2. Let n ≥ 6 be even, then a basis of Der(Qn) is given by
{ad(e1), . . . , ad(en−1), t0, t1, t2, h2, h3, . . . , hn

2−1}.

This shows that dim Der(Qn) = 3n
2 . Note that there is a mistake in the

formulation and proof in [42], since the map t0 is not taken into account,
although it is a derivation. It corresponds with the map dn−2 of the proof,
which is not zero as is claimed there. It turns out that every almost inner
derivation of Qn is inner.

Proposition 10.2.3. Let n ≥ 6 be even, then AID(Qn) = Inn(Qn) holds.

Proof. Take an arbitrary D ∈ 〈t0, t1, t2, hs | 2 ≤ s ≤ n
2 − 1〉, then there exist

values α0, α1, α2, βs (with 2 ≤ s ≤ n
2 − 1) such that

D = α0t0 + α1t1 + α2t2 +
n
2−1∑
s=2

βshs.

Suppose that D ∈ AID(Qn). For x =
∑n
i=1 xiei ∈ Qn, we have

[e1 + e2, x] = (x2 − x1)e3 +
n−1∑
i=4

xi−1ei.

Since D(e1 + e2) = α0en + α1(e1 + e2) +
∑n

2−1
s=2 βse2s+1, we must have that

α0 = α1 = 0.
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Moreover, D(e2) = α2e2 +
∑n

2−1
s=2 βse2s+1, but [e2, Qn] = 〈e3, en〉, which means

that α2 = βs = 0 (for all 2 ≤ s ≤ n
2 −1). Hence, the only almost inner derivation

in 〈t0, t1, t2, hs | 2 ≤ s ≤ n
2 − 1〉 is D = 0.

Definition 10.2.4 (Witt Lie algebra). The Witt Lie algebra Wn for n ≥ 5 is
defined by the Lie brackets

[e1, ei] = ei+1, 2 ≤ i ≤ n− 1,

[ei, ej ] = 6(j − i)
j(j − 1)

(
j+i−2
i−2

)ei+j , 2 ≤ i ≤ n− 1
2 and i+ 1 ≤ j ≤ n− i.

The Witt algebra Wn also has a basis {f1, . . . , fn} which is not adapted and
where the non-zero Lie brackets are [fi, fj ] = (j − i)fi+j for 1 ≤ i + j ≤ n.
However, in what follows, we will use the adapted one. Suppose that n ≥ 6 and
take x =

∑n
i=1 xiei ∈Wn. Define linear maps in End(Wn) by

t1(x) = x2en,

t2(x) = x2en−1 + x3en,

t3(x) = x2en−2 + x3en−1 + x4en,

h(x) =
n∑
i=1

ixiei.

These linear maps are derivations ofWn. Moreover, we have the following result,
see [42].

Proposition 10.2.5. Let n ≥ 6. Then {ad(e1), . . . , ad(en−1), t1, t2, t3, h} is a
basis of Der(Wn).

This result does not hold forW5, as we already computed in Example 4.1.6. From
this proposition, we can compute the Lie algebra of almost inner derivations. It
turns out that the dimension of AID(Wn) depends on the value of n.

Proposition 10.2.6. Take n ≥ 5 and consider the Witt Lie algebra Wn.

• For 5 ≤ n ≤ 6, we have AID(Wn) = Inn(Wn)⊕ 〈t1〉.

• If 7 ≤ n ≤ 8, then AID(Wn) = Inn(Wn)⊕ 〈t1, t2〉.

• When n ≥ 9, we have AID(Wn) = Inn(Wn)⊕ 〈t1, t2, t3〉.
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Proof. For all 2 ≤ i < j ≤ n − i, we will write [ei, ej ] = ci,jei+j for the
coefficients appearing in the Lie brackets of Wn. For other values of i and
j, the coefficient ci,j is not defined. The proof consists of different steps. In
the first part, we will specify the determination maps ϕti for 1 ≤ i ≤ 3. Let
x =

∑n
i=1 xiei ∈Wn. It suffices to show that ti(x) = [x, ϕti(x)].

• Define a map ϕt1 : Wn →Wn by

ϕt1(x) =
{
x2
x1
en−1 if x1 6= 0,
1

c2,n−2
en−2 if x1 = 0.

Here n− 2 ≥ 3 in c2,n−2 since n ≥ 5. When x1 6= 0, it follows that
x2

x1
[x, en−1] = x2[e1, en−1] = x2en = t1(x).

For x1 = 0, we have 1
c2,n−2

[x, en−2] = x2
c2,n−2

[e2, en−2] = x2en = t1(x).

• For n ≥ 7, we define a map ϕt2 : Wn →Wn by

ϕt2(x) =


x2
x1
en−2 + (x3

x1
− c2,n−2x

2
2

x2
1

)en−1 if x1 6= 0,
1

c2,n−3
en−3 + (c2,n−3−c3,n−3)x3

c2,n−2c2,n−3x2
en−2 if x1 = 0 and x2 6= 0,

1
c3,n−3

en−3 if x1 = x2 = 0.

This is well-defined for the coefficients ci,j , since n ≥ 7. For x1 6= 0, we
have

[x, ϕt2(x)] = x2[e1, en−2] +
(
x3 − c2,n−2

x2
2
x1

)
[e1, en−1] + x2

2
x1

[e2, en−2]

= x2en−1 + x3en − c2,n−2
x2

2
x1
en + c2,n−2

x2
2
x1
en

= t2(x).

When x1 = 0 and x2 6= 0, we have

[x, ϕt2(x)] = x2

c2,n−3
[e2, en−3] + c2,n−3 − c3,n−3

c2,n−2c2,n−3
x3[e2, en−2]

+ x3

c2,n−3
[e3, en−3]

= x2en−1 + x3

(
c2,n−3 − c3,n−3

c2,n−3
+ c3,n−3

c2,n−3

)
en

= t2(x).
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Finally, if x1 = x2 = 0, then
1

c3,n−3
[x, en−3] = x3

c3,n−3
[e3, en−3] = x3en = t2(x).

• For n ≥ 9, we define a map ϕt3 : Wn →Wn by

ϕt3(x) =


ρ1(x) if x1 6= 0,
ρ2(x) if x1 = 0 and x2 6= 0,
ρ3(x) if x1 = x2 = 0 and x3 6= 0,
ρ4(x) if x1 = x2 = x3 = 0,

with

ρ1(x) = x2

x1
en−3 +

(
x3

x1
− c2,n−3x

2
2

x2
1

)
en−2

+
(
x4

x1
− (c2,n−2 + c3,n−3)x2x3

x2
1

+ c2,n−2c2,n−3x
3
2

x3
1

)
en−1,

ρ2(x) = 1
c2,n−4

en−4 + (c2,n−4 − c3,n−4)x3

c2,n−3c2,n−4x2
en−3

+
(

(c2,n−4 − c4,n−4)x4

c2,n−2c2,n−4x2
− (c2,n−4 − c3,n−4)c3,n−3x

2
3

c2,n−2c2,n−3c2,n−4x2
2

)
en−2,

ρ3(x) = 1
c3,n−4

en−4 + (c3,n−4 − c4,n−4)x4

c3,n−3c3,n−4x3
en−3,

ρ4(x) = 1
c4,n−4

en−4.

Since n ≥ 9, all coefficients ci,j > 0 are well-defined and hence also the
determination map ϕt3 . We will check that t3(x) = [x, ϕt3(x)] holds for
all x ∈ g. For x1 6= 0, we have that

[x, ρ1(x)] = x2[e1, en−3] + x3[e1, en−2]− c2,n−3
x2

2
x1

[e1, en−2]

+ x4[e1, en−1]− (c2,n−2 + c3,n−3)x2x3

x1
[e1, en−1]

+ c2,n−2 · c2,n−3
x3

2
x2

1
[e1, en−1] + x2

2
x1

[e2, en−3]

+ x2x3

x1
[e2, en−2]− c2,n−3

x3
2
x2

1
[e2, en−2] + x2x3

x1
[e3, en−3].
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The Lie brackets of g imply that

[x, ρ1(x)] = x2en−2 + x3en−1 + (−c2,n−3 + c2,n−3)x
2
2
x1
en−1 + x4en

+ x2x3

x1
(−c2,n−2 − c3,n−3 + c2,n−2 + c3,n−3)en

+ x3
2
x2

1
(c2,n−2 · c2,n−3 − c2,n−2 · c2,n−3)en

= x2en−2 + x3en−1 + x4en,

so [x, ρ1(x)] = t3(x) in this case. If x1 = 0 and x2 6= 0, then

[x, ρ2(x)] = 1
c2,n−4

x2[e2, en−4] + c2,n−4 − c3,n−4

c2,n−3 · c2,n−4
x3[e2, en−3]

+ c2,n−4 − c4,n−4

c2,n−2 · c2,n−4
x4[e2, en−2]

− (c2,n−4 − c3,n−4) · c3,n−3

c2,n−2 · c2,n−3 · c2,n−4

x2
3
x2

[e2, en−2]

+ x3
1

c2,n−4
[e3, en−4] + c2,n−4 − c3,n−4

c2,n−3 · c2,n−4

x2
3
x2

[e3, en−3]

+ x4

c2,n−4
[e4, en−4]

= x2en−2 + x3

(
c2,n−4 − c3,n−4

c2,n−3 · c2,n−4
c2,n−3 + c3,n−4

c2,n−4

)
en−1

+ x4

(
c2,n−4 − c4,n−4

c2,n−2 · c2,n−4
c2,n−2 + c4,n−4

c2,n−4

)
en

+ x2
3
x2

(
− (c2,n−4 − c3,n−4) · c3,n−3

c2,n−2 · c2,n−3 · c2,n−4
c2,n−2

+ c2,n−4 − c3,n−4

c2,n−3 · c2,n−4
c3,n−3

)
en

= x2en−2 + x3en−1 + x4en

= t3(x).
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When x1 = x2 = 0 and x3 6= 0, then

[x, ρ3(x)] = [x, 1
c3,n−4

en−4 + c3,n−4 − c4,n−4

c3,n−3 · c3,n−4

x4

x3
en−3]

= 1
c3,n−4

x3[e3, en−4] + c3,n−4 − c4,n−4

c3,n−3 · c3,n−4
x4[e3, en−3]

+ 1
c3,n−4

x4[e4, en−4]

= c3,n−4

c3,n−4
x3en−1 + x4

(
c3,n−4 − c4,n−4

c3,n−4
+ c4,n−4

c3,n−4

)
en

= x3en−1 + x4en

= t3(x).

For x1 = x2 = x3 = 0, we have

1
c4,n−4

[x, en−4] = x4

c4,n−4
[e4, en−4] = c4,n−4

c4,n−4
x4en = x4en = t3(x).

This finishes the first part of the proof. In the remainder, we will show that the
above maps and the inner derivations indeed generate AID(Wn).

• Suppose that 5 ≤ n ≤ 6, then Wn = Rn is metabelian filiform. The result
now follows from Proposition 10.1.6.

• Assume that 7 ≤ n ≤ 8 and take a derivation D = ah+ bt3 for a, b ∈ F.
Suppose that D is almost inner. We find that D(e1) = ae1. Since we have
that [e1,Wn] = 〈e2, . . . , en〉, this shows that a = 0. Further, when n = 7,
we see that D(e3) = be6. Since [e3,W7] = 〈e4, e5, e7〉, we must have that
b = 0. Similarly, for n = 8, we have D(e4) = be8, but e8 /∈ [e4,W8]. In
both cases, we find that D is almost inner if and only if a = b = 0.

• Take arbitrary n ≥ 9. The derivation h does not satisfy the almost inner
condition, since h(e1) = e1 6∈ [e1,Wn].

The claim now follows from Proposition 10.2.5 and this finishes the proof.
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10.3 Lie algebras for which all derivations are
almost inner

Throughout this thesis, one of the research questions is to see which of the
inclusions in the chain Inn(g) ⊆ CAID(g) ⊆ AID(g) ⊆ Der(g) are actually
equalities. We already considered various possibilities. For many Lie algebras,
the only almost inner derivations are the inner ones. However, it is a lot more
difficult to have examples of Lie algebras where the opposite happens, namely
that all derivations are almost inner. In Chapter 8, we studied examples of
solvable and non-nilpotent Lie algebras where this is the case, but this is only
valid over some specific fields. In this section, we will give an example of a
nilpotent Lie algebra where the same holds. We consider in this section a field F
of characteristic zero.

Let g be a nilpotent Lie algebra. Proposition 4.1.8 implies that AID(g) is
nilpotent and all D ∈ AID(g) are nilpotent. Hence, a necessary condition is to
have a Lie algebra for which all derivations are nilpotent. In [10], the authors
introduced a family of filiform nilpotent Lie algebras fn for n ≥ 13. They are
closely related to the Witt algebras Wn. The Lie brackets are defined as follows:

[e1, ei] = ei+1,

[ei, ej ] =
n∑
r=1

 b j−i−1
2 c∑
`=0

(−1)`
(
j − i− `− 1

`

)
αi+`, r−j+i+2`+1

 er,

where 2 ≤ i ≤ n− 1 and i < j ≤ n. The parameters αk,s for 1 ≤ k, s ≤ n are
zero except for

α`,2`+1 = 3(
`
2
)(2`−1

`−1
) , 2 ≤ ` ≤ bn−1

2 c,

α3,n−4 = 1,

α4,n−2 = 1
7 + 10

21
(n− 7)(n− 8)
(n− 4)(n− 5) ,

α4,n =
{

22105
15246 if n = 13,
0 if n ≥ 14,
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and

α5,n = 1
42 −

70(n− 8)
11(n− 2)(n− 3)(n− 4)(n− 5) + 25

99
(n− 6)(n− 7)(n− 8)
(n− 2)(n− 3)(n− 4)

+ 5
66

(n− 5)(n− 6)
(n− 2)(n− 3) −

65
1386

(n− 7)(n− 8)
(n− 4)(n− 5) .

In [10], it was proven that these Lie brackets satisfy the Jacobi identity, so fn is
a Lie algebra for all n ≥ 13. Since many parameters vanish, the definition of
the Lie brackets can be eased. For convenience, we consider the case n = 13
separately.

Lemma 10.3.1. Let fn (with n ≥ 14) be the Lie algebra over a field F with
basis {e1, . . . , en} as above. Then we have that

[e1, ei] = ei+1, 2 ≤ i ≤ n− 1,

[ei, ej ] = ci,jei+j + dni,jei+j+n−11, 2 ≤ i < j and i+ j ≤ 11,

where the coefficients

ci,j = 6(j − i)
j(j − 1)

(
j+i−2
i−2

)
are the same as for the Witt Lie algebras Wn. Further, the values dni,j are
defined as

dni,j =
b i+j−1

2 c∑
k=i

(−1)k−i
(
j − k − 1
k − i

)
αk,2k+n−10

when 2 ≤ i < j and 7 ≤ i+ j ≤ 11 and zero otherwise.

Proof. Denote ckij for the structure constants of fn, so 1 ≤ i, j, k ≤ n. By
rewriting the Lie brackets from above, we find for all 2 ≤ i < j ≤ n that

[ei, ej ] =
n∑
r=1

b
j−i−1

2 c∑
l=0

(−1)l
(
j − i− l − 1

l

)
αi+l,r−(j−i−1)+2l

 er

=
n∑
r=1

b
j+i−1

2 c∑
k=i

(−1)k−i
(
j − k − 1
k − i

)
αk,2k+1+r−(i+j)

 er.
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The definition of the parameters αk,s (with 1 ≤ k, s ≤ n) imply that crij = 0,
unless for r = i+ j (if i+ j ≤ n) and r = n+ i+ j − 11 (if 7 ≤ i+ j ≤ 11). We
obtain that

ci,j =
b j+i−1

2 c∑
k=i

(−1)k−i
(
j − k − 1
k − i

)
3(

k
2
)(2k−1

k−1
)

for all 2 ≤ i < j with i+j ≤ n. The result now follows from the Pfaff-Saalschütz
sum formula, see [10]. This concludes the proof.

When n = 13, the Lie brackets are the same, but with one exception, since
α4,13 6= 0. For 2 ≤ i ≤ 4 and i+ j = 9, we find that

[ei, ej ] = ci,je9 + d13
i,je11 + (−1)iα4,13e13.

Take n ≥ 13 and consider the maps ti : fn → fn (with 1 ≤ i ≤ 3), where
x =

∑n
i=1 xiei is mapped to

t1(x) = x2en,

t2(x) = x2en−1 + x3en,

t3(x) = x2en−2 + x3en−1 + x4en.

These maps generate, together with the inner derivations, the derivation algebra
of fn.

Proposition 10.3.2. Consider n ≥ 13, then a basis for Der(fn) is given by
B = {ad(e1), . . . , ad(en−1), t1, t2, t3}.

Proof. With the Lie brackets from Lemma 10.3.1, it is easy to see that t1, t2
and t3 belong to Der(fn) for all n ≥ 13. Moreover, a calculation (by hand or
with a computer) shows that all elements of B are linearly independent.

Let D ∈ Der(fn) be an arbitrary derivation. It suffices to show that there exist
x ∈ fn and λ, µ, σ ∈ F such that D + ad(x) = λt1 + µt2 + σt3. We will prove
this by induction on the dimension n.

• Basis step: A direct computation shows that the result holds for n = 13.

• Induction step: Take n ≥ 14 and suppose that the statement is true for
n − 1 (induction hypothesis). Let D ∈ Der(fn) be a derivation, then D
induces a derivation D̄ on fn/〈en〉 ∼= fn−1. By the induction hypothesis,
we can assume that, after changing D up to an inner derivation,

D̄ = µEn−1,2 + σ(En−2,2 + En−1,3) + τ(En−3,2 + En−2,3 + En−1,4),
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with µ, σ, τ ∈ F. Then we have that D(e1) = aen, where a ∈ F. Replace
D by D′ := D+ad(aen−1), then we have D′(e1) = D(e1)+[aen−1, e1] = 0
and

D′(ei) = D(ei) + [aen−1, ei] = D(ei)

for all 2 ≤ i ≤ n. In particular, we find that

D′(e2) = D(e2) = τen−3 + σen−2 + µen−1 + λen,

where also λ ∈ F. Since [e1, ei] = ei+1 for all 2 ≤ i ≤ n− 1, this implies

D′(e3) = [D′(e1), e2] + [e1, D
′(e2)] = τen−2 + σen−1 + µen,

D′(e4) = [D′(e1), e3] + [e1, D
′(e3)] = τen−1 + σen,

D′(e5) = [D′(e1), e4] + [e1, D
′(e4)] = τen

and D′(ei) = 0 for 6 ≤ i ≤ n. To finish the proof, we have to show that
τ = 0. Assume that τ 6= 0, then the map

D̃ : fn → fn : x =
n∑
i=1

xiei 7→ x2en−3 + x3en−2 + x4en−1 + x5en

has to be a derivation. However, we have that D̃([e2, e3]) = D̃(e5) = en,
but

[D̃(e2), e3] + [e2, D̃(e3)] = [en−3, e3] + [e2, en−2]

= (−c3,n−3 + c2,n−2)en.

This gives a contradiction, since

c2,n−2 − c3,n−3 = 6(n2 − 9n+ 22)
(n− 2)(n− 3)(n− 4) 6= 1

for all n ≥ 13. Hence, we have τ = 0, which means that

D′ = D + ad(x) = λt1 + µt2 + σt3.

This concludes the proof.

• Conclusion: By the principle of mathematical induction, it follows from the
basis and induction step that Der(fn) = 〈ad(e1), . . . , ad(en−1), t1, t2, t3〉
for all n ≥ 13.
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We will show that for the Lie algebras fn (with n ≥ 13), all derivations are
almost inner.

Proposition 10.3.3. For all n ≥ 13, we have Inn(fn) 6= AID(fn) = Der(fn).

Proof. It suffices to show that t1, t2 and t3 are almost inner derivations for all
n ≥ 13. In Proposition 10.2.6, we showed that if n ≥ 9, then t1, t2 and t3 are
almost inner for the Witt algebra Wn by giving the determination maps ϕti ,
with 1 ≤ i ≤ 3. In the proof, we only used the Lie brackets

[e1, ek] = ek+1,

[ei, ej ] = ci,jei+j

for 2 ≤ k ≤ n− 1 and 2 ≤ i ≤ 4 and n− 4 ≤ j ≤ n− i. Hence, when n ≥ 14, we
can use the same determination maps ϕt1 , ϕt2 and ϕt3 as in Proposition 10.2.6.
When n = 13, the maps ϕt1 and ϕt2 are still valid. However, to show that t3
is almost inner, we need another map since c13

2,9 6= 0. Consider ϕ′t3 : f13 → f13,
where x =

∑13
i=1 xiei is mapped to{

12
7

(
e9 + x3

x2
e10

)
+
(

22105
2079 + 380

189
x4
x2
− 4

27
x2

3
x2

2

)
e11 if x1 = 0 and x2 6= 0,

ϕt3(x) otherwise.

Suppose that x1 = 0 6= x2, then we have that

[x, ϕ′t3(x)] = 12
7 x2

(
7
12e11 −

4421
1452e13

)
+ 12

7 ·
8
15x3e12

+ 27
55

(
22105
2079 x2 + 380

189x4 −
4
27
x2

3
x2

)
e13 + x3

12
7 ·

1
20e12

+ 12
7 ·

7
165

x2
3
x2
e13 + x4

12
7 ·

1
132e13

= x2e11 + x3

(
12
7 ·

8
15 + 12

7 ·
1
20

)
e12

+
(
−12

7 · 4421
1452 + 27

55 ·
22105
2079

)
x2e13

+
(
−27
55 ·

4
27 + 12

7 ·
7

165

)
x2

3
x2
e13 +

(
27
55 ·

380
189 + 12

7 · 132

)
x4e13

= x2e11 + x3e12 + x4e13.



Chapter 11

Free nilpotent Lie algebras

In the last two chapters, we studied two different classes of nilpotent Lie algebras.
First, we computed the almost inner derivations for the ‘most’ (non-abelian)
nilpotent Lie algebras. Chapter 10 was about filiform Lie algebras, the so-called
‘least’ nilpotent Lie algebras. In this chapter, we will consider the free nilpotent
Lie algebras, a type of nilpotent Lie algebras where all nilindices can occur.
First, the notion of a free Lie algebra is explained and a suitable basis is worked
out. Further, we compute the almost inner derivations for different free nilpotent
Lie algebras. The results of Section 11.3 and Section 11.4 already appeared in
[7], whereas the last section comes from [8]. In each section, we will specify over
which field F we work.

11.1 Background

In this section, we will explain the concept of free (nilpotent) Lie algebras
which are finitely generated. Therefore, we will make use of the Hall basis. We
consider a general field F.

Definition 11.1.1 (Free Lie algebra). Let X be a finite set with r elements.
Let f be a Lie algebra and i : X → f a map of sets. The Lie algebra f is free on
X if for every Lie algebra g with a map of sets f : X → g, there is a unique Lie
algebra morphism ϕ : f→ g with f = ϕ ◦ i.

For every finite set X, there is a unique free Lie algebra generated by X. This
Lie algebra has r := |X| generators and is denoted with fr. A free Lie algebra
on r generators is also called to be of rank r. More intuitively, one can think

161
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of fr as the Lie algebra generated by r elements x1, . . . , xr such that the only
relations are the ones due to the skew-symmetry and the Jacobi-identity. When
r = 1, we have the 1–dimensional (abelian) Lie algebra, so we assume from now
on that r > 1.

A basis for fr as a vector space consists of more than r elements. Indeed, we
have for instance that [x1, x2] ∈ fr is an element of the Lie algebra, but it is
not spanned by x1, . . . , xr. We will now introduce the Hall set, an ordered set
which can be used as an explicit basis for the free Lie algebra.

Definition 11.1.2 (Hall set). Let fr be a free Lie algebra on r generators. A
totally ordered set H :=

⋃
n∈N0

Hn is called a Hall set for fr when it satisfies
the following conditions.

• We have H1 := {x1, x2, . . . , xr}, where the order is x1 < x2 < · · · < xr.

• Take n ≥ 2 and suppose that Hk is defined for all 1 ≤ k < n and that
there is a total order imposed on

⋃n−1
k=1 Hk.

• We define Hn as the set of all elements [x, y], where x ∈ Hk and y ∈ Hl

such that

– k + l = n,
– x < y and
– when there exist y1 ∈ Hl1 and y2 ∈ Hl2 (for l1, l2 ∈ N0) such that
y = [y1, y2], then y1 ≤ x.

Choose a total order on Hn.

• We have a total order on
⋃n
k=1Hk by requiring for all i < j that x < y

when x ∈ Hi and y ∈ Hj .

Marshall Hall introduced these Hall sets ([44]), based on work of Philip Hall
on groups ([45]). Note that this Hall set depends on the choice of ordering we
impose on the different sets Hk, with k ≥ 1.

Example 11.1.3. The elements of H2 are of the form

yi,j := [xi, xj ], where 1 ≤ i < j ≤ r.

The elements of H3 are of the form

zi,j,k := [xi, [xj , xk]], with 1 ≤ j < k ≤ r and 1 ≤ j ≤ i ≤ r.

The elements of H4 depend on the ordering on H2.
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When i < j < k, then

[xi, yj,k] = [xi, [xj , xk]]

= [xj , [xi, xk]]− [xk, [xi, xj ]]

= zj,i,k − zk,i,j

holds by the Jacobi identity. Hence, there is no need to add [xi, [xj , xk]] to
H3, since it can be expressed as a linear combination of other basis elements
(namely zj,i,k and zk,i,j).

It turns out that the Hall set can be used as a basis for a free Lie algebra.

Theorem 11.1.4. Let fr be a free Lie algebra on r generators. A Hall set for
fr defines a basis for fr.

Proof. A proof of this fact is given in for instance [18, Chapter 7].

Thus, the Hall setH for fr is a totally ordered basis for fr, constructed inductively
as a union H :=

⋃
n∈N0

Hn, where Hn consists of n–fold Lie brackets. This
basis has infinitely many elements. We define a free nilpotent Lie algebra as a
quotient of a free Lie algebra.

Definition 11.1.5 (Free c–step nilpotent Lie algebra). Let X be a finite set
with r elements. Let fc be a Lie algebra and i : X → fc a map of sets. The
Lie algebra fc is free c–step nilpotent on X if for every c–step nilpotent Lie
algebra g with a map of sets f : X → g, there is a unique Lie algebra morphism
ϕ : fc → g with f = ϕ ◦ i.

For every finite set X and every c ≥ 2, there is a unique free c–step nilpotent
Lie algebra generated by X. This Lie algebra has r := |X| generators and is
denoted with fr,c. Note that fr,c can be obtained as the quotient

fr,c := fr
γc+1(fr)

.

In this construction, we consider the free Lie algebra fr, where all (c+1)–fold Lie
brackets vanish. Hence, the result is indeed nilpotent and has nilpotency class c.
Denote H =

⋃
n∈N0

Hn for the Hall basis of fr, then the natural projections of
the elements of H1 ∪ · · · ∪Hc form a basis of fr,c, which is also called a Hall
basis.

The dimension of a free nilpotent Lie algebra fr,c on r generators and nilindex
c can be computed explicitly due to a theorem of Witt. Therefore, some
terminology has to be introduced first.
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Definition 11.1.6 (Möbiusfunction). The Möbiusfunction µ : N0 → {−1, 0, 1}
maps d ∈ N0 to

µ(d) =


1 if d = 1,
(−1)n if d is the product of n distinct primes,
0 if d is not square-free.

This function appears in Witt’s theorem. The formula determines the number
of basis vectors of a given length.

Theorem 11.1.7 ([85]). Let fr,c be the free nilpotent Lie algebra on r generators
and nilindex c. Let H =

⋃c
k=1Hk be a Hall basis of fr,c. For all 1 ≤ k ≤ c, the

dimension of γk(fr,c)/γk+1(fr,c) is given by

#Hk = 1
k

∑
d|k

µ(d) rk/d.

From Witt’s theorem, the dimension of fr,c immediately follows.

Corollary 11.1.8. Let fr,c be the free nilpotent Lie algebra on r generators
and nilindex c over a field F. The dimension of fr,c is given by

dim(fr,c) =
c∑

k=1
#Hk.

A Hall basis makes it possible to describe the basis vectors and the corresponding
Lie brackets. In the following sections, we will use this strategy for c ≤ 3 to
compute the almost inner derivations of fr,c over an arbitrary field F. In
Section 11.5, we will determine dim(AID(fr,c) for all c ≥ 2 using another
approach which is only valid for Lie algebras over a field of characteristic zero.
In the next section, we also consider a duality theory for 2–step nilpotent Lie
algebras.

11.2 Free 2–step nilpotent Lie algebras

Let F be an arbitrary field. Consider fr,2, the free 2–step nilpotent Lie
algebra over F with r generators x1, x2, . . . , xr. The Hall basis is given by
{x1, . . . , xr, yi,j | 1 ≤ i < j ≤ r} and the non-vanishing Lie brackets are

[xi, xj ] = yi,j ,
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where 1 ≤ i < j ≤ r. This means that fr,2 is a 2–step nilpotent Lie algebra
determined by the complete graph on r vertices. Hence, it follows from
Theorem 9.1.1 that all almost inner derivations are inner.

Proposition 11.2.1. Let fr,2 be the free 2–step nilpotent Lie algebra on r
generators over an arbitrary field F, then

AID(fr,2) = Inn(fr,2).

For the rest of this section, we study quotients of fr,2. Therefore, we need the
notion of a dual Lie algebra.

11.2.1 Dual Lie algebras

Scheuneman ([75]) introduced a duality theory for 2–step nilpotent Lie algebras.
Later, Gauger ([33]) developed his own theory, but showed that they are in fact
the same ([34]). We will use the approach from [33] and consider a field F of
characteristic not two.

Let x1, . . . , xr be generators of fr,2 as before and denote V := 〈x1, . . . , xr〉. We
can consider the vector space V ⊕

∧2
V as a 2–step nilpotent Lie algebra by

linearly extending the rules

[xi, xj ] = xi ∧ xj ,

[xm, xi ∧ xj ] = 0,

[xi ∧ xj , xm] = 0,

[xi ∧ xj , xk ∧ xl] = 0

for all 1 ≤ i, j, k, l,m ≤ r with i < j and k < l. A direct verification shows that
fr,2 → V ⊕

∧2
V is an isomorphism when xi is mapped to xi for all 1 ≤ i ≤ r.

This means that fr,2 can be identified with V ⊕
∧2

V .

Let g be a 2–step nilpotent Lie algebra of type (r,m). Take a basis
{x1, . . . , xr, y1, . . . , ym} for g, where {y1, . . . , ym} is a basis for [g, g]. Note
that g can be considered as a quotient

g = V ⊕
∧2

V

I
,

where I is a subspace of
∧2

V . The space I describes the relations among the
extra generators x1, . . . , xr for fr,2. The dimension of I is therefore called the
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‘number of relations’ defining g. Consider the pairing (., .) :
∧2

V ×
∧2(V ∗)→ F,

where
(xi ∧ xj , x∗k ∧ x∗l ) = det

(
x∗k(xi) x∗l (xi)
x∗k(xj) x∗l (xj)

)
(11.1)

for all 1 ≤ i, j, k, l ≤ r. We need this pairing to define the dual Lie algebra.

Definition 11.2.2 (Dual Lie algebra). Let g = fr,2/I = (V ⊕
∧2

V )/I be
a 2–step nilpotent Lie algebra, where I is a subspace of

∧2
V . The 2–step

nilpotent Lie algebra

g∗ := V ∗ ⊕
∧2(V ∗)
I⊥

is called the dual Lie algebra of g, where

I⊥ = {α ∧ β ∈
∧2

(V ∗) | (a ∧ b, α ∧ β) = 0 for all a ∧ b ∈ I}

is the orthogonal complement of I with respect to (11.1).

With this definition, a Lie algebra and its dual satisfy several interesting
properties.

Theorem 11.2.3. Let g be a 2–step nilpotent Lie algebra of type (n,m). Denote
g∗ for the dual Lie algebra, then the following statements hold.

• The dual Lie algebra g∗ is 2–step nilpotent of type (n,
(
n
2
)
−m).

• The Lie algebras (g∗)∗ and g are isomorphic.

• Let h be a 2–step nilpotent Lie algebra with dual h∗, then g ∼= h if and
only if g∗ ∼= h∗.

This means that the dual of a Lie algebra of genus k has k relations and vice
versa.

Example 11.2.4. Let F be a field of characteristic not two. Consider the
canonical Lie algebra g over F with minimal index ε = 2. Then g has a basis
{x1, . . . , x5, y1,4, y2,4} and non-vanishing Lie brackets

[x1, x4] = y1,4, [x2, x4] = y2,4,

[x2, x5] = y1,4, [x3, x5] = y2,4.

This means that g can be considered as a quotient f5,2/I, where

I = 〈y1,2, y1,3, y1,4 − y2,5, y1,5, y2,3, y2,4 − y3,5, y3,4, y4,5〉.
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The orthogonal complement of I is given by I⊥ = 〈y∗1,4 + y∗2,5, y
∗
2,4 + y∗3,5〉. The

dual Lie algebra g∗ has basis {x∗1, . . . , x∗5, y∗1,2, y∗1,3, y∗1,4, y∗1,5, y∗2,3, y∗2,4, y∗3,4, y∗4,5}
and is given by

[x∗1, x∗2] = y∗1,2, [x∗1, x∗3] = y∗1,3, [x∗1, x∗4] = y∗1,4, [x∗1, x∗5] = y∗1,5,

[x∗2, x∗3] = y∗2,3, [x∗2, x∗4] = y∗2,4, [x∗2, x∗5] = −y∗1,4,
[x∗3, x∗4] = y∗3,4, [x∗3, x∗5] = −y∗2,4, [x∗4, x∗5] = y∗4,5.

We found that g has type (5, 2) and g∗ has type (5,
(5

2
)
− 2) = (5, 8).

Let g be a Lie algebra with dual g∗. It is a natural question to ask what the
correspondence is between AID(g) and AID(g∗). This is the topic of the next
subsections.

11.2.2 Lie algebras with one relation

Let g be a 2–step nilpotent Lie algebra over a field F of characteristic not two.
Suppose that g has genus 1, then the only almost inner derivations are the
inner ones, as we showed in Section 9.2. We will prove that AID(g∗) = Inn(g∗)
holds for the dual Lie algebra g∗ as well. Since g∗ has one relation, it can be
considered as a Lie algebra fr,2

〈x〉 , where 0 6= x ∈ [fr,2, fr,2]. We use the notions
and results from [20].

Definition 11.2.5 (Length of a Lie bracket). Let fr,2 be the free 2–step
nilpotent Lie algebra on r generators over a field F. Take 0 6= x ∈ [fr,2, fr,2].
Then the length of x is defined as

`(x) = min{s ∈ N0 | x = [x1, x2]+· · ·+[x2s−1, x2s] for some x1, . . . , x2s ∈ fr,2}.

Proposition 11.2.6. Let fr,2 be the free 2–step nilpotent Lie algebra on r
generators. Then for any x ∈ [fr,2, fr,2] with x 6= 0, we have

`(x) ≤
⌊r

2

⌋
.

It turns out that the length can be used to classify the 2–step nilpotent Lie
algebras with one relation.

Theorem 11.2.7. Let fr,2 be the free 2–step nilpotent Lie algebra on r
generators over a field F. Let 0 6= x, y ∈ [fr,2, fr,2]. Then

fr,2
〈x〉
∼=

fr,2
〈y〉

if and only if `(x) = `(y).
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Let fr,2 be the free 2–step nilpotent Lie algebra on r generators. Consider
g := fr,2/〈x〉, with 0 6= x ∈ [fr,2, fr,2]. When `(x) = 1, then g is isomorphic to a
Lie algebra determined by a complete graph from which one edge is removed.
It follows from Theorem 9.1.1 that AID(g) = Inn(g). For `(x) ≥ 2, we define
s := `(x) and consider xi ∈ fr,2 for all 1 ≤ i ≤ 2s such that

x = [x1, x2] + · · ·+ [x2s−1, x2s] ∈ fr,2.

It follows that fr,2/〈x〉 is isomorphic to the Lie algebra gr,s with basis

{x1, . . . , xr, yi,j | 1 ≤ i < j ≤ r and (i, j) 6= (1, 2)},

where the non-zero Lie brackets are given by

[x1, x2] = −
s∑
i=2

y2i−1,2i,

[xi, xj ] = yi,j for 1 ≤ i < j ≤ r and (i, j) 6= (1, 2).

By the previous theorem, it suffices to compute the almost inner derivations
of gr,s for all r ≥ 2 and all s ≤ br/2c. In what follows, we will use a variation
of the notation from Section 4.2. Let 1 ≤ i1, j1, i2, j2, . . . , it, jt ≤ r, then
gi1,i2,...,it = 〈xi | i /∈ {i1, i2, . . . , it}〉 and

gi1j1,i2j2,...,itjt = 〈yi,j | i /∈ {i1, i2, . . . , it} and j /∈ {j1, j2, . . . , jt}〉.

Proposition 11.2.8. Let fr,2 be the free 2–step nilpotent Lie algebra on r
generators over a field F of characteristic not two. Let 0 6= x ∈ [fr,2, fr,2]. Then

AID
(
fr,2
〈x〉

)
= Inn

(
fr,2
〈x〉

)
.

Proof. Denote s := `(x). Without loss of generality, we can assume that r ≥ 4
and s ≥ 2. Consider the Lie algebra gr,s from above. Let D ∈ AID(gr,s) be
determined by a map ϕD. It is clear that all basis vectors in the center are
fixed. We show that x1 is fixed as well. Take arbitrary 1 ≤ j < k ≤ r, then
xj , xk /∈ Cgr,s(x1). There are two possibilities.

• If j 6= 2, we are in the situation that

[xj , x1] + y1,j ∈ g1j,1k
[xk, x1] + y1,k ∈ g1j,1k
[xj , g1] ⊆ g1j,1k
[xk, g1] ⊆ g1j,1k.

Lemma 4.2.8 implies that t1(ϕD(xj)) = t1(ϕD(xk)).
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• Suppose that j = 2, then

[x2, x1]− y3,4 ∈ g1k,34
[xk, x1] + y1,k ∈ g1k,34
[x2, g1] ⊆ g1k,34.

When [xk, g1] ⊆ g1k,34 holds, we can apply Lemma 4.2.8 to obtain that
t1(ϕD(x2)) = t1(ϕD(xk)). Otherwise, we have that k ∈ {3, 4}. We assume
that k = 3; the other case is similar.
Denote ai := ti(ϕD(x2)) and bi := ti(ϕD(x3)) for all 1 ≤ i ≤ r. There
exist values v, v′ ∈ g13,24,34 such that

D(x2) = a4y2,4 + a1y3,4 + v, (11.2)

D(x3) = −b1y1,3 + b4y3,4 + v′. (11.3)

We further define ci := ti(ϕD(x2 + x3)) and di := ti(ϕD(x2 − x3)) for all
1 ≤ i ≤ r. It follows that

D(x2 + x3) = −c1y1,3 + c4y2,4 + (c1 + c4)y3,4 + w, (11.4)

D(x2 − x3) = d1y1,3 + d4y2,4 + (d1 − d4)y3,4 + w′, (11.5)

where w,w′ ∈ g13,24,34. By summing equations (11.2) and (11.3) and
comparing the coefficients with these from (11.4), we obtain

(a1 − b1) + (b4 − a4) = 0.

On the other hand, we can take the difference of (11.2) and (11.3). We
compare the coordinates with (11.5) and find that

(a1 − b1) + (a4 − b4) = 0.

These two last equations imply that a1 = b1 since char(F) 6= 2. Hence, we
have that t1(ϕD(xj)) = t1(ϕD(xk)).

In both cases, we showed that t1(ϕD(xj)) = t1(ϕD(xk)). Since 1 ≤ j, k ≤ r were
arbitrary, this implies that x1 is fixed. To show that xi is fixed for 2 ≤ i ≤ r, a
similar approach can be used. As before, we have to make a case distinction for
i+ 1 ∈ {j, k} (if i is odd) or i− 1 ∈ {j, k} (when i is even).

11.2.3 Lie algebras with more relations

Motivated by the result from the previous subsection, one can think that there
is correspondence between the almost inner derivations for a Lie algebra g and
the dual g∗. However, this is not the case.



170 FREE NILPOTENT LIE ALGEBRAS

Example 11.2.9. Consider the Lie algebras g and g∗ from Example 11.2.4.
Since g is a canonical Lie algebra with minimal index ε = 2, it follows from
Lemma 9.2.17 that dim(AID(g)) = dim(Inn(g)) + 1 = 6.

We will show that for the dual Lie algebra g∗, the only almost inner derivations
are the inner ones. Let D ∈ AID(g∗) be an almost inner derivation determined
by ϕD. We will show that all basis vectors are fixed. This is clear for all basis
vectors in the center. We will illustrate that x∗1 is fixed. Take j ∈ {2, 4, 5}.
Since we have

[x∗j , x∗1] + y∗1,j ∈ g∗1j,13
[x∗3, x∗1] + y∗1,3 ∈ g∗1j,13
[x∗j , g∗1] ⊆ g∗1j,13
[x∗3, g∗1] ⊆ g∗1j,13,

we can apply Lemma 4.2.7 to show that t1(ϕD(x∗j )) = t1(ϕD(x∗3)). This implies
that x∗1 is fixed. With a similar approach, we can show that x∗i is fixed as well,
where 2 ≤ i ≤ 5. Corollary 4.2.6 implies that AID(g∗) = Inn(g∗).

Let F be R or an algebraically closed field of characteristic not two. Consider a
2–step nilpotent Lie algebra g of genus 2 over F. Denote g∗ for the dual Lie
algebra, so g∗ has two relations. We conjecture that AID(g∗) = Inn(g∗) will
hold. It suffices to compute the almost inner derivations for the dual of the
canonical Lie algebras from Section 9.2.

Theorem 11.2.10. Let g1 and g2 be 2–step nilpotent 2–relation Lie algebras
over R or an algebraically closed field F of characteristic not two. Then g1 ∼= g2
if and only if g∗1 and g∗2 have the same minimal indices and elementary divisors.

However, it is not straightforward to give a rigorous proof for this conjecture,
since there is no uniform description of the Lie brackets which considers all
possible cases at the same time.

Let g be a 2–step nilpotent Lie algebra with 3 relations, then g can have
non-inner almost inner derivations.

Example 11.2.11. Consider the Lie algebra g over an arbitrary field F.
Suppose that g has basis B := {x1, . . . , x4, y1, y2, y3} and non-vanishing Lie
brackets

[x1, x2] = y1, [x1, x3] = y2,

[x1, x4] = y3, [x3, x4] = y1.

This is a 2–step nilpotent Lie algebra of type (4, 3), so it has
(4

2
)
−3 = 3 relations.

It is clear that dim(Inn(g)) = 4. Take an arbitrary D ∈ C(g), then the matrix
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of D is given by

D =


0 0

r1 r2 r3 r4
s1 s2 s3 s4
t1 t2 t3 t4

0

 .

Suppose that D is an almost inner derivation. Since D has to be B–almost
inner, we find that s2 = t2 = t3 = s4 = 0. Take x = a1x1 + · · ·+ a4x4, then we
have that

D(x3 + x4) = (r3 + r4)y1 + s3y2 + t4y3.

Since [x3 + x4, x] = (a4− a3)y1− a1(y2 + y3) holds, this implies that s3 = t4, so
dim(AID(g)) ≤ 7. Take an arbitrary x = a1x1+· · ·+a4x4+b1y1+b2y2+b3y3 ∈ g.
Consider the linear maps D1 : g→ g : x 7→ D1(x) = a1y2 and

ϕD1 : g→ g : x 7→
{
a4
a1
x2 + x3 if a1 6= 0,

0 if a1 = 0.

For a1 6= 0, we have

[x, ϕD1(x)] = a4y1 + a1y2 − a4y1 = a1y2 = D1(x).

When a1 = 0, then [x, 0] = 0 = D1(x). This shows that D1 ∈ AID(g). An
analogous computation shows that D2 : g→ g : x 7→ D2(x) = a1y3 is an almost
inner derivation, determined by

ϕD2 : g→ g : x 7→
{
−a3
a1
x2 + x4 if a1 6= 0,

0 if a1 = 0.

Further, consider the derivation D3 : g→ g : x 7→ D3(x) = a2y1. This is almost
inner, determined by

ϕD3 : g→ g : x 7→


a2
a1
x2 if a1 6= 0,

a2
a3
x4 if a1 = 0 and a3 6= 0,

−a2
a4
x3 if a1 = a3 = 0 and a4 6= 0,

−x1 if a1 = a3 = a4 = 0.

Since D1, D2 and D3 are linearly independent and 〈D1, D2, D3〉 ∩ Inn(g) = {0},
this implies that AID(g) = 〈ad(x1), . . . , ad(x4), D1, D2, D3〉.

A 2–step nilpotent Lie algebra with 3 relations can be nonsingular as well, as
we already saw in Example 9.3.1 for a Lie algebra over R.
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11.3 Free 3–step nilpotent Lie algebras

Consider an arbitrary field F. Let fr,3 be the free 3–step nilpotent Lie algebra
over F which has r generators x1, x2, . . . , xr. For these generators, we can find a
Hall basis of fr,3, which is a basis of fr,3 as a vector space and which is explicitly
given by the following collection of vectors:

xi, 1 ≤ i ≤ r,

yi,j = [xi, xj ], 1 ≤ i < j ≤ r,

zi,j,k = [xi, yj,k], 1 ≤ j < k ≤ r and 1 ≤ j ≤ i ≤ r.

Lemma 11.3.1. Let a, b ∈ fr,3. If a− b 6∈ [fr,3, fr,3], then

[a, [fr,3, fr,3]] ∩ [b, [fr,3, fr,3]] = 0.

Proof. If either a or b belongs to [fr,3, fr,3], there is nothing to show, since fr,3
is 3–step nilpotent. In case both do not belong to [fr,3, fr,3], the condition that
a− b 6∈ [fr,3, fr,3] means that we can choose a generating set

x1, . . . , xr−2, xr−1 = a, xr = b

such that fr,3 is the free 3–step nilpotent Lie algebra on that set of generators.
Using the Hall basis introduced above, we see that

[a, [fr,3, fr,3]] = 〈zr−1,j,k | 1 ≤ j < k ≤ r〉,

[b, [fr,3, fr,3]] = 〈zr,j,k | 1 ≤ j < k ≤ r〉.

Note that all of the vectors zr−1,j,k and zr,j,k belong to the Hall set mentioned
above and that the set of basis vectors zr−1,j,k is disjoint of the set of basis
vectors zr,j,k. We have that the subspaces spanned by those two sets only have
the zero vector in common.

Theorem 11.3.2. Let fr,3 be the free 3-step nilpotent Lie algebra on r
generators. Then

AID(fr,3) = Inn(fr,3).

Proof. Let D ∈ AID(fr,3) be an arbitrary almost inner derivation. Note that D
induces an almost inner derivation D̄ on fr,3/Z(fr,3) ∼= fr,2. Proposition 11.2.1
implies that D̄ is an inner derivation. Hence, by adjusting D with an inner
derivation, we may assume that D(fr,3) ⊆ Z(fr,3). Let x1, x2, . . . , xr be the
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generators of fr,3. Since we must have that D(xi) ∈ Z(fr,3), there exist vectors
vi ∈ [fr,3, fr,3] for all 1 ≤ i ≤ r such that

D(xi) = [xi, vi].

Analogously, there are also vectors wj ∈ [fr,3, fr,3], for 2 ≤ j ≤ r, with

D(x1 + xj) = [x1 + xj , wj ].

Take an arbitrary 2 ≤ j ≤ r. By using the equation D(x1 +xj) = D(x1)+D(xj),
we find that

[x1, wj ]− [x1, v1] = [xj , vj ]− [xj , wj ].
The left hand side of the above expression belongs to [x1, [fr,3, fr,3]] and the right
hand side to [xj , [fr,3, fr,3]]. It follows from Lemma 11.3.1 that both expressions
are zero. Hence, we have

[x1, wj − v1] = [xj , vj − wj ] = 0.

Since the only elements of [fr,3, fr,3] that commute with x1, respectively with
xj , are those belonging to the center Z(fr,3), we find that

wj − v1 ∈ Z(fr,3) and vj − wj ∈ Z(fr,3).

This means that vj − v1 ∈ Z(fr,3). Therefore we can without any problem
replace vj by v1. We find that D(xj) = [xj , v1] holds for all 2 ≤ j ≤ r. For the
derivation D′ := D + ad(v1), we see that D′(xi) = 0 holds for all 1 ≤ i ≤ r.
This means that D′ is a derivation which is zero on the generators, and hence
D′ is zero everywhere. It follows that D = −ad(v1) is an inner derivation, which
was to be shown.

11.4 Free metabelian nilpotent Lie algebras on two
generators

In this section, we consider free metabelian and c–step nilpotent Lie algebras on
two generators. These Lie algebras are c–step nilpotent and metabelian, but do
not have other relations. We will show that, when the Lie algebras are defined
over an infinite field F (of any characteristic), all almost inner derivations are
inner.

Let f2 be the free Lie algebra on two generators, say a and b. The free metabelian
c–step nilpotent Lie algebra m2,c is obtained as a quotient

m2,c := f2

f
(2)
2 + γc+1(f2)

.
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It is the largest quotient of the free Lie algebra f2 which is both metabelian and
c–step nilpotent. We will use x1 and x2 to denote the projection in m2,c of a
respectively b. Take m ≥ 2 and 1 ≤ n ≤ m− 1. We introduce the notation ymn
for

ymn = [x2, x2, x2, . . . , x2︸ ︷︷ ︸
n − 1 times

, x1, x1, x1, . . . , x1︸ ︷︷ ︸
m − n times

, x2],

where for all z1, . . . , zn−2, zn−1, zn ∈ g, the iterated bracket

[z1, [. . . , [zn−2, [zn−1, zn]] · · · ]]

is denoted with [z1, . . . , zn−2, zn−1, zn]. So ymn is an m–fold Lie bracket with
m− n appearances of x1 and n appearances of x2. It is well known that x1, x2
together with the elements ymn (where 1 ≤ n < m ≤ c) form a basis of m2,c,
see for instance [3, Section 4.7]. In fact, for any 2 ≤ i ≤ c, the Lie algebra
γi(m2,c)/γi+1(m2,c) is (i − 1)–dimensional and has a basis consisting of the
projections of the elements yi1, yi2, . . . , yii−1.

Lemma 11.4.1. Take elements z1, z2, . . . , zn−2 ∈ {x1, x2} and define the
number k := #{1 ≤ i ≤ n− 2 | zi = x2}+ 1. Then we have

[z1, z2, . . . , zn−2, x1, x2] = ynk .

Proof. Let g be a metabelian Lie algebra g and take c ∈ γ2(g). For all x, y ∈ g,
the Jacobi identity yields

0 = [x, [y, c]] + [y, [c, x]] + [c, [x, y]] = [x, [y, c]] + [y, [c, x]],

so [x, [y, c]] = −[y, [c, x]] = [y, [x, c]]. By an inductive reasoning, we have that

[z1, z2, . . . , zn−2, x1, x2] = [zσ(1), zσ(2), . . . , zσ(n−2), x1, x2]

holds for any permutation σ on n− 2 letters {1, 2, . . . , n− 2}. This is what we
had to show.

The lemma easily implies the following identities.

Corollary 11.4.2. For all m ≥ 2 and all 1 ≤ n ≤ m− 1, we have

[x1, y
m
n ] = ym+1

n and [x2, y
m
n ] = ym+1

n+1 .

Remark 11.4.3. Take an arbitrary field F, then m2,c = f2,c holds for all 1 ≤ c ≤ 4.
For c ≥ 5, we have that dim(m2,c) < dim(f2,c). For example, [x2, y

4
1 ] and [y2

1 , y
3
1 ]

are linearly independent in f2,c, whereas these elements both equal y5
2 in m2,c.

Now we can prove the main result of this section.
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Proposition 11.4.4. Let m2,c be the free c–step nilpotent and metabelian Lie
algebra on two generators over an infinite field F. Then AID(m2,c) = Inn(m2,c).

Proof. We will prove the statement by induction on c.

• Basis step: The abelian Lie algebra m2,1 and the Heisenberg Lie algebra
m2,2 do not admit non-trivial almost inner derivations.

• Induction step: Take c ≥ 3 and suppose that the statement holds for c− 1
(induction hypothesis). Let D ∈ AID(m2,c) be an arbitrary almost inner
derivation of m2,c. The space I = 〈yc1, yc2, . . . , ycc−1〉 = γc(m2,c) = Z(m2,c)
is an ideal of m2,c. Hence, D induces an almost inner derivation D̄ on

m2,c/I ∼= m2,c−1.

By the induction hypothesis, D̄ is an inner derivation of m2,c−1. This
means that we can alter D by an inner derivation of m2,c and assume that

D(m2,c) ⊆ I = 〈yc1, yc2, . . . , ycc−1〉 = γc(m2,c).

Moreover, since D ∈ AID(m2,c) holds, we must have that D(x) ∈ [x,m2,c].
We obtain that

D(x1) ∈ 〈yc1, yc2, . . . , ycc−2〉 and D(x2) ∈ 〈yc2, yc3, . . . , ycc−1〉.

There are parameters a1, a2, . . . , ac−2, b2, b3, . . . , bc−1 ∈ F such that

D(x1) = a1y
c
1 + a2y

c
2 + · · ·+ ac−2y

c
c−2,

D(x2) = b2y
c
2 + b3y

c
3 + · · ·+ bc−1y

c
c−1.

By changing D to D−ad(a1y
c−1
1 +a2y

c−1
2 + · · ·+ac−2y

c−1
c−2) and applying

Corollary 11.4.2 several times, we find that D(x1) = 0 and

D(x2) = β2y
c
2 + β3y

c
3 + · · ·+ βc−1y

c
c−1,

where βi := bi − ai−1 for all 2 ≤ i ≤ c− 1.
Take an arbitrary λ ∈ F. On the one hand, we have that

D(λx1 + x2) = λD(x1) +D(x2) = β2y
c
2 + β3y

c
3 + · · ·+ βc−1y

c
c−1. (11.6)

On the other hand, we also know that there exists an element vλ ∈ m2,c
with

D(λx1 + x2) = [λx1 + x2, vλ].
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We write
vλ = a1x1 + a2x2 +

∑
1≤n<m≤c

am,ny
m
n ,

where a1, a2, am,n ∈ F for all 1 ≤ n < m ≤ c and find that

[λx1 + x2, vλ] = (a2λ− a1)y2
1 +

∑
1≤n<m≤c−1

λam,ny
m+1
n

+
∑

1≤n<m≤c−1
am,ny

m+1
n+1 (11.7)

Comparing the coefficients of the basis vectors yci (with 2 ≤ i ≤ c− 1) of
(11.6) with (11.7), we get the following system of equations:

λac−1,1 = 0
λac−1,2 + ac−1,1 = β2

λac−1,3 + ac−1,2 = β3
...

λac−1,c−2 + ac−1,c−3 = βc−2

ac−1,c−2 = βc−1.

We multiply the different equations with a power of λ and obtain

λac−1,1 = 0
λ2ac−1,2 + λac−1,1 = λβ2

λ3ac−1,3 + λ2ac−1,2 = λ2β3
...

λc−2ac−1,c−2 + λc−3ac−1,c−3 = λc−3βc−2

λc−2ac−1,c−2 = λc−2βc−1.

(11.8)

By taking the alternating sum of all these equations, we find that

λβ2 − λ2β3 + · · ·+ (−1)c−2λc−3βc−2 + (−1)c−1λc−2βc−1 = 0.

This is an equation which has to hold for all possible λ ∈ F. Since F is
infinite, we must have that

β2 = β3 = · · · = βc−1 = 0.

It follows that D(x2) = 0. Together with the fact that D(x1) = 0, this
implies that D = 0, which means that the original D we started with was
an inner derivation.

• Conclusion: By the principle of induction, it follows from the basis and
induction step that AID(m2,c) = Inn(m2,c) holds for all c ∈ N0.
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11.5 General free nilpotent Lie algebras

In this section, we consider a field F of characteristic zero. We will prove that a
free nilpotent Lie algebra over F does not admit any non-trivial almost inner
derivations. The results of this section also appeared in [8]. The following
lemma will be very useful.

Lemma 11.5.1. Let V be a vector space over a field F of characteristic zero.
Consider a sequence v0, v1, v2, . . . in V . Take k ∈ N and suppose that there
exist a0, a1, . . . , ak ∈ V such that

vn+1 − vn =
k∑
j=0

njaj

for all n ∈ N. Then there exist vectors b0, b1, . . . , bk+1 ∈ V such that

vn =
k+1∑
j=0

njbj , for all n ∈ N,

ak 6= 0 =⇒ bk+1 6= 0.

Proof. We prove this by induction on k.

• Basis step (k = 0): Suppose that we have vn+1 − vn = a0 for all n ∈ N,
where a0 ∈ V and vi ∈ V for all i ∈ N. We show by induction on n ∈ N
that vn = v0 + na0 holds. This is true for n ∈ {0, 1}, so suppose that
vn = v0+na0 (induction hypothesis). Then vn+1 = vn+a0 = v0+(n+1)a0
holds. The statement of the lemma follows for b0 = v0 and b1 = a0.

• Induction step: We assume that the asssertion holds for k (induction
hypothesis). Consider a0, a1, . . . , ak+1 ∈ V such that

vn+1 − vn =
k+1∑
j=0

njaj

for all n ∈ N. We have to prove that there exist vectors b0, b1, . . . , bk+2 ∈ V
such that vn =

∑k+2
j=0 n

jbj holds for all n ∈ N. Define a new sequence of
vectors

wn := vn −
ak+1

k + 2n
k+2,
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where n ∈ N. We then have

wn+1 − wn = vn+1 − vn −
ak+1

k + 2((n+ 1)k+2 − nk+2)

=
k+1∑
j=0

njaj −
ak+1

k + 2

k+1∑
j=0

(
k + 2
j

)
nj

=
k∑
j=0

nj
(
aj −

ak+1

k + 2

(
k + 2
j

))
for all n ∈ N. By induction, we find that there exist vectors
b0, b1, . . . , bk+1 ∈ V such that

wn =
k+1∑
j=0

njbj for all n ∈ N.

If we now take bk+2 = ak+1
k+2 , we obtain that

vn = wn + nk+2 ak+1

k + 2 =
k+2∑
j=0

njbj

for all n ∈ N.

• Conclusion: By the principle of induction, the result follows from the
basis and induction step.

Let g := f2 be the free Lie algebra on two generators x1 and x2. Define g1 as
the vector space spanned by the generators x1 and x2 and gn, for n ≥ 2, as the
subspace of g generated by all Lie brackets of length n in the generators x1 and
x2. Denote further gi,j for the subspace of g generated by all Lie brackets in
the generators where the first generator x1 appears i times and the second one
x2 appears j times. It is clear that

g =
⊕
n∈N0

gn and gn =
n−1⊕
i=1

gi,n−i for n ≥ 2.

Moreover, it holds that

[gi, gj ] ⊆ gi+j and [gi,j , gp,q] ⊆ gi+p,j+q.

We are interested in the equation

[x1, x] + [x2, y] = 0
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in the variables x and y, which was studied in [71]. Let

V = {(x, y) ∈ g× g | [x1, x] + [x2, y] = 0}

be the solution space of the equation. Note that V is a vector space. For each
n ∈ N0, we define Vn = V ∩ (gn × gn). Consider now the maps

ϕn : Vn → gn : (x, y) 7→ x,

ψn : Vn → gn : (x, y) 7→ y.

Define the set V xn := ϕn(Vn). We assert that ϕ̃n : Vn → V xn : (x, y) 7→ ϕn(x, y) is
an isomorphism for all n ≥ 2. It is obvious that the map ϕ̃n is linear. Surjectivity
follows by construction. Suppose that ϕ̃n is not injective, then there is a solution
(0, 0) 6= (0, y) ∈ Vn, which means that [x2, y] = 0. Therefore, y = 0 and we
have a contradiction. Analogously, also ψ̃n : Vn → V yn : (x, y) 7→ ψn(x, y) is an
isomorphism, where V yn := ψn(Vn). Hence, for all n ≥ 2, there is a vector space
isomorphism σ : V xn → V yn such that

[x1, x] + [x2, σ(x)] = 0 (11.9)

for all x ∈ V xn . Note that under this isomorphism, we have for all 1 ≤ i ≤ n− 1
that σ(V xn ∩ gi,n−i) = V yn ∩ gi+1,n−i−1 .

Theorem 11.5.2. Let F be a field of characteristic zero and let fr,c be the free
c–step nilpotent Lie algebra over F on r generators. Then AID(fr,c) = Inn(fr,c)
holds.

Proof. We prove this theorem by induction on the nilpotency class c.

• Basis step: The case c = 1 is clear and the cases c = 2 and c = 3 were
already treated in Section 11.2 and Section 11.3.

• Induction step: Take c ≥ 3 and assume that the theorem holds for fr,c
(induction hypothesis). Consider fr,c+1 with generators x1, x2, . . . , xr.
Take an arbitrary D ∈ AID(fr,c+1). We will prove that D is in fact inner.
It is clear that D induces an almost inner derivation on

fr,c+1

γc+1(fr,c+1)
∼= fr,c.

This is an inner derivation by the induction hypothesis. Hence, by changing
D up to an inner derivation, we may assume that

D(fr,c+1) ⊆ γc+1(fr,c+1) = Z(fr,c+1),
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which means that D ∈ CAID(fr,c+1). Hence, there exists v ∈ γc(fr,c+1)
such that D(x1) = [x1, v]. By replacing D by D + ad(v), we can assume
that D is an almost inner derivation of fr,c+1 with D(x1) = 0. Further,
for all x ∈ fr,c+1, we have D(x) = [x,w(x)], with w(x) ∈ γc(fr,c+1). It
suffices to prove that D(xi) = 0 for all 2 ≤ i ≤ r. We first look at x2. For
each n ∈ N, there exists a wn ∈ γc(fr,c+1) such that

D(nx1 + x2) = [nx1 + x2, wn], (11.10)

because D is almost inner. We can assume without loss of generality that
wn is a linear combination of Lie brackets of length c in the generators
(and does not contain a component using Lie brackets of length c + 1).
By linearity, we also have that

D(nx1 + x2) = nD(x1) +D(x2) = D(x2).

The two observations above imply that the equation

[nx1 + x2, wn] = [mx1 + x2, wm] = [x2, w0] (11.11)

holds for all m,n ∈ N. We consider [nx1 + x2, wn] + [x2,−w0] = 0 as an
equation in the free Lie algebra fr on r generators. For n 6= 0, define
x′1 := nx1 + x2. It is clear that x′1, x2, . . . , xr is also a free generating set
for the free Lie algebra fr.
It follows from [71, Section 5] that wn, w0 ∈ 〈x′1, x2〉 = 〈x1, x2〉 for all
n ∈ N0, where 〈x1, x2〉 denotes the Lie algebra generated by x1 and x2.
This means that wn can be written as wn =

∑c−1
i=1 vi(n), where vi(n) is a

linear combination of Lie brackets where x2 and x1 appear i respectively
c − i times. We can assume without loss of generality that we work in
g = f2, the free Lie algebra on two generators x1 and x2. This means that
vi(n) ∈ gc−i,i for all 1 ≤ i ≤ c− 1, where we use the notations introduced
above this theorem. To prove that D(x2) = 0, it suffices by equation
(11.10) to show that w0 = 0. Suppose on the contrary that w0 6= 0. Define

k = max{i ∈ N | ∃n ∈ N with vi(n) 6= 0},

then wn =
∑k
i=1 vi(n) and there exists an n ∈ N such that vk(n) 6= 0. It

follows from equation (11.11) that [(n+ 1)x1 +x2, wn+1] = [nx1 +x2, wn],
which implies that

[x1, (n+ 1)wn+1 − nwn] + [x2, wn+1 − wn] = 0, (11.12)

with n ∈ N. In fact, this consists of several equations (one per bi-degree
(i, j) with i + j = c). We will now prove by induction on p that for all
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0 ≤ p ≤ k − 1 and all 0 ≤ i ≤ p, there exist bp,i ∈ gc−k+p,k−p, with
bp,p 6= 0 such that

vk−p(n) = npbp,p + np−1bp,p−1 + · · ·+ nbp,1 + bp,0.

– Basis step (p = 0): We first consider the component of equation
(11.12) with in total k + 1 appearances of x2, this is the bi-degree
(c− k, k)–part. This gives

[x1, 0] + [x2, vk(n+ 1)− vk(n)] = 0.

Hence, vk(n + 1) − vk(n) = 0 holds, which means that vk(n) is a
constant b0,0 6= 0 and belongs to gc−k,k. Therefore, we have that
wn =

(∑k−1
i=1 vi(n)

)
+ b0,0.

– Induction step: We assume that the assertion holds for a given
0 ≤ p < k − 1 (induction hypothesis). Hence, for all 0 ≤ i ≤ p, there
exist bp,i ∈ gc−k+p,k−p with bp,p 6= 0 such that

vk−p(n) = npbp,p + np−1bp,p−1 + · · ·+ nbp,1 + bp,0.

From the component of equation (11.12) with k − p appearances of
x2, we have that

0 = [x1, (n+ 1)vk−p(n+ 1)− nvk−p(n)]

+ [x2, vk−p−1(n+ 1)− vk−p−1(n)].

It follows from equation (11.9) and the induction hypothesis that

vk−p−1(n+ 1)− vk−p−1(n)

= σ
(
(n+ 1)vk−p(n+ 1)− nvk−p(n)

)
= σ

(
(n+ 1)p+1bp,p + (n+ 1)pbp,p−1 + · · ·+ (n+ 1)bp,0

− np+1bp,p − npbp,p−1 − . . .− nbp,0
)

= (n+ 1)p+1σ(bp,p) + (n+ 1)pσ(bp,p−1) + · · ·+ (n+ 1)σ(bp,0)

− np+1σ(bp,p)− npσ(bp,p−1)− · · · − nσ(bp,0).

This expression can be written as the sum of np(p+ 1)σ(bp,p) and
terms of lower degree. Since bp,p 6= 0 holds, we also have that
(p + 1)σ(bp,p) 6= 0. Note that σ(bp,i) belongs to gc−k+p+1,k−p−1
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for all 0 ≤ i ≤ p. Hence, Lemma 11.5.1 implies that there exist
bp+1,p+1, . . . , bp+1,0 ∈ gc−k+p+1,k−p−1 with bp+1,p+1 6= 0 such that

vk−p−1(n) = np+1bp+1,p+1 + npbp+1,p + · · ·+ bp+1,0,

which concludes the proof of our claim on the form of vk−p(n), where
0 ≤ p ≤ k − 1.

The above assertion implies that for all n ∈ N, the equation

v1(n) = nk−1bk−1,k−1 + · · ·+ nbk−1,1 + bk−1,0 (11.13)

holds, where bk−1,k−1 6= 0 and bk−1,i ∈ gc−1,1 for all 0 ≤ i ≤ k − 1. We
now look at the term of equation (11.12) with exactly one factor of x2.
We then have

[x1, (n+ 1)v1(n+ 1)− nv1(n)] + [x2, 0] = 0

and thus
(n+ 1)v1(n+ 1)− nv1(n) = 0.

We obtain from (11.13) that

0 = (n+ 1)
(
(n+ 1)k−1bk−1,k−1 + · · ·+ bk−1,0

)
− n

(
nk−1bk−1,k−1 + · · ·+ bk−1,0

)
= (n+ 1)kbk−1,k−1 + · · ·+ (n+ 1)bk−1,0

− nkbk−1,k−1 − · · · − nbk−1,0

= knk−1bk−1,k−1 +
k∑
i=2

(
k

i

)
nk−ibk−1,k−1

+
k−1∑
i=1

(
k − 1
i

)
nk−1−ibk−1,k−2 + · · ·+ bk−1,0.

Hence, we can write 0 as a sum of knk−1bk−1,k−1 and some terms of
lower degree. This equation has to hold for all n ∈ N, which implies that
kbk−1,k−1 = 0. Since we work in a field of characteristic zero, this gives a
contradiction, because bk−1,k−1 6= 0. Hence, w0 = 0. It now follows from
equation (11.10) that D(x2) = 0. By a similar reasoning, we find that
D(xi) = 0 for all 3 ≤ i ≤ r. This shows that D was actually an inner
derivation.

• Conclusion: By the principle of induction, the result follows from the
basis and induction step.



Chapter 12

Other classes of Lie algebras

In previous chapters, we computed almost inner derivations for low-dimensional
Lie algebras and different types of nilpotent Lie algebras. This chapter collects
all other results. The first section is about triangular Lie algebras. Further,
we also treat Lie algebras with a 1–codimensional abelian subalgebra and Lie
algebras with an abelian solvable radical. For each of these classes, we will
prove that the only almost inner derivations are the inner ones. The last section
contains observations of characteristically nilpotent Lie algebras. Some results
already appeared in [7] (Section 12.1) and [8] (Section 12.2 and Section 12.3).
In each section, we will specify over which field we work.

12.1 Triangular Lie algebras

Let F be an arbitrary field. In this section, we consider the almost inner
derivations for the triangular Lie algebras. We denote tn(F) for the Lie algebra
of all upper triangular (n × n)–matrices over F. Similarly, nn(F) is the Lie
algebra of strictly upper triangular (n × n)–matrices over F. We define ei,j
as the (n × n)–matrix where the entry on position (i, j) is 1 and where all
other entries are zero. Since tn(F) and nn(F) are subalgebras of gln(F), the Lie
bracket of ei,j and ek,l is given by

[ei,j , ek,l] = δj,kei,l − δl,iek,j (12.1)
for all 1 ≤ i, j, k, l ≤ n.

First, we will study the Lie algebra tn(F). This Lie algebra is solvable and
not nilpotent when n ≥ 2. Further, tn(F) has dimension n(n+1)

2 and a basis

183
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consisting of the matrices ei,j , where 1 ≤ i ≤ j ≤ n. It turns out that the only
almost inner derivations are the inner ones.

Proposition 12.1.1. For all n ≥ 2, we have that

AID(tn(F)) = Inn(tn(F)).

Proof. The proof goes by induction on n.

• Basis step: For n = 2, we have that t2(F) is 3–dimensional, so the
proposition holds.

• Induction step: Take n ≥ 3 and suppose that the proposition holds for
smaller values of n (induction hypothesis). Let D ∈ AID(tn(F)) be an
arbitrary almost inner derivation. Since

I = 〈e1,1, e1,2, . . . , e1,n〉

is an ideal of tn(F), we have that D(I) ⊆ I. Hence, D induces an almost
inner derivation D̄ on tn(F)/I ∼= tn−1(F). By the induction hypothesis, D̄
is an inner derivation. Hence, there exists x ∈ tn(F) such that D̄ = ad(x̄),
where x̄ is the projection of x in tn−1(F) ∼= tn(F)/I.
We change D by D − ad(x) so that we can assume that D ∈ AID(tn(F))
is almost inner with D(tn(F)) ⊆ I. Take 2 ≤ i ≤ n, then

D(ei,i) ∈ [ei,i, tn(F)] = 〈e1,i, e2,i, . . . , ei−1,i, ei,i+1, ei,i+2, . . . , ei,n〉

holds by (12.1). Since D(ei,i) ∈ I, there exists a value βi ∈ F with
D(ei,i) = βie1,i. Define a := β2e1,2 + · · ·+ βne1,n, then

ad(a)(ei,i) = [β2e1,2 + . . .+ βne1,n, ei,i]

= βie1,i

= D(ei,i)

for all 2 ≤ i ≤ n. We also have that ad(a)(I) ⊆ I. Hence, we can replace
D by D − ad(a) and obtain that D(tn(F)) ⊆ I with

D(e2,2) = D(e3,3) = · · · = D(en,n) = 0.

There also exist α2, α3, . . . , αn ∈ F with

D(e1,1) = α2e1,2 + α3e1,3 + · · ·+ αne1,n.
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For 2 ≤ i ≤ n, we have that [e1,1, ei,i] = 0. This means that

0 = D([e1,1, ei,i])

= [D(e1,1), ei,i] + [e1,1, D(ei,i)]

= [α2e1,2 + α3e1,3 + · · ·+ αne1,n, ei,i] + 0

= αie1,i,

so αi = 0 for all 2 ≤ i ≤ n. It follows that D(e1,1) = 0 as well. Take
arbitrary 1 ≤ i < j ≤ n and consider the basis vector ei,j . Since

D(ei,j) ∈ [ei,j , tn(F)] ∩ I,

there exists γj ∈ F such that D(ei,j) = γje1,j . It follows that

γje1,j = D([ei,i, ei,j ])

= [D(ei,i), ei,j ] + [ei,i, D(ei,j)]

= [0, ei,j ] + [ei,i, γje1,j ] = 0,

which implies that γj = 0. Hence, D(ei,j) = 0 for all 1 ≤ i ≤ j ≤ n. This
shows that D = 0 and the original D is an inner derivation.

• Conclusion: By the principle of induction, it follows from the basis and
induction step that AID(tn(F)) = Inn(tn(F)) holds for all n ≥ 2.

Now, we will consider the Lie algebra nn(F) of all strictly upper triangular
(n × n)–matrices over a general field F. This is a nilpotent Lie algebra with
nilindex n− 1. Further, nn(F) has dimension n(n−1)

2 and a basis consisting of
the matrices ei,j , where 1 ≤ i < j ≤ n. We also obtain that every almost inner
derivation is inner. For the proof, we can use the same technique as before, but
the details differ.

Proposition 12.1.2. For any n ≥ 2 we have

AID(nn(F)) = Inn(nn(F)).

Proof. We will prove the statement by induction on n.

• Basis step: For n = 2, we have that n2(F) ∼= F is abelian, which means
that the proposition is trivially true.
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• Induction step: Take n ≥ 3 and assume that the result holds for smaller
values of n (induction hypothesis). Take an arbitrary D ∈ AID(nn(F)).
Note that I = 〈e1,2, e1,3, . . . , e1,n〉 is an ideal of nn(F), which implies that
D(I) ⊆ I. It follows that D induces a derivation D̄ of nn(F)/I ∼= nn−1(F).
Of course, we have that D̄ ∈ AID(nn−1(F)). We can conclude from the
induction hypothesis that D̄ is an inner derivation. Let x ∈ nn(F) be
an element such that D̄ = ad(x̄), where x̄ denotes the projection of x in
nn−1(F) ∼= nn(F)/I.
By replacing D by D − ad(x), we may assume that D is an almost inner
derivation of nn(F) with D(nn(F)) ⊆ I. Moreover, it follows from (12.1)
that

D(ei,i+1) ∈ 〈e1,i+1, e2,i+1, . . . , ei−1,i+1, ei,i+2, ei,i+3, . . . , ei,n, 〉

for all 2 ≤ i ≤ n− 1. Hence, there exist elements β3, β4, . . . , βn ∈ F such
that

D(ei,i+1) = βi+1e1,i+1,

where 2 ≤ i ≤ n − 1. Define a := β3e1,2 + β4e1,3 + · · ·+ βne1,n−1, then
we have

ad(a)(ei,i+1) = [β3e1,2 + β4e1,3 + · · ·+ βne1,n−1, ei,i+1]

= [βi+1e1,i, ei,i+1]

= βi+1e1,i+1

= D(ei,i+1)

for all 2 ≤ i ≤ n− 1. So, by replacing D by D − ad(a), we may assume
that

D(e2,3) = D(e3,4) = · · · = D(en−1,n) = 0.
Note that ad(a)(I) ⊆ I, which means that also after we modify D, we
still have that D(nn(F)) ⊆ I. There also exist α3, α4, . . . , αn ∈ F with

D(e1,2) = α3e1,3 + α4e1,4 + · · ·+ αne1,n.

For 3 ≤ i ≤ n− 1, we have [e1,2, ei,i+1] = 0, so that

0 = D([e1,2, ei,i+1])

= [D(e1,2), ei,i+1] + [e1,2, D(ei,i+1)]

= [α3e1,3 + α4e1,4 + · · ·+ αne1,n, ei,i+1] + 0

= αie1,i+1.
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It follows that αi = 0 for all 3 ≤ i ≤ n− 1, so that

D(e1,2) = αne1,n = ad(−αne2,n)(e1,2).

Note that for 2 ≤ i ≤ n− 1, we have ad(−αne2,n)(ei,i+1) = 0. By finally
replacing D by D + ad(αne2,n), we find that D(ei,i+1) = 0 holds for all
1 ≤ i ≤ n− 1.
Take arbitrary 1 ≤ i ≤ n − 1 and 1 ≤ k ≤ n − i and consider the basis
vector ei,i+k. We will show by induction on k that D(ei,i+k) = 0.

– Basis step: For k = 1, we established the proof above.
– Induction step: Take 2 ≤ k ≤ n− i and assume that the result holds

for smaller values of k (induction hypothesis). We have

D(ei,i+k) = D([ei,i+1, ei+1,i+k])

= [D(ei,i+1), ei+1,i+k] + [ei,i+1, D(ei+1,i+k)]

= [0, ei+1,i+k] + [ei,i+1, 0],

where we use the basis step and the induction hypothesis for the last
equality. This implies that D(ei,i+k) = 0.

– Conclusion: By the basis and induction step, it follows from the
principle of induction that D(ei,i+k) = 0 for all 1 ≤ i ≤ n − 1 and
1 ≤ k ≤ n− i.

Since D(ei,j) = 0 for all 1 ≤ i < j ≤ n, this implies that D = 0, so that
the original D is an inner derivation.

• Conclusion: By the basis and induction step, it follows from the principle
of induction that when n ≥ 2, the only almost inner derivations of nn(F)
are the inner ones.

12.2 Almost abelian Lie algebras

We work in this section over an arbitrary field F. For an abelian Lie algebra g
over F, it is clear that there are no (almost) inner derivations, since ad(x) = 0
for all x ∈ g. In this section, we will study Lie algebras which are almost
abelian. This class of Lie algebras has no unique definition in the literature. A
common convention is that a Lie algebra g is ‘almost abelian’ if it contains a
1–codimensional abelian ideal. Note that g is metabelian, but does not have to
be nilpotent. It is enough to require that g contains an abelian subalgebra of
codimension one.
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Proposition 12.2.1 ([6]). Let g be a Lie algebra over a field F. If g has a
1–codimensional abelian subalgebra, then g has an abelian ideal of codimension 1
which can be constructed explicitly.

The result in [6] is stated for Lie algebras over a field of characteristic zero,
but the proof is also valid in general. We will show that, as for the abelian Lie
algebras, all almost inner derivations are inner.
Theorem 12.2.2. Let g be a finite-dimensional Lie algebra over a field F
containing an abelian subalgebra of codimension one. Then AID(g) = Inn(g)
holds.

Proof. It follows from the previous result that g has an abelian ideal of
codimension one. Hence, there exists a Lie algebra morphism ϕ : F→ gln(F)
such that g ∼= Fn oϕ F. We use t to denote a basis vector of F. With respect to
a suitable basis of Fn, we may assume that ϕ(t) is in rational canonical form.
This means that there is a basis ei,j (with 1 ≤ i ≤ r and 1 ≤ j ≤ ki) of Fn such
that

ϕ(t) =


C1 0 · · · 0
0 C2 0
...

. . .

0 0 Cr


is a blocked diagonal matrix. Each block Ci (with 1 ≤ i ≤ r) is a companion
matrix

Ci =


0 0 · · · 0 −α0
1 0 · · · 0 −α1
0 1 0 −α2
...

. . .
...

0 0 1 −αki−1


of a polynomial q(x)m = α0 + α1x + · · · + αki−1x

ki−1 + xki , where q(x) is
irreducible. Since q(x) is irreducible, it holds that either α0 6= 0 or q(x)m = xki

and hence α0 = α1 = · · · = αki−1 = 0. For more information on the rational
canonical form, see for instance [47, Section 6.7].

Take an arbitrary D ∈ AID(Fnoϕ F), then there exists an element v ∈ Fnoϕ F
with D(t) = [t, v]. By replacing D by D+ ad(v), we may assume that D(t) = 0.

For any vector e ∈ Fn, there exists a scalar α(e) ∈ F such that

D(e) = [e, α(e)t].

Take different basis vectors ei,j (with 1 ≤ i ≤ r and 1 ≤ j ≤ ki) and ep,q (with
1 ≤ p ≤ r and 1 ≤ q ≤ kp) and suppose that both ei,j , ep,q 6∈ Cg(t). Our aim is



ALMOST ABELIAN LIE ALGEBRAS 189

to show that α(ei,j) = α(ep,q). Since we assume that ei,j , ep,q 6∈ Cg(t), it holds
that

[t, ei,j ] = Ciei,j 6= 0 and [t, ep,q] = Cpep,q 6= 0.

We use ei,j (with 1 ≤ i ≤ r and 1 ≤ j ≤ ki) to denote the (ki × 1)–column
vector with 1 on position i and 0 on the other entries. Hence, Ciei,j is a matrix
multiplication. By considering several cases, we can see that Ciei,j and Cpep,q
are linearly independent.

• Suppose that i 6= p, then Ciei,j ∈ 〈ei,1, ei,2, . . . , ei,ki
〉 holds, whereas we

have Cpep,q ∈ 〈ep,1, ep,2, . . . , ep,kp
〉. This shows that these vectors are

linearly independent.

• When i = p, we may assume that 1 ≤ j < q ≤ ki.

– If q < ki, then Ciei,j = ei,j+1 and Ciei,q = ei,q+1 are clearly linearly
independent.

– When q = ki, we have that Ciei,ki
= −α0ei,1−α1ei,2−· · ·−αki−1ei,ki

.
Note that α0 6= 0, since if α0 = 0, then also α1 = · · · = αki−1 = 0 and
ei,ki ∈ Cg(t). Hence, we obtain that Ciei,j and Cieq,ki are linearly
independent in this case as well.

We find that

D(ei,j + ep,q) = [ei,j + ep,q, α(ei,j + ep,q)t]

= −α(ei,j + ep,q)Ciei,j − α(ei,j + ep,q)Cpep,q. (12.2)

Further, we also have

D(ei,j) +D(ep,q) = [ei,j , α(ei,j)t] + [ep,q, α(ep,q)t]

= −α(ei,j)Ciei,j − α(ep,q)Cpep,q. (12.3)

Using the facts that (12.2) and (12.3) must coincide and that Ciei,j and Cpep,q
are linearly independent, we finally find that

α(ei,j) = α(ei,j + ep,q) = α(ep,q).

Since ei,j and ep,q were arbitrarily chosen, there exists a fixed value α ∈ F such
that when ei,j 6∈ Cg(t), we have that D(ei,j) = [ei,j , αt] for all 1 ≤ i ≤ r and
1 ≤ j ≤ ki. Since 0 = D(t) = [t, αt], it follows that D coincides with ad(−αt)
on all basis vectors. Hence, D = ad(−αt) ∈ Inn(g) is an inner derivation.
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Note that a standard graded filiform Lie algebra is almost abelian, so in fact,
Proposition 10.1.2 is a special case of the last result. In some ways, this is the
most general property we can get: when we slightly change the conditions, there
exist Lie algebras with non-trivial almost inner derivations. For instance, the
result cannot be extended to Lie algebras g of the form g ∼= Fn o F2.

Example 12.2.3. Let n ≥ 3 and consider the Lie algebra g over F with basis
{e1, e2, . . . , en, s, t} and non-vanishing Lie brackets

[s, ei] = ei+1, 1 ≤ i ≤ n− 1,

[t, ei] = ei+2, 1 ≤ i ≤ n− 2.

Then we have g = Fn o F2. Let D ∈ Der(g) be the derivation which maps
a1e1 + · · ·+ anen + bs+ ct to cen. Define the map ϕD : g→ g as

a1e1 + · · ·+ anen + bs+ ct 7→

{
c
ben−1 if b 6= 0,
en−2 if b = 0.

For all x ∈ g, we have that D(x) = [x, ϕD(x)], showing that D ∈ AID(g). It is
easy to see that D 6∈ Inn(g). Hence we have AID(g) 6= Inn(g).

The result of Theorem 12.2.2 can also not be generalised to Lie algebras of the
form g ∼= fr,c o F where fr,c is a free nilpotent Lie algebra on r generators and
of class c > 1.

Example 12.2.4. Let f3,2 be the free 2–step nilpotent Lie algebra on 3
generators, then f3,2 has a basis {x1, x2, x3, y1, y2, y3} and non-trivial brackets

[x1, x2] = y1, [x1, x3] = y2 and [x2, x3] = y3.

Add one more generator t and one extra non-trivial bracket

[t, x1] = y3

to obtain a 7-dimensional Lie algebra g := f3,2 o F. Define D : g→ g by

a1x1 + a2x2 + a3x3 + b1y1 + b2y2 + b3y3 + ct 7→ a1(y1 + y2).

Again, it is obvious that D is a derivation of g. Define ϕD : g→ g by

a1x1 + a2x2 + a3x3 + b1y1 + b2y2 + b3y3 + ct 7→

{
x2 + x3 + a2−a3

a1
t if a1 6= 0,

0 if a1 = 0.

Then D(x) = [x, ϕD(x)] for all x ∈ g, showing that D ∈ AID(g). It is easy to
see that D 6∈ Inn(g), and so also in this case we have that AID(g) 6= Inn(g).



LIE ALGEBRAS WHOSE SOLVABLE RADICAL IS ABELIAN 191

12.3 Lie algebras whose solvable radical is abelian

In this section, we consider an algebraically closed field F of characteristic zero.
Let g be a Lie algebra g over F whose solvable radical a := Rad(g) is abelian.
We will show that AID(g) = Inn(g) holds. The results of this section also
appeared in [8].

By the Levi decomposition, we can write g = aoρ s, where s is a semisimple Lie
algebra and ρ : s→ gl(a) is a representation of s on a. Take arbitrary a1, a2 ∈ a
and s1, s2 ∈ s. We will denote by s1 · a1 = ρ(s1)(a1) = [s1, a1] the s–module
structure of a. Then the Lie bracket in g is given by

[(a1, s1), (a2, s2)] = (s1 · a2 − s2 · a1, [s1, s2]),
since a is abelian. We will illustrate the above notions with an example.
Example 12.3.1. Denote sl2(C) = {A ∈ M2(C) | tr(A) = 0} for the Lie
subalgebra of gl2(C). Define the matrices

x1 :=
(

0 1
0 0

)
, x2 :=

(
0 0
1 0

)
and x3 :=

(
1 0
0 −1

)
.

Then {x1, x2, x3} is a basis for sl2(C) and the non-zero Lie brackets are given
by

[x1, x2] = x3, [x1, x3] = −2x1 and [x2, x3] = 2x2. (12.4)
Note that sl2(C) is a semisimple Lie algebra.

Take n ≥ 2 and let an = 〈y1, . . . , yn+1〉 be the abelian Lie algebra of
dimension n+ 1. Define the linear map

ρ : sl2(C)→ gl(an),
where ρ is determined by

ρ(x1) =



0 1 0 · · · 0
0 0 2 0
...

...
. . .

. . .

0 0 0 . . . n

0 0 0 · · · 0

 , ρ(x2) =



0 0 · · · 0 0
n 0 · · · 0 0

0 n− 1 . . . 0 0
...

. . .
. . .

...

0 0 1 0

 ,

ρ(x3) =



n 0 · · · 0 0
0 n− 2 0 0
...

. . .
. . .

. . .
...

0 0 . . . −n+ 2 0
0 0 · · · 0 −n

 .
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It can be shown that ρ is a Lie algebra homomorphism and thus also a
representation of sl2(C) on an. Consider the Lie algebra gn := an oρ sl2(C). In
addition to the Lie brackets from (12.4), we also have

x1 · yi = (i− 1)yi−1, 2 ≤ i ≤ n+ 1,

x2 · yi = (n+ 1− i)yi+1, 1 ≤ i ≤ n,

x3 · yi = (n+ 2− 2i)yi, 1 ≤ i ≤ n+ 1.

Note that [gn, gn] = gn, which means that gn is a perfect Lie algebra. Further,
the solvable radical an is abelian.

In the sequel, we will use Ends(a) to denote

{ϕ : a→ a | ϕ is linear and ϕ(s · a) = s · ϕ(a), for all s ∈ s and all a ∈ a},

the space of s–endomorphisms of a. For any ϕ ∈ Ends(a), we define

Dϕ : aoρ s→ aoρ s : (a, s) 7→ (ϕ(a), 0).

We further introduce the set D := {Dϕ | ϕ ∈ Ends(a)}.

Lemma 12.3.2. With the notations from above, we have D ⊆ Der(aoρ s).

Proof. Take an arbitrary Dϕ ∈ D, so ϕ ∈ Ends(a). Let a1, a2 ∈ a and s1, s2 ∈ s.
On the one hand, we have that

Dϕ([(a1, s1), (a2, s2)]) = Dϕ(s1 · a2 − s2 · a1, [s1, s2])

= (ϕ(s1 · a2 − s2 · a1), 0), (12.5)

while on the other hand

[Dϕ(a1, s1), (a2, s2)] + [(a1, s1), Dϕ(a2, s2)]

= [(ϕ(a1), 0), (a2, s2)] + [(a1, s1), (ϕ(a2), 0)]

= (−s2 · ϕ(a1), 0) + (s1 · ϕ(a2), 0)

= (−s2 · ϕ(a1) + s1 · ϕ(a2), 0). (12.6)

Since ϕ ∈ Ends(a), it holds that (12.5) equals (12.6). Hence, we have that
Dϕ ∈ Der(aoρ s) and this finishes the proof.

Proposition 12.3.3. As vector spaces, we have that

Der(aoρ s) = Inn(aoρ s)⊕D.
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Proof. Take an arbitrary Dϕ ∈ D, so ϕ ∈ Ends(a) and suppose that Dϕ is an
inner derivation. Then there exists (a1, s1) ∈ aoρ s such that Dϕ = ad((a1, s1)).
For arbitrary (a2, s2) ∈ aoρ s, we have

(ϕ(a2), 0) = Dϕ(a2, s2)

= [(a1, s1), (a2, s2)]

= (s1 · a2 − s2 · a1, [s1, s2])

and this means that ϕ : a → a has to be the zero map. This implies that
Inn(aoρ s) ∩D = {0}, so we have to show that Der(aoρ s) = Inn(aoρ s) + D.
Consider any D ∈ Der(a oρ s). The derivation D induces a derivation on s,
which is an inner derivation, since s is semisimple. So, after changing D up
to an inner derivation, we may assume that D induces the zero map on s. It
follows that there exists a linear map f : s→ a such that D(0, s) = (f(s), 0) for
all s ∈ s. Using this observation and the fact that D is a derivation, we have
that

(f([s1, s2]), 0) = D(0, [s1, s2])

= D([(0, s1), (0, s2)])

= [D(0, s1), (0, s2)] + [(0, s1), D(0, s2)]

= [(f(s1), 0), (0, s2)] + [(0, s1), (f(s2), 0)]

= [−s2 · f(s1), 0] + [s1 · f(s2), 0],

where we also use the definition of the Lie brackets. This implies that

f([s1, s2]) = s1 · f(s2)− s2 · f(s1).

Hence, f ∈ Z1(s, a) is a 1–cocycle. As s is semisimple, we have that

H1(s, a) = 0

by the first Whitehead lemma and so there exists an element a0 ∈ a such that
f(s) = s · a0 for all s ∈ s. Moreover, we have that

(D + ad((a0, 0)))(0, s) = (f(s), 0) + [(a0, 0), (0, s)] = (0, 0).

This means that, after changing D with an inner derivation, we can assume that
D(s) = 0. Thus, there is a linear map ϕ : a→ a such that D(a, s) = (ϕ(a), 0)
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holds for all a ∈ a and all s ∈ s. Since D is a derivation, we must have

D(−s · a, 0) = D([(a, 0), (0, s)])

= [D(a, 0), (0, s)] + [(a, 0), D(0, s)]

= [(ϕ(a), 0), (0, s)] + (0, 0)

= (−s · ϕ(a), 0),

which implies that ϕ(s · a) = s · ϕ(a). This shows that, after changing D up to
an inner derivation, we have that D = Dϕ ∈ D, which finishes the proof.

We are now ready to prove the main result of this section.

Theorem 12.3.4. Let g be a Lie algebra over an algebraically closed field F of
characteristic zero whose solvable radical is abelian. Then AID(g) = Inn(g).

Proof. As before, we can write g = aoρ s, where a is the abelian radical and s
is semisimple. It follows from the last proposition that Der(g) = Inn(g) ⊕D.
Consider a nonzero D ∈ D. In order to prove the result, we have to show
that D is not an almost inner derivation. By definition, we have D = Dϕ for
some nonzero ϕ ∈ Ends(a). Let V = ϕ(a) be the image of ϕ. Then V is a
nonzero s–submodule of a. It follows from for example [81, Section 35] that the
Lie algebra s contains a so-called ‘distinguished’ element, which is a nilpotent
element s0 such that Cs(s0) consists entirely of nilpotent elements. Engel’s
theorem implies that Cs(s0) is also nilpotent as a Lie algebra. Consider the
map ψ : s → End(V ) : s 7→ ψ(s), where ψ(s)(v) = s · v. By definition, ψ is
a representation of Lie algebras and since s is semisimple, ψ maps nilpotent
elements to nilpotent elements. It follows that ψ(Cs(s0)) consists of nilpotent
endomorphisms. In particular, ψ(Cs(s0))(V ) = Cs(s0) · V is strictly contained
in V . Let v0 ∈ V \(Cs(s0) · V ) and pick an a0 ∈ a with ϕ(a0) = v0. Note that
since s is semisimple, we can find a complementary s–submodule W of V in a
such that a decomposes as a direct sum a = V ⊕W of s–modules. Hence, we
also find that v0 ∈ a \ Cs(s0) · a.

We will prove by contradiction that Dϕ(a0, s0) 6∈ [(a0, s0), g]. Assume that
Dϕ(a0, s0) = [(a0, s0), (a, s)] for some a ∈ a and s ∈ s. Then we have that

(ϕ(a0), 0) = [(a0, s0), (a, s)] = (s0 · a− s · a0, [s0, s]).

This shows that [s0, s] = 0 and so s ∈ Cs(s0). However, this implies that

v0 = ϕ(a0) = s0 · a− s · a0 ∈ Cs(s0) · a,
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which contradicts the fact that we have chosen v0 such that v0 ∈ a \ Cs(s0) · a.
Hence, we have that Dϕ(a0, s0) 6∈ [(a0, s0), g], so Dϕ is not an almost inner
derivation.

Example 12.3.5. Consider the Lie algebra gn := an oρ sl2(C) with n ≥ 2. It
is clear that Id : an → an is a sl2(C)–equivariant linear map. The only invariant
subspaces of an are the zero space and an itself. Hence, an is an irreducible
sl2(C)–module. Schur’s lemma implies that if ϕ : an → an is an endomorphism,
then ϕ is a scalar multiple of Id. This shows that

Der(gn) = Inn(gn)⊕ 〈DId〉,

where DId : an oρ sl2(C) → an oρ sl2(C) : (a, s) 7→ (a, 0). To prove that the
only almost inner derivations are the inner ones, it suffices to show that DId
is not almost inner. Note that s0 := x1 is nilpotent with Cs(s0) = 〈x1〉. We
further have that V = ϕ(a) = a and this means that

ψ(Cs(s0))(V ) = Cs(s0) · V = 〈y1, . . . , yn〉.

We can take v0 = a0 = yn+1. Suppose that DId is almost inner. Take an
arbitrary (a, s) ∈ aoρ s, then

[(yn+1, x1), (a, s)] = (x1 · a− s · yn+1, [x1, s]).

Since DId(yn+1, x1) = (yn+1, 0), we must have that s ∈ 〈x1〉. However, this
leads to a contradiction, because yn+1 /∈ [x1, a]. As a result, DId is not almost
inner and AID(gn) = Inn(gn).

12.4 Characteristically nilpotent Lie algebras

Over a field of characteristic zero, a Lie algebra with a nonsingular derivation is
nilpotent. This result was found by Jacobson ([50]) and he conjectured that the
opposite is also true. However, Dixmier and Lister ([24]) gave a counterexample
of dimension 8, which was already studied in detail in Chapter 5. Their discovery
led to the study of a new type of Lie algebras, which are called ‘characteristically
nilpotent’.

Definition 12.4.1 (CNLA). A Lie algebra whose derivations all are nilpotent
is called a characteristically nilpotent Lie algebra (CNLA).

Since then, a lot of properties about characteristically nilpotent Lie algebras
have been studied. For instance, a Lie algebra is characteristically nilpotent if
and only if it has at least dimension two and its derivation algebra is nilpotent
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([58]). If all derivations are nilpotent, then the Lie algebra itself is also nilpotent.
Hence, a CNLA has to be nilpotent. Further, a direct sum of characteristically
nilpotent Lie algebras is again a CNLA, which is useful for constructing different
examples. Moreover, the nilindex of a CNLA must be at least three ([58]). This
occurs for the Dixmier-Lister Lie algebra. More interesting facts can be found
in the survey [2].

Let g be a CNLA. One of the objectives of this thesis was to find which of the
inclusions

Inn(g) ⊆ CAID(g) ⊆ AID(g) ⊆ Der(g). (12.7)

are equalities for different classes of Lie algebras. Throughout this thesis, we
discussed a few possibilities for characteristically nilpotent Lie algebras. For the
Dixmier-Lister algebra g over a field F, we found that the dimension of AID(g)
depends on the number of different roots of X3 − 1 over F. It turned out that
if this polynomial splits over F, the only almost inner derivations are the inner
ones. The opposite case is where all derivations are almost inner. Suppose that
g is nilpotent. Proposition 4.1.8 implies that all D ∈ AID(g) are nilpotent as
well. This means that Der(g) = AID(g) only can happen when g is a CNLA. In
Section 10.3, we studied a class of filiform and characteristically nilpotent Lie
algebras fn (for n ≥ 13) where this is the case. In this section, we will give an
example of a CNLA for which all of the sets from (12.7) are different. This Lie
algebra was first studied by Favre ([27]), thereby showing that there exists a
CNLA of dimension 7.

Example 12.4.2. Let F be an arbitrary field. Consider the Lie algebra g over
F with basis {e1, . . . , e7} and non-zero Lie brackets

[e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5,

[e1, e5] = e6, [e1, e6] = e7, [e2, e3] = −e6,

[e2, e4] = −e7, [e2, e5] = −e7, [e3, e4] = e7.

(12.8)

An arbitrary derivation for g is given by

D = a1ad(e1) + · · ·+ a6ad(e6) + d1D1 + · · ·+ d4D4

and has matrix form

0 0 0 0 0 0 0
−2d3 0 0 0 0 0 0
−a2 a1 0 0 0 0 0
−a3 d3 a1 0 0 0 0
−a4 d4 e1 a1 0 0 0
−a5 a3 + d1 d4 − a2 3d3 a1 0 0
−a6 a4 + a5 + d2 −a4 + d1 a3 − a2 + d4 −a2 + 5d3 a1 + 2d3 0


,
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which means that Der(g) = 〈ad(e1), . . . , ad(e6), D1, . . . , D4〉. We will show that
AID(g) = Inn(g)⊕ 〈D1, D2〉 holds. Consider the map ϕD1 : g→ g, where the
image of x =

∑7
i=1 xiei is given by

ϕD1(x) =


1
x1

(x2e5 + (x2
2+x1x3)
x1

e6) if x1 6= 0,
1
x2

(−x2e3 + (x4 − x3)e5) if x1 = 0 and x2 6= 0,
e4 if x1 = x2 = 0.

It is an easy computation to see that D1(x) = [x, ϕD1(x)] for all x ∈ g. Consider
the map ϕD2 : g→ g, where x =

∑7
i=1 xiei is mapped to

ϕD2(x) =
{
x2
x1
e6 if x1 6= 0,

−e5 if x1 = 0.

A calculation shows that D2(x) = [x, ϕD2(x)] for all x ∈ g. Let a, b ∈ F be
arbitrary and define D := aD3 + bD4. Suppose that D is almost inner. We have
that D(e2) = ae4 + be5. Since [e2, g] ⊆ 〈e3, e6, e7〉, it is clear that a = b = 0.
Hence, no non-zero linear combination of D3 and D4 is almost inner. This gives
an example of a Lie algebra g with

Inn(g) 6⊆ CAID(g) 6⊆ AID(g) 6⊆ Der(g),

since D2 ∈ CAID(g) and D1 ∈ AID(g) \ CAID(g).

By studying the low-dimensional nilpotent Lie algebras from 8.1.3, it turns out
that, when char(F) 6= 2, there are no examples of a CNLA over F of dimension
at most six. Hence, the example of Favre is a CNLA of smallest dimension.
One year after Favre, Bratzlavky ([4]) found a 6–dimensional Lie algebra g over
a field F which is characteristically nilpotent if and only if char(F) = 2. This
Lie algebra has basis {e1, . . . , e6} and non-zero Lie brackets

[e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5,

[e1, e5] = e6, [e2, e3] = e5 + e6, [e2, e4] = e6.

With the notation from 8.1.3, we have that g = g
(2)
6,2. For this Lie algebra, we

already found that AID(g) = Inn(g)⊕ 〈E6,2〉. When char(F) 6= 2, we have that
g is isomorphic to R5 from Example 10.1.4, which is denoted in Chapter 8 as
g6,15. Hence, g is a CNLA if and only if char(F) = 2.
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Appendix A

Tables

In this appendix, we list several low-dimensional Lie algebras. Most of them
are denoted with gi,j , where i is the dimension of the Lie algebra and j is the
number in the classification used. Some Lie algebras also have parameters, which
are described between parentheses. Each time, the first table contains all non-
vanishing Lie brackets. The second table gives an overview of some properties.
Let g be a Lie algebra from the classification, then c(g) denotes the nilpotency
class of g and d(g) stands for the derived length (when these notions are well-
defined). Further, we will write I(g) and C(g) instead of dim(Inn(g)) respectively
dim(CAID(g)). Similarly, dim(AID(g)) and dim(Der(g)) are denoted with A(g)
and D(g). If the entry in the column with ‘D’ is non-zero, it gives examples of
almost inner derivations, which together with the inner derivations generate
AID(g).

Name Non-vanishing Lie brackets
g1,1 −
g2,1 −
g2,2 [e1, e2] = e2
g3,1 −
g3,2 [e1, e2] = e2, [e1, e3] = e3
g3,3(ε) [e1, e2] = e3, [e1, e3] = εe2 + e3
g3,4(ε) [e1, e2] = e3, [e1, e3] = εe2
g(α, β) [e1, e2] = e3, [e1, e3] = −βe2, [e2, e3] = αe1

Table A.1: Lie algebras of dimension at most 3 over an arbitrary field F,
where ε ∈ F and α, β ∈ F∗.

201



202 TABLES

Name c(g) d(g) I(g) C(g) A(g) D(g) D

g1,1 1 1 0 0 0 1 0
g2,1 1 1 0 0 0 4 0
g2,2 - 2 2 2 2 2 0
g3,1 1 1 0 0 0 9 0
g3,2 - 2 3 3 3 6 0
g3,3(0) - 2 2 2 2 4 0
g3,3(ε∗) - 2 3 3 3 4 0
g3,4(0) 2 2 2 2 2 6 0
g3,4(ε∗) - 2 3 3 3 4/5 0
g(α, β) - - 3 3 3 3/5 0

Table A.2: Results for Lie algebras of dimension at most 3 over an
arbitrary field F, where ε∗, α, β ∈ F∗. Remark 8.1.8 contains comments
on this table.

Name Non-vanishing Lie brackets
g4,1 −
g4,2 [e1, e2] = e2, [e1, e3] = e3, [e1, e4] = e4
g4,3(ε) [e1, e2] = e2, [e1, e3] = e4, [e1, e4] = −εe3 + (ε+ 1)e4
g4,4 [e1, e2] = e3, [e1, e3] = e3
g4,5 [e1, e2] = e3
g4,6(ε, δ) [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = εe2 + δe3 + e4
g4,7(ε, δ) [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = εe2 + δe3
g4,8 [e1, e2] = e2, [e3, e4] = e4
g4,9(ε) [e1, e3] = e3 + εe4, [e1, e4] = e3, [e2, e3] = e3,

[e2, e4] = e4
g4,10(ε) [e1, e3] = e4, [e1, e4] = εe3, [e2, e3] = e3, [e2, e4] = e4
g4,11(ε, δ) [e1, e2] = (1 + δ)e2, [e1, e3] = δe3, [e1, e4] = e4,

[e2, e4] = e3, [e2, e3] = εe4
g4,12 [e1, e2] = e2, [e1, e3] = e3, [e1, e4] = 2e4, [e2, e3] = −e4
g4,13(ε) [e1, e2] = e3, [e1, e3] = εe2 + e3, [e1, e4] = e4,

[e2, e3] = e4
g4,14(ε) [e1, e2] = e3, [e1, e3] = εe2, [e2, e3] = e4

Table A.3: Solvable Lie algebras of dimension 4 over an arbitrary field F.
The conditions on F and on the parameters are stated in Remark 8.1.10.
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Name c(g) d(g) I(g) C(g) A(g) D(g) D

g4,1 1 1 0 0 0 16 0
g4,2 - 2 4 4 4 12 0
g4,3(0) - 2 3 3 3 8 0
g4,3(ε) - 2 4 4 4 8 0
g4,4 - 2 2 2 2 8 0
g4,5 2 2 2 2 2 10 0
g4,6(0, δ) - 2 3 3 3 6 0
g4,6(ε, δ) - 2 4 4 4 6 0
g4,7(0, 0) 2 2 3 3 3 7 0
g4,7(0, δ) - 2 3 3 3 6/7 0
g4,7(ε, 0) - 2 4 4 4 6/7 0
g4,7(ε, δ) - 2 4 4 4 6 0
g4,8 - 2 4 4 4 4 0
g4,9(ε) - 2 4 4 4 4/5 0
g4,10(ε) - 2 4 4 4 6 0
g4,11(ε, δ) - 3 4 4 4 5 0
g4,11(ε, δ) - 3 4 5 5 5 E3,3 + E4,4
g4,12 - 3 3/4 3/4 3/4 7 0
g4,13(0) - 2 4 4 4 5/6 0
g4,13(ε) - 3 4 4 4 5 0
g4,14(ε) - 3 3 3 3 5/6 0

Table A.4: Results for the solvable Lie algebras of dimension 4 over an
arbitrary field. Remark 8.1.12 contains comments on this table.
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Name Non-vanishing Lie brackets
g5,1 − g6,1 −
g5,2 − g6,2 [e1, e2] = e3
g5,3 − g6,3 [e1, e2] = e3, [e1, e3] = e4
g5,4 − g6,4 [e1, e2] = e5, [e3, e4] = e5
g5,5 − g6,5 [e1, e2] = e3, [e1, e3] = e5, [e2, e4] = e5
g5,6 − g6,6 [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5, [e2, e3] = e5
g5,7 − g6,7 [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5
g5,8 − g6,8 [e1, e2] = e4, [e1, e3] = e5
g5,9 − g6,9 [e1, e2] = e3, [e1, e3] = e4, [e2, e3] = e5
g6,10 [e1, e2] = e3, [e1, e3] = e6, [e4, e5] = e6
g6,11 [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e6, [e2, e3] = e6,

[e2, e5] = e6
g6,12 [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e6, [e2, e5] = e6
g6,13 [e1, e2] = e3, [e1, e3] = e5, [e1, e5] = e6, [e2, e4] = e5,

[e3, e4] = e6
g6,14 [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5, [e2, e3] = e5,

[e2, e5] = e6, [e3, e4] = −e6
g6,15 [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5, [e1, e5] = e6,

[e2, e3] = e5, [e2, e4] = e6
g6,16 [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5,

[e2, e5] = e6, [e3, e4] = −e6
g6,17 [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5, [e1, e5] = e6,

[e2, e3] = e6
g6,18 [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5, [e1, e5] = e6
g6,19(ε1) [e1, e2] = e4, [e1, e3] = e5, [e1, e5] = e6, [e2, e4] = e6,

[e3, e5] = ε1e6
g6,20 [e1, e2] = e4, [e1, e3] = e5, [e1, e5] = e6, [e2, e4] = e6
g6,21(ε1) [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e6, [e2, e3] = e5,

[e2, e5] = ε1e6
g6,22(ε2) [e1, e2] = e5, [e1, e3] = e6, [e2, e4] = ε2e6, [e3, e4] = e5
g6,23 [e1, e2] = e3, [e1, e3] = e5, [e1, e4] = e6, [e2, e4] = e5
g6,24(ε2) [e1, e2] = e3, [e1, e3] = e5, [e1, e4] = ε2e6, [e2, e3] = e6,

[e2, e4] = e5
g6,25 [e1, e2] = e3, [e1, e3] = e5, [e1, e4] = e6
g6,26 [e1, e2] = e4, [e1, e3] = e5, [e2, e3] = e6
g6,27 [e1, e2] = e3, [e1, e3] = e5, [e2, e4] = e6
g6,28 [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5, [e2, e3] = e6

Table A.5: Nilpotent Lie algebras of dimension 5 and 6 over a field F,
where ε1 ∈ F∗/( ∗∼) and ε2 ∈ F/( ∗∼) when char(F) 6= 2 and ε2 ∈ F/(∗+∼ )
for char(F) = 2.
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Name (F = C) c(g) d(g) I(g) C(g) A(g) D(g) D F = C
g5,1 − g6,1 1 1 0 0 0 25 - 36 0 C6

g5,2 − g6,2 2 2 2 2 2 16 - 24 0 n3 ⊕ C3

g5,3 − g6,3 3 2 3 3 3 11 - 17 0 n4 ⊕ C2

g5,4 − g6,4 2 2 4 4 4 15 - 21 0 G5,1 ⊕ C
g5,5 − g6,5 3 2 4 5 5 10 - 15 E5,4 G5,3 ⊕ C
g5,6 − g6,6 4 2 4 5 5 8 - 12 E5,2 G5,6 ⊕ C
g5,7 − g6,7 4 2 4 4 4 9 - 13 0 G5,5 ⊕ C
g5,8 − g6,8 2 2 3 3 3 13 - 19 0 G5,2 ⊕ C
g5,9 − g6,9 3 2 3 3 3 10 - 15 0 G5,4 ⊕ C
g6,10 3 2 5 5 5 14 0 G6,2
g6,11 4 2 5 5 5 11 0 G6,12
g6,12 4 2 5 6 6 12 E6,5 G6,11
g6,13 4 2 5 6 6 10/11 E6,4 G6,13
g6,14 5 3 5 5 6 8/9 E5,2 G6,20
g6,15 5 2 5 6 6 9/10 E6,2 G6,19
g6,16 5 3 5 5 5 9/10 0 G6,18
g6,17 5 2 5 6 6 10 E6,2 G6,17
g6,18 5 2 5 5 5 11 0 G6,16
g6,19(ε1) 3 2 5 5 5 11/12 0 G6,9
g6,20 3 2 5 5 5 12 0 G6,10
g6,21(ε1) 4 2 5 5 5 10/11 0 G6,15
g6,22(0) 2 2 4 6 6 17/18 E6,1, E6,3 G6,1
g6,22(ε2) 2 2 4 4 4 16/18 0 n3 ⊕ n3
g6,22(ε2) 2 2 4 8 8 16/18 E6,1, E6,2, -

E6,3, E6,4
g6,23 3 2 4 6 6 14 E6,1, E5,4 G6,7
g6,24(0) 3 2 4 6 6 13/14 E6,2, E5,4 G6,8
g6,24(ε2) 3 2 4 4 4 12/14 0 G6,5
g6,24(ε2) 3 2 4 8 8 12/14 E6,1, E6,2, -

E6,3, E6,4
g6,25 3 2 4 4 4 15 0 G6,6
g6,26 2 2 3 3 3 18 0 G6,3
g6,27 3 2 4 4 4 13 0 G6,4
g6,28 4 2 4 4 4 11 0 G6,14

Table A.6: Results for the nilpotent Lie algebras of dimension 5 and
6 over an arbitrary field F, where ε1 ∈ F∗/( ∗∼) and ε2 ∈ F∗/( ∗∼) when
char(F) 6= 2 and ε2 ∈ F∗/(∗+∼ ) for char(F) = 2. Remark 8.1.17 contains
comments on this table.
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Name Non-vanishing Lie brackets
g

(2)
6,1 [e1, e2] = e3, [e1, e3] = e5, [e1, e5] = e6,

[e2, e4] = e5 + e6, [e3, e4] = e6

g
(2)
6,2 [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5, [e1, e5] = e6,

[e2, e3] = e5 + e6, [e2, e4] = e6

g
(2)
6,3(ε3) [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5,

[e2, e3] = e5 + ε3e6, [e2, e5] = e6, [e3, e4] = e6

g
(2)
6,4(ε3) [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5, [e2, e3] = ε3e6,

[e2, e5] = e6, [e3, e4] = e6

g
(2)
6,5 [e1, e2] = e4, [e1, e3] = e5, [e2, e5] = e6, [e3, e4] = e6

g
(2)
6,6 [e1, e2] = e3, [e1, e3] = e4, [e1, e5] = e6, [e2, e3] = e5,

[e2, e4] = e6

g
(2)
6,7(ε4) [e1, e2] = e5, [e1, e3] = e6, [e2, e4] = ε4e6,

[e3, e4] = e5 + e6

g
(2)
6,8(ε4) [e1, e2] = e3, [e1, e3] = e5, [e1, e4] = ε4e6, [e2, e3] = e6,

[e2, e4] = e5 + e6

Table A.7: Additional nilpotent Lie algebras of dimension 6 over fields
F with char(F) = 2, where ε3 ∈ F∗/(∗+∼ ) and ε4 ∈ F/(ψ∼).

Name c(g) d(g) I(g) C(g) A(g) D(g) D

g
(2)
6,1 4 2 5 6 6 10 E6,4

g
(2)
6,2 5 2 5 6 6 9 E6,2

g
(2)
6,3(ε3) 5 3 5 5 6 9 E5,2

g
(2)
6,4(ε3) 5 3 5 5 5 9 0

g
(2)
6,5 3 2 5 5 5 13 0

g
(2)
6,6 3 2 5 5 5 12 0

g
(2)
6,7(ε4) 2 2 4 4 4 16 0

g
(2)
6,7(ε4) 2 2 4 8 8 16 E6,1, E6,2,

E6,3, E6,4

g
(2)
6,8(ε4) 3 2 4 4 4 12 0

g
(2)
6,8(ε4) 3 2 4 8 8 12 E6,1, E6,2,

E6,3, E6,4

Table A.8: Results for the additional nilpotent Lie algebras of
dimension 6 over fields F with char(F) = 2, where ε3 ∈ F∗/(∗+∼ ) and
ε4 ∈ F/(ψ∼). A comment on this table can be found in Remark 8.1.17.
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Name Non-vanishing Lie brackets
C5,1 [e1, e2] = e1, [e3, e4] = 2e4, [e3, e5] = −2e5,

[e4, e5] = e3
C5,2 [e1, e3] = −e1, [e1, e5] = e2, [e2, e3] = e2, [e2, e4] = e1,

[e3, e4] = 2e4, [e3, e5] = −2e5, [e4, e5] = e3
C5,3 [e3, e4] = 2e4, [e3, e5] = −2e5, [e4, e5] = e3
C5,4 [e1, e4] = e1, [e1, e5] = e1, [e2, e3] = e1, [e2, e4] = e2,

[e3, e5] = e3
C5,5(p, q, r) [e1, e5] = (q − r)pe1, [e2, e4] = e1 + pe2,

[e2, e5] = (r − q)e1, [e3, e4] = e2 + qe3,

[e3, e5] = e1 + re2 + r(q − p)e3
C5,6(p, q) [e1, e5] = −pe1, [e2, e4] = e1 + pe2, [e2, e5] = e1,

[e3, e4] = e2 + qe3, [e3, e5] = e2 + (q − p)e3
C5,7 [e2, e4] = e1 + e2, [e3, e4] = e2 + 2e3,

[e3, e5] = e1 + 2e2 + 2e3, [e4, e5] = e3
C5,8 [e1, e4] = e1, [e2, e4] = e2, [e3, e5] = e3
C5,9(p, q) [e1, e5] = (2p+ q)e3, [e2, e3] = e1, [e2, e5] = (p+ q)e2,

[e3, e4] = e2, [e3, e5] = pe3 + e4, [e4, e5] = e1 + qe4
C5,10 [e1, e5] = 3e1, [e2, e3] = e1, [e2, e5] = 2e2, [e3, e4] = e2,

[e3, e5] = e3, [e4, e5] = e1 + e4
C5,11 [e1, e5] = e1, [e2, e3] = e1, [e2, e5] = e2, [e3, e4] = e2,

[e3, e5] = e4, [e4, e5] = e4
C5,12(p, q, r) [e1, e5] = pe1 + e2, [e2, e5] = (q + r)e2, [e3, e4] = e2,

[e3, e5] = e1 + qe3, [e4, e5] = e3 + re4
C5,13(p, q) [e1, e5] = (p+ q)e1, [e2, e5] = (p+ q)e2, [e3, e4] = e2,

[e3, e5] = e1 + pe3, [e4, e5] = e3 + qe4
C5,14(p, q) [e1, e5] = pe1 + e2, [e2, e5] = (p+ q)e2, [e3, e4] = e2,

[e3, e5] = e1 + qe3 + e4, [e4, e5] = pe4
C5,15(p, q) [e1, e5] = pe1 + e2, [e2, e5] = 2qe2, [e3, e4] = e2,

[e3, e5] = e1 + qe3, [e4, e5] = qe4
C5,16 [e1, e5] = 2e1, [e2, e5] = 2e2, [e3, e4] = e2,

[e3, e5] = e1 + e3, [e4, e5] = e4
C5,17 [e1, e5] = e1 + e2, [e2, e5] = 2e2, [e3, e4] = e2,

[e3, e5] = e3, [e4, e5] = e4
C5,18 [e1, e5] = e1, [e2, e5] = e2, [e3, e4] = e2,

[e3, e5] = e1 + e4, [e4, e5] = e4
C5,19 [e1, e5] = e2, [e3, e4] = e2
C5,20(p, q, r, s) [e1, e5] = pe1, [e2, e5] = e1 + qe2, [e3, e5] = e2 + re3,

[e4, e5] = e3 + se4

Table A.9: Lie algebras of dimension 5 over C, where p, q, r, s ∈ C.
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Name Non-vanishing Lie brackets
C5,21(p, q, r) [e1, e5] = pe1, [e2, e5] = pe2, [e3, e5] = e2 + qe3,

[e4, e5] = e3 + re4
C5,22(p, q) [e1, e5] = pe1, [e2, e5] = e1 + qe2, [e3, e5] = pe3,

[e4, e5] = e3 + qe4
C5,23(p, q) [e1, e5] = pe1, [e2, e5] = pe2, [e3, e5] = pe3,

[e4, e5] = e3 + qe4
C5,24 [e1, e5] = e1, [e2, e5] = e2, [e3, e5] = e3, [e4, e5] = e4

Table A.9: Lie algebras of dimension 5 over C, where p, q, r, s ∈ C.

Name Non-vanishing Lie brackets
R5,7(u, v, w) [e1, e5] = e1, [e2, e5] = ue2, [e3, e5] = ve3,

[e4, e5] = we4
R5,8(u) [e2, e5] = e1, [e3, e5] = e3, [e4, e5] = ue4
R5,9(u, v) [e1, e5] = e1, [e2, e5] = e1 + e2, [e3, e5] = ue3,

[e4, e5] = ve4
R5,10 [e2, e5] = e1, [e3, e5] = e2, [e4, e5] = e4
R5,11(u) [e1, e5] = e1, [e2, e5] = e1 + e2, [e3, e5] = e2 + e3,

[e4, e5] = ue4
R5,12 [e1, e5] = e1, [e2, e5] = e1 + e2, [e3, e5] = e2 + e3,

[e4, e5] = e3 + e4
R5,13(u, v, w) [e1, e5] = e1, [e2, e5] = ue2, [e3, e5] = ve3 − we4,

[e4, e5] = we3 + ve4
R5,14(u) [e2, e5] = e1, [e3, e5] = ue3 − e4, [e4, e5] = e3 + ue4
R5,15(u) [e1, e5] = e1, [e2, e5] = e1 + e2, [e3, e5] = ue3,

[e4, e5] = e3 + ue4
R5,16(u, v) [e1, e5] = e1, [e2, e5] = e1 + e2, [e3, e5] = ue3 − ve4,

[e4, e5] = ve3 + ue4
R5,17(u, v, w) [e1, e5] = ue1 − e2, [e2, e5] = e1 + ue2,

[e3, e5] = ve3 − we4, [e4, e5] = we3 + e4
R5,18(u) [e1, e5] = ue1 − e2, [e2, e5] = e1 + ue2,

[e3, e5] = e1 + ue3 − e4, [e4, e5] = e2 + e3 + ue4
R5,19(u, v) [e1, e5] = ue1, [e2, e3] = e1, [e2, e5] = e2,

[e3, e5] = (u− 1)e3, [e4, e5] = ve4
R5,20(u) [e1, e5] = ue1, [e2, e3] = e1, [e2, e5] = e2,

[e3, e5] = (u− 1)e3, [e4, e5] = e1 + ue4
R5,21 [e1, e5] = 2e1, [e2, e3] = e1, [e2, e5] = e2 + e3,

[e3, e5] = e3 + e4, [e4, e5] = e4

Table A.10: Non-decomposable non-nilpotent Lie algebras of dimension 5
over R, where u, v, w ∈ R and ε ∈ {1,−1}.
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Name Non-vanishing Lie brackets
R5,22 [e2, e3] = e1, [e2, e5] = e3, [e4, e5] = e4
R5,23(u) [e1, e5] = 2e1, [e2, e3] = e1, [e2, e5] = e2 + e3,

[e3, e5] = e3, [e4, e5] = ue4
R5,24(ε) [e1, e5] = 2e1, [e2, e3] = e1, [e2, e5] = e2 + e3,

[e3, e5] = e3, [e4, e5] = 2e4 + εe1
R5,25(u, v) [e1, e5] = 2ve1, [e2, e3] = e1, [e2, e5] = ve2 + e3,

[e3, e5] = ve3 − e2, [e4, e5] = ue4
R5,26(u, ε) [e1, e5] = 2ue1, [e2, e3] = e1, [e2, e5] = ue2 + e3,

[e3, e5] = −e2 + ue3, [e4, e5] = εe1 + 2ue4
R5,27 [e1, e5] = e1, [e2, e3] = e1, [e3, e5] = e3 + e4,

[e4, e5] = e1 + e4
R5,28(u) [e1, e5] = ue1, [e2, e3] = e1, [e2, e5] = (u− 1)e2,

[e3, e5] = e3 + e4, [e4, e5] = e4
R5,29 [e1, e5] = e1, [e2, e4] = e1, [e2, e5] = e2, [e4, e5] = e3
R5,30(u) [e1, e5] = (u+ 1)e1, [e2, e4] = e1, [e2, e5] = ue2,

[e3, e4] = e2, [e3, e5] = (u− 1)e3
R5,31 [e1, e5] = 3e1, [e2, e4] = e1, [e2, e5] = 2e2, [e3, e4] = e2,

[e3, e5] = e3, [e4, e5] = e3 + e4
R5,32(u) [e1, e5] = e1, [e2, e4] = e1, [e2, e5] = e2, [e3, e4] = e2,

[e3, e5] = ue1 + e3
R5,33(u) [e1, e4] = e1, [e2, e5] = e2, [e3, e4] = ve3, [e3, e5] = ue3
R5,34 [e1, e4] = ue1, [e1, e5] = e1, [e2, e4] = e2, [e3, e4] = e3,

[e3, e5] = e2
R5,35(u, v) [e1, e4] = ve1, [e1, e5] = ue1, [e2, e4] = e2,

[e2, e5] = −e3, [e3, e4] = e3, [e3, e5] = e2
R5,36 [e1, e4] = e1, [e2, e3] = e1, [e2, e4] = e2, [e2, e5] = −e2,

[e3, e5] = e3
R5,37 [e1, e4] = 2e1, [e2, e3] = e1, [e2, e4] = e2,

[e2, e5] = −e3, [e3, e4] = e3, [e3, e5] = e2
R5,38 [e1, e4] = e1, [e2, e5] = e2, [e4, e5] = e3
R5,39 [e1, e4] = e1, [e1, e5] = −e2, [e2, e4] = e2, [e2, e5] = e1,

[e4, e5] = e3
R5,40 [e1, e2] = 2e1, [e1, e3] = −e2, [e1, e4] = e5,

[e2, e3] = 2e3, [e2, e4] = e4, [e2, e5] = −e5, [e3, e5] = e4

Table A.10: Non-decomposable non-nilpotent Lie algebras of dimension 5
over R, where u, v, w ∈ R and ε ∈ {1,−1}.
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