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Abriss
Der minimale Permutationsgrad einer endlichen Gruppe G ist die kleinste posi-
tive ganze Zahl für die ein Monomorphismus von G in die symmetrische Gruppe
Sn existiert. Diese Arbeit legt den Fokus hauptsächlich auf einige Spezialfälle,
insbesondere auf Gruppen in denen der minimale Permutationsngrad der Ord-
nung der Gruppe entspricht, abelsche Gruppen und semidirekte Produkte von
zyklischen p-Gruppen.

Abstract
The minimal permutation degree of a finite group G is the smallest positive
integer n for which an injective homomorphism from G to the symmetric group
Sn exists. This thesis mainly focuses on some special cases, specifically on groups
where the minimal permutation degree is the group order, abelian groups and
the semidirect products of cyclic p-groups.
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1 Introduction

This bachelor thesis is about finding the minimal permutation degree for finite
groups and gives an introduction into this field. In the Preliminaries we reiterate
the definition and some important properties of symmetric groups that are rele-
vant for this thesis. Furthermore we will motivate the problem and recapitulate
theorems that are important for the following sections. In Section 3 the problem
will be introduced in a formal way and the connection to subgroup structures
will be shown. The section after that categorizes all groups in which the minimal
permutation degree is the group order. Section 5 focuses on abelian groups and
proves a general formula to calculate the minimal permutation degree for all
these groups. In the last section we take a look at semidirect products and prove
a formula to calculate the minimal permutation degree for semidirect products
of cyclic p-groups.
The most used references are the article "Minimal permutation of Finite Groups"
by Johnson [D L71], the article "The minimal degree of permutation repre-
sentations of finite groups" by Becker [Bec12] and the master thesis "Minimal
Permutation Representations of Classes of Semidirect Products of Groups" by
Hendriksen [Hen16].
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2 Preliminaries

2.1 Symmetric Group

Definition 2.1 (Symmetric Group). Let N be the set {1, 2, 3, ..., n}. The set of
all bijections N → N with the group operation composition of functions forms a
group, the finite symmetric group Sn.

We will just focus on finite symmetric groups, therefore the term symmetric
group is equivalent to finite symmetric group in this work. We sometimes will
use the notation Sym(G) for the group with all possible permutations of the
finite group G, obviously Sym(G) ∼= Sn, for |G| = n. The number of bijections
φ : N → N is the same as the number of permutations, therefore the order of
the group is |Sn| = n!.

Example 2.1. (S3)
All possible bijections between three elements in cycle notation are id, (2 3),
(1 3), (1 2), (1 2 3), (1 3 2), the order of the elements are

ord(id) = 1,

(2 3)2 = (2 3) ◦ (2 3) = id, ord((2 3)) = 2,

(1 3)2 = (1 3) ◦ (1 3) = id, ord((1 3)) = 2,

(1 2)2 = (1 2) ◦ (1 2) = id, ord((1 2)) = 2,

(1 2 3)3 = (1 2 3) ◦ (1 2 3) ◦ (1 2 3) = id, ord((1 2 3)) = 3,

(1 3 2)3 = (1 3 2) ◦ (1 3 2) ◦ (1 3 2) = id, ord((1 3 2)) = 3.

S3 is non-abelian, for example

(1 3) ◦ (1 2) = (1 2 3) 6= (1 3 2) = (1 2) ◦ (1 3).

In general all symmetric groups Sn with n ≥ 3 are non-abelian. That the
element of the highest order is n, isn’t true for n ≥ 5. For example, the element
(12)(345) ∈ S5 has order 6.

Example 2.2 (Order of (12)(345) ∈ S5).

(12)(345)6 =

= (354) ◦ (12)(345)4 = (12) ◦ (12)(345)3

= (345) ◦ (12)(345)2 = (12)(354) ◦ (12)(345)

= id.
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2.2 Motivation

A conclusion from Example 2.2 is, that the subgroup 〈(12)(345)〉 ⊆ S5 is
isomorphic to Z6. We can also find a lot of other groups in S5. For example
〈(12345), (25)(34)〉 ⊆ S5 is isomorphic to D10.

Example 2.3 (D10). D10 are the rotations and reflections of a pentagon. The
group is generated by {r, s}, where r5 = s2 = 1 and srs−1 = r−1. One of its
representations in S5 is

1 7→ id s 7→ (15)(24)

r 7→ (12345) sr 7→ (14)(23)

r2 7→ (13524) sr2 7→ (13)(45)

r3 7→ (14253) sr3 7→ (12)(35)

r4 7→ (15432) sr4 7→ (25)(34).

So we can ask the following question: Let G be a finite group. Is there a
subgroup H of Sn such that H ∼= G? In other words, when is there an injective
homomorphism G ↪→ Sn? We will see very soon that the question whether
this is possible for some Sn is answered pretty quickly. So we are in particular
interested in finding the smallest Sn which we can map our group. We will call
this n "minimal permuation degree". At first we will state that we can always
map a group of order d into the Symmetric Group Sd.

Theorem 2.1 (Cayley for finite groups). Any finite group G of order n can be
realized as a subgroup of Sn.

Proof. Let G be a group of order n. For every a ∈ G we define τa : G→ G as
τa(x) = a · x. Every τa is a permutation of G and therefore a member of Sn. If
we consider the mapping of all those permutations π : G→ Sn with π(a) = τa,
the image Im(π) = {τa : a ∈ G} will be a subgroup of Sn. We establish this by
showing that π is a group homomorphism and injective.

τa ◦ τb = a · (b · x) = (a · b) · x = τa·b.

The homomorphism T is injective, because if there was a τa = τb, then in
particular a = τa(e) = τb(e) = b. Now we restrict the set of destination to Im(T )
to get an isomorphism between G and Im(T ), which is a subgroup of Sn.

2.3 Preliminary Theorems and Lemmas

Lemma 2.2. A subgroup H of a cyclic group G is cyclic.
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Proof. Let the generator of G be g. Every element of G is by definition of cyclic
groups of the form gn. Therefore H has to have an element gn, for an n ∈ N.
Let ñ > 0 be the smallest number for which gn0 ∈ H. Let h=gn be an arbitrary
element of H. We can find r, d ∈ N such that n = ñd+ r, with 0 ≤ r < ñ. Then

h = gn = gñd+r = (gñ)d · gr.

Since gñ ∈ H, so is its powers (gñ)d ∈ H, and the inverse ((gñ)d)−1 ∈ H. Then

((gñ)−d) · gn = gr.

The product of two elements is an element of the group, and so we conclude
gr ∈ H, but ñ is the smallest strict positive number, therefore r has to be 0.
From

n = ñd

follows
h = gn = (gñ)d

for an arbitrary h ∈ H. So H = 〈gñ〉.

Theorem 2.3 (Lagrange). Let G be a finite Group G and let H be a subgroup
of G, then

|G| = [G : H] · |H|.

In particular, the order of H divides the order of G.

For a proof see [Bur17, p.8]. Note that there does not have to be a subgroup
of order m, just because m | |G|.

Theorem 2.4 (Sylow’s Theorem). Let G be a group of order |G| = pr ·m, with
p a prime number, m, r ∈ N and p - m. We call a subgroup of order pr a p-Sylow
subgroup.

(i). For every 0 ≤ s ≤ r, there is a subgroup of order ps.

(ii). If H is a p-subgroup and S a p-Sylow subgroup of G, then there exists a
g ∈ G with H ≤ gSg−1.

(iii). For the number k of p-Sylow subgroups the following holds: k | m and
k ≡ 1(mod p).

For a proof see [Bur17, p.20-23].

Theorem 2.5 (Krull-Schmidt Theorem). Let G be a group that satisfies
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(i). For every chain G1 ⊆ G2 ⊆ G3 ⊆ ... of normal subgroups of G there is an
n such that Gi = Gn ∀i > n.

(ii). For every chain G1 ⊇ G2 ⊇ G3 ⊇ ... of normal subgroups of G there is an
n such that Gj = Gn ∀j > n.

Then, if
G = H1 × ...×Hr = H̃1 × ...× H̃s

are decompositions of G into indecomposable factors, then r = s and for every
Hi there is a H̃j such that Hi

∼= H̃j. Moreover, if we reindex H̃j in such a way
that H̃i

∼= Hi, we can take any 1 ≤ t ≤ r such that

G = H1 × ...×Ht × H̃t+1 × ...× H̃r.

For a proof see [Hun12, p.86].

3 Permutation Representation Theory

3.1 Permutation Representations

Definition 3.1 (permutation group). We call a group a permutation group if
it is a subgroup of a symmetric group Sn.

So Cayley’s Theorem can also be read as ’any finite group can be realized as a
permutation group’.
In contrast to the linear representation theory, which studies homomorphisms
ρ : G→ GLk(V ), we want to study homomorphisms φ : G→ Sn.

Definition 3.2 (permutation representation). A permutation representation is
a homomorphism from G to a symmetric group

φ : G→ Sn.

If we were only interested in those homomorphisms, we could trivially map
every group to the trivial group S1 = ({id}, ◦). However, when looking for a
monomorphism (which adds the requirement of injectivity), the problem gets
more interesting.

Definition 3.3. An injective permutation representation φ : G ↪→ Sn is called
a faithful permutation representation.

Finding the smallest Sn to a Group G for which a faithful permutation
representation exists is non-trivial. We will consider this problem in the following.
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3.2 Minimal Permutation Degree

Definition 3.4 (minimal permutation degree of finite groups). The minimal
permutation degree of a finite group G is defined as

d(G) = min{n ∈ N | G ↪→ Sn}.

This definition is well-defined, because we already know that the set {n ∈ N |
G ↪→ Sn} can’t be empty, because at least all n ≥ |G| are by Cayley’s Theorem
2.1 in it. Also Cayley’s Theorem gives us an upper bound.

Lemma 3.1 (upper bound of d(G)). The upper bound of d(G) for a group G
of order n is

d(G) ≤ n.

Proof. This follows directly from our considerations above. We can always
construct the same monomorphism as in the proof of Cayley’s Theorem 2.1 and
therefore min{n ∈ N | G ↪→ Sn} is at most n.

Now we can state that there are examples of groups for which this boundary
is already sharp.

Example 3.1 (Z2). S2 and Z2 are isomorphic and so the codomain can’t be
smaller without losing the injectivity. So it has to be d(Z2) = 2.

We will try to generalize this later, but first we are going to find examples
for which this bound isn’t sharp. Those are not hard to find, we already saw
examples in Example 2.2 and Example 2.3, other obvious ones are the symmetric
groups themselves or the alternating groups.

Example 3.2 ((A4)). The alternating group of degree 4 and is the group of all
even permutations of four elements. The group has order 12 and is by definition
a subgroup of S4. There can’t be a monomorphism to S3, because S3 is just of
order 6. So d(A4) = 4 < 12.

We can also find a lower bound.

Lemma 3.2 (Lower Bound). Let G be a group with order g and let f(g) be the
natural number fulfilling the inequality f(g)! ≤ g ≤ (f(g) + 1)!. Then f(g) is a
lower bound for the minimal permutation degree, i.e.

f(g) ≤ d(G).

Proof. Let d(G) = m, f(g) is a lower bound because if there exists a monomor-
phism φ : G ↪→ Sm, obviously the order of Sm can’t be smaller than g. Since
f(g)! ≤ g ≤ |Sm| = m!, we get f(g) ≤ m = d(G).
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Definition 3.5 (regular representation). Let G be a finite group of order n. The
monomorphism φ : G ↪→ Sn, φ(g) = ϕ(g) with ϕ(g) : G ↪→ G, ϕ(g)(x) = g · x
for every g, x ∈ G is called a regular Representation of G. We already showed
that this is a monomorphism in the proof of Cayley’s Theorem.

Example 3.3 (Z4). We want to construct the regular representation of Z4 → S4.

ϕ(0)(x) = 0 + x =⇒ φ(0) = id

ϕ(1)(x) = 1 + x =⇒ φ(1) = (1234)

ϕ(2)(x) = 2 + x =⇒ φ(2) = (13)(24)

ϕ(3)(x) = 3 + x =⇒ φ(3) = (1432)

We constructed a subgroup of S4 which is isomorphic to Z4.

Z4 ∼= {id, (1234), (13)(24), (1432)}

This regular Representation exists for every finite group. In this chapter we
want to categorize all groups for which this is already minimal. So we want to
find all groups G of order n with d(G) = n.

Definition 3.6 (transitive representations). We now consider the following
representation. For a group G and a normal subgroup H we define the homo-
morphism

φH : G→ S|G/H|

φH(g) = ϕH(g)

ϕH(g) : G→ G/H

ϕH(g)(x) = (g · x)H.

We say φH is induced by H. φH is called the transitive representation induced
by H.

Note that the representation induced by {eG} is the regular representation.
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Example 3.4 (Z4 ×Z2 with subgroup 〈(2, 0)〉). We construct the homomorphism
induced by 〈(2, 0)〉. φ : G→ S(|Z4×Z2)/〈(2,0)〉|.

ϕ(0, 0)(x) = ϕ(2, 0)(x) = ((0, 0) + x) + 〈(2, 0)〉 ⇒ φ(0, 0) = φ(2, 0) = id

ϕ(0, 1)(x) = ϕ(2, 1)(x) = ((0, 1) + x) + 〈(2, 0)〉 ⇒ φ(0, 1) = φ(2, 1) = (12)(34)

ϕ(1, 0)(x) = ϕ(3, 0)(x) = ((1, 0) + x) + 〈(2, 0)〉 ⇒ φ(1, 0) = φ(3, 0) = (13)(24)

ϕ(1, 1)(x) = ϕ(3, 1)(x) = ((1, 1) + x) + 〈(2, 0)〉 ⇒ φ(1, 1) = φ(3, 1) = (14)(23)

This subgroup of S4 is isomorphic to

(Z4 × Z2)/〈(2, 0)〉 ∼= {id, (12)(34), (13)(24), (14)(23)} ∼= Z2 × Z2.

Definition 3.7 (direct sum of permutation representations). Let G be a group
and U = G/H, Ũ = G/H̃ for some subgroups H, H̃. We define the direct sum
of the two by H and H̃ induced transitive representations φ : G → S|U | and
φ̃ : G→ S|Ũ | as the homomorphism

φ⊕ φ̃ : G→ S|U | × S|Ũ |
φ⊕ φ̃ = (φ(g), φ̃(g)).

S|U | × S|Ũ | ⊆ S|U |+|Ũ |, so we could also say φ⊕ φ̃ : G→ S|U |+|Ũ |. We try to
clarify this with the next example.

Example 3.5 (Representations of Z4 × Z2). First we will note that we can
construct the regular representation Z4 × Z2 → S8. Now the question is, if we
can use the above definition to construct a faithful representation into a smaller
symmetric group. For this we use the subgroups 〈(1, 0)〉 and 〈(0, 1)〉. We note
that (Z4 × Z2)/〈(1, 0)〉 ∼= Z2 and (Z4 × Z2)/〈(0, 1)〉 ∼= Z4. We already now the
regular representation of Z4, from Example 3.3 and we can use this here. So we
can construct a homomorphism φ⊕ φ̃ : Z4 × Z2 → S4+2.

φ⊕ φ̃((0, 0)) = (id, id)⇒ id ∈ S6

φ⊕ φ̃((0, 1)) = (id, (12))⇒ (56) ∈ S6

φ⊕ φ̃((1, 0)) = ((1234), id)⇒ (1234) ∈ S6

φ⊕ φ̃((1, 2)) = ((1234), (12))⇒ (1234)(56) ∈ S6

φ⊕ φ̃((2, 0)) = ((13)(24), id)⇒ (13)(24) ∈ S6

φ⊕ φ̃((2, 1)) = ((13)(24), (12))⇒ (13)(24)(56) ∈ S6

φ⊕ φ̃((3, 0)) = ((1432), id)⇒ (1432) ∈ S6

φ⊕ φ̃((3, 1)) = ((1432), (12))⇒ (1432)(56) ∈ S6
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We found a faithful permutation representation into a smaller symmetric
group.

Z4×Z2 ∼= {id, (56), (1234), (1234)(56), (13)(24), (13)(24)(56), (1432), (1432)(56)}.

In Section 4 we will even show that this is already the minimal faithful permuta-
tion representation.

Obviously we can expand this definition. We call the homomorphism φ1 ⊕
φ2 ⊕ ...⊕ φn induced by {H1, H2, ...Hn} if every φi is induced by Hi.

Now we will state a few Lemmas without proof. For more information see
[Asc00].

Definition 3.8 (core of a subgroup). Let G be a group. The core of a subgroup
H is defined as

coreG(H) : =
⋂
g∈G

Hg

Hg : = {h|ghg−1 ∈ H}.

Lemma 3.3. Let G be a group. The representation induced by subgroups
H1, ...,Hn is faithful if and only if

⋂n
i coreG(Hi) = eG (Hg

i := {h|hg ∈ Hi}).

In other words, the representation is faithful if and only if the largest normal
subgroups of every subgroup Hi are disjoint.

Lemma 3.4. Every permutation representation φ is induced by a set of subgroups
{H1, ...,Hk}. φ = φH1 ⊕ ... ⊕ φHk : G → Sm, with m = |

⋃k
i=1 G/Hi|. The

representations φHi are the transitive representations induced by the subgroups
Hi.

Definition 3.9 (degree of a representation). Let G be a finite group and φ a
representation induced by H1, ...,Hk, we call deg(φ) =

∑k
i=1[G : Hi] the degree

of the representation φ.

For example, the degree of the regular representation φ : G ↪→ Sn is |G| = n,
because φ is induced by {e}. We can now restate the definition of the minimal
permutation degree.

Lemma 3.5 (minimal permutation degree). Let G be a finite group and R the
set of all sets of subgroups of G, then the minimal permutation degree is

d(G) = min{
∑
H∈R

[G : H]|R ∈ R :
⋂
H∈R

coreG(H) = e}
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This Lemma is a very powerful tool for finding minimal permuation degrees.
We will see this in the next example.

Example 3.6. The Quaternion Group Q8, has the 8 elements {±1,±i,±j,±k},
with

i · i = j · j = k · k = i · j · k = −1

The non-trivial subgroups are {±1}, {±1,±i},{±1,±j},{±1,±k}. {±1} is
subgroup of all of them, therefore the minimal representation is induced by {1}
and so d(Q8) = 8.

4 Groups with minimal regular Representation

4.1 Cyclic p-Groups

Definition 4.1 (Cyclic p-Group). A cyclic p-group is a cyclic group Zpm with
order pm, where p is a prime number and m ∈ N.

We already can solve d(Zp), because Lagrange’s Theorem assures us that
there can’t be a non-trivial subgroup, and therefore the regular representation
already has to be minimal. So d(Zp) = p. To get a better overview of what we
want to proof, we can look at the example Z8.

Example 4.1 (Z8). The group has the elements {0, 1, 2, 3, 4, 5, 6, 7} and the non-
trivial subgroups are {0, 4} and {0, 2, 4, 6}. We can see that {0} ⊂ {0, 4} ⊂
{0, 2, 4, 6} ⊂ {0, 1, 2, 3, 4, 5, 6, 7} and so the only set with {0} as intersection
is {0} itself, therefore we get as minimal homomorphism the homomorphism
induced by {0}, which is the regular representation.

We now try to generalize this and show that every cyclic group of order
pm has such a subgroup structure. This is kind of intuitive if we think about
Lagrange’s Theorem, and we note that the only orders of the possible subgroups
therefore are p | p2 | p3 | ... | pm. We already know that those subgroups are
cyclic, we just have to show that they exist and form a subgroup series.

Lemma 4.1. Let G be a cyclic group of order n and d | n, then there exists a
group of order d.

Proof. Let 〈g〉 be a generator, then we can write a element of order d as gmd
because (gmd )d = gm = e. Therefore 〈gmd 〉 is a subgroup of G of order d.

Corollary 4.2. Let G be a cyclic group and H1 and H2 two subgroups of G. It
is H1 ⊂ H2 if |H1| | |H2|.

Proof. We know that H1 and H2 are cyclic because of Lemma 2.2. Suppose
|H1| | |H2|, then we know from Lemma 4.1 that H2 has a subgroup M of order
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|H1|. Let n be the order of G and 〈g〉 a generator. Let d1 be the order of H1

and d2 the order of H2. An element of G with order d1 is g
n
d1 , so 〈g

n
d1 〉 is the

only subgroup of order d1, therefore M=H1.

We showed now that the subgroups of Zpm generated by g have to fulfill,
〈g〉 ⊂ 〈gp〉 ⊂ 〈gp2〉 ⊂ ... ⊂ 〈gpm−1〉 ⊂ {e}. Therefore the regular representation
is minimal and d(Zpm) = pm.

Example 4.2 (All groups of order 2017). 2017 is a prime Number. As a result of
Lagrange’s Theorem every group of order 2017 has to be isomorphic to Z2017.
Therefore the minimal permutation degree is,

d(Z2017) = 2017.

4.2 Klein Four-Group

The Klein Four-group can be written as Z2×Z2, with the elements {(0, 0), (0, 1), (1, 0), (1, 1)}.
The subgroups are H1 = {(0, 0)}, H2 = {(0, 0), (0, 1)}, H3 = {(0, 0), (1, 0)} and
H4 = {(0, 0), (1, 1)}. We get four notable faithful representations.
φ1 induced by H1, this is the regular permutation, therefore deg(φ1) = 4
φ2 induced by {H2, H3}, deg(φ2) = [G : H2] + [G : H3] = 2 + 2 = 4
φ3 induced by {H2, H4}, deg(φ3) = [G : H2] + [G : H4] = 2 + 2 = 4
φ4 induced by {H3, H4}, deg(φ4) = [G : H3] + [G : H4] = 2 + 2 = 4
All other faithul representations can’t be minimal because the inducing set would
contain one of the inducing sets above. For example φ5 induced by {H2, H3, H4}
is faithful, but can’t be minimal because {H2, H3} ⊂ {H2, H3, H4}.
So we conclude that d(G) = 4 and the regular representation is minimal, but
not unique.

4.3 Generalized Quaternion Groups

In this section we will show that the regular representations of the Generalized
Quaternion Groups are minimal. The most important source for this chapter is
[Con10].

4.3.1 The Quaternion Group Q8

We already used Q8 as Example 3.6 and showed, that d(Q8) = 8. Nevertheless
it is worth it to look at this group a second time and try to find a way to link
it to cyclic groups. This will help us to define and understand the generalized
quaternion groups later. We are constructing a group and show that this group
is isomorphic to Q8. Recall that we defined the Quaternion Group Q8 as
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Q8 = {±1,±i,±j,±k}, with the condition i · i = j · j = k · k = i · j · k = −1 and
the usual rule of signs. Q8 is a non-abelian group with the center Z(G) = {±1}.

Lemma 4.3. We define H = Z4 o Z4, and the semidirect product as

(a, b)(c, d) = (a+ (−1)bc, b+ d).

Then the quotient group with 〈(2, 2)〉 is isomorphic to Q8, i.e.

H/〈(2, 2)〉 ∼= Q8.

Proof. First we note that the order of 〈(2, 2)〉 is 2.

(2, 2)2 = (2 + (−1)22, 2 + 2) = (0, 0)

This already shows us that the order of H/〈(2, 2)〉 is |H|
|〈(2,2)〉| = 16

2 = 8. We note
that H is generated by 〈(1, 0), (0, 1)〉, because (1, 0)a(0, 1)b = (a, 0)(0, b) = (a, b)
for every element (a, b).
The elements of H/〈(2, 2)〉 are

{[(0, 0)], [(0, 1)], [(1, 0)], [(1, 1)], [(0, 2)], [(1, 2)], [(2, 1)], [(1, 3)]}

and it is generated by 〈[(0, 1)], [(1, 0)]〉.
We will now define a homomorphism from H to Q8. First we note that Q8 is
generated by {i, j} because

i · j · k = −1,

i · j · k · −k = −1 · −k,

i · j = k.

So we define the homomorphism φ : H → Q8 as φ(a, b) = ia · jb. This is a
homomorphism because

φ((a, b)(c, d)) = φ(a+ (−1)bc, b+ d) = ia+(−1)bcjb+d =

= iai(−1)bcjbjd = iajbicj−bjbjd = iajbicjd = φ((a, b))φ((c, d))

The only step we have to justify is i(−1)bc = jbicj−b. For b even it is easy to
see. For b odd we have to show the conjugacy relation jij−1 = i−1. We can use
k2 = −1. We already stated that this is ijij = −1, if we multiply this with i
from the left it is −jij = −i, which is (because −1 is in the center of Q8) the
same as ji(−j) = −i = i−1 = jij−1.
We note that the image has to be Q8, because φ(1, 0) = i and φ(0, 1) = j. The
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kernel of φ is core(φ) = {(0, 0), (2, 2)}, because φ((2, 2)) = i2j2 = −1 · −1 = 1.
So φ induces an epimorphism φ̃ : H/〈(2, 2)〉 → Q8. Those two groups have the
same size, so it has to be an isomorphism and we can state H/〈(2, 2)〉 ∼= Q8.

From now on we will denote Q8 by H/〈(2, 2)〉. Since we already discussed
the subgroup structure we can visualize it.

q2

Q8

q1 q3

z

e

Name Elements

Q8 {[(0, 0)], [(0, 1)], [(1, 0)], [(1, 1)],
[(0, 2)], [(1, 2)], [(2, 1)], [(1, 3)]}

q1 {[(0, 0)], [(0, 2)], [(1, 0)], [(1, 2)]}

q2 {[(0, 0)], [(0, 2)], [(0, 1)], [(2, 1)]}

q3 {[(0, 0)], [(0, 2)], [(1, 1)], [(1, 3)]}

z {[(0, 0)], [(0, 2)]}

e {[(0, 0)]}

4.3.2 Generalized Quaternion Groups Q2n

Now the work we did for Q8 pays off, because the idea of H/〈(2, 2)〉 can be
generalized.

Definition 4.2 (generalized quaternion groups). For n ≥ 3 we define:

Q2n = (Z2n−1 o Z4)/〈(2n−2, 2)〉,

with the semi direct product

(a, b)(c, d) = (a+ (−1)bc, b+ d).

We call these groups generalized quaternion groups.

The order of the generalized quaternion groups is |Z2n−1 ||Z4|
|〈(2n−1,2)〉| = 2n−14

2 = 2n.
So the generalized quaternion groups are 2-groups and we can use Sylow’s First
Theorem to see that there has to be a subgroup of order 2. We can even write
a subgroup of order 2 down because for every generalized quaternion group
{[(0, 0)], [(2n−2, 0)]} is a subgroup. Note that in the previous chapter we used
[(0, 2)] to generate the subgroup of order 2,but this is the same element as [(2, 0)]
because (0, 2) = (2, 0)(2, 2). In general it is [(2n−2, 0)] = [(0, 2)] because of
(0, 2) = (2n−2, 0)(2n−2, 2). If this is the only element of order 2 we can conclude
that the regular representation is minimal. This is because Lagrange’s Theorem
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tells us that the order of the subgroups has to divide the group order, so the
(non-trivial) subgroup orders have to be 2s for 1 ≤ s ≤ n. Then the subgroups
are themselves 2-groups and we can use Sylow’s First Theorem to state that
they have to have a subgroup of order 2.

Lemma 4.4. In every generalized quaternion group [(2n−2, 0)] is the only ele-
ment of order 2.

Proof. Z2n−1 oZ4 is generated by (1, 0), (0, 1) and we can write every element as
(1, 0)a(0, 1)b. Therefore every element in Q2n can be written as [(1, 0)]a[(0, 1)]b.
If b = 2 we can write [(1, 0)]a[(0, 1)]2 = [(a, 2)][(2n−2,2)] = [a+ 2n−2, 0] and the
element is in 〈[(1, 0)]〉. If b = 3 we can write [(1, 0)]a[(0, 1)]3 = [(a, 3)][(2n−1, 2)] =
[a+ 2n − 1, 1], so it could also be written as [(1, 0)]a+2n−2 [(0, 1)]. We conclude
that every element of Q2n can be written as [(1, 0)]a, or [(1, 0)]a[(0, 1)]. There
exists just one element of order 2 of the form [(1, 0)]a and this is the already
known [(2n−2, 0)]. So if there is another element of order 2 it has to be of the
form [(1, 0)]a[(0, 1)].

([(1, 0)]a[(0, 1)])2 = [(a, 0)][(0, 1)][(a, 0)][(0, 1)] =

= [(a, 0)][(−a, 1)][(0, 1)] = [(a, 0)][(−a, 0)][(0, 1)][(0, 1)] = [(0, 2)].

So elements of this form can’t be of order 2. In fact we proved that they
have to be of order 4, because we already showed that [(0, 2)] = [(2n−2, 0)].

We indicated that there is a unique element of order 2 and therefore a
unique subgroup of order 2 generated from this element and we can conlude that
every (non-trivial) subgroup has to contain {[(0, 0)], [(2n−1, 0)]}. The regular
representation is therefore minimal and we can deduce that d(Q2n) = 2n.

4.4 Completeness

In this section we will show that all groups with minimal regular representation
are one of the above.

Theorem 4.5. A group satisfies d(G) = |G| if and only if it is one of the
following:

• A Cyclic group with order pm, with p prime number and m ∈ N

• The Klein Four-Group

• A generalized Quaternion Group.
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Proof. There can’t be two distinct primes, so a group with minimal regular
representation has to be a p-group. Now suppose p 6= 2, then it has a unique
subgroup of order p and is a Cyclic Group. Now suppose p = 2, then if there is
an element g of order 4, then g2 must be the unique element of order 2 and it
has to be a Cyclic Group Z2m or a generalized Quaternion Group. If there is no
element of order 4, then it has to be an elementary abelian 2-group. We will
show in the next section that d(Z2 × Z2 × ...× Z2) = 2n, n being the number
of Z2. So it just can be one or two times Z2. So it is either Z2 itself or the
Klein-Four Group.

5 Minimal Permutation Degree of finite Abelian
Groups

In this section we want to find a general valid formula to calculate the minimal
permuatation degree of finite abelian groups. The most important source for this
section is [D L71, s.860-s.862]. We will start with proving some general results
for direct products, because knowing how the minimal permutation degree and
direct products interact will help us a lot to prove the formula for the minimal
permutation degree of abelian groups.

5.1 Direct Products

Theorem 5.1. For any two finite groups G and H, the following inequality
holds

d(G×H) ≤ d(G) + d(H)

Proof. Let φ1 be the minimal faithful representation induced by {G1, G2, ..., Gn},
withGi ⊂ G and φ2 be the minimal faithful representation induced by {H1, H2, ...,Hm},
with Hi ⊂ H. Then the representation φ induced by {G1 ×H, ..., Gn ×H,G×
H1, ..., G×Hm} is a representation of G×H.

deg(φ) =
n∑
i=1

[G×H : Gi ×H] +
m∑
j=1

[G×H : G×Hj ] =

=
n∑
i=1

[G : Gi] +
m∑
j=1

[H : Hi] = deg(φ1) + deg(φ2)

This has to be a upper bound for d(G×H) because

d(G) + d(H) = deg(φ1) + deg(φ2) = deg(φ) ≥ d(G×H)
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Lemma 5.2. For two finite Groups G and H, with gcd(|G|, |H|) = 1 it is

d(G×H) = d(G) + d(H)

Proof. We already showed d(G×H) ≤ d(G)+d(H) generally, so we just have to
proof d(G×H) ≥ d(G) + d(H). Let φmin be the minimal faithful representation
for G × H induced by some set of subgroups M = {M1,M2, ...,Mn}. By
Lagrange’s Theorem we know that the order of any subgroup has to divide the
order of the group. Therefore the subgroups of G and H have to be distinct.
We can conclude that for all 1 ≤ i ≤ n there are subgroups Gi ⊆ G and Hi ⊆ H
with

Mi = Hi ×Gi = (Gi ×H) ∩ (G×Hi)

That means that the transitive representation θ induced by M\Mi ∪ {(Gi ×
H), (G×Hi)} is also a faithful representation. φmin has minimal degree so

d(θ) ≥ d(φmin)
i−1∑
j=1

[G×H : Mj ] + [G×H : Gi ×H]+

[G×H : G×Hi] +
n∑

k=i+1
[G×H : Mk] ≥

n∑
l=1

[G×H : Gl ×Hl]

[G×H : Gi ×H] + [G×H : G×Hi] ≥ [G×H : Gi ×Hi]

[G : Gi] + [H : Hi] ≥ [G : Gi] · [H : Hi].

This inequality just holds for [G : Gi] = 1, [H : Hi] = 1 or [G : Gi] = [H : Hi] = 2.
Because of gcd(|G|, |H|) = 1 it has to be either [G : Gi] = 1 or [H : Hi] = 1.
So every Mi has to have the form Gi × H or G × Hi. Let MG = {Gi|∀i :
Mi is of the form Gi × H} and HG = {Hi|∀i : Mi is of the form G × Hi}. If
N C G is in every element of MG, it has to be in every element of the subset of
subgroups that induces the minimal faithful representation. So N = {e} and
MG induces a faithful representation of G. The same argument wokrs for H and
MH . Therefore

d(G×H) = deg(M) = deg(MG) + deg(HG) ≥ d(G) + d(H).

5.2 Abelian Groups

Theorem 5.3 (Fundamental Theorem of Finite Abelian Groups). Every finite
abelian group is a unique direct product of cyclic p-groups.
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In the proof of this Theorem one shows first that every abelian group is
a unique direct product of p-groups by induction. Furthermore we show by
induction, that every p-group itself is a direct product of cyclic p-groups. A
detailed proof can be found in [Nav03].

Lemma 5.4. For an arbitrary minimal representation φG of a group G induced
by G = {G1, ..., Gn}, there exists a minimal representation φH induced by H
with the properties that every inducing element is primitive and Gi ∈ H if
[G : Gi] = 2n+ 1 for an n ∈ N0.

Proof. Suppose that Gi is not primitive, then Gi = H ∩ K, with Gi ⊂ H,
K ⊆ G. This means that H′ ={G1, ..., Gi−1, H,K,Gi+1, ..., Gn} is also faithful.
The degree is

deg(H′) = d(G)− [G : Gi] + [G : H] + [G : K] ≥ d(G)

[G : H] + [G : K] = [G : Gi]
[Gi : H

+ [G : Gi]
[Gi : K] ≥ [G : Gi]

Therefore [Gi : H] = [Gi : K] = 2, proving that [G : Gi] is even and that H is
minimal. If another element is not primitive we can repeat the steps with this
element, after a finite amount of steps we will have a minimal representation
with the desired properties.

Theorem 5.5. Let G be a finite abelian group and G ∼=
∏n
i=1 Zpeii the unique

primary decomposition. Then the minimal permutation degree is

d(G) =
n∑
i=1

pi
ei

Proof. We now have to show the equality d(G×H) = d(G) + d(H) for abelian
p-groups, this is sufficient for all abelian groups, because we already proved
the additivity for coprime groups in Lemma 5.2. We show it for abelian p-
groups by induction. To prepare for the induction we sort the summands∑n
i=1 pi

ei =
∑n
i=1 gi, such that g1 ≥ g2 ≥ ... ≥ gn. Now we make the induction

on n, for n=1 it is a cyclic prime-power-order group, with d(G) = g1 = p1
e1 .

Let φ induced by B = {B1, ..., Bm} be a faithful minimal permutation of G with
primitive elements and [G : Bi] = 2n+ 1 for an n ∈ N0, so that G/Bi is cyclic.
The order of G/Bi is bi with b1 ≥ b2 ≥ ... ≥ bm for all 1 ≤ i ≤ m. Therefore
g1≥b1, but if g1 were equal to b1, the kernel of φ couldn’t be trivial and the
representation couldn’t be faithful. So it has to be b1 = g1 and let bB1 be a
generator of G/B1, then G = 〈b〉 × B1. {B1 ∩ B2, ..., B1 ∩ Bm} is inducing a
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faithful representation of B1, so that

d(G) ≤ g1 + d(B1)

≤ g1 + [B1 : B1 ∩B2] + ...+ [B1 : B1 ∩Bm]

= g1 + [B1B2 : B2] + ...+ [B1Bm : Bm]

≤ g1 + [G : B2] + ...+ [G : Bm]

= d(G).

So d(G) = g1+d(B1), but B1 ∼= G2×...×Gn by Theorem 2.5 (Krull-Schmidt). So
by induction d(B1) = g2+...+gn. Therefore it is d(G) =

∑n
i=1 gi =

∑n
i=1 pi

ei

Example 5.1 (d(Z1729)). The prime factorization of 1729 is 7 · 13 · 19. Therefore
we get Z1729 ∼= Z7 × Z13 × Z19. Theorem 5.5 now tells us that the minimal
permutation degree is

d(Z1729) = d(Z7 × Z13 × Z19) = 7 + 13 + 19 = 39.

6 Minimal Permutation Degree of Semidirect Prod-
ucts

The most important source for this section is [Hen16, s.16-23]. We start with
recalling the definition of a semidirect Product.

Definition 6.1 ((internal) semidirect product). Let N C G be a normal sub-
group of a group G and let H be a subgroup of G, such that NH = G and
N ∩H = eG. Then we call G the (internal) semidirect product of N and H. We
write G = N oH

Definition 6.2 ((external) semidirect product). For two groups G and H, a
homomorphism θh1 : H → Aut(G), we define the (external) semidirect product
Goθh1

H as
(g1, h1)(g2, h2) = (g1θh1(g2), h1h2).

Note that G oθh1
H forms a group, with eGoθh1

H = (eG, eH) and the
inverse of an element (g, h)−1 = (θ−1

h1
(g−1), (h−1)). The semidirect product is a

generalization of the direct product, for θh1 = id we get the direct product.

Lemma 6.1. For G and H nontrivial finite groups, the following inequality is
true:

d(GoH) ≤ |G|+ d(H)
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Proof. We define a function φ : Goθh1
H → S|H|×H with φ(g, h) = (gθh(x), h).

Now we show that this is a monomorphism. It is a homomorphism, because

φ((g1, g2)(h1, h2)) = φ(g1θh1(g2), h1h2) =

= (g1θh1(g2θh1h2(x)), h1h2) =

= (g1θh1(x), h1)(g2θh2(x), h2) = φ((g1, g2))φ((h1, h2)).

Furthermore it is injective, because φ(g, h) = (id, eH) requires h = eH and
gθh(x) = id, so g = eG. Therefore the core is trivial and φ a monomorphism.

6.1 Semidirect Products of Cyclic p-Groups

We will now provide a formula to calculate the minimal permutation degree for
a specific class of semidirect products, namely for the semidirect product of two
cyclic p-groups.

Theorem 6.2. Let Zpn oθ Zqm be a semidirect product with p, q distinct primes,
then

d(Zpn oθ Zqm) =
{

pn, if θ injective
pn + pm, if θ not injective

Proof. Let a be a generator of Zpn and b a generator of Zqm . d(Zpn o Zqm)
contains a subgroup isomorphic to Zpn , therefore pn ≤ d(Zpn o Zqm). We can
interpret Zpn oθ Zqm as the internal semidirect product of Zpn and Zqm , because
p and q are distinct primes.

First we look at the case θ injective. We can look at the conjugation x−1yxy−1,
with x ∈ Zpn and y element from a normal subgroup of Zpn o Zqm that is
subgroup of 〈b〉. Then x−1yxy−1 ∈ 〈a〉 ∩ 〈b〉, but 〈a〉 ∩ 〈b〉 = 1. Then yxy−1 = x

and we conclude that y ∈ core(θ). θ is injective so we get y = 1. Hence we get a
faithful representation of degree [G : 〈b〉] = pn.

Now suppose θ is not injective, then core(θ) is not-trivial and there is a non trivial
normal subgroup of (〈a〉), the non trivial subgroups are of order ps 1 ≤ s ≤ m,
so we can conclude θ(b)qm−1 = id ∈ Aut(〈a〉). From this we can conclude that
〈a〉 and 〈b〉 are normal and the unique subgroups of Zpn oθ Zqm with order p, q.
Therefore there must be at least two groups of at least index pn and pm to
induce the minimal representation. So the lower bound has to be pn + pm.

The faithful representation φ induced by {〈a〉, 〈b〉} has degree

deg(φ) = [Zpn oθ Zqm : 〈a〉] + [Zpn oθ Zqm : 〈b〉] = pm + pn.

So we get deg(φ) = d(Zpn oθ Zqm) = pm + pn
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Our final example will be the calculation of the minimal permutation degree
for all groups of order 2019. For this we will need the results from Theorem 5.5
and from our final Theorem 6.2.

Example 6.1 (Groups of Order 2019). 2019 is semiprime because the prime
factorization of 2019 is just a product of two primes 2019 = 673 · 3. There are
always either one abelian group or two (one abelian and one non-abelian) groups
of semiprime order. The abelian group of order 2019 is Z2019 ∼= Z673 × Z3. The
minimal permutation degree of this group is

d(Z673 × Z3) = d(Z673) + d(Z3) = 673 + 3 = 676.

A conclusion of Sylow’s Theorem is, that if p and q are prime numbers with p < q

and p - (q − 1) every finite group of order |G| = p · q is isomorphic to Zp·q. But
3 | (673− 1) so there can be a distinct group of order 2019. This group has to be
non-abelian and is a semidirect product (with θ(h) = h−1) of Z673 oH where
H is a subgroup of Z673 with 3 elements. H has to be {1, h, h−1} for elements
h, h−1 ∈ Z673 and h · h−1 = 1. The group product of two elements (g1, h1) and
(g2, h2) is (g1 + h−1

2 g2, h1h2). This group is non-abelian and has order 2019. θ
is injective, therefore the minimal permutation degree of Z673 oH is

d(Z673 oH) = d(Z673) = 673.

20



References

[Asc00] M. Aschbacher. Finite Group Theory. 2nd ed. Cambridge Studies in
Advanced Mathematics. Cambridge University Press, 2000.

[Bec12] Becker, Oren. The minimal degree of permutation representations of
finite groups. 2012. url: https://arxiv.org/pdf/1204.1668.pdf.

[Bur17] Dietrich Burde. Group Theory. 2017. url: https://homepage.univie.

ac.at/Dietrich.Burde/papers/burde_54_groups.pdf.

[Con10] Keith T. Conrad.GENERALIZED QUATERNIONS. 2010. url: https:

//kconrad.math.uconn.edu/blurbs/grouptheory/genquat.pdf.

[D L71] D. L. Johnson. “Minimal permutation of Finite Groups”. In: American
Journal of Mathematics 93.4 (Oct. 1971).

[EP88] David Easdown and Cheryl E. Praeger. “On minimal faithful permu-
tation representations of finite groups”. In: Bulletin of the Australian
Mathematical Society 38.2 (1988), pp. 207–220.

[Hen16] Hendriksen, Michael. Minimal Permutation Representations of Classes
of Semidirect Products of Groups. 2016. url: https://ses.library.

usyd.edu.au/bitstream/handle/2123/14353/Hendriksen_MA_

thesis.pdf.

[Hun12] T.W. Hungerford. Algebra. Graduate Texts in Mathematics. Springer
New York, 2012. url: https://books.google.at/books?id=e-

YlBQAAQBAJ.

[JS05] J.C. Jantzen and J. Schwermer. Algebra. Springer-Lehrbuch. Springer,
2005. url: https://books.google.at/books?id=Fx%5C_1SXB78zkC.

[KP00] L. G. Kovács and Cheryl E. Praeger. “On minimal faithful permuta-
tion representations of finite groups”. In: Bulletin of the Australian
Mathematical Society 62.2 (2000), pp. 311–317.

[Nav03] Gabriel Navarro. “On the Fundamental Theorem of Finite Abelian
Groups”. In: The American Mathematical Monthly 110.2 (2003), pp. 153–
154. url: http://www.jstor.org/stable/3647777.

[Nei12] Neil Saunders. Minimal faithful permutation degrees of finite groups.
2012. url: https://www.austms.org.au/Publ/Gazette/2008/

Nov08/TechPaperSaunders.pdf.

[Wri75] D. Wright. “Degrees of Minimal Embeddings for Some Direct Prod-
ucts”. In: American Journal of Mathematics 97.4 (1975), pp. 897–903.
url: http://www.jstor.org/stable/2373679.

21

https://arxiv.org/pdf/1204.1668.pdf
https://homepage.univie.ac.at/Dietrich.Burde/papers/burde_54_groups.pdf
https://homepage.univie.ac.at/Dietrich.Burde/papers/burde_54_groups.pdf
https://kconrad.math.uconn.edu/blurbs/grouptheory/genquat.pdf
https://kconrad.math.uconn.edu/blurbs/grouptheory/genquat.pdf
https://ses.library.usyd.edu.au/bitstream/handle/2123/14353/Hendriksen_MA_thesis.pdf
https://ses.library.usyd.edu.au/bitstream/handle/2123/14353/Hendriksen_MA_thesis.pdf
https://ses.library.usyd.edu.au/bitstream/handle/2123/14353/Hendriksen_MA_thesis.pdf
https://books.google.at/books?id=e-YlBQAAQBAJ
https://books.google.at/books?id=e-YlBQAAQBAJ
https://books.google.at/books?id=Fx%5C_1SXB78zkC
http://www.jstor.org/stable/3647777
https://www.austms.org.au/Publ/Gazette/2008/Nov08/TechPaperSaunders.pdf
https://www.austms.org.au/Publ/Gazette/2008/Nov08/TechPaperSaunders.pdf
http://www.jstor.org/stable/2373679

	Introduction
	Preliminaries
	Symmetric Group
	Motivation
	Preliminary Theorems and Lemmas

	Permutation Representation Theory
	Permutation Representations
	Minimal Permutation Degree

	Groups with minimal regular Representation
	Cyclic p-Groups
	Klein Four-Group
	Generalized Quaternion Groups
	The Quaternion Group Q8
	Generalized Quaternion Groups Q2n

	Completeness

	Minimal Permutation Degree of finite Abelian Groups
	Direct Products
	Abelian Groups

	Minimal Permutation Degree of Semidirect Products
	Semidirect Products of Cyclic p-Groups


