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Summary

The purpose of this thesis is to present an investigation of Engel-n Lie algebras.
In addition to the defining relations of Lie algebras these satisfy the so-called
Engel-n identity ad(x)n = 0 for all x. Engel Lie algebras arise in the study of the
Restricted Burnside Problem, which was solved by Efim Zelmanov in 1991. Beside
a general introduction to the topic, special interest is taken in the exploration of
the nilpotency classes of Engel-n Lie algebras for small values of n. At this, the
primary objective is to elaborate the case of n = 3 explicitly.

Chapter 1 concerns the general theory of Lie algebras. In the course of this,
the essential properties of solvability and nilpotency are explained as they will be
central in the subsequent discussion. Further, the definition of free Lie algebras
which contributes to the establishment of the concept of free-nilpotent Lie algebras.
In the last section several notions of group theory are surveyed. These will be useful
in Chapter 2.

The second chapter explains the origin and solution of the Burnside Problems.
In that process, a historical survey on William Burnside and the first results on his
fundamental questions are given. Next, the so-called Restricted Burnside Problem
is considered and an overview of the most important steps to the solution is dis-
played. In particular, the connection to Lie theory is explained. As a last aspect,
several results on Engel groups are discussed.

The main aim in the third chapter is to prove the nilpotency theorem of Engel-3
Lie algebras. That is, on the assumption that the underlying field is of character-
istic different from two or five, an Engel-3 Lie algebra has nilpotency class at most
4. On top of that, the construction of an example of an Engel-3 Lie algebra that
attains this upper bound is demonstrated in detail.

As a conclusion, Chapter 4 is devoted to an outlook on nilpotency classes of
Engel-4 and Engel-5 Lie algebras. It is stated that for characteristics different from
one of 2, 3 or 5, the nilpotency class of Engel-4 Lie algebras is at most 7. For the
case of Engel-5 Lie algebras an upper bound is given with regard to the number
of generators of the Lie algebra.

In the appendix, a number of Mathematica codes are presented. The pro-
grams automise various tasks that have to be accomplished in connection with the
construction of Engel Lie algebras.
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Zusammenfassung

Der Zweck vorliegender Masterarbeit ist es Engel-n Lie-Algebren zu untersuchen.
Dies sind Lie-Algebren, die, zusätzlich zu den definierenden Relationen von Lie-
Algebren, der sogenannten Engel-Identität ad(x)n = 0 für alle x, genügen. Engel
Lie-Algebren treten in Zusammenhang mit der Untersuchung des Eingeschränkten
Burnside-Problems auf, welches von Efim Zelmanov 1994 gelöst wurde. Neben
einer allgemeinen Einführung in das Thema ist insbesondere das Studium der
Nilpotenzklassen von Engel-n Lie-Algebren für kleine n der Fokus dieser Arbeit.
Dabei ist das primäre Ziel die explizite Ausarbeitung des Falles n = 3.

Kapitel 1 behandelt die allgemeine Theorie von Lie-Algebren. Im Zuge dessen
werden die essentiellen Eigenschaften Auflösbarkeit und Nilpotenz beschrieben,
welche eine zentrale Rolle in nachfolgenden Überlegungen einnehmen. Desweiteren
wird die Definition freier Lie-Algebren erläutert, mit Hilfe welcher der Begriff frei-
nilpotenter Lie-Algebren definiert wird. Abgesehen davon wird eine Übersicht
wichtiger gruppentheoretischer Begriffe, welche in späteren Kapiteln Anwendung
finden, gegeben.

Das zweite Kapitel befasst sich mit dem Ursprung und der Lösung der Burn-
side’schen Probleme. Es erfolgt ein historischer Überblick und erste Resultate
bezüglich Burnsides fundamentaler Fragestellungen werden angegeben. Speziell
wird das sogenannte Eingeschränkte Burnside’sche Problem betrachtet und die
wichtigsten Schritte zu dessen Lösung präsentiert. Dabei wird insbesondere die
Verbindung zur Lie-Theorie beschrieben. Darauffolgend werden einige Theoreme
bezüglich Engel Gruppen diskutiert.

Ziel des dritten Kapitels ist der Beweis des Nilpotenz-Theorems für Engel-3 Lie-
Algebren. Dieses besagt, dass eine Engel-3 Lie-Algebra höchstens Nilpotenzklasse
4 aufweist, sofern der zugrundeliegende Körper Charakteristik ungleich zwei oder
fünf besitzt. Darüber hinaus erfolgt die detaillierte Konstruktion einer Engel-3
Lie-Algebra, welche diese obere Schranke tatsächlich annimmt.

Abschließend widmet sich Kapitel 4 einem Ausblick auf die Nilpotenzklassen
von Engel-4 und Engel-5 Lie-Algebren. Für Charakteristik ungleich 2, 3 oder 5 gilt
die Behauptung, dass Engel-4 Lie-Algebren höchstens nilpotent der Stufe 7 sind.
Im Fall von Engel-5 Lie-Algebren wird eine obere Schranke angegeben, die auf der
Anzahl der Erzeuger der Lie-Algebra beruht.

Im Appendix werden mehrere hilfreiche Mathematica Codes präsentiert. Diese
übernehmen verschiedene Aufgaben, die in Verbindung mit der Konstruktion von
Engel Lie-Algebren zu bewältigen sind.
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Chapter 1

Preliminaries on Lie algebras and
groups

The Burnside Problems are group-theoretical questions but it turned out successful
to work on the problems on the level of Lie algebras. Thus, for a discussion of the
topic we need knowledge of both, group theory and Lie algebra theory. This section
provides these preliminaries. Regarding Lie algebras, we give basic definitions and
explain the properties of solvability and nilpotency. Next, we introduce free Lie
algebras and study the concept of free-nilpotent Lie algebras. On the other hand,
we recall necessary notions of group theory.

1.1 Basic theory of Lie algebras

We start with an introduction including basic definitions, examples and properties
of Lie algebras. Moreover, we study representations and derivations of Lie algebras.
The section is concluded by the definition of Engel Lie algebras which will be
central in the further discussion. As references of the general theory of Lie algebras
we mention [7], [12] or [39].

Definition 1.1.1. A Lie algebra g over a field F is a F-vector space together with
a F-bilinear map [ , ] : g × g −→ g, the so-called Lie bracket, which satisfies the
following two conditions for all x, y, z ∈ g:

(i) Skew-symmetry: [x, x] = 0,

(ii) Jacobi identity: [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0.

The name of property (i) is justified by seeing that, for char(F) 6= 2 and x, y ∈ g,
we have

[x, x] = 0⇐⇒ [x, y] = −[y, x].

Indeed, for ” =⇒ ” one obtains

0 = [x+ y, x+ y] = [x, x] + [x, y] + [y, x] + [y, y] = [x, y] + [y, x],

1



1.1. BASIC THEORY OF LIE ALGEBRAS

using the bilinearity of the bracket. Regarding ”⇐= ” we set x = y and immedi-
ately arrive at [x, x] = −[x, x] and thus, 2[x, x] = 0. Since we required char(F) 6= 2,
we conclude [x, x] = 0. Hence, if the field is of characteristic 2, only ” =⇒ ” holds.

The left side of the second property is often referred to as the Jacobian of
x, y, z, written J(x, y, z).

Notice that due to the non-associativity of the Lie product, the way of brack-
eting is important. To avoid confusion, we agree on using right normed notation,
i.e. writing [x1, [x2, . . . , [xn−1, xn] . . .]]] for the Lie product of x1, . . . , xn.

Example 1.1.2. Any vector space over a field can be turned into a Lie algebra if
we endow it with the trivial Lie bracket, i.e. setting [x, y] = 0 for all its elements.
Lie algebras with this property are called abelian.
Another example is the direct sum g⊕ h of two Lie algebras g, h. Here, the vector
space is simply g× h and the bracket operation is performed componentwise, that
is [(x1, y1), (x2, y2)] = ([x1, x2], [y1, y2]).
We also mention the vector space R3 together with [x, y] = x× y being the cross
product which is the Lie algebra so(3,R), see Remark 1.1.10.

Definition 1.1.3. Let g, h be two Lie algebras over a field F. We define a Lie
algebra homomorphism ϕ : g → h to be a linear map that preserves the bracket,
that is, for x, y ∈ g we require

ϕ([x, y]) = [ϕ(x), ϕ(y)].

The terms epi-, mono-, auto- and isomorphisms of Lie algebras are defined as
usual.

Let k, l be two subspaces of g. Define [k, l] to be the subspace generated by the
brackets [x, y], x ∈ k, y ∈ l. Thus, each element of [k, l] is a linear combination
of brackets [xi, yi] for xi ∈ k, yi ∈ l. This notation allows us to give the following
definition.

Definition 1.1.4. A subspace k of g is called a Lie subalgebra of g if

[k, k] ⊆ k,

i.e. if it is closed under the bracket. Then k itself becomes a Lie algebra in its own
right with the inherited operations.
Moreover, i ⊆ g is said to be an ideal or Lie ideal of g if

[g, i] = [i, g] ⊆ i,

written i E g. In this definition we used that the bracket of subspaces is commu-
tative. Indeed, [k, l] 3 [x, y] = −[y, x] ∈ [l, k], hence [k, l] ⊆ [l, k]. Analogously one
obtains [l, k] ⊆ [k, l].
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CHAPTER 1. PRELIMINARIES ON LIE ALGEBRAS AND GROUPS

Similar to ring and group theory, one can define a quotient Lie algebra. To be
more precise, if i E g we can construct the quotient algebra g/i by setting

[x+ i, y + i] = [x, y] + i

for two equivalence classes x+ i, y + i. Let x′ = x+ i, y′ = y + j. Then,

[x′, y′] = [x+ i, y + j] = [x, y] + [x, j] + [i, y] + [i, j]

applying bilinearity of the bracket. This prompts the independence of the choice
of the representative since [x, j] + [i, y] + [i, j] ∈ i by the ideal property.

The following auxiliary result enables us to state the isomorphism theorems.

Lemma 1.1.5. Let i, j be ideals of a Lie algebra g. Then:

(i) The bracket of i and j is again an ideal of g, i.e. [i, j] E g.

(ii) The intersection of i and j is again an ideal of g, i.e. i ∩ j E g.

Proof. To begin with, we prove [[i, j], g] ⊆ [i, j]. By the Jacobi identity, [[i, j], x] +
[[j, x], i] + [[x, i], j] = 0 and therefore [[i, j], x] = [i, [j, x]] + [[i, x], j] which lies in
[i, j]. Concerning (ii), note that if we are given i ∈ i ∩ j then [i, x] ∈ i and [i, x] ∈ j
and hence [i, x] is contained in the intersection.

Theorem 1.1.6 (Isomorphism theorems). Let ϕ : g → h be a Lie algebra homo-
morphism and let i, j be two ideals of g. Then:

1. g/kerϕ ∼= imϕ.

2. (g/i)/(j/i) ∼= g/j whenever i ⊆ j.

3. (i + j)/j ∼= i/(i ∩ j).

Proof. The proof is omitted since the isomorphisms are given in a canonical way
and the procedure is analogous to the case of groups.

Further on, we want to obtain more explicit examples of Lie algebras. For
this purpose, we make use of the following Lemma which claims that by defining
the Lie bracket as the commutator any associative F-algebra is turned into a Lie
algebra.

Lemma 1.1.7. Let A be an associative algebra over a field F, i.e. a F-vector
space with an associative, bilinear map (x, y) 7→ x · y for elements x, y ∈ A. Then
[x, y] := x · y − y · x defines a Lie algebra structure on A.

3



1.1. BASIC THEORY OF LIE ALGEBRAS

Proof. By definition, [x, y] = −[y, x] hence the bracket is skew-symmetric. The
Jacobi identity is verfied by expanding the product.

Example 1.1.8. The pair (M(n,F), .) of n×n matrices together with the matrix
multiplication is an associative algebra over F. Then Lemma 1.1.7 yields a Lie
algebra denoted by gl(n,F), called the general linear Lie algebra. Moreover, the Lie
subalgebra [gl(n,F), gl(n,F))] gives another important example of a Lie algebra.

Lemma 1.1.9. The commutator algebra of gl(n,F) takes the following form:

[gl(n,F), gl(n,F))] = {A ∈ gl(n,F) : tr(A) = 0} =: sl(n,F),

called the special linear Lie algebra. Additionally,

dim(sl(n,F)) = n2 − 1.

Proof. Note that dim(gl(n,F)) = n2 since the matrices Eij, that have a 1 in the i-
th row and j-th column and 0 in all other positions, form a basis. For this matrices
we have the relation

[Eij, Ekl] = δjkEil − δliEkj.

In particular, for i 6= j, we see [Eij, Eji] = Ejj − Eii and [Eik, Ekj] = Eij. It can
be verified that the matrices Eij for i 6= j and the Eii −Ei+1,i+1 for 1 ≤ i ≤ n− 1
form a basis of sl(n,F). However, according to the calculation above, all of them
can be expressed in terms of the Lie bracket, whence sl(n,F) ⊆ [gl(n,F), gl(n,F)].
For the dimension, we count

dim(sl(n,F)) = (n2 − n) + (n− 1) = n2 − 1.

Regarding the opposite inclusion, we take A,B ∈ gl(n,F) and compute

tr([A,B]) = tr(AB −BA) = tr(AB)− tr(BA) = 0,

using basic properties of the trace functional.

Remark 1.1.10. There are several other well-studied matrix Lie algebras we
mention at this point:

· The Lie algebra of skew-symmetric matrices so(n,F).
· The Lie algebra of upper triangular matrices t(n,F).
· The Lie algebra of strictly upper triangular matrices n(n,F).
· The Lie algebra of diagonal matrices d(n,F).

Apart from that, we denote by gl(A) the Lie algebra that arises from End(A) using
Lemma 1.1.7. Here,

End(A) = {ϕ : A→ A such that ϕ is a homomorphism}.

Choosing A = Fn results in gl(A) = gl(Fn) = gl(n,F).

4



CHAPTER 1. PRELIMINARIES ON LIE ALGEBRAS AND GROUPS

Definition 1.1.11. A representation of a Lie algebra g is defined as a F-vector
space V together with a Lie algebra homomorphism ϕ : g→ gl(V ). The represen-
tation is called faithful if ϕ is injective. In this context we state Ado’s theorem
which gives an important insight into finite-dimensional Lie algebras.

Theorem 1.1.12 (Ado, [39],[3]). Every finite-dimensional Lie algebra over a field
F of characteristic 0 possesses a finite-dimensional faithful representation.

Remark 1.1.13. In particular, Ado’s theorem implies that any finite-dimensional
Lie algebra is isomorphic to a subalgebra of endomorphisms, allowing us to view
any such Lie algebra as a Lie algebra of square matrices.
The mentioned theorem also holds for fields of prime characteristic as K. Iwasawa
proved in [29].

Definition 1.1.14. Let g be a Lie algebra over F. For x ∈ g we define the adjoint
endomorphism

ad(x) : g→ g,

ad(x)(y) := [x, y].

Then the linear mapping ad: g → gl(g) with x 7→ ad(x) defines a representation,
called the adjoint representation of g. Observe that

ker(ad(x)) = {x ∈ g : ad(x)(y) = 0 ∀y ∈ g}
= {x ∈ g : [x, y] = 0 ∀y ∈ g}
=: Z(g),

the center of the Lie algebra g.

It is important to add that the adjoint endomorphisms are derivations of g in
the sense of the following definition.

Definition 1.1.15. A linear map D : g→ g satisfying

D([x, y]) = [D(x), y] + [x,D(y)]

for all x, y ∈ g is called a derivation of the Lie algebra g. The set of all derivations
of g is denoted by der(g) and is easily seen to be a vector space. One actually has
more structure:

Proposition 1.1.16. Let g be a Lie algebra over F. Then the following assertions
hold:

1. The derivations der(g) form a Lie subalgebra of gl(g).

2. For all x ∈ g the adjoint endomorphism ad(x) ∈ der(g).

5



1.1. BASIC THEORY OF LIE ALGEBRAS

3. ad(g) is a Lie ideal in der(g).

Proof. Regarding the first statement, we have to show that the commutator of
two derivations is again a derivation. Let D1, D2 ∈ der(g) and x, y ∈ g. Then one
calculates

D1D2([x, y])−D2D1([x, y]) =

= D1([D2(x), y] + [x,D2(y)])−D2([D1(x), y] + [x,D1(y)])

= [D1D2(x), y] + [D2(x), D1(y)] + [D1(x), D2(y)] + [x,D1D2(y)]

− [D2D1(x), y]− [D1(x), D2(y)]− [D2(x), D1(y)]− [x,D2D1(y)]

= [D1D2(x)−D2D1(x), y] + [x,D1D2(y)−D2D1(y)].

In order to see the second assertion, let x, y, z ∈ g and observe

ad(x)([y, z]) = [x, [y, z]] = −[y, [z, x]]− [z, [x, y]]

= [[x, y], z] + [y, [x, z]]

= [ad(x)(y), z] + [y, ad(x)(z)].

To prove the third item we show that for every D ∈ der(g) we have [D, ad(x)] =
ad(D(x)). To this end, compute

[D, ad(x)](y) = (D · ad(x))(y)− (ad(x)D)(y)

= D([x, y])− [x,D(y)]

= [D(x), y] + [x,D(y)]− [x,D(y)]

= [D(x), y] = ad(D(x))(y).

Remark 1.1.17. Notice that we can define derivations for any F-algebra A. In
fact, one simply defines a linear map D ∈ End(A) to be a derivation of A if it
satisfies

D(x · y) = D(x) · y + x ·D(y)

for all x, y ∈ A. For instance, let A = C∞(R). Then A is an algebra over R and
the map D : C∞(R) → C∞(R) with D(f) = f ′ is a derivation of C∞(R) by the
product rule.

In the following example we display the procedure to compute the adjoint
representation of a given Lie algebra.
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CHAPTER 1. PRELIMINARIES ON LIE ALGEBRAS AND GROUPS

Example 1.1.18. Consider the special linear Lie algebra sl(2,F) of 2×2 matrices
over a field F together with the commutator as Lie product. From 1.1.9 we know
that {e1, e2, e3} with

e1 =

(
0 1
0 0

)
, e2 =

(
0 0
1 0

)
, e3 =

(
1 0
0 −1

)
is a basis of sl(2,F). That means we can view them as three independent vectors
that span this 3-dimensional space. Calculating the Lie brackets of the basis
elements gives:

[ , ] e1 e2 e3
e1 0 e3 −2e1
e2 −e3 0 2e2
e3 2e1 −2e2 0

By linear extension, this table defines the Lie bracket on all of sl(2,F). As a next
step, we compute the adjoint endomorphisms ad(e1), ad(e2), ad(e3). These are
linear transformations of sl(2,F) into itself. Hence, one actually obtains a matrix
representation of them in terms of the above basis. For example, ad(e1) results
from our table by looking at the effect of bracketing with e1, i.e.

[e1, e1] = 0 = 0 · e1 + 0 · e2 + 0 · e3,
[e1, e2] = e3 = 0 · e1 + 0 · e2 + 1 · e3,
[e1, e3] = −2e1 = −2 · e1 + 0 · e2 + 0 · e3.

Thus, we get columns (0, 0, 0), (0, 0, 1) and (−2, 0, 0). Continuing this process for
the actions of e2 and e3 we get

ad(e1) =

0 0 −2
0 0 0
0 1 0

 , ad(e2) =

 0 0 0
0 0 2
−1 0 0

 , ad(e3) =

2 0 0
0 −2 0
0 0 0

 .

So we have a 3-dimensional adjoint representation of sl(2,F).

Many of the results in Chapter 2 hold for Lie rings which constitute a general-
isation of Lie algebras.

Definition 1.1.19. A Lie ring is an abelian group (g,+) together with a Lie
bracket [, ] : g× g→ g that satisfies

(i) Z-bilinearity,
(ii) skew-symmetry,

(iii) the Jacobi identity.

7



1.2. SOLVABLE AND NILPOTENT LIE ALGEBRAS

Thus, any Lie algebra is a Lie ring if we consider it over an abelian group instead
of a field.

We conclude the chapter with the definition of the eponymous notion of Engel
Lie algebras which are of major interest in the following work.

Definition 1.1.20. A Lie algebra g in which

ad(x)n = 0

holds for all x ∈ g is called an Engel-n Lie algebra. The equation ad(x)n = 0 is
called the Engel-n identity. This type of Lie algebra is central to the solution of
the Restricted Burnside Problem, see Section 2.2. Besides, Engel Lie algebras are
of interest in their own right and will be further investigated in Chapter 3.

1.2 Solvable and nilpotent Lie algebras

In this section we introduce the notions of solvable and nilpotent Lie algebras
as they will be important in the subsequent discussion. As in group theory, this
properties are defined in terms of the derived series and the lower central series.

Definition 1.2.1. Let g be a Lie algebra. Set g(0) := g and define g(m+1) induc-
tively as g(m+1) := [g(m), g(m)]. Certainly, it is g(m) ⊆ g(m−1) and by Lemma 1.1.5
we know that g(m) E g for all m. The decreasing sequence

g = g(0) ⊇ g(1) ⊇ · · · ⊇ g(m) ⊇ · · ·

is called the derived series of g. If there exists an integer c ∈ N such that g(c) = 0
and g(c−1) 6= 0 then we say g is of derived length c or solvable of class c.

Further, define g0 := g and gm+1 := [g, gm] ⊆ gm in an inductive manner. Again,
by means of Lemma 1.1.5, all gm are ideals in g. The decreasing sequence

g = g0 ⊇ g1 ⊇ · · · ⊇ gm ⊇ · · ·

is called lower central series of g. If we have gc = 0 and gc−1 6= 0 for some c ∈ N,
we say g is nilpotent of class c or c-nilpotent.

Lemma 1.2.2. Let g be a Lie algebra. Then g(m) ⊆ gm for all m ∈ N. Conse-
quently, every nilpotent Lie algebra is solvable.

Proof. We use induction on m. For m = 0 we have g(0) = g = g0. Now suppose
g(m−1) ⊆ gm−1. By definition, g(m−1) and gm−1 are both subsets of g, thus

g(m) = [g(m−1), g(m−1)] ⊆ [g, gm−1] = gm.

8



CHAPTER 1. PRELIMINARIES ON LIE ALGEBRAS AND GROUPS

Lemma 1.2.3. Let g be a Lie algebra. Then

g is c-nilpotent⇐⇒ ad(x1) · · · ad(xc−1) = 0

for all x1, . . . , xc ∈ g. Note that here multiplication denotes the composition of
morphisms.

Proof. By definition,

gc = [g, gc−1] = [gc−1, g] = {linear combinations of [x1, [x2, [. . . , [xc−1, y]] . . .]]}.

So gc = 0⇐⇒ [x1, [x2, [. . . , [xc−1, y]] . . .]] = 0⇐⇒ ad(x1) · · · ad(xc−1) = 0. Equiv-
alently, g is of nilpotency class c if and only if every Lie product of c elements
vanishes.

Example 1.2.4. The Heisenberg Lie algebra n(3,F) of strictly upper triangular
3 × 3 matrices is nilpotent of class 2. Indeed, for arbitrary matrices A,B,C ∈
n(3,F) one directly computes

[A, [B,C]] = [

0 a b
0 0 c
0 0 0

 , [

0 r s
0 0 t
0 0 0

 ,

0 x y
0 0 z
0 0 0

]]

= [

0 a b
0 0 c
0 0 0

 ,

0 0 −tx+ rz
0 0 0
0 0 0

] = 0.

By Lemma 1.2.3 this is equivalent to the 2-nilpotency of the Heisenberg Lie algebra.
Notice that n(3,F) is also an example of a solvable Lie algebra.

Proposition 1.2.5. Let g be a nilpotent Lie algebra. Then:

(i) Lie subalgebras and homomorphic images of g are nilpotent.

(ii) Let 0 6= i E g. Then i∩Z(g) 6= 0. In particular, the center of g is nontrivial.

(iii) Let 0 −→ i −→ k −→ g −→ 0 be a short exact sequence of Lie algebras such
that i ⊂ Z(g) and g ∼= k/i. Then k is nilpotent.

Proof. (i): Let k be a Lie subalgebra of g. Then the fact that km ⊆ gm for all
m yields the nilpotency of k. If ϕ : g −→ k is a surjective homomorphism of Lie
algebras then ϕ(gm) = km and hence, h is nilpotent.
(ii): For this part we refer the reader to [12] where this is shown in detail.
(iii): Recall that, by exactness, the morphism ι: i −→ k is acutally a monomor-
phism and π : k −→ g is an epimorphism. Furthermore, imι =kerπ and g ∼= k/imι.
By assumption, we have gm = (k/i)m = 0 for some m ∈ N and due to the sur-
jectivity of π, one obtains π(km) = (k/i)m = 0, hence km ⊆ i ⊆ Z(k). Therefore,
km+1 = [k, km] ⊆ [k, Z(k)] = 0, by definition of the center.

9
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Remark 1.2.6. There is a similar proposition for solvable Lie algebras stating that
subalgebras and homomorphic images of solvable Lie algebras are solvable (which
is proven analogously to (i)). Moreover, the proposition asserts that solvability is
an extension property of Lie algebras which means the following: Let g be a Lie
algebra and let i E g. If i and g/i are solvable then g itself is solvable.
This is not true in the case of nilpotency. The condition i ⊆ Z(k) in 1.2.5 (iii)
is indispensable in general, making nilpotency not an extension property of Lie
algebras.

As a conclusion, we state Engel’s and Lie’s theorem which are of major im-
portance in the structure theory of Lie algebras. For this purpose, we need the
following notion:

Definition 1.2.7. A representation (V, ϕ) is said to be nilpotent if there is c ∈ N
such that ϕ(x1) · · ·ϕ(xc) = 0 for all x1, . . . , xc ∈ g.

Theorem 1.2.8 (Engel’s theorem). Let ϕ : g −→ gl(V ) be a finite-dimensional
representation of g such that for all x ∈ g the homomorphism ϕ(x) is a nilpotent
endomorphism. Then ϕ is a nilpotent representation. In particular, for a finite-
dimensional Lie algebra g, we have

g is nilpotent⇐⇒ ad(x) is nilpotent for all x ∈ g.

Proof. See for example [7] or [39].

Theorem 1.2.9 (Lie’s theorem). Let g be a solvable Lie algebra over an alge-
braically closed field of characteristic 0 and let (ϕ, V ) be a finite dimensional rep-
resentation of g. Then there exists a basis B of V such that for any x ∈ g the
endomorphism ϕ(x) can be expressed as an upper triangular matrix in terms of
the basis B.

Proof. We refer to [12].

1.3 Free-nilpotent Lie algebras

In order to conceive the work in Section 3.2 we have to understand the notion of
free Lie algebras. They are thought of the generic Lie algebras whose elements
are in no relation apart from the defining equations of Lie algebras. Moreover,
we study free-nilpotent Lie algebras which additionally provide information on the
nilpotency class.

10
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Definition 1.3.1. Let X be an arbitrary set. A Lie algebra F = F(X) is called
free on X if it satisfies the following universal property:

X

ϑ

��

ι // F

ϕ
��

h

That is, given morphisms of sets ι : X −→ F and ϑ : X −→ h for any Lie algebra
h, there exists a morphism of Lie algebras ϕ : F −→ h such that ϑ = ϕ ◦ ι.

An alternative definition involves the free algebra with the set X of free gen-
erators over a fixed field. Factoring with respect to the ideal generated by the
elements of the form x2 and x(yz)+y(zx)+z(xy) yields the free Lie algebra on X.
This makes sense since in the quotient algebra all elements of the above forms van-
ish, hence the skew-symmetry and the Jacobi identity are satisfied. More details
to this construction can be found in Bourbaki’s book [11] or in [7].

Remark 1.3.2. Analogously to group presentations we can construct Lie algebras
with specific relations. More precisely, let R be a set of Lie-words, that is, a set of
finite linear combinations of elements of X or Lie brackets of elements of X. For
instance, x, [x, [y, z]] or [x, y] + [u, v] are Lie words. Then the generated subspace
of R is an ideal in the free Lie algebra on X, i.e. 〈R〉 E F(X). The quotient Lie
algebra

F(X|R) := F(X)/〈R〉

is called the free Lie algebra generated by X with relations R.

Example 1.3.3.

• Let R = ∅. Then

F(X|R) = F(X|∅) = F(X).

• If R = {[x1, x2] : x1, x2 ∈ X} then F(X|R) is the abelian Lie algebra gener-
ated by X because all Lie brackets equal 0 in the quotient algebra.

• Let X = {x1, x2}. Then F(X) is the set of all Lie words

x1, x2, [x1, x2], [x1, [x1, x2]], [x2, [x1, x2]], [x1, [x1, [x1, x2]]], ...

and so on, such that skew-symmetry and the Jacobi identity are satisfied.

Next, we want to study Lie algebras that have g-many generators and are of
nilpotency class c for given values c, g ∈ N. By results of the article [21], any such
Lie algebra can be viewed as a quotient of a universal nilpotent Lie algebra.

11
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Definition 1.3.4. Let c, g ∈ N and let Fg = F({x1, . . . , xg}) be the free g-generator
Lie algebra. Then

Fg,c := Fg/F
c+1
g

is called the free-nilpotent g-generator Lie algebra of class c.

As in Definition 1.2.1, Fc+1
g denotes the (c + 1)-st term of the lower central

series of Fg, whereas we know that it is indeed an ideal in Fg. Observe that Fc+1
g

consists of all Lie words of length ≥ c+1. Thus, only Lie words of length c appear
in the quotient. One can elaborate free-nilpotent Lie algebras with small values
for g, c by hand. For instance,

F3,2 = span({x1, x2, x3, [x1, x2], [x1, x3], [x2, x3]})

since all words of length > 2 vanish.

Remark 1.3.5. Note that Fg,c is finite-dimensional and therefore by no means
free in the category-theoretical sense, but rather in the meaning of the comment
right before Definition 1.3.4. To emphasize this fact, we use a hyphen in the phrase
free-nilpotent.

The next result gives a formula for calculating the dimension of free-nilpotent
Lie algebras without having a basis a priori.

Theorem 1.3.6 (Witt,[42]). Let F be a field of characteristic 0. Then

dim(Fg,c) =
c∑

k=1

1

k

∑
d|k

µ(d)gk/d.

Remark 1.3.7. We make a few comments on Witt’s theorem. First, µ denotes
the number-theoretical Möbius function defined as follows:

µ : N −→ {0,±1}, n 7−→

{
(−1)r if n is square-free

0 otherwise
,

where r is the number of prime factors of n.
Second, Theorem 1.3.6 is actually a corollary of the original theorem. Denote by
F(n) the subspace of the free Lie algebra that is generated by all elements of form
[xi1 , [xi2 , [. . . [xin−1 , xin ] . . .]]]. One can think of F(n) as the length-n part of the
free Lie algebra. Then Witt originally proved

dim(F(n)) =
1

n

∑
d|n

µ(d)gn/d.

12
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This fact is of interest because this formula also appears as the number of monic
irreducible polynomials of degree n over a finite field with g elements and also as
the number of aperiodic necklaces of length n in g colors, just to name a couple.
For the method of the transition from the original Witt-formula to the case of free-
nilpotent Lie algebras, the reader is recommended to look at [21]. Furthermore,
in Appendix A.6 the formula is programmed in Mathematica and a table of the
dimensions is presented for c, g ∈ {1, 2, . . . , 10}.

Example 1.3.8. We construct F3,3 in detail. By Witt’s theorem one immediately
obtains that F3,3 is 14-dimensional and by the above considerations we know that
all Lie brackets of length greater than three vanish. Listing the Lie brackets in the
generators x1, x2, x3 gives

x4 = [x1, x2] x5 = [x1, x3] x6 = [x2, x3]

x7 = [x1, [x1, x2]] x8 = [x2, [x1, x2]] x9 = [x3, [x1, x2]]

x10 = [x1, [x1, x3]] x11 = [x2, [x1, x3]] x12 = [x3, [x1, x3]]

x13 = [x1, [x2, x3]] x14 = [x2, [x2, x3]] x15 = [x3, [x2, x3]],

However, by Witt, we should have only 14 elements and indeed, we get a restriction
caused by the Jacobi identity:

J(x1, x2, x3) = 0⇐⇒ [x2, [x1, x3]] = [x3, [x1, x2]] + [x1, [x2, x3]],

telling us that x11 = x9 + x13 which is why we delete it from the list of basis
elements and end up with the correct 14 elements.

1.4 Some group theory

We provide a survey of group-theoretical definitions and results that are used in
the later chapters. For more information on general group theory we refer the
reader to Lang’s book [31] or [14] among other works on group theory.

Definition 1.4.1. Let G be a group. G is called solvable if it admits a subnormal
series such that all factors are commutative. To be more precise, G is solvable if
there is a chain

1 = Gn E Gn−1 E · · · E G1 E G0 = G,

such that each quotient group Gi/Gi+1 is abelian.

Equivalently, G is solvable if its derived series terminates in the trivial group.
The derived series of a group G is the descending sequence

G = G(0) D G(1) D G(2) D · · ·

13
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where for all n, G(n) = [G(n−1), G(n−1)] is the commutator subgroup. So G is
solvable if and only if

G = G(0) D G(1) D G(2) D · · · D G(d) = 1

for some d ∈ N. If d is the least value such that G(d) = 1 then we say G is of
derived length d. For a proof of the equivalence of the definitions see [14].

Example 1.4.2. All abelian groups are solvable. Moreover, it can be shown that
every subgroup and quotient group of a solvable group is again solvable. To have
a few explicit examples of solvable groups, consider the following:

• The symmetric group S4 has derived length 3 since it admits the sequence

S4 D A4 D V4 D 1,

where A4 is the alternating group and V4 denotes the Klein four-group.

• The dihedral group Dn is 2-step solvable because we have

Dn D 〈r2〉 D 1,

where Dn = 〈r, s : rn = s2 = srs−1r = 1〉.

Definition 1.4.3. Let G be a group. The lower central series of G is the descend-
ing series

G0 = G ⊇ G1 ⊇ G2 ⊇ · · ·

where for all n, the n-th member is defined as Gn = [Gn−1, G] = [G,Gn−1] =
〈[g, h] : g ∈ G, h ∈ Gn−1〉. It is common to use the notation γn = [Gn−1, G]. By
induction, one can check that γi �G for all i.

We call G nilpotent if γc = 1 for some c ≥ 0. The minimal such c ≥ 0 is called
nilpotency class of G.

Example 1.4.4. Certainly, all abelian groups are nilpotent. As another instance,
consider the quaternion group

Q8 = 〈i, j, k,−1 : (−1)2 = 1, i2 = j2 = k2 = ijk = −1〉.

Then Q8 ⊇ {1,−1} ⊇ 1 and hence Q8 is of nilpotency class 2.

Proposition 1.4.5.

1. Every subgroup and every homomorphic image of a nilpotent group is nilpo-
tent. In particular, all quotients of nilpotent groups are nilpotent.

14
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2. Every finite p-group is nilpotent.

3. Every nilpotent group is solvable.

Proof. For a proof of the properties we refer to [14].

Definition 1.4.6. A group G is said to be residually nilpotent if the nilpotent
residual of the group is trivial, i.e. if the intersection of all members of the lower
central series is trivial.

Definition 1.4.7. A group G is called locally nilpotent if every finitely generated
subgroup of G is nilpotent. For example, all abelian groups and all nilpotent
groups are locally nilpotent. Further, the Fitting subgroup (cf.[5]) of a finite
group is locally nilpotent.

Next, we explain free groups. These are groups in which elements are in no
relation other than the defining relations of a group. In this sense, free groups
constitute the generic examples of groups.

Definition 1.4.8. A group F is said to be free if there is a free basis of F , that
is, if there is S ⊆ F such that every function ϕ : S → G to some group G can be
extended uniquely to a group homomorphism ϕ̃ : F → G so that ϕ̃(s) = ϕ(s) for
all s ∈ S. In other words, S is a free basis of F if the following universal property
holds:

S

ϕ

��

ι // F

ϕ̃��
G

where ϕ = ϕ̃ ◦ ι so that the diagram commutes.

Example 1.4.9.

• The trivial group is a free group with free basis S = ∅.

• The infinite cyclic group C∞ = 〈x−1〉 = 〈x〉 = {xn : n ∈ Z} is free with
free basis S = {x}. To see this, let G be a group and let ϕ : S → G be an
arbitrary function with ϕ(x) = g for a g ∈ G. If we define ϕ̃(xn) = gn for all
n ∈ Z then ϕ extends uniquely to ϕ̃ : C∞ → G.

• The group (Z/mZ,+) is not free for m ≥ 2. We prove this indirectly and
suppose that there is a free basis S of Z/mZ. Observe that S 6= ∅ since
m ≥ 2. Next, let x ∈ S and consider the map ϕ : S → Z with ϕ(x) = 1. This

15
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extends uniquely to a morphism ϕ̃ : Z/mZ → Z, but Hom(Z/mZ,Z) = 0
since for ϑ ∈ Hom(Z/mZ,Z) we have

ϑ(0) = ϑ(xm) = ϑ(x)m = 0

and so ϑ(x) = 0 for all x.

Proposition 1.4.10.

1. Let S be any set. Then there is a free group FS that has S as a free basis.

2. Every group is a quotient of a free group, i.e. G ∼= FG/N for a group G and
a normal subgroup N .

Proof. Again, it is referred to [14] for the proof of the statements and more details
to free groups.

Definition 1.4.11. A group G is said to be linear if it is embeddable into the
group GLn(F) for some n > 1 and some field F.

Example 1.4.12. All matrix groups are linear, e.g. SLn(R) or On(R). One can
proof that for m ≥ 1 any m-generator free group is linear. In fact, we have

Fm ↪→ F2 ↪→ SL2(C).

A proof can be found in [14].

In the discussion of Burnside’s problems the notion of periodic groups takes a
central role.

Definition 1.4.13. A group G is said to be periodic or torsion if for all elements
g ∈ G there is an integer n ∈ N such that gn = 1. In other words, G is periodic if
every element in G has finite order. We remark that, in contrast to the above, a
group G is of bounded exponent if there exists n ∈ N such that gn = 1 for all group
elements g. The least such n is called the exponent of G. Notice that the property
of a group being of bounded exponent implies the periodicity of the group.

Example 1.4.14. Certainly, a finite group is of bounded exponent and hence
periodic. Instances for infinite periodic groups are the direct sum of cyclic groups⊕∞

i=1C2 or the quotient group Q/Z. Indeed, in the first group all elements have
order 2 while for the second example observe that for q ∈ Q, q = a

b
we have q ·b = a

and hence finite order in the quotient.
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As a conclusion to this introductory chapter, we define the notions of profinite
groups and ordered groups as they appear in a later section. To this end, we recall
that a group G is said to be a topological group if it is equipped with a topology
and the maps x 7→ x−1 as well as (x, y) 7→ xy are both continuous. Note that the
second map has domain G×G which is equipped with the product topology. As
examples we mention (Q,+), (R,+) or (C,+) with respect to the topology induced
by the Euclidean metric. Further, the matrix group GL(n,R) is a topological group
regarding it as a subset of Rn2

and, evidently, every finite group together with the
discrete topology is a topological group.

Definition 1.4.15. A topological group G is profinite if G is isomorphic to a
projective limit of finite groups. Without going into much detail, forming the
projective limit of objects in a category can be viewed as an operation that ”glues”
these objects together. In this sense, one can think of a profinite group as a group
that arises from ”gluing” finite groups together. It can be proved that a group G is
profinite if and only if it is a topological group that is compact, totally disconnected
and possesses the Hausdorff property. Therefore, a finite group together with the
discrete topology is profinite. Apart from that, the group Z is not profinite because
it is not compact as it is unbounded. However, it is possible to form a profinite
completion of Z. For more details to this topic the reader is referred to [13].

Definition 1.4.16. A group G is defined to be an ordered group if there is a total
order ≤ on G such that a ≤ b implies αaβ ≤ αbβ for all a, b, α, β ∈ G. For
example, it can be proved that all torsion-free abelian groups and all free groups
are orderable.
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Chapter 2

Burnside problems

In this chapter a short introduction on the history of the person William Burn-
side and the origin of his famous Burnside Problems is given. We display the
key steps and methods to the solution of the Restricted Burnside Problem in a
summarizing manner. In particular, we demonstrate the idea that connects this
group-theoretical problem to Lie theory, especially to Engel Lie algebras which
turn out to be of major importance and thus, are further investigated in Chapter
3. The last section regarding Burnside’s Problems is dedicated to Engel-n groups.
These are groups that satisfy the additional condition

[x, [x, . . . , [x︸ ︷︷ ︸
n-times

, y]]] = 1,

where [x, y] = x−1y−1xy is the commutator, not the Lie bracket. We state nu-
merous results in order to present a purely group-theoretical perspective on the
Burnside Problems.

2.1 Historical survey

The English mathematician William Burnside was born in London in 1852. He be-
came an orphan at the age of six and attended Christ’s Hospital, a school especially
designed for boys in a situation like Burnside’s. Aged twenty-three, Burnside won
a scholarship by means of which he entered St. John’s College, a department of the
University of Cambridge. Most prominently, he was educated by George Stokes,
J.C. Maxwell and Arthur Cayley. Notably, the affinity for applied mathematics,
passed on by the above, should influence Burnside’s future research fundamen-
tally. However, in 1875 Burnside joined Pembroke College, another constituent
institute of Cambridge University, to push ahead his athletic career as an oars-
man. For the next ten years he lectured at Pembroke on hydrodynamics before
he was granted a mathematics professorship at Greenwich’s Royal Naval College.
His work on hydrodynamics was often confronted with group theoretical aspects
and it became more and more apparent that this was his eventual research area.
A whole sequence of group theoretical articles ensued, for instance, the nowadays
standard result of the solvability of groups of order pa · qb for integers a, b ∈ N
and primes p, q. On top of that, in 1902, the English mathematician stated the fa-
mous Burnside Problem which occupied the minds of mathematicians for the next
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seven decades and, in variations, is the central topic of this chapter. Eventually,
William Burnside died in August 1927 at the age of seventy-five leaving behind an
outstanding mathematical legacy that influences group theory until today.
More details to the person William Burnside can be found in [34].

As indicated, in 1902, William Burnside posed the following question in his
article [16]:

”A still undecided point in the theory of discontinuous

groups is whether the group order of a group may be not

finite, while the order of every operation it contains is finite.”

In modern mathematical language this translates to the question:

Problem 2.1.1 (General Burnside Problem). Are all finitely generated periodic
groups finite?

In 1964, E.S. Golod answered this question in his paper [22] by constructing a
family of finitely generated infinite p-groups. Today, numerous counter examples
are known, see [4] or [23] among others.

In order to obtain more structural information about the group, Burnside re-
quired the group to be periodic of bounded exponent. He then asked the question:

Problem 2.1.2 (Bounded Burnside Problem). Are all finitely generated periodic
groups of bounded exponent finite?

To provide a brief insight, let Fr be the free group of rank r and let Fnr
be the normal subgroup of Fr that is generated by all gn for g ∈ Fr and fixed
n ∈ N. The quotient Fr/Fnr is called the r-generator Burnside group of exponent
n and is denoted by B(r, n). Any given r-generator group G of exponent n is a
homomorphic image of the Burnside group. So the Bounded Burnside Problem can
be rephrased as: For which values of r and n is B(r, n) finite? One immediately
observes that B(1, n) is the cyclic group of order n. As a next step, let G be of
bounded exponent 2 and let x, y ∈ G. Then

ab = (ab)−1 = b−1a−1 = ba.

Thus G is abelian. Further, let G be generated by r-many elements. Then |G| ≤
2r. Taking G =

⊕r
i=1C2 yields an r-generator group of exponent 2 satisfying

|G| = |
⊕r

i=1C2| = 2r and hence, G is a homomorphic image of B(r, 2), but on the
other hand, |B(r, 2)| ≤ 2r. Consequently, for r ≥ 1 we found B(r, 2) =

⊕r
i=1C2.

Many other cases are elaborated, in fact, Burnside himself showed in [16] that
the cardinality of B(r, 3) is bounded by 32r−1 or that |B(2, 4)| ≤ 212. It can be
looked up in [40] that if n = 2, 3, 4, 6 then B(r, n) is finite for all values of r.
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However, Adjan proves in [2] that if r > 1, n ≥ 665 and n odd then B(r, n) turns
out to be infinite and so answering the Bounded Burnside Problem in the negative.

The connection to Lie algebras lies within the following question:

Problem 2.1.3 (Restricted Burnside Problem). Are there only finitely many finite
r-generator groups of exponent n?

Assuming that the above has an affirmative answer, let M be the intersection
of all normal subgroups of B(r, n) that are of finite index. Certainly, M is again
a normal subgroup of finite index. The quotient B0(r, n) := B(r, n)/M is called
the universal finite r-generator group of exponent n. All finite r-generator groups
of exponent n are homomorphic images of B0(r, n). Note that B0(r, n) = B(r, n)
whenever B(r, n) is finite. So Problem 2.1.3 turns into the question of the existence
of B0(r, n). Much of the work on this problem was done in the 1950s by A.I. Kos-
rikin who established the existence of B0(2, 5) and later proved that B0(r, p) exists
for every prime p. Additionally, in 1956, Hall and Higman published a reduction
theorem to the case of prime powers and it was in 1991 that Efim Zelmanov settled
the Restricted Burnside Problem for arbitrary values of r, n affirmatively.

2.2 The Restricted Burnside Problem

We present a short outline of the solution of the Restricted Burnside Problem. In
the course of this, we describe the early development, give necessary definitions
and state the most crucial results up to Zelmanov’s celebrated theorem that proves
the Restricted Burnside Problem. Moreover, we define Engel groups and give a
survey of numerous results on the topic. We begin with the central theorem of
Hall-Higman:

Theorem 2.2.1 (Hall, Higman, [25]). Let p1, . . . , pk be distinct primes, m1, . . . ,mk ≥
1 and let n = pm1

1 · · · p
mk
k .

(i) The Restricted Burnside Problem has an affirmative solution for groups of
exponents pmi

i .

(ii) There are only finitely many finite simple groups of exponent n.

(iii) For any finite simple group G of exponent n the outer automorphism group
Out(G) = Aut(G)/Inn(G) is sovable.

Assuming hypotheses (i),(ii) and (iii), the Restricted Burnside Problem holds true
for all groups of exponent n.
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Assumptions (ii) and (iii) are dealt with by the classification of finite sim-
ple groups. In particular, if n is odd, Feit-Thompson’s odd-order-theorem (1962)
implies that there are no finite simple groups in (ii),(iii).

However, the above result from 1956 gives a reduction to the case of prime
powers and so caused euphoria to more extensive work on the Restricted Burnside
Problem. Another driving force that contributed to the later success was the link
to the theory of Lie algebras as they provide the mindset and methods from linear
algebra, see Chapter 1.

At this point, we highlight that for groups the term [x, y] = x−1y−1xy denotes
the commutator of two elements x, y. To avoid confusion, we use the notation xy
for the Lie product of x and y until the end of this chapter.

Lemma 2.2.2. Consider a group G and its lower central series. Then

(i) γi/γi+1 ⊆ Z(G/γi+1).

(ii) [γi, γj] is a subgroup of γi+j for all i, j ≥ 1.

Proof. For (i) let x ∈ γi/γi+1 and y ∈ G/γi+1. So they have form x = h · γi+1 for
some h ∈ γi and y = g · γi+1 for some g ∈ G. Then

[x, y] = [h · γi+1, g · γi+1] = [h, g] · γi+1 = 1,

by definition of γi+1. So [x, y] = x−1y−1xy = 1 or equivalently, xy = yx and thus,
x ∈ Z(G/γi+1). For (ii) we refer to [40].

Lemma 2.2.3 ([40]). Let G be the group generated by the set X = {x1, x2, . . .}.
Then γi equals the normal closure of {[. . . , [[x1, x2], x3] . . . , xi] : xj ∈ X} for all i.
Furthermore, these commutators generate γi modulo γi+1.

By means of the above auxiliary results we are ready to construct the associated
Lie ring of a group.

Definition 2.2.4. Let G be a group and consider its lower central series. For all
i we set gi = γi/γi+1. The groups gi are abelian whence we write them additively
and regard them as modules over Z. The associated Lie ring of G is defined as

g = g(G) :=
⊕
i≥1

gi.

In order to turn g into a Lie ring we need to define a multiplication. The two
elements x ∈ gi and y ∈ gj have form x = g · γi+1 and y = h · γj+1, respectively,
for some g ∈ γi and h ∈ γj. Lemma 2.2.2 (ii) gives [g, h] ∈ γi+j and so enables us
to define the Lie product

xy := [g, h] · γi+j+1 ∈ gi+j.
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It is easily checked that this is a well-defined expression. We extend this product
linearly to all of g. The verification that this product satisfies bilinearity, skew-
symmetry and the Jacobi identity can be looked up in Vaughan-Lee’s book [40].

Observe that gi+1 = gig1 for all possible i. This holds since γi+1 is generated
by the commutators [g, h] for g ∈ γi and h ∈ γ1 by definition. Now assume that
G is generated by a set X. Then g1 is generated by all elements of form x · γ2 for
x ∈ X. Similarly, g2 is generated by all elements of form x1x2 · γ2. Continuing
this process we obtain that gi is generated by the elements x1 · · ·xi · γ2. This fact
corresponds to Lemma 2.2.3.

Returning to the context of the Restricted Burnside Problem, let G = B(r, q)
be the r-generator Burnside group of exponent q. Recall that due to the reduction
theorem of Hall-Higman, we may restrict the exponent q to prime powers, i.e.
q = pm for a prime p and some m ∈ N. Consider the lower central series of B(r, q)

γ1 = B(r, q) ≥ γ2 ≥ · · · ≥ γi ≥ · · ·

and denote by g(r, q) the associated Lie ring. By Lemma 2.2.3, all quotients
gi = γi/γi+1 are finitely generated abelian groups that have exponent dividing q
and thus are periodic. By the classification of finitely generated abelian groups,
all gi are finite. Consequently, also B(r, q)/γi is finite for i ≥ 1. As proceeded in
[40], two cases are distinguished:

1. γi+1 is a proper subgroup of γi for all i ≥ 1.

2. There is an i ≥ 1 such that γi+1 = γi.

In case 1 the quotients B(r, q)/γi are of unbounded order for all i ≥ 1. That
means there is no bound for the order of r-generator groups of exponent q and the
associated Lie ring g(r, q) has infinitely many elements. In the second case one
obtains a lower central series of form

B(r, q) ≥ γ2 ≥ · · · ≥ γi ≥ γi ≥ · · ·

for some i. So for all j ≥ i this gives gj = 0 and therefore, g(r, q) is finite. If we are
given any finite r-generator group G of exponent q = pm then, by the arguments
in Section 2.1, G ∼= B(r, q)/N for some normal subgroup N of G. Additionally,
G is a p-group and thus nilpotent. Hence, there exists an integer k ≥ 1 such
that γk ≤ N but on the other hand, γi ≤ N because γj = γi for all j ≥ i by
assumption. As a result, G is isomorphic to a homomorphic image of B(r, q)/γi.
This considerations prompt that B(r, q)/γi is the largest such group containing
every other finite r-generator group of exponent q as homomorphic image. Apart
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from that, the associated Lie ring g(r, q) has the same nilpotency class as B(r, q)/γi
by definition and, also, they are of equal order as is shown by:

|g(r, q)| =
i∏

n=1

|gn| =
i∏

n=1

|γn/γn+1| = |B(r, q)/γi|.

where the third identity is due to a standard result in group theory [31].

A.I. Kostrikin utilizes this connection in his proof for the Restricted Burn-
side Problem for prime exponents. To be more precise, Kostrikin established the
following results:

Theorem 2.2.5. Let G be a group of prime exponent p. Then its associated Lie
ring is an Engel-(p− 1) Lie algebra over the field Z/pZ, cf. Definition 1.1.20.

Theorem 2.2.6 (Kostrikin,[30]). Let g be a finitely generated Engel-(p − 1) Lie
algebra over a field of characteristic p. Then g is nilpotent.

Exploring the latter for p = 2 and p = 3, one observes that on the one hand,
for p = 2, g satisfies the Engel-1 condition xy = 0 which is equivalent to g being
abelian. Therefore, g has nilpotency class at most 1. On the other hand, if g is
an Engel-2 Lie algebra then it is nilpotent of class at most 3. We prove this fact
explicitly in Chapter 3.

Kostrikin’s theorems imply that g(r, p) is nilpotent. On top of that, due to our
above considerations, we deduce that g(r, p) is finite which proves the existence of
a largest finite r-generator group of exponent p. For the proofs of 2.2.5 and 2.2.6
the reader is referred to Kostrikin’s book [30] which contains all details and more.

Efim Zelmanov extended Kostrikin’s methods in his solution to the Restricted
Burnside Problem for prime-power exponents. We now state his famous theorem
and emphasize that this result is explicitly on Lie algebras while solving a group-
theoretical problem.

Theorem 2.2.7 (Zelmanov). Let g be a Lie algebra over a field F generated by
a1, a2, . . . , ak for some k ∈ N. Suppose there exist integers n,m ≥ 1 such that:

1. For all x, x1, . . . , xm ∈ g we have∑
σ∈Sym(m)

[xσ(1), [xσ(2), . . . [xσ(m), x] . . .]] = 0.

2. For all x ∈ g and all y ∈ g that have form y = [a1, [a2, . . . [ai−1, ai], . . .]],
i ∈ {1, . . . , n}, the Engel-n identity holds:

[xn, y] = 0.
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Then g is nilpotent.

Efim Zelmanov proved this result in 1989 in his series of articles [44], [45] for
which he was awarded a fields medal in 1994. To see that this implies the existence
of a largest r-generator group of prime-power exponent q, we reference [40] where
this is presented in detail. Apart from that, Theorem 2.2.7 proves that any finitely
generated Engel-n Lie algebra is nilpotent since the requirements are met with
n = m.

2.3 Engel groups

As for Lie algebras, it certainly makes sense to consider groups that satisfy the
Engel identity. Define e0(x, y) = x and en+1(x, y) = [en(x, y), y], where here, the
bracket [, ] denotes the commutator of group elements. A group G is called an
Engel group if for all x, y ∈ G one has en(x, y) = 1 for an integer n = n(x, y) ∈ N.
If it is possible to choose the positive integer n independently of the elements x, y
then we say G is an Engel-n group.
This part of the text concerns this type of groups and their relation to the Burnside
Problems.

As mentioned in Section 2.1, in his 1901 paper [16] W. Burnside proved that a
finitely generated group of exponent 3 is necessarily finite. In the course of this,
Burnside remarks that in this type of group any two conjugates x, xy commute,
where xy = y−1xy. Indeed, for x, y ∈ G we have

1 = (yx)3 = y3xy
2

xyx.

Consequently,

xy
2

xyx = 1 (2.1)

and replacing y by y2 in (2.1) we additionally obtain

xyxy
2

x = 1, (2.2)

since xy
4

= xy in G. Using (2.1) and (2.2) one calculates

xyx = (xy
2

)−1 = y2x−1y−2

and on the other hand,

xxy = x(xy
2

x)−1 = xx−1y2x−1y−2 = y2x−1y−2.
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Thus, x and xy commute. Furthermore, x and [y, x] commute. To see this, observe
that [y, x] = y−1x−1yx = (x−1)yx and consider the following computations:

(x−1)yx = (x−1)yx−1x2 = x−1(x−1)yx2 = x−1(x−1)yx−1,

x(x−1)y = x2x−1(x−1)y = x2(x−1)yx−1 = x−1(x−1)yx−1.

Notice that we used commutativity of x and xy in each of the equations. As a
result,

[[y, x], x] = [x, [x, y]] = 1

for all x, y ∈ G. So every group of exponent 3 is an Engel-2 group. Burnside
picked up on this fact in his article [15] where he showed that in an Engel-2 group
the following relations hold:

[x, y, z] = [x, [y, z]] = [y, z, x],

[x, y, z]3 = 1.

He then concluded that if G is an Engel-2 group that contains no elements of order
3 then G has nilpotency class at most 2. Note that, in general, such groups have
nilpotency class at most 3, although Burnside did not prove this fact.

Established a connection between Burnside’s questions and Engel groups, we
state a first result:

Theorem 2.3.1 (Zorn,[46]). A finite Engel group is nilpotent.

Due to this theorem, we can view the Engel property as a generalization of
nilpotency. In order to observe that the Engel identity poses a weaker property,
in [37] Traustason gives an example of a group that is an Engel-(p + 1) p-group
which is not nilpotent. In fact, the example is given by

G(p) = Cpwr C∞p ,

where wr denotes the wreath product. However, there are the following general-
izations of Zorn’s theorem.

Theorem 2.3.2 (Gruenberg,[24]). Any finitely generated solvable Engel group is
nilpotent.

Theorem 2.3.3 (Baer,[6]). Any Engel group that satisfies the maximum condition
is nilpotent.

Theorem 2.3.4 (Garas̆c̆uk, Suprunenko, [20]). Any linear Engel group is nilpo-
tent.
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Before continuing our survey, we recall the Burnside Problems and state their
equivalents for Engel groups as done in [37]. Here, the values r and n are positive
integers.

Problem 2.3.5 (The Burnside Problems).

(B1) The General Burnside Problem. Are all finitely generated periodic
groups finite?

(B2) The Bounded Burnside Problem. Are all finitely generated periodic
groups of bounded exponent finite?

(B3) The Restricted Burnside Problem. Are there only finitely many finite
r-generator groups of exponent n?

Problem 2.3.6 (Analogues for Engel groups).

(E1) The general local nilpotence problem. Are all finitely generated Engel
groups nilpotent?

(E2) The local nilpotence problem. Are all finitely generated Engel-n groups
nilpotent?

(E3) The restricted local nilpotence problem. Are there only finitely many
nilpotent r-generator Engel-n groups?

Golod’s counter-examples in [22] answer the questions (B1) and (E1) in the
negative. For more information on Golod’s construction the survey article [19]
is recommended. However, Zelmanov’s theorem affirms the Restricted Burnside
Problem (B3) and its equivalent (E3), where we refer to Section 2.1 for the first
question and to [37] for the restricted local nilpotence problem (E3). We point
out that there are counter-examples for the Bounded Burnside Problem given by
Adian [2], but none are known for its equivalent for Engel groups (E2).

While the above results from Gruenberg, Baer and Garas̆c̆uk-Suprunenko are
from the 1950s and 60s, more recent work on the topic is mostly based on Zel-
manov’s Theorem 2.2.7. For instance, the following are known:

Theorem 2.3.7 ([37]). Any finitely generated residually nilpotent Engel-n group
is nilpotent.

Theorem 2.3.8 (Wilson,[41]). Any profinite Engel group is locally nilpotent.

Theorem 2.3.9 (Medvedev, [32]). Any compact Engel group is locally nilpotent.

Theorem 2.3.10. Any orderable Engel-n group is nilpotent.
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We refer to Section 1.4 to recall the above notions.

As a conclusion to our survey on Engel groups, we briefly discuss the following
theorem.

Theorem 2.3.11 (Heineken,[27]). Any Engel-3 group G that is {2, 5}-free has
nilpotency class at most 4.

Remark 2.3.12. As explained in [37], we can view G as a finite Engel-3 p-group
for p 6= 2, 5. Now consider its associated Lie ring g(G) as in Definition 2.2.4 and
solve the problem with Lie theory. In fact, we prove this result in the next chapter,
see 3.1.6.
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Chapter 3

Nilpotency index of Engel Lie
algebras

As mentioned in Chapter 2, Engel-n Lie algebras arise naturally in terms of the
Burnside Problems. Beside Theorem 2.2.7, regarding the Restricted Burnside
Problem, Zelmanov provides two more results:

Theorem 3.0.1 (Zelmanov,[43]). Any Engel-n Lie algebra over a field of charac-
teristic 0 is nilpotent.

Theorem 3.0.2 (Zelmanov,[44]). Any Engel-n Lie algebra over an arbitrary field
is locally nilpotent.

Naturally, the following question arises:

What can be said about the nilpotency classes and how do they

depend on n or the number of generators?

We will explore this issue more intensively for small values of n. For now, we pri-
marily focus on the case of Engel-3 Lie algebras which turn out to have nilpotency
class at most 4. At this, the construction of an Engel-3 Lie algebra that actually
attains this bound is demonstrated explicitly. Moreover, we briefly discuss the
impact of the characteristic of the underlying field.

Before that, we present an easy example of an Engel Lie algebra so that we
have a concrete instance of this type of algebra.

Example 3.0.3. Consider the associative algebra n(3,F) of strictly upper trian-
gular 3× 3 matrices, say over a field of characteristic 0, that is

n(3,F) = {

0 α β
0 0 γ
0 0 0

 : α, β, γ ∈ F}.

By Lemma 1.1.7 this is turned into a Lie algebra by using the commutator as
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Lie bracket, i.e. [A,B] = AB −BA for A,B ∈ n(3,F). It is easy to see that

n(3,F) = 〈

0 1 0
0 0 0
0 0 0


︸ ︷︷ ︸

=:e1

,

0 0 0
0 0 1
0 0 0


︸ ︷︷ ︸

=:e2

,

0 0 1
0 0 0
0 0 0


︸ ︷︷ ︸

=:e3

〉

= 〈e1, e2, e3 : [e1, e2] = e3〉.

Thus, we have the simple multiplication table:

[ , ] e1 e2 e3
e1 0 e3 0
e2 −e3 0 0
e3 0 0 0

Extracting the adjoint endomorphisms as in 1.1.18 gives

ad(e1) =

0 0 0
0 0 0
0 1 0

 , ad(e2) =

0 0 0
0 0 0
0 0 0

 , ad(e3) =

 0 0 0
0 0 0
−1 0 0

 .

Since every A ∈ n(3,F) is a linear combination of the matrices e1, e2, e3, say
A = λ1e1 + λ2e2 + λ3e3 for λi ∈ F, one calculates

ad(A) = ad(λ1e1 + λ2e2 + λ3e3) = λ1ad(e1) + λ2ad(e2) + λ3ad(e3)

using linearity. It is easily checked that ad(A)3 = 0, implying that

[A, [A, [A,B]]] = 0

for all A,B. Thus, the matrix Lie algebra n(3,F) is indeed an Engel-3 Lie algebra.

Notice that the above example is not only a commonly known instance of an
Engel Lie algebra, but also demonstrates how simple methods of linear algebra are
used to obtain information about Lie algebras.

3.1 Engel-3 Lie algebras

In this section our main aim is to prove that Engel-3 Lie algebras are nilpotent
of class at most 4. To this end, we use the methods from the paper [38] by G.
Traustason of the University of Bath who is an active contributor to recent devel-
opments in the theory of Engel Lie algebras and Engel groups. However, already in
1954 P.J. Higgins showed in [28] that Engel-3 Lie algebras have nilpotency class at
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most six. Traustason utilizes Higgins’ argument in his proof of the revised upper
bound as is presented below.

Recall that, until mentioned otherwise, the underlying field is of characteristic
0. We use the common notation X = ad(x) for the adjoint endomorphism for an
element x in the Lie algebra. Similarly, Y denotes ad(y) and so on. We will make
use of the following well-known result:

Theorem 3.1.1. Let g be an Engel-2 Lie algebra over F. Then g3 = 0, i.e. g is
of nilpotency class at most 2.

Proof. The Engel-2 identity says that for any element x ∈ g the adjoint endomor-
phism satisfies X2 = 0. Thus, also (X + Y )2 = 0 which prompts

(X + Y )2 = X2 +XY + Y X + Y 2 = XY + Y X = 0.

For arbitrary x, y, z ∈ g one then calculates

0 = (XY + Y X)(z) = [x, [y, z]] + [y, [x, z]]

= −[y, [z, x]]− [z, [x, y]] + [y, [x, z]]

= −2 · [y, [z, x]] + [z, [y, x]]

= (ZY − 2 · Y Z)(x),

where the Jacobi identity was used in the third equality. By interchanging the
variables we obtain the two equations

XY + Y X = 0, (3.1)

XY − 2 · Y X = 0 (3.2)

which imply that XY = 0 and thus, g3 = 0 as claimed.

Remark 3.1.2. Note that in the proof of 3.1.1 it is important that the field is
of characteristic 0. Certainly, if char(F) = 2 instead, equation (3.2) yields the
result and also, for char(F) > 3 the above argument works properly. On the
other hand, if the characteristic is 3 then the two relations imply 3 · XY = 0
which is why we have to alter our proof as follows: Since XY + Y X = 0 also
X[Y, Z] + [Y, Z]X = 0. Observe that, as in 1.1.16, for the adjoint endomorphisms
we have [Y, Z] = Y Z − ZY . Therefore,

XY Z −XZY + Y ZX − ZY X = 0.

Let σ be a permutation in the symmteric group S3. Then

Xσ(1)Xσ(2)Xσ(3) = sgn(σ)X1X2X3

using the relation XY + Y X = 0 repeatedly. This fact together with the above
equation gives 4 ·X1X2X3 = 0. Thus, in the case of characteristic 3 we have that
an Engel-2 Lie algebra is 4-nilpotent.
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In order to show our main theorem we prove the following Lemma.

Lemma 3.1.3. Let g be a Lie algebra and x, y, z ∈ g, n ∈ N. Then

n∑
i=0

[xn−i, [z, [xi, y]]] =
n∑
j=0

(−1)j+1

(
n+ 1

j + 1

)
[xn−j, [y, [xj, z]]].

Proof. At first, one considers the inner part of the Lie bracket:

[z, [xi, y]] = −[[xi, y], z] = −[X, [X, . . . , [X︸ ︷︷ ︸
i times

, Y ], . . . , ]](z)

= −
i∑

j=0

(−1)j
(
i

j

)
X iY X i−j(z).

To verfiy the last identity, take e.g. i = 3 and observe

[x3, y] = [X, [X, [X, Y ]]] = [X, [X,XY − Y X]]

= [X,X(XY − Y X)− (XY − Y X)X]

= [X,X2Y − 2XYX + Y X2]

= X(X2Y − 2XYX + Y X2)− (X2Y − 2XYX + Y X2)X

= X3Y − 2X2Y X +XYX2 −X2Y X + 2XYX2 − Y X3

= X3Y − 3X2Y X + 3XYX2 − Y X3.

If we compose with Xn−i and sum over i we get

n∑
i=0

[xn−i, [z, [xi, y]]] =
n∑
i=0

i∑
j=0

(−1)j+1

(
i

j

)
XjY X i−jXn−i(z)

=
n∑
j=0

(−1)j+1(
n∑
i=j

(
i

j

)
)XjY Xn−j(z)

=
n∑
j=0

(−1)j+1

(
n+ 1

j + 1

)
[xn−j, [y, [x, z]]].

Corollary 3.1.4. Let g be a Lie algebra over a field of characteristic prime to n!
for n ∈ N. If Xn+1 = 0 then the following hold:

1.
n∑
i=0

X iY Xn−i = 0,

2.
n∑
j=0

(−1)j+1

(
n+ 1

j + 1

)
XjY Xn−j = 0.
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Proof. For the first part, consider (X + λY )n+1 = 0 and collect the terms with
coefficient λ. This is displayed below in the case of n = 2.

0 = (X + λY )3

= X3 + λX2Y + λXY X + λ2XY 2 + λY X2 + λ2Y XY + λ2Y 2X + λ3Y 3

= λ · (X2Y +XYX + Y X2) + λ2 · (XY 2 + Y XY + Y 2X).

To obtain 2. one uses Lemma 3.1.3:

n∑
j=0

(−1)j+1

(
n+ 1

j + 1

)
XjY Xn−j(z) =

n∑
i=0

[xn−1, [z, [xi, y]]]

=
n∑
i=0

X iZXn−i(y) = 0.

Remark 3.1.5. One should observe that Corollary 3.1.4 deals with the general
case of the calculation in the proof of Theorem 3.1.1. Indeed, by setting n = 1 the
above result yields the two equations

XY + Y X = 0, XY − 2Y X = 0

as we computed in the mentioned proof.

Now we acquired all prerequisites to prove the nilpotency theorem for Engel-3
Lie algebras.

Theorem 3.1.6 (Higgins, Traustason). Every Engel-3 Lie algebra over a field F
of characteristic different from 2 and 5 is of nilpotency class at most 4.

Proof. As indicated in the label of the theorem, the proof of it is very similar to
Higgin’s from 1954, although in his paper [28] he only showed g7 = 0 whereas
Traustason proves the correct upper bound in [38] using Higgin’s argument as we
will see below.
Certainly, the Engel-3 identity can be expressed as X3 = 0 which implies the two
relations

X2Y +XYX + Y X2 = 0, (3.3)

X2Y − 3XYX + 3Y X2 = 0 (3.4)

by Corollary 3.1.4.
For the moment, let char(F) = 3 whence X2Y = 0 by equation (3.4). As shown in
Lemma 4 of Higgin’s article, the subspace

i := 〈T 2〉 = span{[t, [t, s]] : t, s ∈ g}
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forms an ideal of g. Within the quotient Lie algebra g/i every element of type
[t, [t, s]] is 0, hence g/i is an Engel-2 Lie algebra by definition. By means of
Remark 3.1.2, which considers the characteristic 3 case of the nilpotency theorem
for Engel-2 Lie algebras, we have

(g/i)4 = 0.

Equivalently, every four-element Lie product [x1, [x2, [x3, x4]]] lies in the ideal i and
so has form [t, [t, s]] by definition. Thus,

[x1, [x2, [x3, [x4, x5]]]] = [x1, [t, [t, s]]] = 0

because we already calculated X2Y = 0. So we elaborated that any given product
of five elements equals zero, i.e. g5 = 0 as claimed.
Now consider the case of char(F) 6= 3 and also char(F) is not 2 or 5 by assumption.
At first, we eliminate X2Y in equation (3.3) and Y X2 in (3.4).

(3.3)− (3.4) : 4XYX − 2Y X2 = 0⇐⇒ Y X2 = 2XYX (3.5)

3 · (3.3)− (3.4) : 6XYX + 3X2Y = 0⇐⇒ X2Y = −3XYX. (3.6)

Therefore, one immediately has

3Y X2 = −2X2Y (3.7)

and certainly, we can interchange X and Y in (3.5) and (3.6), respectively, to
obtain

XY 2 = 2Y XY, (3.8)

Y 2X = −3Y XY. (3.9)

Operating with Y from the left on (3.5) and with X from the right on relation
(3.9) yields

Y 2X2 = 2Y XY X,

Y 2X2 = −3Y XY X.

Eliminating the right side gives 5Y 2X2 = 0 which implies Y 2X2 = 0 as we as-
sumed char(F) 6= 5. Again by Theorem 3.1.1, the quotient Lie algebra g/i satisfies
(g/i)3 = 0 where i denotes the same Lie ideal as above. So one calculates

Y 2X1X2(z) = [y, [y, [x1, [x2, z]]]]

= [y, [y, [t, [t, s]]]]

= Y 2T 2(s) = 0
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since every product of three elements lies in the ideal i and hence has form [t, [t, s]]
for elements t, s ∈ g. With the help of relation (3.7) we further compute

9X1X2Y
2 = −4Y 2X1X2 = 0.

We use 3.1.1 and the quotient Lie algebra once more, i.e. the fact that every
product of three elements is of form [t, [t, s]] and so one eventually obtains

X1X2Y1Y2(z) = [x1, [x2, [y1, [y2, z]]]]

= [x1, [x2, [t, [t, s]]]]

= 0,

implying that every product of five elements equals zero, hence

g5 = 0.

3.2 A construction of an Engel-3 Lie algebra of

nilpotency class 4

We demonstrate the construction of an Engel-3 Lie algebra of class 4 in detail.
Thus, Theorem 3.1.6 gives the best possible upper bound. With the help of the
theory of free-nilpotent Lie algebras we are able to explicitly work out a Lie algebra
of nilpotency class 4. To obtain the Engel-3 property we will factor this Lie
algebra by a certain ideal such that the resulting quotient satisfies both, Engel-3
and nilpotency 4. Accomplished this, we try to reduce its dimension in order to
present a convenient Lie algebra.

We start off by elaborating a 4-nilpotent Lie algebra. To be more precise, we
consider the free-nilpotent Lie algebra F3,4 on three generators and of nilpotency
class four. By Witt’s Theorem 1.3.6, we already know that its dimension is 32 and
to list its elements and Lie brackets, we follow the procedure from Example 1.3.8.
That is,
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x1,

x2,

x3,

x4 = [x1, x2],

x5 = [x1, x3],

x6 = [x2, x3],

x7 = [x1, x4] = [x1, [x1, x2]],

x8 = [x1, x5] = [x1, [x1, x3]],

x9 = [x1, x6] = [x1, [x2, x3]],

x10 = [x2, x4] = [x2, [x1, x2]],

x11 = [x2, x5] = [x2, [x1, x3]],

x12 = [x2, x6] = [x2, [x2, x3]],

[x3, x4] = [x3, [x1, x2]] = −x9 + x11 by (J1),

x13 = [x3, x5] = [x3, [x1, x3]],

x14 = [x3, x6] = [x3, [x2, x3]],

x15 = [x1, x7] = [x1, [x1, [x1, x2]]],

x16 = [x1, x8] = [x1, [x1, [x1, x3]]],

x17 = [x1, x9] = [x1, [x1, [x2, x3]]],

x18 = [x1, x10] = [x1, [x2, [x1, x2]]],

x19 = [x1, x11] = [x1, [x2, [x1, x3]]],

x20 = [x1, x12] = [x1, [x2, [x2, x3]]],

x21 = [x1, x13] = [x1, [x3, [x1, x3]]],

x22 = [x1, x14] = [x1, [x3, [x2, x3]]],

[x2, x7] = [x2, [x1, [x1, x2]]] = x18 by (J2),

x23 = [x2, x8] = [x2, [x1, [x1, x3]]],

x24 = [x2, x9] = [x2, [x1, [x2, x3]]],

x25 = [x2, x10] = [x2, [x2, [x1, x2]]],

x26 = [x2, x11] = [x2, [x2, [x1, x3]]],

x27 = [x2, x12] = [x2, [x2, [x2, x3]]],

x28 = [x2, x13] = [x2, [x3, [x1, x3]]],

x29 = [x2, x14] = [x2, [x3, [x2, x3]]],

[x3, x7] = −x17 + 2 · x19 − x23 by (J3), (J5),

[x3, x8] = [x3, [x1, [x1, x3]]] = x21by (J6),
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x30 = [x3, x9] = [x3, [x1, [x2, x3]]],

[x3, x10] = x20 − 2 · x24 + x26 by (J4), (J8),

[x3, x12] = [x3, [x2, [x2, x3]]] = x29 by (J10),

x31 = [x3, x13] = [x3, [x3, [x1, x3]]],

x32 = [x3, x14] = [x3, [x3, [x2, x3]]].

Observe that {x1, . . . , x6} is the basis of F3,2 and {x1, . . . , x14} spans F3,3, so:

F3,1 ⊆ F3,2 ⊆ F3,3 ⊆ F3,4 ⊆ · · ·

Moreover, as indicated in the list, several valid Lie brackets can be expressed as
linear combination of other elements which is why they do not get added to the
list of basis elements. These restrictions are caused by the Jacobi identity. The
corresponding calculations are performed below.

J(x1, x2, x3) = 0⇐⇒[x1, [x2, x3]] + [x2, [x3, x1]] + [x3, [x1, x2]] = 0

=⇒[x3, x4] = −[x1, [x2, x3]] + [x2, [x1, x3]]

=⇒[x3, x4] = −x9 + x11 (J1)

J(x1, x2, x4) = 0⇐⇒[x1, [x2, x4]] + [x2, [x4, x1]] + [x4, [x1, x2]] = 0

=⇒x18 = [x2, [x1, x4]]− [x4, [x1, x2]]

=⇒x18 = [x2, [x1, [x1, x2]]] = [x2, x7] (J2)

J(x1, x2, x5) = 0⇐⇒[x1, [x2, x5]] + [x2, [x5, x1]] + [x5, [x1, x2]] = 0

=⇒[x1, [x2, x5]] = [x2, [x1, x5]]− [x5, [x1, x2]]

=⇒[x4, x5] = [x1, x11]− [x2, x8] = x19 − x23 (J3)

J(x1, x2, x6) = 0⇐⇒[x1, [x2, x6]] + [x2, [x6, x1]] + [x6, [x1, x2]] = 0

=⇒[x1, [x2, x6]] = [x2, x9]− [x6, x4]

=⇒[x4, x6] = [x1, x12]− [x2, x9] = x20 − x24 (J4)

J(x1, x3, x4) = 0⇐⇒[x1, [x3, x4]] + [x3, [x4, x1]] + [x4, [x1, x3]] = 0

=⇒[x1, [x3, x4]] = [x3, x7]− [x4, x5]

=⇒[x1, x11 − x9] = [x3, x7]− [x4, x5] (J5)

J(x1, x3, x5) = 0⇐⇒[x1, [x3, x5]] + [x3, [x5, x1]] + [x5, [x1, x3]] = 0

=⇒[x1, x13] = [x3, x8]− [x5, x5]

=⇒[x3, x8] = x21 (J6)
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J(x1, x3, x6) = 0⇐⇒[x1, [x3, x6]] + [x3, [x6, x1]] + [x6, [x1, x3]] = 0

=⇒[x1, x14] = [x3, x9]− [x6, x5]

=⇒[x5, x6] = x22 − x30 (J7)

J(x2, x3, x4) = 0⇐⇒[x2, [x3, x4]] + [x3, [x4, x2]] + [x4, [x2, x3]] = 0

=⇒[x2,−x9 + x11] = [x3, x10]− [x4, x6]

=⇒[x3, x10] = [x2,−x9 + x11] + [x4, x6] (J8)

J(x2, x3, x5) = 0⇐⇒[x2, [x3, x5]] + [x3, [x5, x2]] + [x5, [x2, x3]] = 0

=⇒[x2, x13] = [x3, x11]− [x5, x6]

=⇒[x3, x11] = x28 + [x5, x6] (J9)

J(x2, x3, x6) = 0⇐⇒[x2, [x3, x6]] + [x3, [x6, x2]] + [x6, [x2, x3]] = 0

=⇒[x2, x14] = [x3, x12]− [x3, x3]

=⇒x29 = [x3, x12] (J10)

Additionally, if we combine equations (J3) and (J5) we obtain

[x3, x7] = [x4, x5] + [x1, x11 − x9]
= x19 − x23 + [x1, x11]− [x1, x9]

= −x17 + 2 · x19 − x23.

Similarly, by considering (J4), (J8) and (J7), (J9) respectively, we get

[x3, x10] = [x4, x6]− [x2, x9] + [x2, x11]

= x20 − 2 · x24 + x26,

[x3, x11] = x22 + x28 − x30.

Now we are able to display the multiplication table for the Lie algebra F3,4.
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Now we have full information about our 4-nilpotent Lie algebra. The next step
is to establish the Engel-3 property. The idea is to factor F3,4 by an ideal in a way
such that the quotient Lie algebra satisfies Engel-3 and does not lose nilpotency
class 4. The first problem we encounter is the non-multilinearity of the Engel
identity. That means that it is not enough to have [x, [x, [x, y]]] = 0 for all basis
elements x, y in order for it to hold on all elements of the Lie algebra. To see that,
consider the example

sl(2,F) = 〈
(

0 1
0 0

)
︸ ︷︷ ︸

=e1

,

(
0 0
1 0

)
︸ ︷︷ ︸

=e2

,

(
1 0
0 −1

)
︸ ︷︷ ︸

=e3

〉

together with [, ] being the commutator of matrices. One easily checks that the
Engel-3 identity is satisfied for all combinations of basis elements. However, for
A = e2 + e3 we have

[A, [A, [A, e3]]] =

(
0 0
8 0

)
.

Thus, it is not enough to verify Engel-3 on the basis elements of the Lie algebra.
To resolve this issue, we linearize the Engel identity:

Proposition 3.2.1 (Full linearization of the Engel identity). Let g be an Engel-n
Lie algebra over a field F such that char(F) = 0 or char(F) prime to n. Let u, v
be arbitrary elements of g and let x1, . . . , xn, y be basis elements of g. Then

[u, [u, . . . [u, [u, v]] . . .]] = 0⇐⇒
∑

σ∈Sym(n)

[xσ(1), [xσ(2), . . . , [xσ(n), y] . . .]] = 0.

Proof. The following proof is due to Traustason as it is presented in his article [38].
However, the result was known for a long time, notice the similarity to Zelmanov’s
Theorem 2.2.7. We begin with ”=⇒”: For this purpose, take n indeterminates
λ1, . . . , λn and expand the Lie bracket P := [(λ1x1 + · · ·+λnxn)n, y]. Then we get

P = a0λ1a1 + λ1λ2a2 + · · ·+ λ1λ2 · · ·λn
∑

σ∈Sym(n)

[xσ(1), [xσ(2), . . . , [xσ(n), y] . . .],

where a0 denotes the sum of all monomials that are not divisible by λ1, λ1a1 is the
sum of all monomials of P − a0 that are not divisible by λ2 and proceed in this
manner for all other ai. By definition, P = 0 for all λ1, . . . , λn. So if we set λ1 = 0,
we obtain a0 = 0. For the values λ1 = 1, λ2 = 0 we get a1 = 0 and continuing this
way gives

∑
σ∈Sym(n)[xσ(1), [xσ(2), . . . , [xσ(n), y] = 0.

For ”⇐=” we set y = x1 = x2 = · · · = xn. Then∑
σ∈Sym(n)

[xσ(1), [xσ(2), . . . , [xσ(n), y] = n! · [x, [x, . . . , [x, y] . . .]].

Since char(F) does not divide n! we conclude [x, [x, . . . , [x, y] . . .]] = 0.
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Summarizing, by the full linearization 3.2.1 and by Corollary 3.1.4, an Engel-3
Lie algebra g satisfies the two equations∑

σ∈Sym(3)

[xσ(1), [xσ(2), [xσ(3), y]]] = 0, (3.10)

[x, [x, [y, z]]] + [x, [y, [x, z]]] + [y, [x, [x, z]]] = 0. (3.11)

Conversely, if g admits the Engel-3 identity, (3.10) and (3.11) for basis elements
x1, x2, x3, x, y, z then g is an Engel-3 Lie algebra, cf. [38].

These considerations motivate us to look at the ideal i of F3,4 that is generated
by all basis elements of F3,4 that satisfy the Engel-3 identity, (3.10) and (3.11). To
this end, we calculate this identities for all elements of F3,4. Looking at the list
of elements, one immediately observes that x15, x16, x25, x27, x31, x32 are contained
in i by the Engel-3 identity and hence vanish in the quotient. For the linearized
Engel identity we begin by setting y = x1 and compute

0 = [x3, [x2, [x1, x1]]] + [x2, [x3, [x1, x1]]] + [x3, [x1, [x2, x1]]]+

[x1, [x3, [x2, x1]]] + [x2, [x1, [x3, x1]]] + [x1, [x2, [x3, x1]]]

= 2 · x17 − 4 · x19.

Similarly, by putting y = x2, we obtain the relation

−4 · x24 + 2 · x26 = 0

and y = x3 implies

2 · x22 + 2 · x28 = 0.

All other choices of y are trivially satisfied.

The computation for (3.11) is more comprehensive, but we show two cases: Set
for example x = x2, y = x3, z = x1. Then equation (3.11) gives

0 = [x2, [x2, [x3, x1]]] + [x2, [x3, [x2, x1]]] + [x3, [x2, [x2, x1]]]

= − x20 + 3 · x24 − 3 · x26.

If we take x = x2, y = x1, z = x1 we get

0 = [x2, [x2, [x1, x1]]] + [x2, [x1, [x2, x1]]] + [x1, [x2, [x2, x1]]]

= − 2 · x18.

Since the computations are performed analogously, we give the list of relations
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obtained by all other choices of x, y, z below.

x15 = 0, x20 + x24 + x26 = 0,

x16 = 0, −2x22 − 3x28 + 3x30 = 0,

x18 = 0, x28 − 3x30 = 0,

x21 = 0, −3x17 + 3x19 − x23 = 0,

x25 = 0, x17 + x19 + x23 = 0,

x27 = 0, x29 = 0,

x31 = 0, x32 = 0.

So in the quotient Lie algebra F3,4/i all the above equations hold true. Therefore,
beside all the elements that get mapped to 0, in F3,4/i we have the relations

x17 = 2 · x19,
x23 = −3 · x19,
x26 = 2 · x24,
x20 = −3 · x24,
x22 = −x28,
x28 = 3 · x30,

induced by the full linearization (3.10) and (3.11). As a consequence, we delete
the respective elements from the list of basis elements. More explicitly, we do not
have to add x17 to our list because it can be expressed by x19. Continuing this
way gives the following basis of F3,4/i:

{x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x19, x24, x30}

Since the Engel-3 identity, its linearization and equation (3.11) are satisfied for all
these basis elements, the Lie algebra F3,4/i is an Engel-3 Lie algebra. Apart from
that, it is of nilpotency class 4 because we have x19, x24 and x30 as witnesses for
the fact that not all Lie words of length four vanish.

However, in order to have a more convenient Lie algebra, we try to reduce its
dimension. To this end, we set x24 = x30 = 0 leaving us with x19 as only witness
for 4-nilpotency. Additionally, we can set x10 = x12 = x13 = x14 = 0 as it has no
impact on the remaining elements. Thus,

{x1, x2, x3, x4, x5, x6, x7, x8, x9, x11, x19}

is a basis of an 11-dimensional Engel-3 Lie algebra of nilpotency class 4, henceforth
denoted by g3,4.
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Remark 3.2.2. Note that if, instead of x19, we would choose x24 as remaining
witness for 4-nilpotency, the Lie algebra loses the Engel-3 property. The program
in Appendix A.2 verifies this. Similarly, the code can be used to show that taking
x30 as only witness, also yields no Engel-3 Lie algebra.

To verify correctness of the above work, we prove the following assertion:

Proposition 3.2.3. The obtained Lie algebra g3,4 is Engel-3 and 4-nilpotent. In
particular, Theorem 3.1.6 gives the best possible upper bound.

Proof. We rename the elements in sequence to obtain {x1, x2, x3, x4, x5, x6, x7, x8, x9,
x10, x11} as basis. Then we have the following table of Lie brackets:

[, ] x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11
x1 0 x4 x5 x7 x8 x9 0 0 2x11 x11 0
x2 −x4 0 x6 0 x10 0 0 −3x11 0 0 0
x3 −x5 −x6 0 x10 − x9 0 0 3x11 0 0 0 0
x4 −x7 0 x9 − x10 0 4x11 0 0 0 0 0 0
x5 −x8 −x10 0 −4x11 0 0 0 0 0 0 0
x6 −x9 0 0 0 0 0 0 0 0 0 0
x7 0 0 −3x11 0 0 0 0 0 0 0 0
x8 0 3x11 0 0 0 0 0 0 0 0 0
x9 −2x11 0 0 0 0 0 0 0 0 0 0
x10 −x11 0 0 0 0 0 0 0 0 0 0
x11 0 0 0 0 0 0 0 0 0 0 0

It is easy to see that the skew-symmetry and the Jacobi identity are satisfied,
hence g3,4 is a Lie algebra. Additionally, one immediately observes that g23,4 =
〈x4, x5, . . . , x11〉. Thus,

g33,4 = [g3,4, g
2
3,4] = 〈x7, x8, . . . , x11〉,

g43,4 = [g3,4, g
3
3,4] = 〈x11〉,

g53,4 = [g3,4, g
4
3,4] = 0.

Consequently, g3,4 is nilpotent of class 4. To prove the Engel-3 property, we cal-
culate the adjoint endomorphisms as demonstrated in Example 1.1.18.
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0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 2 1 0

︸ ︷︷ ︸
ad(x1)

,



0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 −3 0 0 0

︸ ︷︷ ︸
ad(x2)

,



0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 3 0 0 0 0

︸ ︷︷ ︸
ad(x3)

,



0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 0 0
0 0 0 0 4 0 0 0 0 0 0

︸ ︷︷ ︸
ad(x4)

,



0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0 0 0
0 0 0 −4 0 0 0 0 0 0 0

︸ ︷︷ ︸
ad(x5)

,



0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

︸ ︷︷ ︸
ad(x6)

,



0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 −3 0 0 0 0 0 0 0 0

︸ ︷︷ ︸
ad(x7)

,



0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 3 0 0 0 0 0 0 0 0 0

︸ ︷︷ ︸
ad(x8)

,
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0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
−2 0 0 0 0 0 0 0 0 0 0

︸ ︷︷ ︸
ad(x9)

,



0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0 0 0 0

︸ ︷︷ ︸
ad(x10)

,



0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

︸ ︷︷ ︸
ad(x11)

.

Let y be an arbitrary element of g3,4. Then y is a linear combination of the eleven
basis elements, i.e. y = α1x1 + α2x2 + · · ·+ α11x11 and therefore

ad(y) = ad(α1x1 + α2x2 + · · ·+ α11x11) = α1ad(x1) + · · ·+ α11ad(x11).

Now it is easy to compute ad(y)3 = 0, whence we established the Engel-3 identity
for all elements of g3,4. So by constructing an explicit example we proved that
Theorem 3.1.6 indeed gives the best possible bound as stated.

Remark 3.2.4. The Mathematica code in Appendix A.2 automatises the proce-
dure in the proof of 3.2.3 for arbitrary Lie algebras. However, it remains an open
question whether the so obtained Lie algebra is of minimal dimension.

As a last step, we compute a basis of the derivation algebra der(g3,4). Recall
that a derivation D of g3,4 is a linear map g3,4 −→ g3,4 satisfying

D([x, y]) = [D(x), y] + [x,D(y)]

for all x, y ∈ g3,4. Equivalently, we have the condition

ad(D(x)) + ad(x).D −D.ad(x) = 0. (3.12)

Let D be an arbitrary derivation, i.e. an 11×11 matrix in 121 indeterminates di,j.
Then for each basis element xi, relation (3.12) gives an equation, hence, we end
up with a linear system that can be solved. The code in Appendix A.5 performs
this task and returns the following general derivation:
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where we abbreviated

T1 = d8,8 + 2d9,9 − 2d11,11,

T2 = −d8,8 − d9,9 + 2d11,11,

T3 = d8,8 + d9,9 − d11,11,
T4 = −d8,8 − 2d9,9 + 3d11,11,

T5 = −3d8,1 − 2d9,2 + d11,4,

T6 = 3d7,1 − 2d9,3 + d11,5,

T7 = −3d7,2 − 3d8,3,

T8 = −5d5,1 + 2d9,4,

T9 = −3d6,3 + 5d9,5,

T10 = d10,6 + 2d9,6,

T11 = −3d10,6 + d9,6.

There are twenty-seven distinct indeterminate entries in our derivation. Pick
one of them at a time and set it equal to 1 and let the remaining entries vanish in
D. For instance, if we set d9,9 = 1 and di,j = 0 for all other possible i, j, we get

D1 =



−1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 2 0 0 0 0 0
0 0 0 0 0 0 −2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0


or for only d8,1 = 1 we end up with

D2 =



0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 −3 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0


.
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Notice that D1 and D2 are linearly independent. Indeed, for scalars c1, c2 we have

c1 ·D1 + c2 ·D2 = 0⇐⇒ c1 = c2 = 0.

If we continue this process, we obtain twenty-seven matricesD1, . . . , D27. These are
all linearly independent as is verified in the code in A.5. Thus, {D1, D2, . . . , D27}
forms a basis of der(g3,4).

3.3 A counter-example for characteristic 2

The nilpotency theorem for Engel-3 Lie algebras 3.1.6 requires char(F) 6= 2, 5. In
this paragraph we provide an example of an Engel-3 Lie algebra over a field of
characteristic 2 that is not nilpotent. To this end, we follow Traustason’s con-
struction in [38]. On the other hand, for an Engel-3 Lie algebra over a field of
characteristic 5, Traustason shows that for every x in the Lie algebra we have

〈x〉3 = 0,

where 〈x〉 denotes the ideal generated by x. In fact, Traustason proves that the
above assertion holds for every Engel-3 Lie algebra g with char(F) 6= 2, 3. Under
the assumption that g is generated by r elements he further concludes that g is of
nilpotency class ≤ 2r. For more details to this case see [38].

Regarding the construction of the counter-example in characteristic 2, we recall
from Section 3.2 that it suffices to verify

[x, [x, [x, y]]] = 0, (3.13)

[x, [x, [y, z]]] + [x, [y, [x, z]]] + [y, [x, [x, z]]] = 0, (3.14)∑
σ∈Sym(3)

[xσ(1), [xσ(2), [xσ(3), y]]] = 0. (3.15)

for all basis elements x, y, z, x1, x2, x3 for the purpose of showing that a Lie algebra
is Engel-3. First, we define basis elements ΣA,ΛA,ΩA for every non-empty subset
A ⊆ N and add another basis element denoted by x. Then we let g be the F-vector
field with the above basis. Second, we define a Lie product as follows: For all basis
elements a, b we set [a, b] = [b, a] and [a, a] = 0. In addition to that, we define
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[ΣA, x] = [ΛA, x] = 0,

[ΩA, x] = ΣA,

[ΣA,ΣB] = [ΛA,ΛB] = [ΩA,ΩB] = 0,

[ΣA,ΛB] =

{
ΣA∪B if A ∩B = ∅
0 otherwise,

[ΣA,ΩB] =

{
ΛA∪B if A ∩B = ∅
0 otherwise,

[ΛA,ΩB] =

{
ΩA∪B if A ∩B = ∅
0 otherwise

and extend this Lie product linearly to all of g.

Proposition 3.3.1. The algebra g as defined above is an Engel-3 Lie algebra. In
particular, the ideal 〈x〉 is not nilpotent.

Proof. One immediatley observes that for all y, z ∈ g we have

yz = zy = −zy

due to char(F) = 2. It is sufficient to check the Jacobi identity and the Engel
identities (3.13), (3.14), (3.15) only for products of basis elements with pairwise
disjoint integer subsets since, by definition, if A ∩ B 6= ∅ for two basis elements
then their product is zero. Moreover, it is enough to check the relations for every
possible combination of the four different types of basis elements. For instance,

[ΣA, [ΛB,ΩC ]] + [ΛB, [ΩC ,ΣA]] + [ΩC , [ΣA,ΛB]] =

=[ΣA,ΩB∪C ] + [ΛB,ΛA∪C ] + [ΩC ,ΣA∪B] = 0

verifies the Jacobi identity for one combination of basis elements. We demonstrate
another case for the linearized Engel identity:

[x, [ΣA, [ΩB,ΩC ]]] + [x, [ΩB, [ΣA,ΩC ]]]+

[ΣA, [x, [ΩB,ΩC ]]] + [ΣA, [ΩB, [x,ΩC ]]]+

[ΩB, [ΣA, [x,ΩC ]]] + [ΩB, [x, [ΣB,ΩC ]]] = 2 · ΣA∪B∪C = 0.

All other cases are shown analogously. As a consequence, g is an Engel-3 Lie
algebra. However, consider

[Ω{1}, [Ω{2}, [x, [Ω{3}, [Ω{4}, [x, [. . . [Ω{2n}, [x,Ω{2n+1}]] . . .] = Ω{1,2,...,2n+1}.

The basis element x appears n times in the above nonzero Lie product. As a result,
〈x〉n 6= 0 for all n ∈ N which implies that 〈x〉 is not nilpotent. Furthermore, g is
not nilpotent.
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Chapter 4

Perspectives

As a conclusion to the thesis, we provide some information on further topics and
ongoing research. On the one hand, we present some results regarding Engel-4
and Engel-5 Lie algebras and on the other hand, we mention a number of articles
concerning related questions such as the problem of classifying the class of finite
solvable groups in terms of so-called Engel-like identities.

4.1 Engel-4 and Engel-5 Lie algebras

We give some results on nilpotency classes of Engel-4 and Engel-5 Lie algebras.
To this end, we make use of the following auxiliary fact:

Theorem 4.1.1 (Higgins, [28]). Let g be an Engel-n Lie ring with characteristic
prime to n!. If g(s) = 0 then gt = 0, where t = ns−1

n−1 + 1.

So if we can elaborate the solvable class of an Engel Lie algebra, Theorem 4.1.1
allows us to deduce an upper bound for the nilpotency class. Higgins uses this fact
in his proof of the following theorem regarding Engel-4 Lie algebras.

Theorem 4.1.2 (Higgins). Let g be an Engel-4 Lie algebra over a field F such
that char(F) 6= 2, 3, 5. Then g is nilpotent.

Proof. We provide a sketch of the proof as in [38] and show how 4.1.1 is utilized.
For details it is referred to [28]. As above, we let capital letters denote adjoint
endomorphisms, i.e. X = ad(x) for x ∈ g. Further, we denote [X, Y ] = XY −
Y X the Lie product in ad(g). Using Lemma 3.1.4, Higgins derives the following
relations:

X3Y 3 = −Y 3X3 = 13V, 2X2Y 2XY = −2Y 2X2Y X = −25V,

X2Y 3X = −Y 2X3Y = −V, XY XY XY = −Y XY XYX = −3V,

XY 3X2 = −Y X3Y 2 = 7V, 2XY 2XYX = −2Y X2Y XY = −5V,

2X2Y XY 2 = −2Y 2XYX2 = V, 2XY 2X2Y = −2Y X2Y 2X = 17V,

2XYX2Y 2 = −2Y XY 2X2 = −13V, 2XYXY 2X = −2Y XY X2Y = −7V,

49



4.1. ENGEL-4 AND ENGEL-5 LIE ALGEBRAS

where V = −X2Y 3X. Consider the subspace generated by all cubes of adjoint
endomorphisms

i = 〈T 3〉.

With the help of the above equations it is easy to calculate

[X, Y ]3 = (XY − Y X)3 = −21V

and since 21 is coprime to char(F) it follows that V ∈ i. Moreover, 13V = X3Y 3 =
−Y 3X3 and therefore, X3Y 3 ∈ i implying that X3Y 3 is a cube. For cubes we have
anti-commutativity and thus,

X3Y 3Z3 = (X3Y 3)Z3 = −Z3(X3Y 3) = X3Z3Y 3 = −X3Y 3Z3.

Consequently, X3Y 3Z3 = 0. As in the proof of the nilpotency theorem of Engel-
3 Lie algebras 3.1.6, the quotient Lie algebra g/i is an Engel-3 Lie algebra of
nilpotency class at most 4 and hence solvable of class at most 3. Therefore,

X3Y 3Z3 = 0 =⇒ g(3)Y 3Z3 = 0 =⇒ g(6)Z3 = 0 =⇒ g(9) = 0.

By 4.1.1, g is nilpotent of class at most 87382.

Remark 4.1.3. In [38] Traustason shows that an upper bound for the nilpotency
class is 7. So one encounters the analogue problem for Engel-4 Lie algebras:

Question 4.1.4. Is there an Engel-4 Lie algebra that attains nilpotency class 7?

For the purpose of proving this upper bound one could try to construct an
example in the same manner as we demonstrated in the case of Engel-3 Lie alge-
bras. As in Section 3.2, the linearization of the Engel identity 3.2.1 and Corollary
3.1.4 can be used to generate an ideal such that the quotient Lie algebra satisfies
the Engel-4 identity. However, our procedure requires to explicitly elaborate the
free-nilpotent Lie algebra. It is easy to see that this is impossible with only two
generators. So, assuming that this is possible using three generators, that means
one has to calculate F3,7. By Witt’s formula 1.3.6, we know that dim(F3,7) = 508.
If four generators are needed, the code in Appendix A.6 gives dim(F4,7) = 3304.
Thus, one still could try to follow the construction in Section 3.2, but it is of course
very complex and probably only feasible using computers.

Remark 4.1.5. Recently, Dietrich Burde from the University of Vienna and su-
pervisor of this thesis together with Willem A. de Graaf from the University of
Trento found that the largest 4-generator Engel-4 Lie algebra has dimension 484
and is of nilpotency class 7, thus answering Question 4.1.4 affirmatively.

50



CHAPTER 4. PERSPECTIVES

Remark 4.1.6. Traustason’s proof of the upper bound is very complex as one
has to show that every product of 8 elements vanishes and hence, one has to work
in 8-generator Engel-4 Lie algebras. Therefore, Traustason introduces the notions
of superalgebras and colour algebras that can be used to reduce the number of
generators to 4 and so ease computations. Below, we give the idea of Traustason’s
reduction and refer to [38] for more information.

Let {x1, x2, . . . , xm} be a basis of a Lie algebra g. A Lie product is assigned a
multiweight Ω = (ω1, ω2, . . . , ωm) if there are ωi occurences of xi in the product.
Now let g be the free Engel-4 Lie algebra generated by x1, x2, . . . , x8 over a field F.
Denote by A the subspace generated by all Lie products of multiweight (1, 1, . . . , 1)
in the generators. We define an action on A by the symmetric group Sym(8). Take
a Lie product p(x1, x2, . . . , x8) and a permutation π ∈ Sym(8). Then set

πp(x1, x2, . . . , x8) := p(xπ(1), xπ(2), . . . , xπ(8)).

For instance,

(1346)[x1, [x2, [x3, [x4, [x5, [x6, [x7, x8]]]]]]] = [x3, [x2, [x4, [x6, [x5, [x1, [x7, x8]]]]]]].

So A is a Sym(8)-module over the field F.

Definition 4.1.7. An element α ∈ FSym(8) is called symmetrized if there exist
σ, τ ∈ Sym(8) such that

α = σ(id + (12) + (13) + (23) + (123) + (132))σ−1τ.

α is called skew-symmetrized if there are σ, τ such that

α = σ(id− (12)− (13)− (23) + (123) + (132))σ−1τ.

Further, a in A is called (skew-)symmetrized if a = αp for a (skew-)symmetrized
element α ∈ FSym(8) and a Lie product p of x1, x2, . . . , x8.

Example 4.1.8. Let σ = (14)(25), τ = (135) and let α = σ(id + (12) + (13) +
(23) + (123) + (132))σ−1τ . Then we have

τ [x1, [x2, [x3, [x4, [x5, [x6, [x7, x8]]]]]]] = [x3, [x2, [x5, [x4, [x1, [x6, [x7, x8]]]]]]].

Moreover, σ(id + (12) + (13) + (23) + (123) + (132))σ−1 = (id + (45) + (43) + (53) +
(453) + (435)). This is easy to see as for example

σ(12)σ−1 = (14)(25)(12)(41)(52) = (14)(25)(4251) = (54).

So we obtain

α[x1, [x2, [x3, [x4, [x5, [x6, [x7, x8]]]]]]] =
∑

π∈Sym({3,4,5})

[xπ(3), [x2, [xπ(5), [xπ(4), [

x1, [x6, [x7, x8]]]]]]]
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Traustason suggests to think of symmetrized and skew-symmetrized elements
of A as follows: Given an arbitrary Lie product of x1, x2, . . . , x8 in some order, take
any three elements in it and form all possible permutations of them. So we end up
with six products. Adding this products up, we obtain a symmetrized element and
if we form the alternating sum, we get a skew-symmetrized element. Recall that
we have to show that every product of 8 elements vanishes in order to prove that
an Engel-4 Lie algebra is of nilpotency class at most 7. The key to Traustason’s
reduction is the fact that the term 720 · [x1, [x2, [x3, [x4, [x5, [x6, [x7, x8]]]]]]] can
be expressed as a sum of symmetrized and skew-symmetrized products. Since
720 = 24 · 32 · 5 it is enough to prove that for a field of characteristic different
from 2, 3 and 5 all symmetrized and skew-symmetrized products vanish. In [38]
Traustason proves this facts in detail and utilizes them to prove the nilpotency
theorem for Engel-4 Lie algebras.

As in the case of Engel-3 Lie algebras, we can find counter examples if we change
the characteristic of the field. Clearly, every Engel-3 Lie algebra is also an Engel-4
Lie algebra. Thus, the counter example given in Section 3.3 for characteristic 2 also
illustrates an instance of a non-nilpotent Engel-4 Lie algebra. Further, Traustason
shows the following results:

Theorem 4.1.9 (Traustason, [38]). Let g be an Engel-4 Lie algebra over a field
of characteristic different from 2 or 5. Then for all x ∈ g we have

〈x〉4 = 0.

Remark 4.1.10. So by Theorem 4.1.9 every ideal generated by one element is of
nilpotency class at most 3 provided that the field is of characteristic different from
2 or 5. By a result in the article [26], for all x in an Engel-4 Lie algebra the ideal
〈x〉 is nilpotent of class at most 7 if the characteristic is equal to 5.

In the case of Engel-5 Lie algebras calculations get very complex and various
reduction steps need to be performed in order to ease computations. However,
Trausaston proves the following results in the article [35].

Theorem 4.1.11 (Traustason). Let g be an r-generator Engel-5 Lie algebra over
a field F such that char(F) 6= 2, 3, 5, 7. Then g is nilpotent of class at most 59r. If
the field is of characteristic 7 then g is of class at most 80r.

Corollary 4.1.12 (Traustason). Let g be an Engel-5 Lie algebra over a field F
such that char(F) = 0 or char(F) > 195113. Then g has nilpotency class at most
975563.

The essence of the statement in Corollary 4.1.12 is that the nilpotency class
can be elaborated independently of the number of generators.
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4.2 Further literature

We provide a number of articles that address related topics.

First, we mention Moravec’s and Traustason’s articles [33], [36] regarding pow-
erful Engel-2 groups. Recall that a finite p-group G is said to be powerful if the
subgroup Gp = 〈gp : g ∈ G〉 contains the commutator subgroup [G,G] for odd p.
The starting point of this paper is Zorn’s theorem:

Theorem 4.2.1 (Zorn, [46]). A finite group is nilpotent if and only if there is an
integer n such that en(x, y) = 1.

Recall from Section 2.3 that the equation en(x, y) = 1 is the Engel-n identity
defined inductively as e0(x, y) = x and en+1(x, y) = [en(x, y), y] for group elements
x, y. Note that here, the bracket [, ] denotes the commutator of group elements.
This result gives a characterization of finite nilpotent groups. However, for n ≥ 3,
the nilpotency class is not bounded in terms of the integer n. In [1] it is shown
that for a powerful group we indeed have that the nilpotency class is n-bounded.
Moravec and Traustason investigate this topic and show that every powerful Engel-
2 group generated by three elements is of nilpotency class at most 2.

Next, we cite Crosby’s and Traustason’s papers [17] and [18] regarding right
Engel-n subgroups. An element g ∈ G is called right Engel-n if

[x, [x, . . . , [x︸ ︷︷ ︸
n−times

, g] . . .]] = 1

for all x ∈ G. The group G is called right Engel-n if every element g ∈ G is right
Engel-n. A subgroup H ≤ G is a right Engel-n subgroup of G if all h ∈ H are
right Engel-n elements of G. The authors provide a boundedness condition for a
number of specific types of right Engel-n groups.

Another related problem of recent success is the characterization of finite solv-
able groups by Engel-like identities. Again, Zorn’s theorem constitutes the starting
point of the topic. The goal was to replace nilpotency by solvability in Theorem
4.2.1 and to find a similar, ”Engel-like”, identity that characterizes this property.
After the series of papers [8], [10], Bandman, Greuel, Grunewald, Kunyavskĭi, Pfis-
ter and Plotkin succeeded in doing so and proved the following result in their 2006
article [9]:

Theorem 4.2.2 (Bandman, Greuel, Grunewald, et al). A finite group G is solvable
if and only if for some n the identity un(x, y) = 1 holds in G. Here, u1(x, y) :=
x−2y−1x and inductively, un+1 := [xun(x, y)x−1, yun(x, y)y−1].
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Appendix A

Codes

We present several Mathematica codes that automatise calculations and proce-
dures that were used in the construction of an Engel-3 Lie algebra of nilpotency
class 4. In code A.1 we define a Lie bracket that is applied in A.2, A.3 and A.4.
The input is given in form of Lie brackets, only program A.5 processes the adjoint
endomorphisms. However, as shown in Chapter 1, it is easy to convert one into the
other. The exemplary input displayed represents the 11-dimensional Lie algebra
g3,4 constructed in Section 3.2. In A.6 Witt’s formula 1.3.6 is programmed.

A.1 Definition of the Lie product

The below code defines a Lie bracket, that is, a function which is bilinear and
skew-symmetric. We do not include the Jacobi identity in the definition.

In[1]:=

LB[0,U_] := 0;

LB[U_Plus,V_] := Block[{LB},Distribute[LB[U_,V_]]];
LB[U_,V_Plus] := Block[{LB},Distribute[LB[U_,V_]]];

LB[r_?NumericQ*U_,V_] := r*LB[U,V];

LB[V_,r_?NumericQ*U_] := r*LB[V,U];

LB[U_,U_] = 0;

LB[U_,V_] /; Sort[{U,V}] = ! = {U, V} :=

-LB[Apply[Sequence, Sort[{U,V}]]];

A.2 Verification of an Engel-3 Lie algebra

This program verifies whether a given input defines an Engel-3 Lie algebra. To
this end, it is checked if the Jacobian of any three elements yields 0. To validate
the Engel-3 property, the procedure from the proof of Claim 3.2.3 is implemented.
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Notice that the code allows to vary the number of input Lie brackets and can
easily be extended to the case of Engel-n Lie algebras for other small values of n.
However, for large n the code has a long computational time.

In[1]:=

(* Input: in this example, the Lie brackets of the

basis of g3,4 are entered *)

n = 11;

LB[x1, x2] = x4;

LB[x1, x3] = x5;

LB[x1, x4] = x7;

LB[x1, x5] = x8;

LB[x1, x6] = x9;

LB[x1, x7] = 0;

LB[x1, x8] = 0;

LB[x1, x9] = 2*x11;

LB[x1, x10] = x11;

LB[x1, x11] = 0;

LB[x2, x3] = x6;

LB[x2, x4] = 0;

LB[x2, x5] = x10;

LB[x2, x6] = 0;

LB[x2, x7] = 0;

LB[x2, x8] = -3*x11;

LB[x2, x9] = 0;

LB[x2, x10] = 0;

LB[x2, x11] = 0;

LB[x3, x4] = -x9 + x10;

LB[x3, x5] = 0;

LB[x3, x6] = 0;

LB[x3, x7] = 3*x11;

LB[x3, x8] = 0;

LB[x3, x9] = 0;

LB[x3, x10] = 0;

LB[x3, x11] = 0;
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In[1]:=

LB[x4, x5] = 4*x11;

LB[x4, x6] = 0;

LB[x4, x7] = 0;

LB[x4, x8] = 0;

LB[x4, x9] = 0;

LB[x4, x10] = 0;

LB[x4, x11] = 0;

In[2]:=

(* Set remaining brackets equal to 0 *)

For[j=5, j≤≤≤n, j++,

For[k=j+1, k≤≤≤n, k++,

LB[xj, xk] = 0;

]

]

For[j=1, j≤≤≤n, j++,

For[k=12, k≤≤≤n, k++,

LB[xj, xk] = 0;

]

]

(* Check Jacobi *)

For[i=1, i≤≤≤n-2, i++,

For[j=i+1, j≤≤≤n-1, j++,

For[k=j+1, k≤≤≤n, k++,

If[PossibleZeroQ[

LB[xi,LB[xj,xk]]+LB[xj,LB[xk,xi]]+LB[xk,LB[xi,xj]]],,

Print[

LB[xi,LB[xj,xk]]+LB[xj, LB[xk,xi]]+LB[xk,LB[xi,xj]]];

Print["Input gives no Lie algebra."];

]

]

]

]

In[3]:=

(* Table of Lie brackets *)

Table[LB[xk,xi], {k,1,n}, {i,1,n}] // MatrixForm
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In[4]:=

(* Check if the given input satisfies the Engel-3

identity. Here, subs[] is an auxiliary function

that returns the index of a variable. *)

subs[x_]:=Flatten[Cases[#, (Subscript)[_, y_] :→:→:→
y, {0, Infinity}] & /@ {x}];

For[o=1, o≤≤≤n, o++, veco=Table[0, n];]

adz=0;

For[i=1, i≤≤≤n, i++,

adxi= {};
For[j=1, j≤≤≤n, j++,

If[PossibleZeroQ[LB[xi,xj]], ,

If[Part[subs[LB[xi,xj]],1]6=6=6=0,

vecj=ReplacePart[vecj,Part[subs[LB[xi,xj]],1]

→→→Coefficient[LB[xi, xj],xPart[subs[LB[xi,xj]], 1]]];

]

If[Length[subs[LB[xi, xj]]]≥≥≥2 &&

Part[subs[LB[xi,xj]],2]6=6=6=0,

vecj=ReplacePart[vecj,Part[subs[LB[xi,xj]], 2]

→→→Coefficient[LB[xi,xj],xPart[subs[LB[xi,xj]],2]]];

]

If[Length[subs[LB[xi, xj]]] ≥≥≥ 3 &&

Part[subs[LB[xi,xj]], 3]6=6=6=0,

vecj=ReplacePart[vecj,Part[subs[LB[xi,xj]], 3]

→→→Coefficient[LB[xi,xj],xPart[subs[LB[xi,xj]],3]]];

]

]

AppendTo[adxi,vecj];

];

adz = adz + li*Transpose[adxi];

For[o=1, o≤≤≤n, o++, veco=Table[0,{n}];]
]

(* Output ad(z)^3 for an arbitrary element in the

given Lie algebra. *)

adz.adz.adz // MatrixForm

The output of the above code gives the multiplication table of the input Lie
algebra, that is:
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Out[1]=



0 x4 x5 x7 x8 x9 0 0 2x11 x11 0

-x4 0 x6 0 x10 0 0 -3x11 0 0 0

-x5 -x6 0 -x9+x10 0 0 3x11 0 0 0 0

-x7 0 x9-x10 0 4x11 0 0 0 0 0 0

-x8 -x10 0 -4x11 0 0 0 0 0 0 0

-x9 0 0 0 0 0 0 0 0 0 0

0 0 -3x11 0 0 0 0 0 0 0 0

0 3x11 0 0 0 0 0 0 0 0 0

-2x11 0 0 0 0 0 0 0 0 0 0

-x11 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0



and on the other hand, it computes the result of ad(z)3:

Out[2]=



0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0


Therefore, the exemplary input Lie brackets of g3,4 indeed yield an Engel-3 Lie

algebra.

A.3 Computation of the linearized Engel iden-

tity

We briefly recall the linearized Engel-3 identity:∑
σ∈Sym(3)

[xσ(1), [xσ(2), [xσ(3), y]]] = 0.

The following program takes the task to calculate this formula. Again, it is of no
issue to extend the method for other values of n, however, for a large input the
computation time gets very long.
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In[1]:=

(* Compute the linearized Engel-3 identity *)

LinEngel[y_] := (

res=0;

For[i=1, i≤≤≤Length[Permutations[{1, 2, 3}]], i++,

res = res + LB[xPermutations[{1,2,3}][[i]][[1]],

LB[xPermutations[{1, 2, 3}][[i]][[2]],

LB[xPermutations[{1, 2, 3}][[i]][[3]],y]]];

Print[LB[xPermutations[{1, 2, 3}][[i]][[1]],

LB[xPermutations[{1,2,3}][[i]][[2]],

LB[xPermutations[{1, 2, 3}][[i]][[3]],y]]]]

];

Print["Linear Engel for ",y," is ",res];

)

A.4 Computation of the mixed Engel identity

By the mixed Engel identity we denote the relation obtained by Corollary 3.1.4.
Recall that for the case of n = 3 this means:

[x, [x, [y, z]]] + [x, [y, [x, z]]] + [y, [x, [x, z]]] = 0.

The following short code computes this equation.

In[1]:=

(* Compute the "Mixed" Engel-3 identity *)

MixEngel[y_]:=(

For[i=1, i≤≤≤n, i++,

For[j=1, j≤≤≤n, j++,

If[PossibleZeroQ[LB[xj,LB[xj,LB[xi, y]]]+

LB[xj,LB[xi,LB[xj,y]]]+LB[xi,LB[xj,LB[xj, y]]]], ,

Print["Not satisfied for",y,xi,xj];

]

];

];)
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A.5 Calculation of a basis of the derivation alge-

bra

In contrast to the other codes, here the input is given in form of the adjoint
endomorphisms. Therefore, another way of defining a Lie bracket is presented.
Next, a general derivation of the input Lie algebra is generated which can be used
to obtain a basis of the derivation algebra as explained in Section 3.2. A code that
verfies linear independency of matrices is added.

In[1]:=

(* We define unit vectors, a derivation in 121

indeterminates and set up the input *)

e1 = {1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
e2 = {0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0};
e3 = {0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0};
e4 = {0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0};
e5 = {0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0};
e6 = {0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0};
e7 = {0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0};
e8 = {0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0};
e9 = {0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0};
e10 = {0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0};
e11 = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1};

In[2]:= D =



d1,1 d1,2 d1,3 d1,4 d1,5 d1,6 d1,7 d1,8 d1,9 d1,10 d1,11
d2,1 d2,2 d2,3 d2,4 d2,5 d2,6 d2,7 d2,8 d2,9 d2,10 d2,11
d3,1 d3,2 d3,3 d3,4 d3,5 d3,6 d3,7 d3,8 d3,9 d3,10 d1,11
d4,1 d4,2 d4,3 d4,4 d4,5 d4,6 d4,7 d4,8 d4,9 d4,10 d4,11
d5,1 d5,2 d5,3 d5,4 d5,5 d5,6 d5,7 d5,8 d5,9 d5,10 d5,11
d6,1 d6,2 d6,3 d6,4 d6,5 d6,6 d6,7 d6,8 d6,9 d6,10 d6,11
d7,1 d7,2 d7,3 d7,4 d7,5 d7,6 d7,7 d7,8 d7,9 d7,10 d7,11
d8,1 d8,2 d8,3 d8,4 d8,5 d8,6 d8,7 d8,8 d8,9 d8,10 d8,11
d9,1 d9,2 d9,3 d9,4 d9,5 d9,6 d9,7 d9,8 d9,9 d9,10 d9,11
d10,1 d10,2 d10,3 d10,4 d10,5 d10,6 d10,7 d10,8 d1,9 d10,10 d10,11
d11,1 d11,2 d11,3 d11,4 d11,5 d11,6 d11,7 d11,8 d11,9 d11,10 d11,11


;
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In[3]:=

adx1 =



0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 2 1 0


;

adx2 =



-adx1[[1,2]] 0 0 0 0 0 0 0 0 0 0

-adx1[[2,2]] 0 0 0 0 0 0 0 0 0 0

-adx1[[3,2]] 0 0 0 0 0 0 0 0 0 0

-adx1[[4,2]] 0 0 0 0 0 0 0 0 0 0

-adx1[[5,2]] 0 0 0 0 0 0 0 0 0 0

-adx1[[6,2]] 0 1 0 0 0 0 0 0 0 0

-adx1[[7,2]] 0 0 0 0 0 0 0 0 0 0

-adx1[[8,2]] 0 0 0 0 0 0 0 0 0 0

-adx1[[9,2]] 0 0 0 0 0 0 0 0 0 0

-adx1[[10,2]] 0 0 0 1 0 0 0 0 0 0

-adx1[[11,2]] 0 0 0 0 0 0 -3 0 0 0


;

adx3 =



-adx1[[1,3]] -adx2[[1,3]] 0 0 0 0 0 0 0 0 0

-adx1[[2,3]] -adx2[[2,3]] 0 0 0 0 0 0 0 0 0

-adx1[[3,3]] -adx2[[3,3]] 0 0 0 0 0 0 0 0 0

-adx1[[4,3]] -adx2[[4,3]] 0 0 0 0 0 0 0 0 0

-adx1[[5,3]] -adx2[[5,3]] 0 0 0 0 0 0 0 0 0

-adx1[[6,3]] -adx2[[6,3]] 0 0 0 0 0 0 0 0 0

-adx1[[7,3]] -adx2[[7,3]] 0 0 0 0 0 0 0 0 0

-adx1[[8,3]] -adx2[[8,3]] 0 0 0 0 0 0 0 0 0

-adx1[[9,3]] -adx2[[9,3]] 0 -1 0 0 0 0 0 0 0

-adx1[[10,3]] -adx2[[10,3]] 0 1 0 0 0 0 0 0 0

-adx1[[11,3]] -adx2[[11,3]] 0 0 0 0 3 0 0 0 0


;

adx4 =



-adx1[[1,4]] -adx2[[1,4]] -adx3[[1,4]] 0 0 0 0 0 0 0 0

-adx1[[2,4]] -adx2[[2,4]] -adx3[[2,4]] 0 0 0 0 0 0 0 0

-adx1[[3,4]] -adx2[[3,4]] -adx3[[3,4]] 0 0 0 0 0 0 0 0

-adx1[[4,4]] -adx2[[4,4]] -adx3[[4,4]] 0 0 0 0 0 0 0 0

-adx1[[5,4]] -adx2[[5,4]] -adx3[[5,4]] 0 0 0 0 0 0 0 0

-adx1[[6,4]] -adx2[[6,4]] -adx3[[6,4]] 0 0 0 0 0 0 0 0

-adx1[[7,4]] -adx2[[7,4]] -adx3[[7,4]] 0 0 0 0 0 0 0 0

-adx1[[8,4]] -adx2[[8,4]] -adx3[[8,4]] 0 0 0 0 0 0 0 0

-adx1[[9,4]] -adx2[[9,4]] -adx3[[9,4]] 0 0 0 0 0 0 0 0

-adx1[[10,4]] -adx2[[10,4]] -adx3[[10,4]] 0 0 0 0 0 0 0 0

-adx1[[11,4]] -adx2[[11,4]] -adx3[[11,4]] 0 4 0 0 0 0 0 0


;

[...]
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In[4]:=

(* Define a Lie bracket with regard to the

ad-matrices *)

LB[{a1_,a2_,a3_,a4_,a5_,a6_,a7_,a8_,a9_,a10_,a11_},
{b1_,b2_,b3_,b4_,b5_,b6_,b7_,b8_,b9_,b10_,b11_}]:=
a1 adx1.{b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11}+
aa2 adx2.{b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11}+
a3 adx3.{b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11}+
a4 adx4.{b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11}+
a5 adx5.{b1,b2,b3,b4,bb5,b6,b7,b8, b9, b10, b11}+
a6 adx6.{b1,b2,bb3,b4,b5,b6,b7,b8,b9,b10,b11}+
a7 adx7.{b1,bb2,b3,b4,b5,b6,b7,b8,b9,b10,b11}+
a8 adx8.{b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11}+
a9 adx9.{b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11} +

a10 adx10.{b1,b2,b3,b4,b5,b6,b7,b8,b9,b10, b11}+
a11 adx11.{b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11}

Do[

Print[Simplify[Derivation.LB[y,z]]-

LB[Derivation.y,z]-LB[y,Derivation.z]];,

{y, {e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11}},
{z, {e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11}}

]

The Do-loop in the programm returns 121 vectors of length 11. Each of these
vectors has to be equal to 0. For instance, we get the equation

d1,4
d2,4
d3,4

−d1,1 − d2,2 − d4,4
−d3,1 + d6,4
−d4,2 + d7,4
−d5,2 + d8,4
−d6,2 + d9,4
d5,1 + d10,4

−3 · d8,1 − 2 · d9,2 + d10,4 + d11,4


=



0
0
0
0
0
0
0
0
0
0


from which we can derive d1,4 = d2,4 = d3,4 = 0 or d3,1 = d6,4 and so on. By
regarding all the relations resulting in this way, a general derivation in the input
Lie algebra is returned, as displayed in 3.2.

To prove linear independency of a set of matrices one can use the below code.

62



APPENDIX A. CODES

In[1]:=

(* Check linear independence of a given set

of matrices *)

sc = Table[ck, {k, 1, Length[matSet]}];

Solve[

Length[matSet]∑
j=1

cj*matSet[[j]]==Table[0,{11},{11}],sc]

In the case of g3,4 and the set of matrices that span der(g3,4) the code returns:

Out[1]=

{c1 → 0, c2 → 0, c3 → 0, c4 → 0, c5 → 0,

c6 → 0, c7 → 0, c8 → 0, c9 → 0, c10 → 0,

c11 → 0, c12 → 0, c13 → 0, c14 → 0, c15 → 0,

c16 → 0, c17 → 0, c18 → 0, c19 → 0, c20 → 0,

c21 → 0, c22 → 0, c23 → 0, c24 → 0, c25 → 0,

c26 → 0, c27 → 0}

Thus, the 27 derivations we derived earlier are indeed linearly independent and
thus form a basis of the derivation algebra.

A.6 Dimension of free-nilpotent Lie algebras

We present a code that realizes Witt’s formula 1.3.6.

In[1]:=

(* Create a 10x10 table of the dimensions of the

free-nilpotent Lie algebras *)

Table[Sum[(1/m)*DivisorSum[m,MoebiusMu[#] nm/# &],{m,1,c}],
{c,1,10},{n,1,10}] // MatrixForm
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As output we obtain the table:

1 2 3 4 5 6 7 8 9 10
1 3 6 10 15 21 28 36 45 55
1 5 14 30 55 91 140 204 285 385
1 8 32 90 205 406 728 1212 1905 2860
1 14 80 294 829 1960 4088 7764 13713 22858
1 23 196 964 3409 9695 23632 51360 102153 189343
1 41 508 3304 14569 49685 141280 350952 785433 1617913
1 71 1318 11464 63319 259475 861580 2447592 6165453 14116663
1 127 3502 40584 280319 1379195 5345276 17360616 49212093 125227663
1 226 9382 145338 1256567 7425032 33591116 124731516 397884621 1125217654


So, for example, F3,7 has already 508 basis elements and the dimensions grow very
fast in both respects, the number of generators and the nilpotency class.
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