Homepage of Christian Schmeiser

Home Research Publications
Teaching Weekly schedule Travel

Preprints

P1. A. Manhart, C. Schmeiser, A kinetic transport model for actin-myosin interaction.
 
P2. C. Schmeiser, C. Winkler, A finite element method for cell membranes with tethered obstacles.
 
P3. A. Arnold, C. Schmeiser, Relative entropies and hypocoercivity revisited.
 
P4. E. Bouin, J. Dolbeault, S. Mischler, C. Mouhot, C. Schmeiser, Hypocoercivity without confinement.

Publications

(Rn: in refereed journals, Cn: in conference proceedings, Bn: book(chapter)s, On: others)

R136. S. Hittmeir, H. Ranetbauer, C. Schmeiser, M.-T. Wolfram Derivation and analysis of continuum models for crossing pedestrian traffic, Math. Models Methods Appl. Sci. 27 (2017), pp. 1301-1325.
 
R135. P. Aceves-Sanchez, C. Schmeiser, Fractional diffusion limit of a linear kinetic equation in a bounded domain, Kinetic and Related Models 10 (2017), pp. 541-551.
 
B134. A. Manhart, D. Oelz, C. Schmeiser, N. Sfakianakis, Numerical treatment of the Filament Based Lamellipodium Model, arXiv:1505.04266, in Modeling Cellular Systems, eds. F. Graw, F. Matthäus, and J. Pahle, Springer, 2017.
 
R133. A. Nouri, C. Schmeiser, Aggregated steady states of a kinetic model for chemotaxis, Kinetic and Related Models 10 (2017), pp. 313-327.
 
R132. A. Manhart, C. Schmeiser, Existence of and decay to equilibrium of the filament end density along the leading edge of the lamellipodium, J. Math. Biol. 74 (2016), pp. 169-193.
 
R131. S. Hirsch, A. Manhart, C. Schmeiser, Mathematical modeling of myosin induced bistability of lamellipodial fragments, J. Math. Biol. 74 (2016), pp. 1-22 (Movie).
 
R130. P. Aceves-Sanchez, C. Schmeiser, Fractional-diffusion-advection limit of a kinetic model, SIAM J. Math. Anal. 48 (2016), pp. 2806-2818.
 
R129. L. Neumann, C. Schmeiser, A kinetic reaction model: decay to equilibrium and macroscopic limit, Kinetic and Related Models 9 (2016), pp. 571-585.
 
R128. S. Hirsch, D. Oelz, C. Schmeiser, Existence and uniqueness of solutions for a model of non-sarcomeric actomyosin bundles, DCDS-A 36 (2016), pp. 4945-4962.
 
R127. A. Manhart, D. Oelz, C. Schmeiser, N. Sfakianakis, An extended Filament Based Lamellipodium Model produces various moving cell shapes in the presence of chemotactic signals, J. Theor. Biol. 382 (2015), pp. 244-258 (Movie1, Movie2).
 
R126. V. Calvez, G. Raoul, C. Schmeiser, Confinement by biased velocity jumps: aggregation of Escheria coli, Kinetic and Related Models 8 (2015), pp. 651-666.
 
R125. C. Schmeiser, C. Winkler, The flatness of lamellipodia explained by the interaction between actin dynamics and membrane deformation, J. Theor. Biol. 380 (2015), pp. 144-155 (Movie, 108MB).
 
R124. J. Dolbeault, C. Mouhot, C. Schmeiser, Hypocoercivity for linear kinetic equations conserving mass, Trans. AMS 367 (2015), pp. 3807-3828.
 
C123. F. Achleitner, S. Hittmeir, C. Schmeiser, On nonlinear conservation laws regularized by a Riesz-Feller operator, Hyperbolic Problems: Theory, Numerics, Applications, Proc. of Hyp2012, eds. F. Ancona, A. Bressan, P. Marcati, and A. Marson, AIMS Series on Appl. Math., Vol. 8, 2014, pp. 241-248.
 
R122. J. Müller, J. Pfanzelter, C. Winkler, A. Narita, C. LeClainche, M. Nemethova, M.-F. Carlier, Y. Maeda, M.D. Welch, T. Ohkawa, C. Schmeiser, G.P. Resch, J.V. Small, Electron tomography and simulation of baculovirus actin comet tails support a tethered filament model of pathogen propulsion, PLoS Biol 12 (2014), e1001765.
 
R121. S.A. Koestler, A. Steffen, M. Nemethova, M. Winterhoff, N. Luo, J.M. Holleboom, J. Krupp, S. Jacob, M. Vinzent, F. Schur, K. Schlüter, P.W. Gunning, C. Winkler, C. Schmeiser, J. Faix, T.E.B. Stradal, J.V. Small, K. Rottner, Arp2/3 complex is essential for actin network treadmilling as well as for targeting of capping protein and cofilin, Molecular Biol. of the Cell 24 (2013), pp. 2861-2875.
 
R120. J. Dolbeault, A. Klar, C. Mouhot, C. Schmeiser, Exponential rate of convergence to equilibrium for a model describing fiber lay-down processes, Appl. Math. Res. Express 2013 (2013), pp. 165-175.
 
R119. C. Cuesta, S. Hittmeir, C. Schmeiser, Traveling waves of a kinetic transport model for the KPP-Fisher equation, SIAM J. Math. Anal. 44 (2012), pp. 4128-4146.
 
R118. H. Freistühler, C. Schmeiser, N. Sfakianakis, Stable length distributions in co-localized polymerizing and depolymerizing protein filaments, SIAM J. Appl. Math. 72 (2012), pp. 1428-1448.
 
R117. M. Vinzenz, M. Nemethova, F. Schur, J. Mueller, A. Narita, E. Urban, C. Winkler, C. Schmeiser, S. Koestler, K. Rottner, G.P. Resch, Y. Maeda, J.V. Small, Actin branching in the initiation and maintenance of lamellipodia, J. Cell Sci. 125 (2012), pp. 2775-2785.
 
R116. D. Ölz, C. Schmeiser, Simulation of lamellipodial fragments, J. Math. Biol. 64 (2012), pp. 513-528.
 
R115. C. Winkler, M. Vinzenz, J.V. Small, C. Schmeiser, Actin filament tracking by the localized Radon transform in three-dimensional electron microscope tomograms of lamellipodia, J. Structural Biol. 178 (2012), pp. 19-28.
 
R114. F. Cerreti, B. Perthame, C. Schmeiser, M. Tang, N. Vauchelet, Waves for an hyperbolic Keller-Segel model and branching instabilities, Math. Models and Meth. in Appl. Sci. 21 (2011), pp. 825-842.
 
R113. J. Haskovec, N. Masmoudi, C. Schmeiser, M.L. Tayeb, The spherical harmonics expansion model coupled to the Poisson equation, Kinetic and Related Models 4 (2011), pp. 1063-1079.
 
O112. J.V. Small, C. Winkler, M. Vinzenz, C. Schmeiser, Reply: Visualizing branched actin filaments in lamellipodia by electron tomography, Nature Cell Biology 13 (2011), pp. 1013-1014.
 
R111. B. Perthame, C. Schmeiser, M. Tang, N. Vauchelet, Traveling plateaus for a hyperbolic Keller-Segel system with attraction and repulsion: existence and branching instabilities, Nonlinearity 24 (2011), pp. 1253-1270 (featured article).
 
R110. J. Haskovec, C. Schmeiser, Convergence analysis of a stochastic particle approximation for measure valued solutions of the 2D Keller-Segel system, Comm. PDE 36 (2011), pp. 940-960.
 
R109. F. Achleitner, S. Hittmeir, C. Schmeiser, On nonlinear conservation laws with a nonlocal diffusion term J. Diff. Equ. 250 (2011), pp. 2177-2196. (TU Wien Best Paper Award 2011)
 
R108. D. Ölz, C. Schmeiser, Derivation of a model for symmetric lamellipodia with instantaneous cross-link turnover, Archive Rat. Mech. Anal. 198 (2010), pp. 963-980.
 
R107. C. Cuesta, C. Schmeiser, Long time behaviour of a one-dimensional BGK model: convergence to macroscopic rarefaction waves, Monatsh. Math. 160 (2010), pp. 361-374.
 
R106. C. Cuesta, S. Hittmeir, C. Schmeiser, Weak shocks of a BGK kinetic model for isentropic gas dynamics, Kinetic and Related Models 3 (2010), pp. 255-279.
 
B105. D. Ölz, C. Schmeiser, How do cells move? mathematical modelling of cytoskeleton dynamics and cell migration, in Cell mechanics: from single scale-based models to multiscale modelling, eds. A. Chauviere, L. Preziosi, and C. Verdier, Chapman and Hall / CRC Press, 2010.
 
R104. C. Cuesta, S. Hittmeir, C. Schmeiser, Kinetic shock profiles for nonlinear hyperbolic conservation laws, Riv. Mat. Univ. Parma - Serie 8, 1 (2009), pp. 139-198.
 
R103. J. Haskovec, C. Schmeiser, Diffusive limit of a kinetic model for cometary flows, J. Stat. Phys. 136 (2009), pp. 179-194.
 
R102. J. Haskovec, C. Schmeiser, A note on the anisotropic generalizations of the Sobolev and Morrey embedding theorems. Monatsh. Math. 158 (2009), pp. 71-79.
 
R101. J. Dolbeault, C. Schmeiser, The two-dimensional Keller-Segel model after blow-up, DCDS-A 25 (2009), pp. 109-121.
 
R100. J. Dolbeault, C. Mouhot, C. Schmeiser, Hypocoercivity for kinetic equations with linear relaxation terms, C.R. Acad. Sci. Paris 347 (2009), pp. 511--516.
 
R99. J. Haskovec, C. Schmeiser, Stochastic particle approximation for measure valued solutions of the 2D Keller-Segel system, J. Stat. Phys. 135 (2009), pp. 133-151.
 
R98. K. Anguige, C. Schmeiser, A one-dimensional model for cell diffusion and aggregation, incorporating volume filling and cell-to-cell adhesion, J. Math. Biol. 58 (2009), pp. 395-427.
 
R97. D. Ölz, C. Schmeiser, J.V. Small, Modelling of the Actin-cytoskeleton in symmetric lamellipodial fragments, Cell Adhesion & Migration 2 (2008), pp. 117-126.
 
R96. C. Cuesta, C. Schmeiser, Stability of solitary waves in a semiconductor drift-diffusion model, SIAM J. Appl. Math. 68 (2008), pp. 1423-1438.
 
R95. M. Burger, Y. Dolak-Struss, C. Schmeiser, Asymptotic analyis of an advection-dominated chemotaxis model in multiple spatial dimensions, Comm. in Math. Sci. 6 (2008), pp. 1-28.
 
C94. J. Haskovec, C. Schmeiser, Numerics for global measure valued solutions of the Keller-Segel model in 2D based on stochastic approximation, EQUADIFF 2007, Vienna, 2007.
 
R93. K. Fellner, C. Schmeiser, Classification of equilibrium solutions of the cometary flow equation and explicit solutions of the Euler equations for monatomic ideal gases, J. Stat. Phys. 129 (2007), pp. 493-507.
 
R92. N. BenAbdallah, H. Chaker, C. Schmeiser, The high field asymptotics for a fermionic Boltzmann equation: entropy solutions and kinetic shock profiles, J. of Hyperbolic Diff. Equs. 4 (2007), pp. 679-704.
 
R91. C. Cuesta, C. Schmeiser, Kinetic profiles for shock waves of scalar conservation laws, Bull. of the Inst. of Math., Acad. Sinica 2 (2007), pp. 391-408.
 
R90. J. Dolbeault, P.A. Markowich, D. Ölz, C. Schmeiser, Nonlinear diffusion as limit of kinetic equations with relaxation collision kernels, Archive Rat. Mech. Anal. 186 (2007), pp. 133-158.
 
R89. T. Goudon, V. Miljanovic, C. Schmeiser, On the Shockley-Read-Hall Model: Generation-Recombination in Semiconductors, SIAM J. Appl. Math. 67 (2007), pp. 1183-1201.
 
R88. R.M. Weishäupl, C. Schmeiser, P.A. Markowich, J.P. Borgna, A Hermite pseudo-spectral method for solving systems of Gross-Pitaevskii equations, Comm. in Math. Sci. 5 (2007), pp. 299-312.
 
R87. T. Hillen, K. Painter, C. Schmeiser, Global Existence for Chemotaxis with Finite Sampling Radius, DCDS-B 7 (2007), pp. 125-144.
 
R86. K. Fellner, V. Miljanovic, C. Schmeiser, Convergence to equilibrium for the linearized cometary flow equation, Transp. Th. and Stat. Phys. 35 (2006), pp. 109-136.
 
R85. F. Chalub, Y. Dolak-Struss, P.A. Markowich, D. Ölz, C. Schmeiser, A. Soreff, Model hierarchies for cell aggregation by chemotaxis, Math. Models and Meth. Appl. Sci. 16 (2006), pp. 1173-1198.
 
R84. C. Cuesta, C. Schmeiser, Weak shocks for a one-dimensional BGK kinetic model for conservation laws, SIAM J. Math. Anal. 38 (2006), pp. 637-656.
 
C83. K. Fellner, V. Miljanovic, C. Schmeiser, Entropy method for the linearized cometary flow equation, in Hyperbolic problems. Theory, numerics and applications. I. Proceedings of the 10th international conference, Osaka, Japan, Asakura, F. (ed.) et al., Yokohama Publishers, pp. 399-406 (2006).
 
R82. D. Ölz, C. Schmeiser, A. Soreff, Multistep navigation of leukocytes: a stochastic model with memory effects, Math. Medicine and Biology 22 (2005), pp. 291-303.
 
R81. Y. Dolak, C. Schmeiser, The Keller-Segel model with logistic sensitivity function and small diffusivity, SIAM J. Appl. Math. 66 (2005), pp. 286-308.
 
R80. Y. Dolak, C. Schmeiser, Kinetic models for chemotaxis: Hydrodynamic limits and spatio-temporal mechanisms, J. Math. Biol. 51 (2005), pp. 595-615.
 
R79. N. BenAbdallah, F. Mehats, C. Schmeiser, R.M. Weishäupl, The nonlinear Schrödinger equation with a strongly anisotropic harmonic potential, SIAM J. Math. Anal. 37 (2005), pp. 189-199.
 
R78. W. Bao, P. A. Markowich, C. Schmeiser, R.M. Weishäupl, On the Gross-Pitaevskii equation with strongly anisotropic confinement: formal asymptotics and numerical experiments , Math. Models and Meth. Appl. Sci. 15 (2005), pp. 767-782.
 
R77. J. Haskovec, C. Schmeiser, Transport in semiconductors at saturated velocities, Comm. in Math. Sci. 3 (2005), pp. 219-233.
 
R76. L. Neumann, C. Schmeiser, Convergence to global equilibrium for a kinetic model for fermions, SIAM J. Math. Anal. 36 (2005), pp. 1652-1663.
 
C75. P. Degond, C.D. Levermore, C. Schmeiser, A note on the Energy-Transport limit of the semiconductor Boltzmann equation, in Transport in Transition Regimes, N. Ben Abdallah, A. Arnold, P. Degond, I. Gamba, R. Glassey, C.D. Levermore, and C. Ringhofer (eds.), IMA Vol. in Math. and its Appl. 135, Springer-Verlag, 2004.
 
R74. K. Fellner, C. Schmeiser, Burgers-Poisson: a nonlinear dispersive model equation , SIAM J. Appl. Math. 64 (2004), pp. 1509-1525.
 
R73. F. Chalub, P.A. Markowich, B. Perthame, C. Schmeiser, Kinetic models for chemotaxis and their drift-diffusion limits, Monatsh. Math. 142 (2004), pp. 123-141.
 
R72. K. Fellner, L. Neumann, C. Schmeiser, Convergence to global equilibrium for spatially inhomogeneous kinetic models of non-micro-reversible processes, Monatsh. Math. 141 (2004), pp. 289-299.
 
R71. K. Fellner, F. Poupaud, C. Schmeiser, Existence and convergence to equilibrium of a kinetic model for cometary flows , J. Stat. Phys. 114 (2004), pp. 1481-1499.
 
C70. Y. Dolak, C. Schmeiser, A kinetic theory approach to resolving the chemotactic wave paradox, Mathematical Modelling & Computing in Biology and Medicine, (V. Capasso Ed.), ESCULAPIO Pub. Co., Bologna, 2003.
 
R69. I. Choquet, P. Degond, C. Schmeiser, Energy-transport models for charge carriers involving impact ionization in semiconductors, Transp. Th. and Stat. Phys. 32 (2003), pp. 99-132.
 
R68. C. Schmeiser, S. Wang, Quasineutral limit of the drift-diffusion model for semiconductors with general initial data, Math. Models and Meth. in Appl. Sci. 13 (2003), pp. 463-470.
 
R67. I. Choquet, P. Degond, C. Schmeiser, Hydrodynamic model for charge carriers involving strong ionization in semiconductors, Comm. in Math. Sci. 1 (2003), pp. 74-86.
 
R66. C. Ringhofer, C. Schmeiser, A. Zwirchmayr, Moment methods for the semiconductor Boltzmann equation on bounded position domains, SIAM J. Numer. Anal. 39 (2001), pp. 1078-1095.
 
R65. I. Gasser, C.D. Levermore, P.A. Markowich, C. Schmeiser, The initial time layer problem and the quasineutral limit in the semiconductor drift-diffusion model , Eur. J. Appl. Math. 12 (2001), pp. 497-512.
 
R64. A. Klar, C. Schmeiser, Numerical passage from radiative heat transfer to nonlinear diffusion models, Math. Models and Meth. in Appl. Sci. 11 (2001), pp. 749-767.
 
R63. N. BenAbdallah, P. Degond, P. Markowich, C. Schmeiser, High field approximations of the spherical harmonics expansion model for semiconductors, ZAMP 52 (2001), pp. 201-230.
 
R62. M. Mei, C. Schmeiser, Asymptotic Profiles of Solutions for the BBM-Burgers Equation, Funkcialaj Ekvacioj 44 (2001), pp. 151-170.
 
R61. L. Caffarelli, J. Dolbeault, P. Markowich, C. Schmeiser, On Maxwellian equilibria of insulated semiconductors, Interfaces and Free Boundaries 2 (2000), pp. 331-339.
 
R60. P. Degond, A. Nouri, C. Schmeiser, Macroscopic models for ionization in the presence of strong electric fields, TMR preprint No. 7, Transp. Th. and Stat. Phys. 29 (2000), pp. 551-561.
 
R59. C. Schmeiser, Macroscopic models for almost elastic nonlinear electron-phonon interaction in semiconductors, SIAM J. Appl. Math. 60 (1999), pp. 109-120.
 
R58. P. Degond, J.L. Lopez, F. Poupaud, C. Schmeiser, Existence of solutions of a kinetic equation modelling cometary flows, J. Stat. Phys. 96 (1999), pp. 361-376.
 
R57. P. Degond, C. Schmeiser, Kinetic boundary layers and fluid-kinetic coupling in semiconductors, Transport Theory Statist. Phys. 28 (1999), pp. 31-55.
 
R56. C. Schmeiser, A. Zwirchmayr, Convergence of moment methods for linear kinetic equations, SIAM J. Num. Anal. 36 (1998), pp. 74-88.
 
R55. I. Gasser, R. Illner, P.A. Markowich, C. Schmeiser, Semiclassical, t-to-infinity asymptotics and dispersive effects for Hartree-Fock systems, Mathematical Modelling and Numerical Analysis 32 (1998), pp. 699-713.
 
R54. P. Degond, C. Schmeiser, Macroscopic models for semiconductor heterostructures, J. Math. Phys. 39 (1998), pp. 4634-4663.
 
R53. C. Schmeiser, A. Zwirchmayr, Elastic and drift-diffusion limits of electron-phonon interaction in semiconductors, Math. Models and Meth. in Appl. Sci. 8 (1998), pp. 37-53.
 
R52. A. Jüngel, C. Schmeiser, Voltage-current characteristics of a pn-diode from a drift-diffusion model with nonlinear diffusion, Quart. of Appl. Math. 55 (1997), pp. 707-721.
 
R51. P. Markowich, C. Schmeiser, The drift-diffusion limit for electron-phonon interaction in semiconductors, Math. Models and Meth. in Appl. Sci. 7 (1997), pp. 707-729.
 
R50. S. Senkader, G. Hobler, C. Schmeiser, Determination of the oxide-precipitate-silicon-matrix interface energy by considering the change of precipitate morphology, Appl. Phys. Lett. 69 (1996), pp. 2202-2204.
 
R49. J. Esfandyari, C. Schmeiser, S. Senkader, G. Hobler, B. Murphy, Computer simulation of oxygen precipitation in CZ-grown silicon during HI-LO-HI anneals, J. of the Electrochem. Soc. 143 (1996), pp. 995-1001.
 
R48. P. Degond, F. Poupaud, C. Schmeiser, A. Yamnahakki, Asymptotic analysis of kinetic equations for modeling a Schottky diode, Asympt. Anal. 13 (1996), pp. 79--94.
 
R47. A. Nouri, C. Schmeiser, Streamers in gas discharge devices, ZAMP 47 (1996), pp. 553--566.
 
R46. S. Cordier, P. Degond, P.A. Markowich, C. Schmeiser, Travelling wave analysis of an isothermal Euler Poisson model for plasmas, Annales de la Faculte des Sciences de Toulouse 5 (1996), pp. 599-643.
 
R45. P. Markowich, F. Poupaud, C. Schmeiser, Diffusion approximation of nonlinear electron-phonon collision mechanisms, Mathematical Modelling and Numerical Analysis 29 (1995), pp. 857--869.
 
R44. P. Markowich, C. Schmeiser, Relaxation time approximation for electron-phonon interaction in semiconductors, Math. Models and Meth. in Appl. Sci. 5 (1995), pp. 519--527.
 
R43. S. Cordier, P. Degond, P.A. Markowich, C. Schmeiser, Travelling wave analysis and jump relations for Euler-Poisson model in the quasineutral limit, Asymptotic Analysis 11 (1995), pp. 209--240.
 
R42. N. Ben Abdallah, P. Degond, C. Schmeiser, On a mathematical model for hot carrier injection in semiconductors, Math. Meth. in the Appl. Sci. 17 (1994), pp. 1193--1212.
 
R41. F. Brezzi, I. Gasser, P.A. Markowich, C. Schmeiser, Thermal equilibrium states of the quantum hydrodynamic model for semiconductors in one dimension, Appl. Math. Letters 8 (1995), pp. 47--52.
 
R40. S. Cordier, P. Degond, P.A. Markowich, C. Schmeiser, Travelling wave analysis and jump relations for a fluid model of quasineutral plasma, C.R. Acad. Sci. Paris 318 (1994), pp. 929--934.
 
R39. S. Cordier, P. Degond, P.A. Markowich, C. Schmeiser, Travelling wave analysis of an isothermal Euler Poisson model for plasmas, C.R. Acad. Sci. Paris 318 (1994), pp. 801--806.
 
R38. C. Schmeiser, Semiconductor devices under circuit boundary conditions, Math. Models and Meth. in Appl. Sci. 4 (1994), pp. 439--453.
 
R37. C. Schmeiser, A model for the transient behaviour of long-channel MOSFETs, SIAM J. Appl. Math. 54 (1994), pp. 175--194.
 
C36. C. Schmeiser, Stability of thermal equilibrium for a semiconductor model including traps, Proc. ECMI 7, A. Fasano und M. Primicerio (eds.), Teubner, Stuttgart, 1994.
 
R35. C. Schmeiser, A. Unterreiter, R. Weiß, The switching behaviour of a one-dimensional pn-diode in low injection, Math. Models and Meth. in Appl. Sci. 3 (1993), pp. 125--144.
 
C34. C. Schmeiser, A. Unterreiter, The derivation of analytic device models by asymptotic methods, in Semiconductors, Part II, W.M. Coughran, J. Cole, P. Lloyd, and J. White (eds.), IMA Vol. in Math. and its Appl. 59, Springer-Verlag, 1993.
 
C33. C. Schmeiser, A new type of model for the transient response of MOSFETs, Proc. NASECODE VIII Conf., Boole Press, Dublin, 1992.
 
C32. C. Schmeiser, Free boundaries in semiconductor devices, Proc. Free Boundary Problems: Theory and Applications , vol. 3, J. Chadham and H. Rasmussen eds., Longman, Harlow, 1992.
 
R31. C. Schmeiser, A. Unterreiter, The transient behaviour of multi-dimensional pn-diodes in low injection, Math. Meth. in the Appl. Sci. 15 (1992), pp. 265--279.
 
R30. C. Lim, J. Pimbley, C. Schmeiser, D. Schwendemann, Rotating waves for semiconductor inverter rings, SIAM J. Appl. Math. 52 (1992), pp. 676--690.
 
R29. U.M. Ascher, P.A. Markowich, P. Pietra, C. Schmeiser, A phase plane analysis of transonic solutions for the hydrodynamic semiconductor model, Math. Models and Meth. in Appl. Sci. 1 (1991).
 
R28. C. Schmeiser, Voltage-current characteristics of multi-dimensional semiconductor devices, Quarterly of Appl. Math. 49 (1991), pp. 753-772.
 
R27. F. Poupaud, C. Schmeiser, Charge transport in semiconductors with degeneracy effects, Math. Meth. in the Appl. Sci. 14 (1991), pp. 301-318.
 
R26. C. Schmeiser, H. Steinrück, A new approach to the modeling of pnpn-structures, Solid-State Electr. 34 (1991), pp. 57-62.
 
C25. U.M. Ascher, P.A. Markowich, P. Pietra, C. Schmeiser, A phase plane analysis of hydrodynamic models for collisionless plasmas, Proc. 9th France-USSR-Italy Joint Symposium in Comp. Math. and Appl., Sophia Antipolis, 1991.
 
C24. U.M. Ascher, P.A. Markowich, P. Pietra, C. Schmeiser, Steady state electron shock waves in a simplified hydrodynamic model, Proc. NUMSIM '91 Conf., Konrad-Zuse-Zentrum für Informationstechnik, Berlin, 1991.
 
C23. C. Schmeiser, Charge transport in electrolytic solutions, Workshop on Mathematical Problems in Industry, Rensselaer Polytechnic Institute, Troy, 1990.
 
B22. P.A. Markowich, C. Ringhofer, C. Schmeiser, Semiconductor Equations, Springer-Verlag, Wien, 1990.
 
R21. R.E. O'Malley, C. Schmeiser, The asymptotic solution of a semiconductor device problem involving reverse bias , SIAM J. Appl. Math. 50 (1990), pp. 504-520.
 
R20. P. Grandits, C. Schmeiser, A mixed BVP for flow in strongly anisotropic media, Applicable Anal. 35 (1990), pp. 153--173.
 
R19. C. Schmeiser, A singular perturbation analysis of reverse biased pn-junctions , SIAM J. Math. Anal. 21 (1990), pp. 313--326.
 
R18. C. Schmeiser, On strongly reverse biased semiconductor diodes, SIAM J. Appl. Math. 49 (1989), pp. 1734--1748.
 
R17. W. Hänsch, C. Schmeiser, Hot electron transport in semiconductors, ZAMP 40 (1989), pp. 440--455.
 
R16. C. Ringhofer, C. Schmeiser, An approximate Newton method for the solution of the basic semiconductor device equations, SIAM J. Numer. Anal. 26 (1989), pp. 507--516.
 
R15. U.M. Ascher, P.A. Markowich, C. Schmeiser, H. Steinrück, R. Weiß, Conditioning of the steady state semiconductor device problem, SIAM J. Appl. Math. 49 (1989), pp. 165-185.
 
R14. C. Ringhofer, C. Schmeiser, A modified Gummel method for the basic semiconductor device equations, IEEE Trans. on CAD of Integrated Circuits and Systems 7 (1988), pp. 251-253.
 
C13. R.E. O'Malley, C. Schmeiser, The limiting solution for a semiconductor device model, Proc. BAIL V Conf., Boole Press, Dublin, 1988.
 
C12. C. Schmeiser, Strongly reverse biased semiconductor diodes, Proc. BAIL V Conf., Boole Press, Dublin, 1988.
 
C11. P.A. Markowich, C. Schmeiser, S. Selberherr, Numerical methods in semiconductor device simulation, Proc. NMAT Conf., Nis, 1988.
 
C10. U.M. Ascher, P.A. Markowich, C. Schmeiser, H. Steinrück, R. Weiß, On the conditioning of the steady state semiconductor device problem, in Fundamental Research on the Numerical Modeling of Semiconductor Devices and Processes, J.J.H. Miller (ed.), Boole Press, Dublin, 1987.
 
R9. U.M. Ascher, P.A. Markowich, C. Schmeiser, H. Steinrück, R. Weiss, On the conditioning of the steady state semiconductor device problem, COMPEL 6 (1987), pp. 19-23.
 
R8. P.A. Markowich, C. Ringhofer, C. Schmeiser, An asymptotic analysis of one-dimensional semiconductor device models, IMA J. Appl. Math. 37 (1986), pp. 1-24.
 
R7. P.A. Markowich, C. Schmeiser, Uniform asymptotic representation of solutions of the basic semiconductor device equations, IMA J. Appl. Math. 36 (1986), pp. 43--57.
 
R6. C. Schmeiser, R. Weiß, Asymptotic analysis of singular singularly perturbed boundary value problems, SIAM J. Math. Anal. 17 (1986), pp. 560--579.
 
R5. C. Schmeiser, Approximate solution of boundary value problems on infinite intervals by collocation methods, Math. of Comp. 46 (1986), pp. 479--490.
 
R4. C. Schmeiser, Finite deformations of thin beams. Asymptotic analysis by singular perturbation methods, IMA J. Appl. Math. 34 (1985), pp. 155-164.
 
C3. C. Schmeiser, S. Selberherr, R. Weiß, On scaling and norms for semiconductor device simulation, Proc. NASECODE IV Conf., Boole Press, Dublin, 1985.
 
C2. C. Schmeiser, Asymptotische Analyse einer Halbleiterdiode, ZAMM 65 (1985), pp. T364--T366.
 
C1. C. Schmeiser, R. Weiß, Asymptotic and numerical methods for singular singularly perturbed boundary value problems in ordinary differential equations, Proc. BAIL III Conf., Boole Press, Dublin, 1984.