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Abstract
The Filament Based Lamellipodium Model (FBLM) is a two-phase

two-dimensional continuum model, describing the dynamics of two in-
teracting families of locally parallel actin filaments [34]. It contains
accounts of the filaments’ bending stiffness, of adhesion to the sub-
strate, and of cross-links connecting the two families.

An extension of the model is presented with contributions from
nucleation of filaments by branching, from capping, from contraction
by actin-myosin interaction, and from a pressure-like repulsion between
parallel filaments due to Coulomb interaction. The effect of a chemoat-
tractant is described by a simple signal transduction model influencing
the polymerization speed. Simulations with the extended model show
its potential for describing various moving cell shapes, depending on
the signal transduction procedure, and for predicting transients be-
tween nonmoving and moving states as well as changes of direction.
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1 Introduction

In contact to flat adhesive substrates, many cell types tend to develop thin
protrusions, called lamellipodia [47]. These are very dynamic structures,
supported by a network of filaments of polymerized actin, which is continu-
ously remodelled by polymerization and depolymerization as well as by the
building and breaking of cross-links and adhesive bonds to the substrate. Po-
larization of cells due to internal instabilities [49, 58] or to external signals
[39, 9, 13, 59] might lead to crawling movement along the substrate. This
or similar types of motility can be observed in various cell types in natural
environments, such as fibroblasts, tumor cells, leukocytes, keratocytes, and
others.

The dynamics of the filament network is a complicated process, and ef-
fects to be taken into account, additionally to what has been mentioned
above, include the nucleation of new filaments by branching off existing fila-
ments, deactivation of filaments by capping, and contraction by actin-myosin
interaction ([18], references therein, and more references below). Various
attempts have dealt with the formulation of mechanical and, consequen-
tially, mathematical models for the involved subprocesses as well as for the
whole integrated system ([26] and references therein). On the level of in-
dividual actin filaments, polymerization, depolymerization, branching, and
capping are typically modeled as stochastic processes, where the regulation
of polymerization as the key process pushing the lamellipodium outward
has received the biggest attention [28, 37]. Models based on individual fil-
aments have provided possible explanations for various phenomena, such
as the motility of pathogens in host cells [29]. For the description of the
morphology dynamics of whole lamellipodia these models are too complex,
however. Therefore, continuum models for the mechanics of the filament net-
work have been used, where the choice of model is typically guided by the
expected rheological properties, such as viscoelasticity or active contraction
due to actin-myosin interaction [43, 27, 1, 11].

This work is a continuation of previous efforts [34] to systematically de-
rive a continuum model from filament based descriptions by an averaging
process similar to homogenization of materials with microstructure. This
allows to include detailed knowledge or assumptions on all subprocesses.
We discuss the modeling assumptions of the Filament Based Lamellipodium
Model (FBLM), starting with those aspects, which are taken from [34] with-
out changes.

Geometry: As common in homogenization, the averaging process is fa-
cilitated by idealizing assumptions on the microstructure. For lamellipodia,
the two main assumptions are a restriction to a two-dimensional model mo-
tivated by the observed small aspect ratios (100–200 nm thickness, tens of
microns lateral extension, [47]) and the idealization to a network consisting
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of two families of locally parallel filaments crossing each other transversally.
The latter assumption is supported by experimental evidence for steadily
moving cells [57]. It has to be conceded, however, that it is questionable in
certain conditions such as retracting lamellipodia [16].

It is assumed that the whole cell is surrounded by the lamellipodium,
whose width might vary along the cell periphery. Mathematically speaking,
the lamellipodium has the topology of a ring lying between two curves, the
outer one representing the leading edge and the inner one an artificially
drawn boundary between the lamellipodium and the rest of the cell, roughly
defined by a minimum actin density. More precisely, two non-identical inner
boundaries for the two filament families are allowed.

Actin filaments are polar with so called barbed and pointed ends. All
barbed ends are assumed to meet the leading edge [46].

Filament mechanics: Filaments are assumed to resist bending. More
precisely, they are modeled as quasi-stationary Euler-Bernoulli beams. They
are assumed to be inextensible [10].

Cross-links: The mechanical stability of the network largely relies on the
existence of cross-links between the two families. Candidates for cross-linkers
are proteins such as filamin [31], but also the Arp2/3 complex providing the
connection between filaments at branch points [30]. It is assumed that cross-
linking is dynamic with the building and breaking of cross-links as stochastic
processes. While attached, cross-links are assumed as elastic, providing re-
sistance against relative translational as well as rotational movement (away
from an equilibrium angle) of the two filament families [45]. Characteristic
life times of cross-links are assumed to be small compared to the dynamics
induced by actin polymerization. The corresponding limiting process, which
has been carried out in [34], leads to a friction model for the interaction
between the filament families.

Adhesion to the substrate: Transmembrane protein complexes with in-
tegrins as their most important constituent provide adhesive connections be-
tween the cytoskeleton and the substrate [20, 38]. Similarly to cross-links it
is assumed that these adhesions are transient with relatively small recycling
times, such that the averaged effect is friction between the actin network and
the substrate. The short life time of adhesions is another questionable as-
sumption, only satisfied for fast moving cells, where so called focal adhesions,
i.e. large and very stable adhesion complexes, do not occur.

The FBLM of [34] is still rather far from a complete description of all rel-
evant processes. Some of these gaps are filled by the extensions below. Most
importantly, the total number of filaments is kept fixed and their length dis-
tribution is prescribed in [34]. Here, filaments will be added by branching
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and removed by capping and subsequent decomposition. The length distribu-
tion will be determined by a quasi-equilibrium between polymerization and
severing. In [34] cell size is regulated by a model for the effect of membrane
tension. Here, this will be replaced by a contractive force in the cell center
due to actin-myosin interaction. In certain applications it might be appropri-
ate to combine these two effects. A further extension is a little speculative
from a modeling point of view, but stabilizes the FBLM: We introduce a
repulsive effect between parallel filaments of the same family, motivated by
Coulomb interaction caused by the significant charges distributed along fil-
aments. Finally, instead of a given fixed polymerization speed as in [34], a
model will be formulated involving both the effect of a chemotactic signal
and of local leading edge bending. More details about these extensions are
given in the following paragraphs.

Polymerization and degradation: A desired polymerization speed is
determined between a minimal and a maximal value, depending on the lo-
cal concentration of an activator like PIP3, determined by a simple signal
transduction model for a given chemoattractant distribution along the lead-
ing edge. The desired polymerization speed is modified by the pushing force
depending on the curvature of the leading edge (see Fig. 1B).

Several degradation processes of filaments are known. Aided by proteins
of the ADF/cofilin family and other severing proteins like gelsolin [3], they
can depolymerize at the pointed ends [2], or bigger pieces of actin can be
removed. We assume a severing process (see Fig. 1A), a mathematical
description of which will lead to formulas for the filament length distribution,
replacing the ad hoc approximations used in [34].

Branching and capping: In a lamellipodium, new filaments need to be
created in order to maintain a polarized state. New filaments are nucle-
ated by branching off existing filaments of the other family at or near to
the leading edge (dentritic nucleation model [30, 48]). To form a branch the
presence of the Actin-Related Protein-2/3 Complex (Arp2/3) at the mem-
brane is necessary. Arp2/3 needs to be activated by nucleation promoting
factors. Activated Arp2/3 is incorporated in the branches and later (e.g.
upon filament degradation) reenters the cytoplasm, from which it is again
recruited to the membrane [21]. Finally filaments can be capped at their
branched ends by capping proteins [55], which blocks further polymerization
(see Fig. 1A). The addition and removal of filaments had not been taken
into account in [34].

Confinement: As a consequence of polymerization and adhesion, cells
would spread indefinitely according to the model components described so
far. In [34] cell confinement has been modeled as a consequence of membrane
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tension. However, there is some experimental evidence [49] that confinement
is mostly due to contractive effects caused by actin-myosin interaction in the
rear of the lamellipodium. Myosin has the ability to utilize energy to move
towards the barbed ends of actin and because of its bipolar structure this
leads to contraction of antiparallel actin filaments. This mechanism plays
an important role in cell movement, because it allows the cell to pull its rear
parts [53, 25, 14, 4].

We assume that the artificial inner boundary of the simulated lamel-
lipodium is chosen such that the actin-myosin interaction takes place in the
interior region not covered by the lamellipodium model. The lamellipodial
actin network is assumed to be connected to an interior network of acto-
myosin bundles providing a contractive effect (see Fig. 1D).

Coulomb interaction: So far the model assumed no direct interaction be-
tween filaments of the same family. Upon trying to understand the bundling
of F-actin, it was discovered that F-actin, similarly to DNA, behaves like a
polyelectrolyte [50, 51, 52]. This means that F-actin is negatively charged
(about 4e/nm) at physiological conditions, hence there exists a repulsive
force between the filaments. On the other hand, it has been shown that
certain positively charged polycations, like divalent metal ions and basic
polypeptides [51], which act as counterions and neutralize the negative charges
along the filament, promote filament bundling.

As a modeling assumption, we introduce a repulsive effect between fil-
aments of the same family (see Fig. 1C). The consequential inhibition of
bundle formation in the lamellipodium is desired, since this is not our mod-
eling goal at present (although it will be in future work). An additional
motivation is the fact that a lack of coupling between filaments of the same
family may lead to numerical instabilities, which can be avoided by the dif-
fusive effect caused by repulsion.

5



Figure 1: New ingredients to the FBLM.

The rest of this work is structured as follows. In the following Section
2 the model of [34] will be recalled. The new aspects will be introduced in
Section 3, and the complete new model will be summarized in Section 4.
Finally in Section 5 we will demonstrate the effect of the new terms and
the potential of the full new model numerically. The power and flexibility
of the model will become especially evident in simulations of the polariza-
tion process induced by a chemotactic signal, of steady movement, and of
a turning process. Movies of these simulations including visualizations of
the stochastic filament dynamics are contained in the Supplementary Ma-
terial. Examples of moving cell shapes, influenced by the response to the
chemotactic signal, are shown.

2 The Filament Based Lamellipodium Model

Detailed derivations of the FBLM presented in this section can be found
in [34, 36], first simulation results in [35], and analytical results for the
rotationally symmetric case in [33].

In the following, the superscripts + and − refer to the two filament
families, also called clockwise and, respectively, anti-clockwise. These super-
scripts will however be omitted, whenever we concentrate on one filament
family. Quantities related to the other family will then be indicated by the
superscript ∗.

A semi-Lagrangian description of each family is used, where one coordi-
nate α is a filament index varying on a torus (represented by α ∈ [0, 2π))
because of the ring topology, and the other coordinate is the negative arc-
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length s along a filament measured from the leading edge, i.e. s ∈ [−L, 0]
with the maximal (simulated) filament length L. Because of the inextensi-
bility of filaments, s can also be seen as a material coordinate. However, this
is only true for fixed time since, by polymerization at the leading edge with
speed v(α, t) ≥ 0 and the consequential inward flow of actin relative to the
leading edge, a Lagrangian coordinate would be σ = s +

∫ t
t0
v(α, τ) dτ . For

this reason the material derivative (i.e. the time derivative at fixed (α, σ))

Dt = ∂t − v∂s

will be used below.
The main unknown in the model is F (α, s, t) ∈ R2 which, for fixed α and

t, represents a parametrization of the filament with index α at time t. By
the inextensibility assumption

|∂sF (α, s, t)| ≡ 1 , for (α, s) ∈ B := [0, 2π)× [−L, 0] , t ≥ 0 , (1)

it is an arc-length parametrization. More precisely, F represents the de-
formation of all filaments in an infinitesimal α-interval, where the length
distribution of the filaments is determined by the given function η(α, s, t),
whose value (between 0 and 1) is the fraction of filaments with length at least
|s|. The assumption that all barbed ends meet the leading edge implies that
η(α, 0, t) = 1 and that η is monotonically increasing as a function of s. Note
that η(α, s, t) d(α, s) can be interpreted as the total filament length in the
infinitesimal coordinate volume d(α, s). In the FBLM formulated below (6),
η is a factor in all filament related force terms. For example, a large value of
η increases the effective bending stiffness of computational filaments, with
the interpretation that loads are distributed over a larger number of fila-
ments. The modeling of the dynamics of η(α, s, t) is one of the contributions
of this work. In Section 3 the equation (12) for η will be derived, taking into
account the polymerization speed v, branching and filament degradation.

At time t, the lamellipodium is represented by the set L(t) = L+(t) ∪
L−(t) with L±(t) = {F±(α, s, t) : (α, s) ∈ B}. Note that L+(t) and L−(t)
do not have to be identical. We request, however, that they share the leading
edge, which can be motivated by the assumption of tethering of barbed ends
to the membrane ("actoclampin model" [5, 6]):{

F+(α, 0, t) : 0 ≤ α < 2π
}

=
{
F−(α, 0, t) : 0 ≤ α < 2π

}
. (2)

The artificial inner boundaries (s = −L) might be different.
For the interaction between the two families, the points where filaments

cross each other have to be described. This is done on the basis of two
assumptions: First, there are no crossings of filaments of the same family,
i.e. the map F±(·, ·, t) : B → L±(t) is invertible. In particular, we assume
that

det(∂αF
±, ∂sF

±) > 0 (3)
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holds, corresponding to a clockwise parametrization by α. Second, for each
pair of filaments from different families there is at most one crossing, which
is transversal. We need representations of the set L+(t) ∩ L−(t) in the
coordinate domains. First we identify all pairs of crossing filaments:

C(t) :=
{(
α+, α−

)
∈ [0, 2π)2 : ∃s±(α+, α−, t) :

F+(α+, s+(α+, α−, t), t) = F−(α−, s−(α+, α−, t), t)
}
.

Then we define the parameter domains for both families such that
F±(B±C (t), t) = L+(t) ∩ L−(t):

B±C (t) :=
{(
α±, s±(α+, α−, t)

)
:
(
α+, α−

)
∈ C(t)

}
⊆ B .

Note that, by our assumptions, the transformations

(α+, α−) 7→
(
α±, s±(α+, α−, t)

)
(4)

from C(t) to B±C (t) are invertible and can be combined to transformations
ψ± : B∓C (t)→ B±C (t) with the property

F∓ = F± ◦ ψ± on B∓C (for fixed t). (5)

The positions and deformations of the filaments are computed on the ba-
sis of a quasi-stationary force balance obtained by minimizing a potential
energy functional, which contains contributions from the bending of fila-
ments, the stretching and twisting of cross-links, the stretching of substrate
adhesions, and the membrane tension. This is coupled to age-structured
population models for the distributions of cross-links and adhesions, assum-
ing the building and breaking of these connections as stochastic processes.
The resulting model involves continuous delay terms, since, for the computa-
tion of the stretching forces, past deformations of the filaments are needed.
With the model in this form, numerical simulations would be very expensive,
partially also because it mixes different length scales. Whereas the effects
of interest occur on the (µm) scale of the width of the lamellipodium, the
stretching of cross-links and adhesions occurs on molecular (nm) scales. This
implies that motion on the lamellipodium scale of the two filament families
relative to each other and relative to the substrate is only possible, if the
turnover of cross-links and adhesions is fast compared to other mechanisms
(e.g. polymerization and depolymerization).

The corresponding limit has been carried out formally [34] and rigorously
for a simplified model problem [24]. It leads to a friction model. The original
idea seems to be more than 50 years old and has been formulated first for the
derivation of models for rubber friction [44]. Recently it has been used for
the modeling of the plastic reorganization of tissues due to cell-cell adhesion
dynamics [40].
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The assumption of fast turnover of substrate adhesions is reasonable for
fast moving cells such as fish keratocytes, but certainly not satisfied for focal
adhesions, i.e. large stable and long lived adhesion complexes as found, e.g.,
in fibroblasts. The limiting procedure removes not only the delay terms, but
also the coupling to the population models, which can be solved explicitly
in the limit.

The variational procedure involves the formulation of a Lagrangian func-
tional where, besides the potential energy, also an account of the constraints
(1) and (2) is included. Variation of this functional and, subsequently, the
limit of fast cross-link and adhesion turnover described above, lead to a weak
formulation of the problem for F :

0 =

∫ 2π

0

[
µM (C − C0)+

∂αF

|∂αF |
· ∂α(δF )∓ λtetherν · δF

]
s=0

dα

+

∫
B

[
µB∂2sF · ∂2s (δF ) + µADtF · δF + λinext∂sF · ∂s(δF )

]
η d(α, s)

+

∫
C(t)

[
µS (DtF −D∗tF ∗) · δF

∓µT (ϕ− ϕ0)∂sF
⊥ · ∂s(δF )

]
ηη∗ d(α, α∗), (6)

for all variations δF , where the first line contains contributions from the
leading edge, and the convention (F1, F2)

⊥ = (−F2, F1) is used. The first
term corresponds to the tension of the membrane with the total length of
the leading edge,

C :=

∫ 2π

0
|∂αF+(α, 0, t)|dα =

∫ 2π

0
|∂αF−(α, 0, t)| dα ,

its prescribed equilibrium value C0, and an elasticity coefficient µM . It is
the variation of an energy describing the leading edge just as an elastic
rubber band stretched around the barbed ends of the actin filaments (see
[34]). The Lagrange multiplier for the constraint (2) is a function defined
along the leading edge denoted by λtether, and ν is the unit outward normal
along the leading edge. The second line of (6) deals with forces within
individual filaments: resistance against bending with bending modulus µB,
friction with the substrate caused by adhesions with a friction coefficient
µA, and a tangential force due to the inextensibility constraint (1) with
Lagrange multiplier λinext. The third and fourth lines of (6) describe the
effects of cross-links between the two families with a friction term caused by
resistance against stretching of cross-links with friction coefficient µS and a
turning force term caused by resistance of twisting cross-links away from the
equilibrium angle ϕ0. The angle between the filaments is determined by

cosϕ(α, α∗, t) = ∂sF (α, s(α, α∗, t) , t) · ∂sF ∗(α∗, s∗(α, α∗, t) , t) ,
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and µT is the corresponding stiffness parameter. The above mentioned limit
of fast adhesion and cross-link turnover provides explicit formulas for the
coefficients µA, µS , and µT in terms of mechanical and chemical properties
of adhesion and cross-link molecules.

A strong formulation of the Euler-Lagrange equations requires to trans-
form the domain of the last integral in (6) to B. For this purpose, we use the
maps from C(t) to BC(t) described in (4) and introduce the modified friction
coefficient and stiffness parameter

µ̂S =

{
µS
∣∣∂α∗
∂s

∣∣ in BC(t),
0 else,

µ̂T =

{
µT
∣∣∂α∗
∂s

∣∣ in BC(t),
0 else.

(7)

The expression ∂α∗

∂s refers to the inverse of the map given in (4). The strong
formulation is then given by

0 = µB∂2s
(
η∂2sF

)
+ µAηDtF − ∂s (ηλinext∂sF )

+µ̂Sηη∗∆V ± ∂s
(
µ̂T ηη∗(ϕ− ϕ0)∂sF

⊥
)
,

where the computation of the relative velocity ∆V = DtF −D∗tF ∗ ◦ ψ∗ and
of the angle between the families, cosϕ = ∂sF · (∂sF ∗ ◦ ψ∗), requires the
transformation ψ∗ between the coordinate domains.

The corresponding boundary conditions are

− µB∂s
(
η∂2sF

)
+ ηλinext∂sF ∓ µ̂T ηη∗(ϕ− ϕ0)∂sF

⊥

=

{
0 for s = −L,
±λtetherν + µM (C − C0)+ ∂α

(
∂αF
|∂αF |

)
for s = 0,

η ∂2sF = 0 for s = −L, 0.

3 Modifications and Extensions

Length Distribution and Filament Number Regulation

In the model of [34], the filament number was conserved and the length
distribution of filaments was prescribed with a fixed maximum length. In
this section the model will be extended to include the effects of capping,
branching, and severing on the filament number and length distribution. The
results partially depend on the polymerization speed, the choice of which will
be discussed below.

The changes in filament numbers by branching and capping require a dif-
ferent interpretation of the length distribution η(α, s, t). For fixed s, η(α, s, t)
will be considered as the number density of filaments of length at least −s
in terms of α. Instead of the uniform distribution η(α, 0, t) dα = dα of
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barbed ends, values of η(α, 0, t) different from one are allowed. The density
of barbed ends per leading edge length is then given by

ρ(α, t) =
η(α, 0, t)

|∂αF (α, 0, t)|

For the other family, the barbed end density ρ∗(α∗, t) is defined analogously.
With s = 0, the map between the coordinate domains (see (5)) reduces to
a map α∗(α, t), and in the following ρ∗ means ρ∗(α∗(α, t), t). In the rest of
this subsection we shall deal with fixed values of α. The dependence on α
will therefore be suppressed for ease of reading.

We start with the evolution of the number of barbed ends and assume
that it depends on the barbed end densities per unit length:

∂tη(0, t) = f (ρ, ρ∗) |∂αF (0, t)| (8)

where f (ρ, ρ∗) is the change of barbed end number per unit length and time,
modeling the effects of branching and capping at the barbed ends. Capped
filaments become inactive and are assumed to be depolymerized very fast,
such that they can be eliminated from the system immediately.

It is instructive to rewrite (8) in terms of the length x =
∫
|∂αF |dα along

the leading edge, instead of the Lagrangian variable α. With the lateral flow
velocity vl =

∫
∂t|∂αF |dα (implicitly given as part of the filament dynamics),

it can be written as

∂tρ+ ∂x(vlρ) = f . (9)

Branching is assumed to be limited by the availability of activated Arp2/3
complex at the leading edge with density a(t) (number/leading edge unit
length). Its equilibrium value in the absence of branching is denoted by a0,
the branching rate at equilibrium Arp2/3 density by κbr, and the capping
rate by κcap. This leads to the model

f = κbr
a

a0
ρ∗ − κcapρ .

With the rate crec of recruitment and activation of Arp2/3 from the cyto-
plasm, the evolution of Arp2/3 at the leading edge is governed by

da

dt
= crec

(
1− a

a0

)
− κbr

a

a0
(ρ+ ρ∗) ,

The second term reflects the fact that activated Arp2/3 is incorporated into
branches of both families. We assume that the Arp2/3 dynamics is fast
compared to branching and capping and use the quasi steady (Michaelis-
Menten) approximation

a =
a0crec

crec + κbr (ρ+ ρ∗)
, f(ρ, ρ∗) =

κbrcrecρ
∗

crec + κbr (ρ+ ρ∗)
− κcapρ .
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The model (9) has already been used in [12] with a prescribed lateral flow
velocity and with f = βρ∗/(ρ + ρ∗) − γρ. A significant difference between
our model and [12] is in the branching rate: For ρ = 0 and small values of
ρ∗, the branching rate of [12] is constant, i.e., not limited by the number
of barbed ends of the other family, while in our model it is approximately
κbrρ

∗.
An indication of the qualitative behavior of the model can be obtained

from considering a situation, where the barbed end densities do not vary
along the leading edge and are governed by the ODE system

ρ̇ = f(ρ, ρ∗) , ρ̇∗ = f(ρ∗, ρ) . (10)

It is easily seen that for κbr < κcap, i.e. capping exceeds branching, the
densities converge to 0, otherwise the non-trivial steady state

ρ = ρ∗ =
crec
2

(
1

κcap
− 1

κbr

)
=: ρref , (11)

is stable. In separate work [23] we prove that this qualitative behavior carries
over to the corresponding transport-reaction system with prescribed lateral
flow velocities.

The length distribution η(s, t) of filaments is influenced by branching
and capping through the model (8) for η(0, t), but also directly by capping,
which removes whole filaments by our above assumptions. We make the
modeling decision that newly branched filaments are capped preferentially.
This means that if branching exceeds capping, i.e., f(ρ, ρ∗) ≥ 0, we interpret
f as an effective net rate of production of new branches without further
capping, whereas in the opposite case no new filaments are nucleated and
−f is an effective rate of capping, affecting already existing filaments with
a probability independent of their length.

Degradation of filaments is also assumed to be facilitated by the action
of severing proteins such as gelsolin [3] or ADF/cofilin [42], cutting filaments
at random positions. Similarly to the capping process, we assume that rear
parts of filaments, which have been cut off, are completely decomposed im-
mediately.

Instead of using η as unknown, it is more intuitive to write the model
in terms of the density u(s, t) = ∂sη(s, t) of filaments with respect to their
length −s. Following [7, 8, 42] for the severing part, we use the model

Dtu = κsev

∫ 0

−∞

[
H(s− s′)u′ −H(s′ − s)u

]
ds′ − κcap,effu

= κsev

(∫ s

−∞
u′ ds′ + su

)
− κcap,effu ,

where u′ abbreviates u(s′, t). Cutting of a filament of length −s at the new
length −s′ occurs with the rate κsevH(s′ − s) leading to a total severing
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rate −κsevs proportional to the length. This is the simplest possible model.
More elaborate severing rates, e.g., with an account of aging of actin filament
subunits [42], could be included easily.

The effective capping rate is given, according to the discussion above, by

κcap,eff =
(−f(ρ, ρ∗))+

ρ
.

It remains to rewrite the model in terms of η(s, t) =
∫ s
−∞ u(σ, t) dσ:

Dtη = κsev s η − κcap,effη .

For a constant polymerization speed v this equation can be solved explicitly
by the method of characteristics:

η(s, t) = η(0, t+ s/v) exp

(
−κsevs

2

2v
−
∫ t

t+s/v
κcap,eff(τ) dτ

)
, (12)

where η(0, t) is given as the solution of (8). Assuming that the changes of
the polymerization velocity are slow compared to the filament dynamics, this
formula is a valid approximation also for time dependent velocities v(t).

Finally, the maximum simulation length L of filaments is defined by a
cut-off at small actin densities, i.e. a value ηmin for η. With the rough ap-
proximations of replacing η(0, t+ s/v) by η(0, t) and κcap,eff(τ) by κcap,eff(t),
L can be computed explicitly:

L(t) := −
κcap,eff(t)

κsev
+

√
κcap,eff(t)2

κ2sev
+

2v(t)

κsev
log

(
η(0, t)

ηmin

)
, (13)

resulting in the time dependent coordinate domain

B(t) = {(α, s) : 0 ≤ α < 2π, −L(α, t) ≤ s ≤ 0} . (14)

Most notably, faster polymerization leads to wider lamellipodia.

Myosin contraction

Supported by the fact that actin-myosin interaction is concentrated at the
rear of the lamellipodium, we assume that in the outer lamellipodium re-
gion covered by the FBLM this effect is negligible. Therefore we model
the action of myosin only as forces pulling the (artificial) pointed ends of
lamellipodial actin filaments along the inner boundary of the simulation do-
main. Neglecting the effect of other forces (such as substrate adhesion) in
the interior region, the pulling forces are assumed to add up to zero by the
action-reaction principle.
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The question of an appropriate direction for the pulling forces arises. We
consider two scenarios: One where the contractile bundles pull the filaments
tangentially, and one where they pull towards a central point, chosen as
the center of actin mass (without having particularly strong arguments for
this choice). Although one can argue for tangential pulling, which does not
perturb the directional order of filaments in the lamellipodium, this choice
has two disadvantages: If filaments get too tangential to the inner boundary
of the lamellipodium, tangential pulling fails to control the size of the cell.
Secondly, tangential pulling is a slightly unstable process, since it might
reinforce any small deflections of the pointed ends. For those reasons and
in order to allow more flexibility of the model, we include a mixture of both
choices.

We again use the notation of dropping the superscript ± for the family
under discussion and using ∗ for the other one. The magnitude of the tan-
gential force acting on the filament with index α is denoted by ftan(α) and
that of the centripetal force by fin(α). We define V (α) as the normalized
vector pointing from the center of mass

CM :=

∫
B
ηF d(s, α)

(∫
B
η d(s, α)

)−1
to the end F (α,−L(α)) of filament α. The forces can be included in the
boundary conditions as

−µB∂s
(
η∂2sF

)
+ ηλinext∂sF ∓ η η∗µT (φ− φ0)∂sF⊥

= η (ftan∂sF + finV ) , s = −L .

We postulate a scalar positive quantity A, which measures the size of the
contraction effect and which is chosen as A := µIP (Ac−A0)+ with the area
Ac encircled by the lamellipodium and its equilibrium value A0.

The forces ftan(α) and fin(α) are determined by the conditions that

1. the total force should be close to the current contractility A,

2. it should be split between the tangential and centripetal contributions
according to a weight γ ∈ [0, 1], and

3. the sum of all forces has to be zero.

Mathematically this is realized by minimizing∫ 2π

0
η(s = −L)

[
(ftan − γA)2

γ
+

(fin − (1− γ)A)2

1− γ

]
dα

with the constraint∫ 2π

0
η(s = −L) [ftan∂sF (s = −L) + finV ] dα = 0 , (15)
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giving

ftan(α) = γA[1−µ · ∂sF (α,−L(α))] , fin(α) = (1−γ)A[1−µ · V (α)] ,
(16)

with

µ =

(∫ 2π

0
η [γ∂sF ⊗ ∂sF + (1− γ)V ⊗ V ] dα

)−1∫ 2π

0
η [γ∂sF + (1− γ)V ] dα .

In Section 5 it will be shown that myosin pulling can effectively control cell
size, and that the contraction force allows to produce moving cells. For these
reasons we neglect the contribution of membrane tension.

Filament repulsion

We consider a repulsive effect between parallel filaments caused by Coulomb
interaction. The presence of mobile charge carriers in the cytoplasm leads to
Debye screening with a typical Debye length in the range of a few nm, such
that only local Coulomb interaction can be assumed, leading to a pressure-
like repulsion effect. The electrostatic energy

Upressure =

∫
L
ρΦ dA

is added to the potential energy, where L(t) is the area covered by the fila-
ment family under discussion at time t (again dropping the superscript ±),
ρ dA is the filament length in the infinitesimal area element dA, with

ρ =
η

det(∂αF, ∂sF )
, (17)

(where (3) has been used) and Φ is the electrostatic potential (see [41] for
a derivation from a microscopic model based on individual filaments). A
quasineutral approximation (justified by the relative smallness of the Debye
length) and an equilibrium assumption for the mobile charge carriers result
in a model for the electrostatic potential of the form Φ = Φ(ρ). As example,
the Boltzmann-Poisson model for the mobile carrier density leads to Φ =
µP log(ρ), µP > 0.

For the purpose of computing its variation, the electrostatic energy is
written in terms of the quasi-Lagrangian coordinates,

Upressure[F ] =

∫
B(t)

Φ(ρ)η d(α, s) ,

with the variation in the direction δF ,

δUpressure[F ]δF =−
∫
B
p(ρ) [det(∂αF, ∂s(δF ))+det(∂α(δF ), ∂sF )] d(α, s).
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The considerations below will show that for stability reasons the pressure
p(ρ) = Φ′(ρ)ρ2 has to be a nondecreasing function of the density ρ, which
holds for the Boltzmann-Poisson model p(ρ) = µPρ. Although we expect the
pressure only to act in the direction orthogonal to the filaments, this con-
sideration has not entered the discussion so far. However, the action of the
pressure along filaments is eliminated by the (incompressibility) constraint
(1).
Model problem: It is instructive to look at a one-dimensional model prob-
lem, where points with Lagrangian label α ∈ R move along a line with
positions x(α, t) ∈ R (assumed a strictly increasing function of α). The den-
sity of points is then given by ρ = 1/∂αx. The electrostatic energy takes
the form Upressure[x] =

∫
Φ(1/∂αx) dα. Its (L2-)gradient is given by ∂αp(ρ).

If only the Coulomb interaction and friction (i.e. adhesions) are taken into
account, the dynamics is governed by the gradient flow

∂tx = −∂αp(ρ) .

With the continuity equation (in Eulerian coordinates) ∂tρ+ ∂x(ρ ∂tx) = 0,
this can be rewritten in Eulerian coordinates as

∂tρ = ∂2xp(ρ) = ∂x(p′(ρ)∂xρ) .

This is a nonlinear diffusion equation, where nonnegativity of the diffusivity
p′(ρ) is necessary for stability.

For the lamellipodium model, we may hope that the pressure term, by
causing diffusion in the α-direction, avoids intersections within a family and
thereby stabilizes the system by ensuring that the modeling assumptions are
not destroyed by the dynamics. This stabilizing effect is sometimes useful
for numerical simulations as demonstrated in Section 5.

Polymerization Rate

Polymerization rates and, consequentially, polymerization speeds v(α, t) are
subject to different regulatory mechanisms. We consider reaction to chemo-
tactic signals, where the cell senses concentration gradients of a chemoat-
tractant and translates them to varying polymerization rates. This leads
to cell polarization and directed movement. The chemoattractant binds to
receptors on the cell membrane that can trigger signaling pathways produc-
ing intracellular gradients along the membrane reflecting the distribution of
occupied receptors. For example, higher concentrations of PIP3 have been
observed towards chemotactic signals at the leading edge of Dictyostelium
discoideum and of neutrophils [15]. This in turn is expected to induce a local
upregulation of actin polymerization [13, 56].

We consider constant planar chemoattractant gradients with the chemoat-
tractant concentration S(x, y) = S0 + S1(x cos(ϕca) + y sin(ϕca)), where S1
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determines the strength of the gradient and ϕca its direction. We model
a chemotactic response independent of the strength of the chemoattractant
gradient. A normalized internal quantity defined along the leading edge is
given by

dca(α, t) =

S(F (α, 0, t))− min
β∈[0,2π)

S(F (β, 0, t))

max
β∈[0,2π)

S(F (β, 0, t))− min
β∈[0,2π)

S(F (β, 0, t))

Typically, PIP3 is only observed at a part of the leading edge, possibly as
consequence of a thresholding phenomenon of the signaling pathway. To
account for this, we choose a threshold c ∈ [0, 1] and define

I(α, t) =

{
dca(α,t)−c

1−c for dca(α, t) > c ,

0 else,
(18)

which can be interpreted as a normalized PIP3 concentration. The desired
polymerization speed is chosen between prescribed minimal and maximal
values:

vopt(α, t) = vmin + I(α, t) (vmax − vmin) .

Finally, the polymerization speed is reduced by the force required to bend
the leading edge outwards. On the other hand, due to filament tethering, we
expect some acceleration of polymerization at leading edge segments which
are curved inwards. These effects are described by an ad-hoc model for
the polymerization speed v, depending on the signed local curvature κ(α)
(positive for convex leading edge regions):

v =
2vopt

1 + exp(κ/κref )

4 Full New Model

The functions and variables used are the same as in the original model de-
scribed in Section 2. To account for the different width of the lamellipodium
for different filament indices α, we replace B by

B(t) := {(α, s) |α ∈ [0, 2π), s ∈ [−L(α, t), 0]}

where L(α, t) is given by (13), as already introduced in (14).
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The full weak formulation reads

0 =

∫
B(t)

µB∂2sF · ∂2sδF︸ ︷︷ ︸
bending

+µADtF · δF︸ ︷︷ ︸
adhesion

+λinext∂sF · ∂sδF︸ ︷︷ ︸
in-extensibility

 η d(α, s)

−
∫
B(t)

p(ρ)
[
det (∂αF, ∂sδF ) + det (∂αδF, ∂sF )

]
︸ ︷︷ ︸

pressure

d(α, s)

+

∫
C(t)

µS (DtF −D∗tF ∗)·δF︸ ︷︷ ︸
cross link stretching

∓µT (φ− φ0) ∂sF⊥ ·∂sδF︸ ︷︷ ︸
cross link twisting

ηη∗ d(α, α∗)

+

∫
(0,2π]

(ftan∂sF + finV ) · δFη
∣∣∣
s=−L

dα︸ ︷︷ ︸
myosin contraction

∓
∫
(0,2π]

λtetherν · δF
∣∣∣
s=0

dα︸ ︷︷ ︸
tethering

.

The filament dependent magnitude of the inner pulling force ftan and fin are
given by (16) and ρ is defined by (17). The filament densities η(α, s, t) are
determined by (8) and (12).

For the strong form, i.e. the Euler Lagrange Equations, the modified
stiffness parameters are defined analogously as in (7).

0 = µB∂2s
(
η∂2sF

)
− ∂s (ηλinext∂sF ) + µAηDtF (19)

+ ∂s

(
p(ρ)∂αF

⊥
)
− ∂α

(
p(ρ)∂sF

⊥
)

± ∂s
(
ηη∗µ̂T (φ− φ0)∂sF⊥

)
+ ηη∗µ̂S (DtF −D∗tF ∗) ,

where in the equation for F+, the derivatives of F− are evaluated at
(α−(α, s, t), s−(α, s, t)) and vice versa. The corresponding boundary condi-
tions are

−µB∂s
(
η∂2sF

)
− p(ρ)∂αF

⊥ + ηλinext∂sF ∓ ηη∗µ̂T (φ− φ0)∂sF⊥ (20)

=

{
η (ftan(α)∂sF + fin(α)V (α)) for s = −L ,
±λtetherν for s = 0 ,

η∂2sF = 0 for s = −L, 0 .

5 Numerical Approach, Simulation Results, and Dis-
cussion

In this section we sketch the numerical method for the solution of (19),
(20), described in more detail in [22]. Simulations of model problems will
demonstrate the effect of the new ingredients to the model introduced in this
work. Finally, the full model is used to simulate the reaction of a cell to a
chemotactic signal.
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Numerical Method

The numerical approximation of (19), (20) is a formidable task. Filament
families as described here are a new type of continuum, where both analytical
and numerical approaches are still in early states of development (see [33, 35]
for first results). The new numerical method used here will be described
only briefly, since it is the subject of parallel work [22], which we refer to for
details.

Instead of dealing with the time-dependent domains B±(t), the equations
for both families are transformed to the rectangular and time-independent
computational domain [0, 2π]× [−1, 0] by rescaling the variable s. A rectan-
gular grid with uniform steplengths is used. The grid lines in the s-direction
can be interpreted as computational filaments, each discretized by the same
number of grid points, independent of its (time dependent) length.

The strong anisotropy in (19) is reflected in the choice of the finite element
space for the spatial discretization. A tensor product space is used, where
on each grid cell each component of F is represented by a fourth order
polynomial, linear in α and cubic in s. These interpolate positions and first
s-derivatives at the nodes. In other words, each computational filament is
approximated by a cubic spline with linear interpolation in between. The
finite element space is conforming for the weak formulation of (19), being
continuous in α and C1 in s and, thus, a subspace of H1

α((0, 2π), H2
s (−1, 0)).

An implicit-explicit time discretization is used, based on a linearization.
The evaluation of the interaction terms between the two filament families
requires approximations of the mappings ψ±, derived from (4), in order to
represent filaments of one family on the grid of the other. The inextensibility
constraint has been implemented by an Augmented Lagrangian approach.

Effects of new model ingredients

Filament Number Regulation: Branching and capping regulate the
number of barbed ends. This is of particular importance when the poly-
merization rate varies along the leading edge. For an explanation the lateral
flow phenomenon is needed, i.e. the movement of barbed ends along the
leading edge, caused by polymerization and the inclination of filaments. In
our model, the (+)-family filaments typically move to the left (relative to the
protrusion direction), and the (−)-family filaments to the right. Since bigger
polymerization speeds increase the lateral flow, this would lead to filament
depletion in regions with higher polymerization activity without the regu-
latory effect of branching and capping. This typically reduces cell motility
(see the paragraph on chemotaxis below and Figure 6).

To observe the regulation more directly, we started with a radially sym-
metric cell, where the barbed end density along the leading edge is constant
and equal to the equilibrium value (11). Then the density of barbed ends of
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the (+)-family is perturbed locally. In the subsequent simulation a constant
polymerization speed is used. Figure 2 shows the evolution of the barbed
end densities ρ± for both families. If there is no branching and capping, the
perturbation in η+ is simply moved to the left by lateral flow without any
changes (data not shown). The situation for ρ+ is somewhat more compli-
cated, because the geometry changes brought about by the higher number
of filaments affects the number of filaments per length. Both ρ+ and ρ−

decrease initially because the membrane is locally pushed outward, making
the cell slightly larger. The lateral flow is also visible here by the shift of the
maximum filament number of ρ+.

For the case where branching and capping are active, one can see how
initially the number of (−)-family filaments increases because of branching.
Additionally ρ± drops everywhere, again because the cell becomes slightly
larger. However the dynamics eventually force the number of filaments to
return to its equilibrium value everywhere.

Actin-Myosin Interaction: Constraint (15) ensures that the myosin pulling
on the inside of the lamellipodium is an internal force. We define A0 = r20π.
Figure 3 shows the evolution of the inner radius of a rotational symmet-
ric cell in time for different values of r0 and µIP . It can be observed that
smaller equilibrium areas and a stronger myosin force (i.e. larger µIP ) leads
to smaller cell sizes. This shows that the actin-myosin interaction helps to
control the cell size. In the section on chemotaxis below it will be shown
that a moving cell can pull its rear due to this effect.

Pressure: The pressure term is a force acting only within one family. To
demonstrate its effect one can therefore look at a simplified model for one
family only with: constant η, i.e. all filaments of the same length, no poly-
merization or bending, and only the tangential component of the myosin
force (γ = 1). If additionally assuming that the cell is rotationally symmet-
ric, it is possible to calculate explicitly a stationary solution. Starting with
rotationally symmetric perturbations we numerically observed convergence
to the analytical steady state. This has been supported by a linearized sta-
bility analysis [19]. The simplified system as well as the simulation results
can be found in the Supplemental Material.

Chemotaxis

Finally we want to demonstrate the potential of the full new model, in par-
ticular its ability to simulate directed cell movement in the presence of a
chemotactic signal, direction changes, and various cell shapes under dif-
ferent assumptions on the internal signalling network. We point out that
cell polarization and directed movement induced by a chemotactic signal as
considered here, has to be distinguished from the spontaneous polarization
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Figure 2: Barbed end density perturbation with and without branching/capping:
The density of left-moving filaments (red) is perturbed initially, that of right-moving
filaments (dashed, blue) not. Thick lines represent the current state, thin lines
represent the state at time t = 0. The left column shows the evolution in the
absence of branching and capping, i.e. κbr = κcap = 0. In the right column
branching and capping are active with parameters as shown in Table 1, except
µP = 0.

observed in certain cell types such as fish keratocytes. It seems to be agreed
upon that this effect requires actin-myosin interaction in the lamellipodium
as a symmetry breaking mechanism [17, 54], which the FBLM in its present
form is not able to describe.

We want to point out that we are aiming at a proof of principle and
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Figure 3: Effect of the actin-myosin interaction: Comparison of the evolution of
the radius of a circular cell for different values of r0 and µIP . The horizontal lines
mark the values of r0. All parameters as in Table 1 except the polymerization speed
vopt = 0.5µmmin−1.

that serious comparisons with and fitting to experimental observations are
the subject of ongoing work. In particular, although our parameter values
(discussed below) and results are in realistic ranges, we do not claim the
simulated cell shapes to be close to experiments for any particular cell type.

Starting to move: The following experiment mimics chemotaxis, i.e. a
situation where the cell, in reaction to a chemical stimulus (chemoattractant)
increases its polymerization rate ([13],[56]). For the effect of the chemotactic
signal on the polymerization speed we use the model introduced in Section
3. A time evolution starting with a rotationally symmetric cell put in a
chemical gradient oriented to the right is shown in Figure 4. The first visible
effect is that the lamellipodium on the right grows wider. The reason is
that the increased polymerzation rate also increases the maximum filament
length as modeled in (13). Next the cell starts moving, because filaments
grow faster on the right. Additionally, the wider lamellipodium at the cell
front exerts more friction than the thinner one at the cell rear. Eventually
the cell shape remains constant and the cell moves steadily towards the right
with a speed of about 3.9µm/min, which is in the biologically observed range
([49], [13]). In Figure 5 the two (numerical) steady states, the stationary cell
and the moving cell, are shown together with some data. For the stationary
cell the number of barbed ends is constant along the leading edge, whereas
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in the moving cell more filaments can be found at the back. To maintain
this distribution the cell has to balance branching, capping and movement
of filaments. For the stationary cell this simply means having branching and
capping rates equal everywhere. For the moving cell, branching dominates at
the front, whereas capping exceeds branching in the back. Additionally, the
F-actin flow, i.e. the velocity of polymerized actin relative to the substrate
is depicted in Figure 5. For the stationary cell, the flow is rather slow
and uniform. For the moving cell one can observe small retrograde flow at
the cell front and faster flow in the movement direction at the back, where
retraction takes place. The flow speeds and distributions found are similar
to those observed in [12].
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Figure 4: Polarization and movement in the presence of a chemical gradient: A
time series is shown, where the shading represents filament number, thin dashed
lines show filament shape, and the thick filaments show the movement of a left
moving (red) and right moving (blue) filament with time. Parameter values as
in Table 1 with the internal signal threshold c = 0. For a movie of the simulation
including a visualization of the stochastic filament dynamics see the Supplementary
Material.
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Figure 5: Nonmoving vs. moving steady state: Left side pictures show data along
the leading edge. On the horizontal axes, 0 and 1 correspond to the cell front and
0.5 to the cell rear. The upper left picture shows the barbed end density for the
stationary steady state (blue) and the moving steady state (red). The lower left
picture shows the branching (solid) and capping (dashed) rates. The two pictures
on the right show the F-actin flow field, i.e. the velocity of polymerized actin
relative to the substrate. Top: Stationary steady state. Botton: Moving steady
state. Arrow length and color (values of the colorbars in µm/min) represent speed.
Parameters as in Table 1.

Why filament number regulation? Figure 6 demonstrates the impor-
tance of filament number regulation by branching and capping. The upper
picture shows how for a cell with filament number regulation the filament
densities at the rear and at the front remain close to each other and quite
steady over time, whilst in the unregulated case they move away from each
other. This is because in a cell where regulation is absent, filaments are
transported to the back by lateral flow, which leads to an accumulation of
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filaments at the cell rear, whereas the pulling front is depleted of filaments.
The middle picture shows how this affects protrusion speed: In the regulated
case rear retraction and front protrusion speeds approach the same value, as
is necessary for constant movement, whilst in the unregulated case rear re-
traction is slower and protrusion velocities decrease with time. In the time
series below, one can see that this also affects cell shape: In the unregulated
case filaments accumulate in the back, leading to a more prolonged shape.
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Figure 6: Movement with and without filament number regulation: First row:
Retraction speed at the rear (dashed) and protrusion speed (solid) at the font of
the cell. Red lines (thick) show a cell, which can regulate filament number, blue
(thin) lines a cell which cannot. Second row: Same as above, but showing the
barbed end densities at the rear (dashed) and the front (solid) for the regulated
(thick) and unregulated (thin) case. Third and fourth row of pictures: Cell shapes
at different times. Shading represents actin density, thin gray lines the filament
shape. Third row (blue, thin leading edge): Cell without regulation. Fourth row
(red, thick leading edge): Cell with regulation. Parameters as in Table 1, except in
the unregulated case κbr = κcap = 0.

A turning cell: One can ask the question if the steady state shape of a
moving cell is affected by the initial conditions. A reasonable scenario for
investigating this question, is a situation where the chemoattractant gradient
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is gradually turned by 45 deg. Figure 7 shows the corresponding evolution.
The final shape is very close to the original shape turned by 45 deg.

Figure 7: A turning cell. The picture shows the cell shapes of a turning cell over
9min. Top left inset: The direction of the chemoattractant gradient as a function
of time. Bottom right inset: The initial state (red, dashed) and the turned final
state (blue, solid) are compared. Parameter values as in Table 1. For a movie of
the simulation including a visualization of the stochastic filament dynamics see the
Supplementary Material.

Various moving shapes: The shape of the moving cell strongly depends
on the transduction of the chemotactic signal. In Figure 8A–C three sce-
narios are depicted, where only a certain fraction of the leading edge senses
the stimulus. The more "local" the effect of the stimulus is, the longer the
cell gets, because a smaller fraction of filaments pull the cell forward. The
differences have been created in the model by variation of the threshold
parameter c in (18). The fourth shape in Figure 8D shows results of an al-
ternative mechanism, where not the polymerization speed but the branching
rate is upregulated by the signal. The upregulating mechanism is as in 8A
with a maximally threefold increase of the branching rate leading to a much
denser actin network at the front.
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Figure 8: Different shapes of moving cells: Left pictures, A–C: Polymerization
velocity along the leading edge (0 and 1 representing the cell front and 0.5 the cell
rear). Left picture, D: Barbed end density along the leading edge. Right pictures:
Final shapes. Shading represents actin density, thin lines in the cells (black, dotted)
the filament shapes and lines at the leading edge (thick, blue) indicate the regions
affected by the stimulus. A–C: The polymerization rate is affected, A: c = 0, B:
c = 0.5, C: c = 0.7. D: The branching rate is affected, c = 0. Parameter values as
in Table 1.
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Parameters values: The parameter values used for the simulation are
the ones summarized in Table 1 unless stated differently. Where availabe,
values available in the literature have been used (e.g. for µB, µA, A0, v

±).
Values for the branching and capping parameters κbr, κcap, crec have been
chosen in order to give an equilibrium value of the total density of pushing
filaments of 2ρref = 90 filaments per µm leading edge (compare to (11)),
which has been observed in real cells [16]. κsev has been chosen in order to
give a lamellipodial width in the relevant range of several µm [47]. Other
parameters however (µS , µT , µP , µIP , κref ) result from averaging processes
in the derivation of the model (see [34]). In principle they can be derived
from molecular properties, but they depend in a complicated way on quan-
tities, where not much experimental data is available, such as mechanical
properties of cross-linker molecules, their binding and unbinding rates, and
their densities. These parameters can be used in a fitting process. Values
within reasonable ranges have been chosen here.

30



Table 1: Parameter Values

Var. Meaning Value Comment

µB bending elasticity 0.07pNµm2 [10]
µA macroscopic friction

caused by adhesions
0.14pNminµm−2 measurements in [20,

32], estimation and cal-
culations in [36, 33, 34]

κbr branching rate 10min−1 order of magnitude from
[12]

κcap capping rate 5min−1 order of magnitude from
[12]

crec Arp2/3 recruitment 900µm−1min−1 chosen to fit 2ρref =
90µm−1 [16]

κsev severing rate 0.38min−1µm−1 chosen to give lamel-
lipodium widths as de-
scribed in [47]

µIP actin-myosin interaction
strength

0.1pNµm−2

A0 equilibrium inner area 450µm2 order of magnitude as in
[54, 46]

vmin minimal polymerization
speed

1.5µm/min−1 in biological range

vmax maximal polymeriza-
tion speed

8µm/min−1 in biological range

µP pressure constant 0.05pNµm
µS cross-link stretching

constant
7.1×10−3pN minµm−1

µT cross-link twisting con-
stant

7.1× 10−3µm

κref reference leading edge
curvature for polymer-
ization speed reduction

(5µm)−1

Discussion

The lamellipodium is a complex system, whose dynamics is governed by a
host of chemical and mechanical processes driven by a large number of dif-
ferent proteins. The FBLM provides a modeling framework where, one the
one hand, most of the relevant processes can be accounted for and, on the
other hand, numerical simulations of the resulting models remain feasible.
This is achieved by two-dimensional modeling on the molecular level, based
on the assumptions of two dominant filament directions, and a subsequent
upscaling, leading to a continuum description.
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The version of the model presented here accounts for bending, cross-linking,
substrate adhesion, repulsion, polymerization, severing, branching, and cap-
ping of filaments as well as membrane tension and contractive effects. En-
riched by a simple description of chemotactic signaling, it is able to predict
cell polarization and directed movement. From the simulation results, data
can be extracted, which are also available from light microscopy or electron
tomograms, such as actin density and predominant filament directions.
Further model development is needed and is the subject of future work. Most
importantly, it has to be demonstrated that a full parametrization by com-
parison to experimental data is possible. In the present state, biologically
reasonable parameter values are used and give quantitatively reasonable re-
sults, but to achieve a good fit for a particular experiment is still to be done.
Various extensions of the model are conceivable. Examples are the effects
of hydrostatic pressure induced by contraction on the behavior of the mem-
brane, or actin-myosin interaction within the simulated lamellipodium re-
gion. An important part of the future development is the coupling of the
FBLM with models for other cell compartments, such as contractive actin-
myosin bundles, filopodia, the nucleus, and microtubuli.
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