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1 Introduction

Ecology is a subdiscipline of biology. It can be defined by (according to
Wikipedia): Ecology is the scientific study of the relation of living organ-
isms with each other and their surroundings. A formalization in mathe-
matical language has taken place for subfields, most importantly that of
population ecology, dealing with the effects of births and deaths on the de-
velopment of populations, i.e. groups of individuals of the same species,
sharing a living environment (habitat). A realistic description of the dy-
namics of a population might involve the interaction of the population with
the environment and with other populations, but also the internal structure
(e.g. age or size structure) of the population, or its spatial distribution in
the environment. For the purpose of modeling the spatial distribution, we
shall consider large ensembles of what we call particles. This expression is
borrowed from physics. Here, a particle will be any object able to move
individually, and which is small compared to the length scales we are in-
terested in. This leads to the idealization of point particles. Depending on
the situation these can be molecules, cells, or even multicellular organisms.
Under the assumption of (partially) random motion of the individual parti-
cles, we shall derive mathematical models for the movement of large particle
ensembles.

What is a pattern? In a scientific context this term usually has a more
general meaning than in colloquial English. It stands for any form of rec-
ognizable order. This last expression in turn has a probabilistic defintion
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which distinguishes it from its opposite, chaos. We only state an example:
If, in the room of a teenager, the probability to find clothes in the closet
is at least marginally higher than the probability to find them in any other
place, this already constitutes a form of order, although the average parent
might not agree with this defintion.

In this course we shall be interested in understanding mechanisms for
the creation of patterns, and our motivation will be taken from biology.
Some of the most fascinating and still poorly understood pattern formation
mechanisms occur in the development of embryos. The wider term mor-
phogenesis, i.e. the creation of different forms and shapes, is often used
in this context. Meta-theories often state the existence of morphogenes as
the carriers of structural information. Pattern formation is then described
as a process, where many morphogenes of different types interact with each
other and with the environment, influencing their creation, annihilation, and
movement.

2 Time discrete, spatially homogeneous, single species
population dynamics

In this section models for the time evolution of the number of individuals in a
population will be considered. We neglect the interaction with other species
(see Section 4) and possibly varying properties of individuals within the same
population, which would be considered in structured population models (see
Section 5). As a third assumption we consider populations with no or small
overlap between generations, justifying a time discrete description. Typical
models assume that the size Nk+1 of the population in generation (k + 1)
only depends on the size of the population in the kth generation, i.e. there
is a recursion of the form

Nk+1 = f(Nk) . (1)

The simplest assumption is that of a constant birth rate r: f(N) = rN .
In this case the recursion can be solved easily: Nk = N0r

k, i.e. for r > 1
the population grows exponentially, and for r < 1 it dies out. For most
situations this model is too simple, of course.

2.1 A historical example: the Fibonacci numbers

As a historical remark we describe what can be considered as one of the
first contributions to Mathematical Biology. In the year 1202 Leonardo di
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Pisa (later also called Fibonacci) published a book on arithmetic, where
he proposed a simple model for the proliferation of rabbits. The modeling
assumption is that rabbits reach adulthood after one month and that one
month later each couple (female + male) has two babies (again male +
female) and the same every month thereafter (attention: wrong explanation
in [6]).

Neglecting death of rabbits, these assumptions lead to the recursion

Nk+1 = Nk +Nk−1

for the numberNk of couples in the kth generation. In contrast to (1) this is a
two-stage recursion, where the population size is determined by two previous
generations. Starting with a pair of newborn rabbits, i.e. N0 = 1, no new
rabbits are born after the first month, i.e. N1 = 1. From the second month
on the recursion can be used, producing the so called Fibonacci sequence

1, 1, 2, 3, 5, 8, 13, . . .

In the following an explicit formula for its terms will be derived. The first
observation is that the Fibonacci recursion

uk+1 = uk + uk−1 , k ≥ 1 (2)

constitutes an (infinite) system of homogeneous linear equations. Therefore
the set of all solutions is a vector space. Since u0 and u1 can be chosen
arbitrarily and determine the sequence uniquely, this vector space is two-
dimensional. A basis {{ak}, {bk}} can be determined by

a0 = 1 , a1 = 0 , ak+1 = ak + ak−1 , k ≥ 1 ,
b0 = 0 , b1 = 1 , bk+1 = bk + bk−1 , k ≥ 1 ,

leading to ak = Nk−2 und bk = Nk−1 für k ≥ 2. Every solution of the
recursion can be written as

uk = u0ak + u1bk , k ≥ 0 .

Without an explicit formula for ak und bk, this is not very helpful, however.
We shall derive an explicitly computable basis. Motivated by the general
solution of the linear one-step recursion above, we make the ansatz uk = λk.
This leads to the quadratic equation

λ2 = λ+ 1 ,
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with the solutions

λ1,2 =
1±
√

5
2

,

(where λ1 is the golden ratio or sectio aurea). Thus, an explicit basis for the
set of solutions is given by {{λk1}, {λk2}}, and every solution has the form

uk = cλk1 + dλk2

with suitable constants c and d. In particular, the Fibonacci sequence can
be written as

Nk =
1
2

(
1 +

1√
5

)
λk1 +

1
2

(
1− 1√

5

)
λk2 .

For the behavior after many generations it is important to note that |λ1| > 1
and |λ2| < 1. For large values of k this implies

Nk ≈
1
2

(
1 +

1√
5

)
λk1 ,

i.e. the Fibonacci sequence is approximately equal to a solution of the one-
step recursion uk+1 = λ1uk.

2.2 The logistic map – chaos

We return to population models in the form of one-step recursions (1) and
note that the linear model f(N) = rN cannot describe populations which
neither die out nor grow above all bounds. In a limited environment it
seems reasonable to assume that the growth rate depends on the size of the
population, getting smaller for larger populations. In the simplest model
of this kind, the constant growth rate r is replaced by r(1 − Nk/Nmax),
producing the logistic map f(N) = rN(1−N/Nmax) as the right hand side
of (1):

Nk+1 = rNk

(
1− Nk

Nmax

)
.

Obviously, Nmax is the largest sensible value of the population size, since
otherwise the population size would be predicted to be negative in the fol-
lowing generation. We therefore require that f maps the interval [0, Nmax]
into itself. This leads to the restriction r ≤ 4 for the growth rate of small
populations. The scaling uk := Nk/Nmax produces the simplified recursion

uk+1 = ruk(1− uk) , (3)
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which will keep us busy for the rest of this section. In contrast to what
we did so far, (3) is nonlinear, and explicit formulas for general solutions
cannot be expected. We shall try instead to derive qualitative statements
on the long time behavior of solutions. Our basic assumptions will be

0 < r ≤ 4 , 0 ≤ u0 ≤ 1 ,

guaranteeing, that 0 ≤ uk ≤ 1 holds for all k ≥ 0. It will turn out that
the long time behavior of typical solutions strongly depends on the value of
the parameter r. Easily understandable is the situation for r < 1. Since
obviously uk+1 ≤ ruk, complete induction easily shows uk ≤ rku0, implying
that all solutions converge to zero as k →∞, and the population dies out.

This is a good point to start introducing some terminology from the
theory of dynamical systems. The recursion (3) with the restriction 0 <
r ≤ 4 is an example for a dynamical system on the state space [0, 1]. This
means that every initial state u0 in the state space leads to a time dynamics
remaining in the state space. With u0 = 0 the recursion produces the
constant solution uk = 0, k ≥ 0. For this reason, 0 is called a stationary
point. Stationary points can be determined as solutions u of the equation
u = ru(1− u).

The important question of stability of stationary points arises, dealing
with the dynamics, when the initial state is chosen close to the stationary
point. A stationary point is called stable, if the dynamics remains close to
the stationary point, whenever starting close enough to it. More precisely
(but harder to understand):

Definition 1 The stationary point u is called stable, if for every ε > 0
there exists δ > 0, such that for all u0 in the state space satisfying |u0−u| <
δ, |uk − u| < ε, k ≥ 0, follows. Otherwise, the stationary point is called
unstable.

In a stricter version it is required that every sequence starting close enough
to the stationary point converges to it:

Definition 2 The stationary point u is called asymptotically stable, if
there exists δ > 0, such that for all u0 in the state space satisfying |u0−u| <
δ, limk→∞ uk = u holds.

Our observations above show that for r < 1 the stationary point u = 0 is
asymptotically stable.

Consider a general one-stage recursion

uk+1 = f(uk) (4)
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with a stationary point u = f(u). Since stability is a local property, it seems
reasonable to use the linear approximation of f around u. With vk = uk−u,
this leads to the approximative recursion

vk+1 = f ′(u)vk .

This is called the linearization of (4) at u = u. The explicit solution vk =
f ′(u)kv0 of the linearized recursion makes the following result plausible:

Theorem 1 Let f : [a, b]→ [a, b] be twice continuously differentiable. The
stationary point u of the recursion (4) is asymptotically stable, if |f ′(u)| < 1,
and unstable, if |f ′(u)| > 1.

Proof: With the definition vk = uk − u, Taylor expansion gives

vk+1 = f(uk)− f(u) = f ′(u)vk + f ′′(ũk)v2
k/2 , (5)

with ũk ∈ [a, b]. As a consequence of the continuity on the closed interval
[a, b] of the second order derivative, |f ′′(ũk)| ≤M holds and, thus

|vk+1| ≤ |vk|
(
|f ′(u)|+ |vk|M/2

)
.

In the case |f ′(u)| < 1, we choose δ := (1 − |f ′(u)|)/M and r := (1 +
|f ′(u)|)/2 < 1. Complete induction easily shows that |v0| ≤ δ implies the
estimate |vk| ≤ rkδ → 0 für k → ∞, proving the first statement of the
theorem.

For |f ′(u)| > 1, we deduce from (5) that

|vk+1| ≥ |vk|(|f ′(u)| − |vk|M/2)

holds. With |vk| ≤ ε := (|f ′(u)| − 1)/M and r := (1 + |f ′(u)|)/2 > 1, we get

|vk+1| ≥ r|vk| ,

implying that for arbitrarily small |v0|, |vk| > ε holds after a finite number
of steps, which is equivalent with instability of u.

Remark 1 In the critical case |f ′(u)| = 1 anything is possible, as the ex-
amples uk+1 = uk(1 ± uk) and uk+1 = uk with [a, b] = [0, 1] and u = 0
show.

Let us return to the specific recursion (3). Theorem 1 shows that for
increasing values of the parameter r, the stationary point u1 = 0 looses its
stability at r = 1.
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Definition 3 For a parameter dependent dynamical system a bifurcation
point is a point in parameter space, such that in arbitrarily small neighbor-
hoods the dynamical system possesses qualitatively different long time behav-
ior.

Apparently r = 1 is a bifurcation point for (3). The behavior in its
neighborhood can be understood by considering the second stationary point
u2 = 1− 1/r, which belongs to the state space for r ≥ 1. At the bifurcation
point both stationary points coincide. The identity f ′(u2) = 2 − r shows
that u2 is asymptotically stable for 1 < r < 3. At the bifurcation point
r = 1, an exchange of stability between the stationary points u1 = 0 and
u2 = 1− 1/r occurs.

At the second bifurcation point r = 3 the stationary point u2 also looses
its stability. The behavior of the dynamical system for r > 3 can be under-
stood by analyzing the sequences zk := u2k, k ≥ 0, satisfying the recursion

zk+1 = ru2k−1(1− u2k−1) = r2zk(1− zk)(1− rzk(1− zk)) . (6)

Besides u1 = 0 and u2 = 1 − 1/r, it possesses (for r > 3) the additional
stationary points

z3,4 =
1
2r

(
1 + r ±

√
(r + 1)(r − 3)

)
.

It is easily checked that z3 = f(z4) and z4 = f(z3), i.e. the points z3

and z4 constitute a periodic orbit with period 2 of the original recursion (3).
Note that at the bifurcation point r = 3 the periodic orbit grows out of the
stationary point u2: u2 = z3 = z4 = 2/3 for r = 3.

The results described in the following are not as easy to check. It can be
shown that z3 and z4 are asymptotically stable stationary points of (6) for
r > 3, as long as r remains close enough to the value 3. This implies asymp-
totic stability of the periodic orbit of the recursion (3), where the meaning
of this statement should be clear without an exact definition. This stability
is lost at another bifurcation point r = r4. The bifurcation is similar to the
one at r = 3: From each of the stationary points z3 and z4 of the twice
iterated map f ◦ f , two new stationary points of the four times iterated
map f ◦ f ◦ f ◦ f are created, which together constitute a stable periodic
orbit with period 4 of (3). This kind of bifurcation event is called period
doubling. For increasing values of r a sequence of period doublings occurs
at the bifurcation points r4 < r8 < r16 < . . . This sequence converges to
rc < 4. Typical sequences created by (3) with r > rc do not exhibit any
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recognizable order. This fact was a sensational finding (of the 1970s) and
has been called deterministic chaos. An explicit example for a sequence
with chaotic behavior is

uk = sin2(2k) ,

a solution of (3) with r = 4.

3 Time continuous, spatially homogeneous, single
species population dynamics

Verzweigungen

Eindimensionale Dynamik ist also recht langweilig. Lösungen konvergieren
entweder gegen stationäre Punkte oder verabschieden sich Richtung ±∞.
Nun wollen wir allerdings unsere Fragestellung verallgemeinern und Familien
von dynamischen Systemen betrachten, indem wir die rechte Seite der Differ-
entialgleichung von Parametern abhängig machen. Beginnen wir mit eindi-
mensionalen Sytemen, die von einem skalaren Parameter r ∈ IR abhängen,
d.h. wir betrachten Differentialgleichungen der Form

ẏ = f(y, r) mit f ∈ C∞(IR2) .

Die rechte Seite soll also nicht nur vom Zustand y, sondern auch vom Param-
eter r auf glatte Art und Weise abhängen. Unser Interesse gilt Situationen,
in denen Änderungen des Parameterwertes zu qualitativen Änderungen in
der Dynamik führen, d.h. zu Änderungen in der Anzahl, der Anordnung
bzw. der Stabilität stationärer Punkte. Wir sagen, dass am Parameterwert
r = r0 eine Verzweigung auftritt, wenn r0 Parameterbereiche mit qualitativ
unterschiedlicher Dynamik trennt.

Zunächst beschreiben wir Situationen, in denen Verzweigungen ausgeschlossen
sind.

Theorem 2 Sei B ⊂ IR eine beschränkte offene Teilmenge des Phasen-
raumes und r0 ∈ IR ein Parameterwert. Seien alle in B liegenden sta-
tionären Punkte (y) des dynamischen Systems ẏ = f(y, r0) hyperbolisch
(f(y, r0) = 0, ∂f/∂y(y, r0) 6= 0) und es gäbe keine stationären Punkte auf
∂B. Dann gibt es endlich viele davon, und es existiert ein ε > 0 sodass für
|r−r0| < ε das dynamische System ẏ = f(y, r) gleich viele stationäre Punkte
hat, die auch alle hyperbolisch sind und die dieselben Stabilitätseigenschaften
wie die entsprechenden stationären Punkte von ẏ = f(y, r0) besitzen.
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Proof: Nach dem Hauptsatz über implizite Funktionen sind hyperbolische
stationäre Punkte isoliert. Gäbe es unendlich viele in der beschränkten
Menge B, dann müssten sie einen Häufungspunkt besitzen. Der wäre wegen
der Stetigkeit von f dann auch ein stationärer Punkt, der allerdings nicht
isoliert ist und daher nicht hyperbolisch sein könnte.

Aus dem Hauptsatz für implizite Funktionen folgt auch, dass für je-
den stationären Punkt y und für r nahe genug bei r0 eine Lösung ỹ der
Gleichung f(ỹ, r) = 0 existiert, für die ∂f/∂y(ỹ, r) 6= 0 gilt, d.h. dass ỹ
ein hyperbolischer stationärer Punkt von ẏ = f(y, r) ist. Der Hauptsatz
über implizite Funktionen sagt weiters, dass der stationäre Punkt ỹ in einer
Umgebung von y eindeutig ist. Teilt man also B in kleine Umgebungen
der stationären Punkte von ẏ = f(y, r0) und den Rest, dann folgt aus der
Vorzeichenbeständigkeit stetiger Funktionen, dass für r nahe bei r0 im Rest
keine stationären Punkte von ẏ = f(y, r) existieren, und dass es in jeder
der Umgebungen genau einen hyperbolischen stationären Punkt gibt, der
dieselben Stabilitätseigenschaften wie der entsprechende stationäre Punkt
von ẏ = f(y, r0) besitzt.

Die Dynamik von eindimensionalen Systemen, die nur hyperbolische sta-
tionäre Punkte besitzen, wird also durch kleine Störungen qualitativ nicht
verändert. Man nennt diese Eigenschaft Strukturstabilität. Man sagt auch,
die Eigenschaft eines dynamischen Systems, nur hyperbolische stationäre
Punkte zu besitzen, ist generisch. Um Verzweigungen zu studieren, müssen
wir also für den kritischen Parameterwert r0 die Existenz mindestens eines
nichthyperbolischen stationären Punktes y annehmen. Im Folgenden werden
wir o.B.d.A. immer y = r0 = 0 setzen.

Die Falte

Nehmen wir also an, dass für r = 0 an der Stelle y = 0 ein nichthyperbolis-
cher stationärer Punkt auftritt. Die Taylorentwicklung der rechten Seite
bezüglich y und r hat dann die Gestalt

f(y, r) = a01r + a20y
2 + a11ry + a02r

2 +O(y3 + r3) . (7)

Ein einfaches Beispiel ist die Familie von dynamischen Systemen

ẏ = r + y2 . (8)

Die Verzweigung, die hier bei r = 0 auftritt, kann man so beschreiben: Für
r < 0 gibt es zwei hyperbolische stationäre Punkte, und zwar den instabilen
Punkt y =

√
−r und den asymptotisch stabilen Punkt y = −

√
−r. Die
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beiden verschmelzen für r = 0, und für positive r gibt es keinen stationären
Punkt.

Diese Verzweigung wird in der Literatur Falte oder auch saddle-node-
Verzweigung genannt. Warum gleich 2 Namen für ein einfaches spezielles
Beispiel? Nun, das Beispiel ist nicht so speziell, wie es den Anschein hat.
Kehren wir zurück zu der allgemeinen Taylorentwicklung (7) und betrachten
wir die generische Situation, dass die ersten beiden Koeffizienten a01 und a20

verschieden von Null sind. Ich behaupte, dass dann durch eine Neudefinition
des Parameters und eine Transformation im Zustandsraum das dynamische
System mit der rechten Seite (7) in der Form (8) geschrieben werden kann.
Im Folgenden wird diese Behauptung zwar nicht vollständig bewiesen aber
hoffentlich glaubwürdig gemacht.

Als ersten Schritt ersetzen wir y durch y
a20

und r durch r
a01a20

. Das bringt
das dynamische System mit der rechten Seite (7) in die Form

ẏ = r + y2 + a11ry + a02r
2 +O(y3 + r3) ,

wobei die Koeffizienten umbenannt wurden. Der Anfang des Taylorpoly-
noms hat also schon die Form (8). Ein heuristisches Argument wäre nun,
dass a11ry, a02r

2 und O(r3) klein sind im Vergleich zu r und dass O(y3)
klein ist im Vergleich zu y2 und alle diese Terme daher vernachlässigt wer-
den können. Das stimmt insofern, als durch ’identitätsnahe’ Transforma-
tionen von r und y alle außer den ersten beiden Termen auf der rechten
Seite eliminiert werden können. Wir werden nur die Elimination der beiden
quadratischen Terme demonstrieren. Wir setzen

r = R+ bR2 , y = Y + cY 2 . (9)

Man muss ein bisschen rechnen, bis man das transformierte System ermittelt
hat:

Ẏ = R+ Y 2 + (a11 − 2c)RY + (a02 + b)R2 +O(Y 3 +R3) .

Durch die Wahl b = −a02 und c = a11/2 produziert man (8) bis auf einen
Rest dritter Ordnung. Ersetzt man die quadratischen Polynome auf den
rechten Seiten in (9) durch vollständige Taylorentwicklungen, dann lässt
sich exakt die Form (8) erzeugen (siehe, z.B., [3]).

Das bedeutet, dass in jedem dynamischen System mit einer rechten Seite
der Form (7) bei r = 0 eine Falte auftritt, wenn die beiden Koeffizienten a01

und a20 nicht verschwinden. Die Gleichung (8) nennt man eine Normalform
der Falte. Wir werden in Zukunft auch Normalformen anderer Verzwei-
gungen analysieren, ohne jedes Mal die Transformation auf Normalform zu
diskutieren.
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Die transkritische Verzweigung

Die Falte ist die generische Verzweigung in eindimensionalen dynamischen
Systemen. Andere Arten von Verzweigungen können dann auftreten, wenn
das System spezielle Eigenschaften hat, die auch bei Variation von Param-
etern erhalten bleiben. Eine typische Eigenschaft dieser Art ist es, dass es
einen ausgezeichneten stationären Punkt gibt, der immer erhalten bleibt,
also z.B. y = 0. In diesem Fall müssen in der allgemeinen Taylorentwick-
lung (7) die Koeffizienten a01 und a02 verschwinden. Nimmt man, abgesehen
davon, generisches Verhalten an, dann gilt a20, a11 6= 0. Eine entsprechende
Normalform ist

ẏ = ry − y2 .

Die dadurch gegebene transkritische Verzweigung hat die folgenden Eigen-
schaften: Sowohl für r < 0 als auch für r > 0 gibt es die beiden stationären
Punkte y = 0 und y = r. Für r < 0 ist y = 0 asymptotisch stabil und y = r
instabil; für r > 0 ist es umgekehrt. Bei der Verzweigung findet also ein
Stabilitätsaustausch statt.

Der ’Spruce Budworm’

Der spruce budworm ist ein nordamerikanischer Baumschädling, der immer
wieder eine große Gefahr für Nadelwälder darstellt. Wir wollen die Entwick-
lung einer budworm-Population durch ein dynamisches System beschreiben.
Sei N(τ) ein Maß für die Größe der Population zum Zeitpunkt τ . Die Gle-
ichung

dN

dτ
= RN

(
1− N

K

)
− BN2

A2 +N2

ist ein typisches Modell der Populationsdynamik. Der Faktor R(1 − N/K)
im ersten Term ist die Differenz zwischen Geburten- und Sterberate. Für
sehr kleine Populationen ist diese Differenz durch die positive Konstante R
gegeben. Für wachsende Populationen wird sie aufgrund von Nahrungsman-
gel und Konkurrenz kleiner, bis sie schließlich negativ wird, wenn die Pop-
ulation den kritischen Wert K überschreitet. Der zweite Term beschreibt
Verluste durch natürliche Feinde. Im Fall des spruce budworms sind das
Vögel. Die Vögel fressen die budworms mit einer maximalen Rate B. Die
Abhängigkeit der Rate von der Größe der Population hat die folgende In-
terpretation: Ist die Population kleiner als der Schwellwert A, dann ist es
für die Vögel zu mühsam, nach den budworms zu suchen. Sie ernähren sich
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dann hauptsächlich von Anderem und lassen die budworms in Ruhe. Über
dem Schwellwert A werden die budworms als Vogelfutter attraktiv, und sie
werden fast mit der maximalen Rate B gefressen.

Bevor das Modell als dynamisches System analysiert wird, möchten wir
uns mit Fragen der Dimensionsanalyse beschäftigen. Will man konkret mit
dem Modell rechnen (d.h. Zahlen einsetzen), muss man zunächst Einheiten
fixieren. Diese können auf zwei Grundeinheiten zurückgeführt werden, eine
Einheit für die Zeit, z.B. die Sekunde (abgekürzt durch ’sec’), und eine
Einheit für die Populationsgröße, abgekürzt durch ’pop’ (z.B. 1pop = 1000
budworms). In der folgenden Tabelle sind die Einheiten der Unbekannten
N , der unabhängigen Variable τ und der vier Parameter R, K, A, und B
mit Hilfe von pop und sec ausgedrückt.

Größe Einheit
N pop
τ sec
R sec−1

K pop
A pop
B pop sec−1

Diese Wahl der Grundeinheiten ist willkürlich und unter Umständen
für das konkrete Modell nicht sehr sinnvoll. Eine andere Möglichkeit der
Einheitenwahl ist die Verwendung von intrinsischen Refernzgrößen als Ein-
heiten für die abhängigen und unabhängigen VariablenN und τ . Intrinsische
Referenzgrößen sind Enheiten, die sich aus den Parametern des Problems
berechnen lassen. Für die Populationsgröße haben wir reiche Auswahl: K,
A und B/R haben alle dieselbe Dimension wie N . Für die Zeit gibt es die
Möglichkeiten 1/R, K/B und A/B. Wir treffen unsere Wahl, indem wir uns
auf einen der modellierten Effekte konzentrieren, und zwar auf den Einfluss
der natürlichen Feinde. Daher verwenden wir die Parameter A und B bei
der Skalierung:

t :=
τ

A/B
, y(t) :=

N(tA/B)
A

.

Die neuen Variablen y und t sind dimensionslos. Die Gleichung für y lautet

ẏ = ry

(
1− y

k

)
− y2

1 + y2

mit den beiden dimensionslosen Parametern r = RA/B und k = K/A.
Ein wesentlicher Effekt der Verwendung intrinsischer Referenzgrß̈en für die
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Skalierung ist die Reduktion der Anzahl der Parameter von vier auf zwei.
Das ist eine große Erleichterung der Analyse aller möglichen qualitativen
Eigenschaften des Modells.

Neben dem trivialen stationären Punkt y = 0 (der immer instabil ist, d.h.
die budworms sterben nicht aus) gibt es noch andere stationäre Zustände,
die durch die Gleichung

r

(
1− y

k

)
=

y

1 + y2

bestimmt werden. Kurvendiskussion und/oder graphische Darstellung zeigen,
dass diese Gleichung je nach den Werten von r und k 1–3 positive Lösungen
hat. Faltenverzweigungen treten immer dann auf, wenn die Gerade auf der
linken Seite die Kurve auf der rechten Seite berührt. Aus dieser Bedin-
gung ergibt sich ein Zusammenhang zwischen den Schnittpunkten und den
Parameterwerten:

r =
2y3

(1 + y2)2
, k =

2y3

y2 − 1
mit y > 1 .

Das kann man als Parameterdarstellung (mit Parameter y) einer Kurve
in der r-k-Ebene interpretieren. Diese Kurve hat am Punkt (r0, k0) =
(3
√

3/8, 3
√

3) (für den Parameterwert y0 =
√

3) eine Spitze. Zwischen den
beiden Ästen der Kurve gibt es drei stationäre Punkte, und außerhalb einen.
Dieser eine ist immer stabil. Wenn es drei stationäre Punkte gibt, dann sind
zwei davon stabil mit einem instabilen dazwischen.

Nach diesen Resultaten ist folgendes Szenario möglich: Sei r fest und
zwischen 1/2 und 3

√
3/8; k wachse langsam (z.B. dadurch, dass die Nadelbäume

wachsen). Das gibt eine waagrechte Linie in der r-k-Ebene, die die Verzwei-
gungskurve zweimal schneidet. Bevor sie das tut, gibt es ein stabiles Gle-
ichgewicht mit kleinen Werten der budworm-Population. Beim ersten Überqueren
der Verzweigungskurve entstehen ein großes stabiles und ein instabiles Gle-
ichgewicht. Das kleine Gleichgewicht bleibt dabei stabil und die Population
daher auf niedrigem Niveau. Beim zweiten Überqueren der Kurve passiert
allerdings etwas Dramatisches: Das kleine Gleichgewicht verschmilzt mit
dem instabilen, und beide verschwinden. Nun ist nur mehr das große Gle-
ichgewicht übrig, und es kommt zu einem sprunghaften Anstieg der Popu-
lation.

Dieses qualitative Verhalten kann man vollständig erklären, indem man
eine kleine Umgebung des kritischen Punktes (r0, k0) im Parameterbere-
ich analysiert. Eine Normalform für die dort auftretende cusp-Verzweigung
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(cusp = Spitze) ist gegeben durch

ẏ = r + ky + y3 .

Die cusp-Verzeigung ist die generische Verzweigung, wenn man (wie bei der
Heugabel) annimmt, dass auch die zweite Ableitung nach y am Verzwei-
gungspunkt verschwindet, wenn aber (im Gegensatz zur Heugabel) keine
Symmetrie gefordert wird. Für die cusp-Verzweigung sind zwei Parameter
notwendig. Ein Fachausdruck dafür ist Verzweigung der Kodimension 2 zum
Unterschied der bisher behandelten Verzweigungen, die die Kodimension 1
hatten.

4 Continuous models for interacting species

This section is concerned with the interaction of two species. Three proto-
typical interaction mechanisms are:

• Predator-prey interaction: The presence of the prey species leads
to increased fertility of the predator species, whose presence in term
leads to an increased death rate of the prey.

• Competition: Two species competing for resources reduce each oth-
ers growth rate.

• Symbiosis: Two species improve the environment for each other and
increase each others growth rate.

4.1 Predator-prey interaction

One of the classical models of Mathematical Ecology is the Lotka-Volterra
model for predator-prey interaction. Denoting by N(τ) the size of the prey
density and by P (τ) the size of the predator density, it reads

dN

dτ
= aN − bNP ,

dP

dτ
= cNP − dP ,

with positive constants a, b, c, d. We nondimensionalize by N = ud/c, P =
va/b, τ = t/a:

du

dt
= u(1− v) ,

dv

dt
= αv(u− 1) ,
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with the dimensionless parameter α = d/a. There are two steady states,
(u, v) = (0, 0) and (u, v) = (1, 1). Linearization leads to a system where the
matrix of coefficients is the Jacobian of the right hand side:

J(u, v) =

(
1− v −u
αv α(u− 1)

)
.

By

J(0, 0) =

(
1 0
0 −α

)
, J(1, 1) =

(
0 −1
α 0

)
,

the origin is a saddle. Saddles being hyperbolic, this property carries over
to the nonlinear problem. By the special form of the equations, even the
property that the coordinate axes are the stable and unstable manifolds, is
still true for the nonlinear system. The point (1, 1) is a center (i.e. encircled
by a family of periodic solutions) of the linearised problem. Centers are not
hyperbolic, however, and the stability of (1, 1) cannot be deduced from the
linearisation.

4.2 Competition

4.3 Symbiosis

5 Structured populations

Two types of structured population models will be considered:

• Populations with a variable genetic trait,

• Age structure.

5.1 Selection

Let x ∈ IR denote a genetic trait and let n(t, x) be the population density at
time t with respect to the trait. We consider a trait dependent reproduction
rate and a death rate proportional to the total population size (as in the
logistic model). A nondimensionalized model then has the form

∂tn(t, x) = b(x)n(t, x)−N(t)n(t, x) , N(t) =
∫

IR
n(t, x)dx , (10)
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with the reproduction rate b(x) > 0. The support of the initial data is
assumed to be a bounded interval: n(t = 0) = n0 ∈ C(IR), with

n0(x) > 0 for xmin < x < xmax , n0(x) = 0 for x /∈ (xmin, xmax) .(11)

For steady states n(x) (N =
∫

IR ndx), n(x) 6= 0 is only possible for x such
that b(x) = N . At least formally, this allows for a family of steady states:
n(x) = b(y)δ(x− y) (N = b(y)) for any y ∈ IR (with the Delta distribution
δ). Convergence to the steady state with the largest possible value of b can
be expected, i.e. selection of the most favorable trait. In order to prove such
a result, we assume

b ∈ C(IR) , b(x) ≥ b > 0 for x ∈ (xmin, xmax) , b(x) = max
[xmin,xmax]

b ,(12)

for a unique x. For fixed x, (10) is a simple ordinary differential equation
with the solution

n(t, x) = n0(x) exp
(
b(x)t−

∫ t

0
N(s)ds

)
. (13)

Integration with respect to x gives

N(t) exp
(∫ t

0
N(s)ds

)
=
∫

IR
n0(x)eb(x)tdx ,

and integration with respect to t:

exp
(∫ t

0
N(s)ds

)
=
∫

IR

n0(x)
b(x)

(
eb(x)t − 1

)
dx+ 1 .

Now we apply the logarithm and differentiate:

N(t) =
∫

IR
n0(x)eb(x)tdx

(∫
IR

n0(x)
b(x)

(
eb(x)t − 1

)
dx+ 1

)−1

By our assumptions,

N(t) ≤ b(x)
∫

IR

n0(x)
b(x)

eb(x)tdx

(∫
IR

n0(x)
b(x)

(
eb(x)t − 1

)
dx+ 1

)−1 −→
t→∞ b(x) .

On the other hand, let Iε = {x ∈ [xmin, xmax] : b(x) ≥ b(x)− ε}. Then

N(t) ≥
∫
Iε
n0(x)eb(x)tdx

(∫
IR

n0(x)
b(x)

(
eb(x)t − 1

)
dx+ 1

)−1

≥ (b(x)− ε)Aε(t) ,

with

Aε(t) =
∫
Iε

n0(x)
b(x)

eb(x)tdx

(∫
IR

n0(x)
b(x)

(
eb(x)t − 1

)
dx+ 1

)−1 −→
t→∞ 1 .
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Theorem 3 Let (11) and (12) hold. Then the solution n of the initial value
problem for (10) satisfies

lim
t→∞

N(t) = b(x) , lim
t→∞

n(t, x) = b(x)δ(x− x) ,

where the latter has to be understood in the distributional sense.

Proof: The limit for N(t) has already been proven above.
The next step is to prove that the family Iε introduced above contracts

to the point x. Let xε ∈ Iε, ε > 0. Since Iε is uniformly (in ε) bounded,
for every sequence εk → 0, as k → ∞, there exists a subsequence, again
denoted by εk, such that xεk

→ x̂ ∈ [xmin, xmax]. By the continuity of b,
b(xεk

)→ b(x̂), but also b(x)− εk ≤ b(xεk
) ≤ b(x). So b(x̂) = b(x) and, since

the maximum is unique, x̂ = x. As a consequence, limε→0 xε = x.
For x /∈ Iε, the exponent in the solution formula (13) can be estimated

by

b(x)t−
∫ t

0
N(s)ds ≤ t

(
−ε+

1
t

∫ t

0
(b(x)−N(s))ds

)
For fixed ε > 0, this provides a bound for n, which is uniform in x and
converges to zero as t→∞, since

lim
t→∞

1
t

∫ t

0
(b(x)−N(s))ds = 0

by the convergence of N(t).
Combining these results leads to

lim
t→∞

∫
IR
n(t, x)ϕ(x)dx = b(x)ϕ(x)

for every ϕ ∈ C(IR), which completes the proof.

5.2 Age structured populations

We shall analyse the renewal equation, the simplest model for the growth of
age structured populations. For more details see [8].

The variable x ≥ 0 will denote the age of an individual and n(t, x) the
density of individuals with respect to age at time t ≥ 0. Individuals having
ages between x1 and x2 > x1 > 0 at time zero, have the ages between x1 + t
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and x2 + t at time t > 0. Neglecting death, the number of these individuals
is the same at times zero and t:∫ x2

x1

n(0, x)dx =
∫ x2+t

x1+t
n(t, x)dx .

The derivative of this equation with respect to t can be written as∫ x2+t

x1+t
(∂tn+ ∂xn)dx = 0 ,

which only holds for arbitrary x1, x2, if the partial differential equation

∂tn+ ∂xn = 0 , x > 0 , t > 0 , (14)

is satisfied. A model for birth has to prescribe the production of individuals
with age x = 0:

n(t, 0) =
∫ ∞

0
B(y)n(t, y)dy , t > 0 , (15)

where B(y) ≥ 0 is an age dependent birth rate. The model is completed by
prescribing an initial age distribution:

n(0, x) = n0(x) , x > 0 . (16)

We shall be interested in the long time behaviour of solutions of (14)–(16)
under the assumptions

B ≥ 0 , B ∈ L∞(IR+) ∩ L1(IR+) ,
∫ ∞

0
B(x)dx > 1 . (17)

A reasonable guess concerning the long time behavior is n(t, x) ≈ eλ0tN(x)
as t→∞, leading to the eigenvalue problem

λ0N +N ′ = 0 , N(0) =
∫ ∞

0
B(y)N(y)dy ,

Normalisation:
∫ ∞

0
N(y)dy = 1 . (18)

Under the assumptions (17) a unique positive eigenvalue λ0 and a positive
eigenfunction N exist, such that

N(x) = λ0e
−λx ,

∫ ∞
0

B(y)e−λ0ydy = 1 .
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For the purpose of proving a result on the long time behavior, we introduce
the normalised density ñ(t, x) = e−λ0tn(t, x), satisfying

∂tñ+ ∂xñ+ λ0ñ = 0 , x > 0 , t > 0 , (19)

ñ(t, 0) =
∫ ∞

0
B(y)ñ(t, y)dy , t > 0 , (20)

ñ(0, x) = n0(x) , x > 0 . (21)

One interesting fact concerning this problem is that it permits a conserva-
tion law. Since the operator Añ = −∂xñ − λ0ñ, subject to the boundary
condition (20) has a zero eigenvalue, the same is true for the adjoint A∗.
Eigenfunctions ϕ corresponding to the eigenvalue zero (left eigenfunctions
of A) satisfy

λ0ϕ− ϕ′ = ϕ(0)B(x) ,

Normalisation:
∫ ∞

0
N(y)ϕ(y)dy = 1 , (22)

which can be solved explicitly:

ϕ(x) =
∫ ∞
x

eλ0(x−y)B(y)dy
(
λ0

∫ ∞
0

ye−λ0yB(y)dy
)−1

.

The properties ϕ ≥ 0, ϕ ∈ L∞(IR+) are immediate from (17). For the
following, we need assumptions on the initial data: There exists a constant
C0 ≥ 0 such that

0 ≤ n0(x) ≤ C0N(x) . (23)

A straightforward computation proves:

Lemma 1 Let (17) and (23) hold. Then the solution of (19)–(21) satisfies∫ ∞
0

ñ(t, x)ϕ(x)dx = m :=
∫ ∞

0
n0(x)ϕ(x)dx , t > 0 .

By this result it is reasonable to expect that ñ(t, x) → mN(x) as t → ∞.
This will be proven by means of the Lyapunov function

H(t) =
∫ ∞

0

ϕ(x)
N(x)

(ñ(t, x)−mN(x))2dx .

We compute

dH

dt
= −ϕ(0)

∫ ∞
0

B(x)
N(x)

(ñ(t, x)− m̂(t)N(x))2dx , (24)
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with

m̂(t) =
1

N(0)

∫ ∞
0

ñ(t, x)B(x)dx .

The result (24) shows that H is a Lyapunov function. Integration with
respect to t gives

ϕ(0)
∫ ∞

0

∫ ∞
0

B(x)
N(x)

(ñ(t, x)− m̂(t)N(x))2dx dt ≤ H(0) ,

which gives hope that ñ(t, x) − m̂(t)N(x) → 0 as t → ∞. Actually, with
some additional work, convergence to equilibrium can be deduced from this
[8]. With an additional assumption on the data, it is possible to prove
exponential convergence. We assume that there exists a positive constant
µ0 such that

ϕ(0)B(x) ≥ µ0ϕ(x) . (25)

If this holds, the right hand side of (24) can be estimated from above by

−µ0

∫ ∞
0

ϕ(x)
N(x)

(ñ(t, x)− m̂(t)N(x))2dx = −µ0

(
H(t) + (m̂(t)−m)2

)
.

As a consequence Ḣ ≤ −µ0H, and the Gronwall lemma implies exponential
decay of ñ−mN in L2(IR+, ϕ/N dx).

The assumption (25) is somewhat restrictive. For example, it does not
allow B(x) = 0 for x < x0. However, it is always satisfied for B(x) decreas-
ing.

Death can easily be included in the model replacing (14) by

∂tn+ ∂xn+ d(x)n = 0 , x > 0 , t > 0 , (26)

subject to the boundary and initial conditions (15), (16), wit h the age
dependent death rate d(x). We now make the assumptions

B, d ≥ 0 , B ∈ L∞(IR+) , d(x)→∞ as x→∞ .

The eigenvalue problem

λ0N +N ′ + dN = 0 , N(0) =
∫ ∞

0
B(y)N(y)dy ,∫ ∞

0
N(y)dy = 1 , (27)
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now has a unique solution satisfying

N(x) = N(0) exp
(
−λ0x−

∫ x

0
d(ξ)dξ

)
,

1 =
∫ ∞

0
B(y) exp

(
−λ0y −

∫ y

0
d(ξ)dξ

)
dy ,

where N(0) has to be chosen such that the normalisation condition in (27) is
satisfied. Now λ0 can have both signs since, by the conditions on the data,
N(x) will always be integrable.

6 Random motion of particles

Biological particles usually live in a complex nonhomogeneous environment
influencing their movement. As a consequence, for an observer this move-
ment looks like having a random component. We therefore accept a random
nature of this movement as a postulate for a mathematical description. An-
other postulate, which makes life much easier (although it is not justified in
general), is that regarding the random component of motion the particles
are independent in the probabilistic sense.

We start by considering a discrete one-dimensional random motion. Let
xj = j∆x, j ∈ ZZ, denote the possible positions of particles, and assume that
at the discrete points tn = n∆t, n ∈ ZZ, in time particles perform jumps of
the length ∆x to the left or to the right. Let us assume further that the
probability of jumping to the left is q, and the probability of jumping to the
right is 1−q (with 0 ≤ q ≤ 1, of course). Now we introduce the nonnegative
quantities pnj , j, n ∈ ZZ, which can be interpreted either as the probability
that one particle is at the position xj at time tn or as the expected number
of particles out of a large ensemble at position xj at time tn or (if the latter
is divided by ∆x) as the expected number density of particles at position
xj at time tn. Then, obviously the values at time tn+1 can be computed in
terms of the values at time tn:

pn+1
j = qpnj+1 + (1− q)pnj−1 (28)

Eventually we are looking for continuous descriptions both in time and in
position. Therefore we shall interpret pnj as approximation for p(xj , tn)
where p is a function of two real valued arguments. With this interpretation
in mind we rewrite the above equation as

pn+1
j − pnj

∆t
− q∆x

∆t
pnj+1 − pnj

∆x
+

(1− q)∆x
∆t

pnj − pnj−1

∆x
= 0 .
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Our aim is to pass to the limit ∆x,∆t → 0. Obviously the result depends
on the relative size of ∆x and ∆t. We have three main options: Either the
grid speed s := ∆x/∆t tends to zero, to infinity, or we keep it fixed at a
positive finite value. The most interesting result occurs in the latter case,
which we call the significant limit:

∂tp+ ∂x(vp) = 0 , with v = s(1− 2q) . (29)

Actually, the other two cases can be recovered by letting s→ 0 or s→∞.
Equation (29) is a one-dimensional convection equation. Solutions are

travelling waves p(x, t) = f(x− vt) with velocity v. With the interpretation
of p as time dependent density of particles along the line, the integrated
version of (29),

d

dt

∫ b

a
p(x, t)dx+ vp(b, t)− vp(a, t) = 0 ,

gives the rate of change of the number of particles contained in the interval
(a, b). The term j(x, t) = vp(x, t) can then be interpreted as the flux of
particles through the point x at time t, and v is the mean velocity of particles.

It is interesting to note that equation (29) could have been derived with-
out any probabilistic effects. The assumption that all particles always move
to the right or always to the left, i.e., q = 0 or q = 1, still leads to (29) with
v = ±s. More generally, the same value of v, and therefore the same macro-
scopic equation (29) can be obtained by different choices of the grid speed s
and of the probability q. This shows that the properties of the microscopic
movement cannot be completely recovered from macroscopic observations.

In the symmetric situation q = 1/2, the mean velocity vanishes, and (29)
becomes trivial. This unsatisfactory situation can be clarified by returning
to the discrete equation (28) and by rewriting it in a different way:

pn+1
j − pnj

∆t
− (∆x)2

2∆t
pnj+1 − 2pnj + pnj−1

(∆x)2
= 0 .

This shows that for q = 1/2, the significant limit is achieved, when D =
(∆x)2/(2∆t) is kept fixed as ∆x,∆t→ 0:

∂tp−D∂2
xp = 0 . (30)

This is the one-dimensional diffusion equation with diffusivityD. Integration
as above shows that the diffusive flux is given by Fick’s law j = −D∂xp.
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As for the convection equation we want to demonstrate that the diffusion
equation can also be obtained as macroscopic model for different microscopic
dynamics as long as they do not have a directional bias. Instead of a position
jump process as considered above, we now describe a velocity jump process.
Consider particles, which move along the line with velocity s > 0 or −s.
At discrete points tn = n∆t in time they change to the other velocity with
probability q. We denote the expected density of particles moving to the
right at time tn (after the velocity jump) by rn(x), and the expected density
of particles moving to the left at time tn by ln(x). Then the densities at
time tn+1 before the velocity jump are given by

r̂n+1(x) = rn(x− s∆t) , l̂n+1(x) = ln(x+ s∆t) .

After the velocity jump at time tn+1 we obtain

rn+1(x) = (1− q)r̂n+1(x) + ql̂n+1(x) , ln+1(x) = (1− q)l̂n+1(x) + qr̂n+1(x) ,

which can be rewritten as

rn+1(x)− rn(x)
∆t

+ s
rn(x)− rn(x− s∆t)

s∆t
=

q

∆t
(ln(x+ s∆t)− rn(x− s∆t)) ,

ln+1(x)− ln(x)
∆t

− sl
n(x+ s∆t)− ln(x)

s∆t
=

q

∆t
(rn(x− s∆t)− ln(x+ s∆t)) .

A significant limit is obtained with the scaling assumption that τ := ∆t/q
remains fixed as ∆t→ 0:

∂tr + s∂xr =
l − r
τ

, ∂tl − s∂xl =
r − l
τ

.

This is the simplest example of a kinetic transport equation, describing an
ensemble of particles not only by its positional distribution but also its
distribution with respect to velocity. Kinetic transport equations are often
called mesoscopic models. In a macroscopic scaling, x is replaced by x/ε and
t is replaced by t/ε2, where ε is a small positive dimensionless parameter.
This leads to the rescaled version

ε2∂tr + εs∂xr =
l − r
τ

, ε2∂tl − εs∂xl =
r − l
τ

. (31)

For carrying out the macroscopic limit ε → 0, we replace the system by
the first equation an the sum of the equations. After dividing by ε and,
respectively, by ε2, we obtain

ε∂tr + s∂xr =
l − r
ετ

, ∂tp+ s∂x
r − l
ε

= 0 , (32)
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where p = r + l is the total (or macroscopic) density. In the limit ε → 0,
(31) gives r = l, and the first equation in (32) shows that the flux s(r− l)/ε
converges to −s2τ∂xr = −D∂xp with D = s2τ/2, such that we again obtain
the diffusion equation (30).

So far we have seen that the macroscopic limit of a biased random motion
is a convection equation, and for an unbiased motion it is a diffusion equa-
tion. Actually, both effects can be combined in the macroscopic equation
by an appropriate scaling assumption. We shall also generalize the position
jump process by allowing a dependence of the jump probability on position
and time:

pn+1
j = qnj+1p

n
j+1 + (1− qnj−1)pnj−1 .

As in the derivation of the diffusion equation we assume thatD = (∆x)2/(2∆t)
is fixed and that the jump probabilities are close to 1/2:

qnj =
1
2
− v(xj , tn)∆t

2∆x
,

where v(x, t) is a given velocity function. The analogous computations as
in the derivation of the diffusion equation now lead to the one-dimensional
convection-diffusion equation

∂tp+ ∂x(vp−D∂xp) = 0 . (33)

Everything we did so far can be extended to higher dimensions with the
result

∂tp+∇ · (vp−D∇p) = 0 , (34)

where now the density p(x, t) depends on position x ∈ IRd, with d = 2 or
d = 3, and on time t ∈ IR. The gradient with respect to x is denoted by
∇ and the divergence by ∇·. The velocity v(x, t)and the flux vp − D∇p
are vector fields. The interpretation of the flux vector is the following: Its
component in the direction ν is the number of particles per time and per
unit area moving through an area element orthogonal to ν. This can be seen
by integrating (34) over a bounded position domain Ω ⊂ IRd and using the
divergence theorem:

d

dt

∫
Ω
p dx+

∫
∂Ω

(vp−D∇p) · ν dσ = 0 , (35)

where ν denotes the unit outward normal vector along the boundary ∂Ω,
and dσ is the line element for d = 2 and the surface element for d = 3.
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So far we only described the movement of particles. Equation (34) is a
conservation law. No particles are created or destroyed. As the final step
in this modelling section, we also allow for this possibility. We denote by
f(x, t) the number of particles created or destroyed (depending on the sign
of f) per unit time and unit volume. Then the right hand side of (35) has
to be replaced by the integral of f over Ω, and the differential version (34)
becomes the reaction-convection-diffusion equation

∂tp+∇ · (vp−D∇p) = f . (36)

Why reaction? In a typical situation our particles are molecules whose
creation or destruction is the result of a chemical reaction. Another inter-
pretation of f in the following will be as a birth/death term.

In the following, systems of equations of the form (36) for different species
of particles will be considered, when x varies in a domain Ω ⊂ IRd. Typically
we shall either assume that Ω is bounded with zero flux boundary conditions

(vp−D∇p) · ν = 0 along ∂Ω ,

or, as an idealization, that Ω = IRd. In the latter case it is usually assumed
that f(x, t) → 0 as |x| → ∞, and that either the total number of particles
is bounded, i.e.,

∫
IRd p dx <∞, or that p(x, t) converges to a constant value

as |x| → ∞.
For given v and f , the formulation of a well posed problem for the

unknown p is completed by prescribing initial conditions p(x, 0) = pI(x) for
x ∈ Ω, with given initial data pI . Well posedness means that the initial-
boundary value problem has a unique solution continuously dependent on
the data v, f , and pI .

7 Stability of homogeneous steady states

In this section we consider reaction and diffusion of one species of particles
in a stationary homogeneous environment, i.e., equations of the form

∂tp−D∆p = f(p) , (37)

where ∆ = ∇·∇ is the Laplace operator and the stationarity and homogene-
ity of the environment is reflected by the fact that the reaction rate f does
not explictly depend on t or x. A homogeneous steady state is a constant
solution p0 of (37), implying that p0 is a zero of f . If (37) is considered on
the position domain Ω, then a homogeneous steady state satisfies zero flux
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boundary conditions (ν · ∇p = 0 on ∂Ω) for bounded Ω and, obviously, the
condition p(x, t)→ p0 for |x| → ∞ for Ω = IRd. We shall consider these two
situations.

The stability of p0 is examined by introducing the perturbation u(x, t) =
p(x, t)− p0 where p is a solution of (37) close to p0, i.e., u is small. Substi-
tution in (37), Taylor expanding f around p = p0 (u = 0), and keeping only
the linear term gives the linearized equation

∂tu−D∆u = f ′(p0)u ,

with zero flux boundary conditions for Ω bounded, and with u → 0 as
|x| → ∞ for Ω = IRd.

For bounded Ω, the linearized problem can be solved by separation of
variables leading to a representation of solutions in the form

u(x, t) =
∞∑
k=0

ukϕk(x) exp([Dλk + f ′(p0)]t) ,

where ϕ0 = 1, ϕ1, . . . are the eigenfunctions of the Laplace operator subject
to zero flux boundary conditions and λ0 = 0, λ1, . . . are the corresponding
eigenvalues, i.e.,

∆ϕk = λkϕk , ν · ∇ϕk = 0 on ∂Ω ,

for k = 0, 1, . . . Different solutions are distinguished by the choice of the
constants u0, u1, . . . The computation∫

Ω
ϕl∆ϕk dx = −

∫
Ω
∇ϕk · ∇ϕl dx

implies that the Laplace operator with zero flux boundary conditions is sym-
metric with respect to the scalar product defined by pointwise multiplication
and subsequent integration. This has the consequence that all eigenvalues
are real and that {ϕk, k ≥ 0} can be chosen as an orthonormal sequence.
The above formula also implies that the eigenvalues are nonpositive. Actu-
ally it can be shown that λk → −∞ as k → ∞. W.l.o.g. we assume the
eigenvalues to be ordered: λ0 ≥ λ1 ≥ . . .

A steady state solution is called stable if, when starting with an initial
condition close to the steady state the solution remains close to the steady
state for all times, it is called asymptotically stable if, furthermore, such
solutions converge to the steady state as time tends to infinity.

The steady state u = 0 of the linearized problem is stable iff f ′(p0) ≤ 0,
it is asymptotically stable iff f ′(p0) < 0. In these cases we say that the
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steady state p0 of the original nonlinear equation is linearized (asymptoti-
cally) stable. It can be shown that linearized asymptotic stability implies
asymptotic stability and that linearized instability implies instability.

In the case Ω = IRd, we solve the linearized equation by the Fourier
transform. The Fourier transform with respect to the position variables is
defined by

û(k, t) :=
∫

IRd
u(x, t)e−ik·xdx .

Its inverse is given by

u(x, t) =
1

(2π)d

∫
IRd
û(k, t)eik·xdk .

The latter equation is certainly true for smooth u decaying sufficiently fast
as |x| → ∞. The usefulness of the Fourier transform for our purposes is a
consequence of the identity

∇̂u = ikû ,

implying ∆̂u = −|k|2û. Application of the Fourier transform to the lin-
earized equation results in the ordinary differential equation

∂tû = (f ′(p0)−D|k|2)û ,

and, thus, in the general solution

u(x, t) =
1

(2π)d

∫
IRd
ûI(k)e(f ′(p0)−D|k|2)teik·xdk ,

where ûI is the Fourier transform of u(t = 0). Obviously the condition for
(asymptotic) stability is the same as in the case of a bounded domain.

8 The KPP-Fisher equation

8.1 Bounded domains: the transcritical bifurcation

In the previous section, the stability of homogeneous steady states was exam-
ined. Now we extend our interest to situations, where the stability properties
of a steady state change in dependence of a parameter, i.e. bifurcations. We
consider the simplest nonlinear model of population dynamics.
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The dynamics of a spatially homogeneous population with density p(t),
living in an environment with limit resources, can be described by the ordi-
nary differential equation

dp

dt
= α

(
1− p

p

)
p = αp− βp2 ,

where the right hand side is called logistic growth with the growth rate α of
small populations and the critical density p0 above which the growth rate is
negative. By an appropriate nondimensionalization, the second parameter
can be eliminated:

dp

dt
= ap− p2 ,

where a is a dimensionless parameter. Although biologically irrelevant, it is
instructive to observe what happens when a takes both positive and negative
values. A bifurcation then occurs at a = 0 where the trivial steady state
p = 0 changes its stability properties from stable for a < 0 to unstable for
a > 0. The stability properties of the second steady state p = a are just
opposite. We say that the nontrivial steady state bifurcates from the trivial
steady state at a = 0. There an exchange of stability between the two steady
states occurs. This situation is called a transcritical bifurcation.

Actually, exactly the same happens, if we allow a spatially nonhomo-
geneous diffusing population p(x, t) on a bounded domain with zero flux
boundary conditions:

∂tp = ∆p+ ap− p2 , for x ∈ Ω ⊂ IRd ,

ν · ∇p = 0 , on ∂Ω .

A transcritical bifurcation with the homogeneous steady states p = 0 and
p = a.

A more interesting situation occurs under different boundary conditions.
Consider a situation where Ω does not represent a container. The individuals
can leave the domain. However, the environment is hostile to them outside
of Ω, such that they cannot survive there. This can be modelled by the
(Dirichlet) boundary conditions p = 0 on ∂Ω. For computational simplicity
we consider a one-dimensional situation:

∂tp = ∂2
xp+ ap− p2 , for 0 < x < π ,

p(0, t) = p(π, t) = 0 . (38)
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The length π of the domain has been achieved by the nondimensionalization.
The Dirichlet boundary conditions still permit the trivial steady state p = 0,
but eliminate the other homogeneous steady state. Linearization at p =
0 leads to the eigenvalues λj = a − j2, j = 1, 2, . . ., and the according
eigenfunctions ϕj(x) = sin(jx). So the trivial steady state is stable even
for positive a < 1. Diffusion subject to Dirichlet boundary conditions has a
stabilizing effect. At a = 1, the largest eigenvalue λ1 changes sign.

We shall demonstrate by an asymptotic analysis for values of a close to
1 that again a transcritical bifurcation occurs. We choose a parameter ε
taking small positive and negative values and set a = 1+ε. For the solution
we make the ansatz

p(x, t) = εp0(x, |ε|t) + ε2p1(x, |ε|t) +O(ε3) ,

which takes into account that we expect solutions close to the trivial steady
state varying slowly. Substitution in (38) and comparing coefficients of equal
powers of ε leads to

0 = ∂2
xp0 + p0 , p0(0, τ) = p0(π, τ) = 0 ,

σ∂τp0 = ∂2
xp1 + p1 + p0 − p2

0 , p1(0, τ) = p1(π, τ) = 0 , (39)

where we have set τ = |ε|t and σ = sign ε. The first line is a linear problem
for p0 with the solution p0(x, τ) = A(τ) sinx, where A(τ) can be chosen
arbitrarily. The second line can be seen as an inhomogeneous version of the
same linear problem, now with the unknown p1, if p0 is considered as known.

Now the idea is the following: Since the kernel of the linear problem
is nontrivial, we expect the inhomogeneous problem to require a solvability
condition on the inhomogeneity. This solvability condition will provide the
missing information for determining the leading term p0 completely.

Actually, the solvability condition is obtained by multiplication with
sinx and integration with respect to x from 0 to π. Doing this with (39)
after substitution of the general solution for p0 gives an ordinary differential
equation for the as yet unknown coefficient A(τ):

dA

dτ
= σ

(
A− 8

3π
A2
)
.

We deduce the existence of a second steady state which is close to (a −
1)3π

8 sinx for a close to 1, and which is unstable for a < 1 and stable for
a > 1. Thus, a transcritical bifurcation occurs with a bifurcating nonhomo-
geneous steady state. The bifurcating solution is biologically relevant only
for a > 1, since it is negative for a < 1.
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8.2 Unbounded domains: traveling waves

∂tp = ∂2
xp+ ap− p2 , for x ∈ IR ,

with a > 0. Traveling wave: p(x, t) = pTW (ξ), ξ = x− st:

−sp′TW = p′′TW + pTW (a− pTW ) . (40)

Invasion: s > 0 and

pTW (−∞) = a , pTW (∞) = 0 . (41)

Theorem 4 Let s ≥ s0 := 2
√
a. Then (40), (41) has a positive, strictly

monotone solution, which is unique up to a shift in ξ.

Proof: The steady states (0, 0) and (a, 0) in the (pTW , p′TW )-plane are
asymptotically stable and a saddle, respectively. One side of the unstable
manifold of (a, 0) points into the triangle

0 > p′TW > −s
2
pTW , pTW < a ,

which is positively invariant. Therefore, this part of the unstable mainfold
has to converge to (0, 0) as ξ →∞. The second part of the unstable manifold
is monotonically increasing and, thus, cannot provide a solution.

Remark 2 1) The condition s ≥ s0 is necessary since, for s < s0, the
origin (0, 0) is a stable spiral. In this case a traveling wave solution might
still exist, but it cannot remain positive.
2) For s > s0, there exists a constant p0 > 0 such that

pTW (ξ) ≈ p0 exp


√
s2 − s2

0 − s
2

ξ

 , as ξ →∞ . (42)

Linearized stability for κ := s2

4 −a > 0 (i.e. s > s0): u ≈ p−pTW , and (ξ, t)
instead of (x, t):

∂tu = ∂2
ξu+ s∂ξu+ (a− 2pTW )u . (43)

Because of the shift invariance and the range of wave speeds, neutral stability
would be the best possible result. However, not even this is true for general
perturbations. We shall therefore restrict to perturbations decaying faster

31



than the wave as ξ →∞. Multiplication by u and integration with respect
to ξ gives

1
2
d

dt

∫ ∞
−∞

u2dξ = −
∫ ∞
−∞

(∂ξu)2dξ +
∫ ∞
−∞

(a− 2pTW )u2dξ , (44)

which shows the main difficulty already, since the coefficient (a−2pTW ) has
the unfavorable sign for ξ → ∞. Fast decay of the perturbation will be
inforced by requiring u(·, t) ∈ L2

(
(1 +W 2)dξ

)
, with

W (ξ) = esξ/2 .

Note that, by (42), pTW /∈ L2
(
(1 +W 2)dξ

)
. A straightforward computation

shows

∂t(uW ) = ∂2
ξ (uW )− (κ+ 2pTW )uW ,

with the positive coefficient (κ+ 2pTW ). Multiplication by uW and integra-
tion with respect to ξ gives

1
2
d

dt

∫ ∞
−∞

u2W 2dξ = −
∫ ∞
−∞

[∂ξ(uW )]2dξ −
∫ ∞
−∞

(κ+ 2pTW )u2W 2dξ . (45)

Now we multiply this by a positive constant α and add the result to (44):

1
2
d

dt

∫ ∞
−∞

u2(1 + αW 2)dξ ≤ −
∫ ∞
−∞

u2(2pTW − a+ ακW 2 + 2αpTWW 2)dξ .

Now we define ξ0 by pTW (ξ0) = 3a/4. Then, for ξ ≤ ξ0, we have

2pTW − a+ ακW 2 + 2αpTWW 2 ≥ a

2
+ ακW 2 ≥ min

{
a

2
, κ

}
(1 + αW 2) ,

For ξ ≥ ξ0, pTWW 2 is strictly positive and unbounded as ξ →∞. Therefore
α can be chosen large enough such that

2αpTWW 2 ≥ 3a
2
.

Therefore, for ξ ≥ ξ0, again

2pTW − a+ ακW 2 + 2αpTWW 2 ≥ min
{
a

2
, κ

}
(1 + αW 2) ,

holds. This implies

d

dt

∫ ∞
−∞

u2(1 + αW 2)dξ ≤ −min{a, 2κ}
∫ ∞
−∞

u2(1 + αW 2)dξ .
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By the Gronwall lemma it can be shown that for u(ξ, 0) ∈ L2
(
(1 +W 2)dξ

)
,

the solution of the linearized equation (43) decays exponentially as t→∞.
This stability result leaves some questions. What about more general

perturbations? In some sense, the slowest solution, i.e. with speed s = s0,
is the only stable one. For an initial datum satisfying

p(ξ, 0) = a for ξ < ξ , p(ξ, 0) = 0 for ξ > ξ ,

the solution can be shown to converge to the traveling wave with s = s0 [5].

9 The Turing mechanism

9.1 Destabilization by diffusion

One thing we seem to have learned from the previous section is that diffusion
is stabilizing. One of the most important mechanisms for pattern formation,
however, uses destabilization by diffusion. It requires a system of at least
two coupled reaction-diffusion equations.

We first consider a linear system of two ODEs,

du

dt
= au+ bv ,

dv

dt
= cu+ dv ,

with constant coefficients a, b, c, d. The trivial steady state u = v = 0 is
asymptotically stable, iff both eigenvalues of the coefficient matrix are in
the left half plane, which is equivalent to the conditions

a+ d < 0 , ad− bc > 0 , (46)

on the trace and the determinant. Now we add diffusion:

∂tu = Du∆u+ au+ bv , ∂v = Dv∆v + cu+ dv ,

with different diffusivities Du, Dv (which will be essential). After an appro-
priate nondimensionalization, this becomes

∂tu = ∆u+ au+ bv , ∂tv = D∆v + cu+ dv ,

with D = Dv/Du.
In the spirit of Section 3, we look for solutions of the form

u(x, t) = eλ(k)t+ik·xu , v(x, t) = eλ(k)t+ik·xv ,

33



with constants u and v, giving the linear system

(λ(k) + |k|2 − a)u− bv = 0 , (λ(k) +D|k|2 − d)v − cu = 0 ,

for u and v, possessing nontrivial solutions, iff

λ(k)2 + λ(k)(|k|2(D + 1)− a− d) +D|k|4 − |k|2(aD + d) + ad− bc = 0 .

This equation determines the dispersion relation. By (46), the coefficients
and, thus, the left hand side is strictly positive for |k| = 0. The same is true
for large values of |k|. A positive eigenvalue λ(k) only exists, if there are
values of k such that

D|k|4 − |k|2(aD + d) + ad− bc < 0 ,

requiring that a and d (and therefore by (46) also b and c) have opposite
signs and that the ratio D of the diffusivities is different from 1. W.l.o.g we
assume

0 < d < −a , and D small enough such that aD + d > 2
√
D(ad− bc) .

Using D as a bifurcation parameter, the bifurcation point is defined by
the equality aD + d = 2

√
D(ad− bc). The critical wave number kc (with

λ(kc) = 0) is then determined by k2
c = (aD + d)/(2D) =

√
(ad− bc)/D.

9.2 A predator-prey model

As an example we discuss a two-species population model of predator-prey
type. Denoting the prey density by b(x, t) (’Beute’) and the predator density
by r(x, t), (’Räuber’) we consider the reaction-diffusion model

∂tb = Db∆b+ γb− δb2 − εrb ,
∂tr = Dr∆r + αr2b− βr ,

where Db and Dr are the diffusivities, γ is the growth rate of small prey
populations in the absence of predators, γ/δ is a stable equilibrium prey
density in the absence of predators, εr is the death rate of prey caused by
predators, αrb is the birth rate of predators assuming sexual reproduction
and the necessity of favourable conditions caused by the presence of prey,
and β is the death rate of predators.

This is only one of many possible predator-prey models chosen such that
the Turing mechanism can occur. We start by a nondimensionalisation re-
ducing the number of parameters. Introducing the reference length

√
Db/γ,
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the reference time 1/γ, the reference prey density γ/δ, the reference predator
density βδ/(αγ), and the dimensionless parameters

A =
βδε

αγ2
, B =

β

γ
, D =

Dr

Db
,

the scaled model reads

∂tb = ∆b+ b− b2 −Arb ,
∂tr = D∆r +B(rb− 1)r .

We start by analyzing spatially homogeneous solutions, i.e., the correspond-
ing system of ODEs

db

dt
= b− b2 −Arb , dr

dt
= B(rb− 1)r .

Under the assumption A < 1/4 there are 4 steady states in the first quadrant
of the (b, r)-plane given by (0, 0), (1, 0), and (b±, b−1

± ) with b± = 1/2 ±√
1/4−A. By linearization it is easily checked that the origin is a saddle

(with the axes as stable and unstable manifolds) and that (1, 0) is stable.
The point (b+, b−1

+ ) is unstable, whereas (b−, b−1
− ) can be made stable by the

additional condition B < b− = 1/2 −
√

1/4−A on the parameters, which
makes (b+, b−1

+ ) a saddle.
Another important question is wether solutions remain bounded. This

we shall answer by constructing an invariant region. We start by solving a
simpler problem neglecting two of the ’good’ terms:

db

dt
= (1−Ar)b , dr

dt
= Br2b .

Solution trajectories in the (b, r)-phase-plane are given by b = b− 1/(Br)−
(A/B) ln r with a constant of integration b. We shall use these curves for the
construction of invariant regions: (b, r) ∈ SM iff b, r ≥ 0 and either r ≤ 1/A
and b ≤M , or r ≥ 1/A and

b ≤M +
A

B

(
1− 1

Ar
− ln(Ar)

)
.

It is easily seen that for every M , SM is bounded and that every point in the
first quadrant lies in SM for large enough M . Also SM1 ⊂ SM2 for M1 ≤M2.
We shall also prove that for M ≥ 1, SM is forward invariant, i.e., every
trajectory starting in SM stays there for all positive times. For this pupose
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we have to inspect the flow on the boundary. Since the axes are invariant
manifolds, we only need to check the boundary parts in the interior of the
first quadrant. Obviously, dbdt = b−b2−Arb = (1−M−Ar)M ≤ 0 for M ≥ 1
and, thus, the direction of the flow is inwards along {(M, r) : 0 < r < 1/A}.
We also compute

d

dt

(
b+

1
Br

+
A

B
ln r

)
= −b2 −Br ≤ 0 ,

showing the same for the boundary piece {(M + A
B

(
1− 1

Ar − ln(Ar)
)
, r) :

r > 1/A}.
The dynamics can now be described as follows: The stable manifold

of the saddle (b+, b−1
+ ) separates the first quadrant into the domains of at-

traction of the stable steady states (1, 0) and (b−, b−1
− ). In other words,

depending on the initial condition, either the predators die out and the prey
density converges to 1, or an equilibrium is reached, where predators and
prey coexist. This concludes the analysis of spatially homogeneous solutions.

We now concentrate on the steady state (b−, b−1
− ). With the notation of

the previous section, linearization gives a = −b−, b = −Ab−, c = Bb−2
− , and

d = B, satisfying the conditions for a Turing instability if the diffusivity of
the predators is small enough compared to that of the prey.

Bounded domain, zero flux BC. Determination of the bifurcating state.
Geometric examples.

10 Chemotaxis

10.1 A kinetic transport model for Escheria coli and its macro-
scopic limit

ε∂tf + εv · ∇xf = Q(f) ,

with

Q(f) =
∫
|v′|=1

[ϕ(∂tS + v′ · ∇xS)f(v′)− ϕ(∂tS + v · ∇xS)f(v)]dv′ .

where ϕ is positive and strictly decreasing. Assume limε→0 f = f0. Then
Q(f0) = 0.∫

|v|=1
Q(f)ϕf dv =

∫
|v|=1

∫
|v′|=1

(ϕ′f ′ − ϕf)ϕf dv′dv

=
∫
|v|=1

∫
|v′|=1

(ϕf − ϕ′f ′)ϕ′f ′ dv′dv = −1
2

∫
|v|=1

∫
|v′|=1

(ϕf − ϕ′f ′)2dv′dv .
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This implies the existence of h(x, t), such that

f0(x, v, t) =
h(x, t)

ϕ(∂tS(x, t) + v · ∇xS(x, t))
.

Mass conservation of the turning operator Q, i.e.
∫
Q(f)dv = 0, implies

∂t%0 +∇x ·
∫
|v|=1

vf0 dv = 0 ,

with

%0 =
∫
|v|=1

f0 dv = h

∫
|v|=1

dv

ϕ(∂tS + v · ∇xS)
.

This gives

∂t%0 +∇x · (%0χ(∂tS, |∇xS|)∇xS) = 0 ,

with χ = b/a, where∫
|v|=1

dv

ϕ(∂tS + v · ∇xS)
=
∫
|w|=1

dw

ϕ(∂tS + w1|∇xS|)
= a(∂tS, |∇xS|) .

In terms of the v-coordinates, the w1-direction is ∇xS/|∇xS|. Similarly,∫
|v|=1

v dv

ϕ(∂tS + v · ∇xS)
=
∇xS
|∇xS|

∫
|w|=1

w1dw

ϕ(∂tS + w1|∇xS|)
= b(∂tS, |∇xS|)∇xS .

Note that a, b > 0 and, thus, χ > 0, by the properties of ϕ.

10.2 A kinetic transport model for Dictyostelium discoideum
and its macroscopic limit

ε2∂tf + εv · ∇xf = Q(f) ,

with

Q(f) =
∫
|v′|=1

[ϕ(S(x+ εv, t)− S(x, t))f(v′)− ϕ(S(x+ εv′, t)− S(x, t))f(v)]dv′ ,

where ϕ is positive, strictly increasing, and scaled such that ϕ(0) = ϕ′(0) =
1. With the asymptotic expansion f = f0 + εf1 +O(ε2), we obtain

Q(f) = Q0(f0) + ε[Q0(f1) + %0∇xS · v] +O(ε2) ,
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with %0 =
∫
f0dv and Q0(f) =

∫
(f ′ − f)dv′. Analogously to the previous

section, the limiting equation Q0(f0) = 0 implies

f0(x, v, t) =
%0(x, t)
Sd

, Sd =
2πd/2

Γ(d/2)

Comparison of O(ε)-terms gives

f1 =
%1

Sd
− v

Sd
·
(∇x%0

Sd
− %0∇xS

)
.

Finally, the O(ε2)-equation integrated with respect to v leads to the conser-
vation law

∂t%0 −∇x · (D∇x%0 − χ%0∇xS) = 0 ,

with the diffusivity and the chemotactic sensitivity

D =
∫
|v|=1

v2
i

S2
d

dv =
1
dS2

d

∫
|v|=1

|v|2dv =
1
dSd

, χ = DSd =
1
d
.

10.3 The Keller-Segel model for cell aggregation

Macroscopic model for chemotaxis, where the chemical is produced by the
cells:

∂t%−∇x · (D∇x%− χ%∇xS) = 0 ,
∂tS −DS∆S = α%− βS .

Scaling x → l0x, t → t0t, % → %0%, S → S0S with given %0 (typical for
initial data) and with

l0 =

√
DSD

α%0χ
, t0 =

DS

α%0χ
, S0 =

D

χ
,

gives

∂t%−∇x · (∇x%− %∇xS) = 0 ,
τ∂tS −∆S = %− δS ,

with the dimensionless parameters

τ =
D

DS
, δ =

βD

α%0χ
.
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Stability of homogeneous equilibria – Fourier analysis

Homogeneous equilibria: S = S∞, % = %∞ = δS∞. Perturbations: Setting
S − S∞ = eλt+ik·xS, %− %∞ = eλt+ik·x%, and linearization gives

A

(
%
S

)
= λ

(
%
S

)
, with A =

(
−|k|2 %∞|k|2
1/τ −(|k|2 + δ)/τ

)
(47)

Since trace(A) < 0, the real parts of the eigenvalues are negative, iff

det(A) =
|k|2

τ
(|k|2 + δ − %∞) > 0 .

Thus, instability occurs for small wave numbers |k|, iff %∞ > δ.

Inhomogeneous equilibria in 1D bounded domains

For x ∈ (0, π) with no-flux boundary conditions (i.e. ∂x% = ∂xS = 0 for
x = 0, π), the total number of cells remains constant, and therefore we
restrict our attention to solutions satisfying∫ π

0
%(x, t)dx = M ,

for a fixed given M > 0. Then there is a unique homogeneous equilibrium

%∞ =
M

π
, S∞ =

M

δπ
.

The linearized stability analysis leads to the eigenvalue problem

λ%̂ = %̂′′ − %∞Ŝ′′ , %̂′(0) = %̂′(π) = 0 ,
∫ L

0
%̂ dx = 0 ,

λτ Ŝ = Ŝ′′ + %̂− δŜ , Ŝ′(0) = Ŝ′(π) = 0 .

The eigenfunctions are given by %̂k(x) = cos(kx)%, Ŝk(x) = cos(kx)S,
k = 1, 2, . . . This leads to (47). Using M as bifurcation parameter, the
homogeneous equilibrium looses its stability, when M gets larger than

M0 = π(1 + δ) .

At this value of M , a bifurcation occurs. Its character is influenced by
the fact that the problem has a flip symmetry. It is invariant under the
transformation x → −x. If a symmetry of this kind is present in an ODE
u̇ = f(u, r) (with parameter r), expressed as invariance under u→ −u, this
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implies that f is odd as a function of u. In this case, there is always the
trivial steady state u = 0, and the normal form is given by f(u, r) = ru±u3.
Considering the (supercritical) case

u̇ = ru− u3 ,

where solutions remain bounded, the bifurcation can be described as follows:
For r < 0, the trivial steady state u = 0 is the only equilibrium, and it is
asymptotically stable. For r > 0, there are two more equilibria u = ±

√
r,

which are asymptotically stable, whereas u = 0 is unstable. Motivated by
the shape of the bifurcation diagram, this is called the pitchfork bifurcation.

The bifurcation analysis will be carried out on the stationary problem

(%′ − %S′)′ = 0 , S′′ = δS − % , %′(0) = %′(π) = S′(0) = S′(π) = 0 ,

subject to ∫ π

0
% dx = M .

The equation for % can be solved:

%(x) = M
eS(x)∫ π

0 e
S(y)dy

,

and the problem is reduced to

S′′ = δS −M eS∫ π
0 e

Sdy
, S′(0) = S′(π) = 0 .

We prescribe a value of M close to the critical value M0 = π(1+δ), and look
for S close to the corresponding homogeneous equilibrium S0 = 1 + 1/δ:

M = M0 + ε2 , S(x) = S0 + εS1(x) + ε2S2(x) + ε3S3(x) +O(ε4) .

The scaling is motivated by the normal form of the pitchfork bifurcation,
where the size of the bifurcating solutions is proportional to the square root
of the distance of the bifurcation parameter from its critical value.

It is considerable work (but straightforward) to substitute this ansatz
and to expand all terms with respect to powers of ε. We therefore skip most
of the details. At O(ε) we obtain

S′′1 + S1 − (1 + δ)S1 = 0 , S′1(0) = S′1(π) = 0 ,
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where z = π−1
∫ π

0 z(x)dx, having the solution S1(x) = a cosx, with an
arbitrary constant a ∈ IR. Using this at O(ε2), we obtain

S′′2 + S2 − (1 + δ)S2 = − 1
π
− a2 1 + δ

2

(
cos2 x− 1

2

)
, S′2(0) = S′2(π) = 0 .(48)

Before solving this problem, we consider, more generally,

u′′ + u− (1 + δ)u = f , u′(0) = u′(π) = 0 ,

with given right hand side and note, that∫ π

0
f(x) cosx dx = 0

is a necessary and sufficient condition for solvability. It is satisfied by the
right hand side in (48) for arbitrary values of a, and the solution is given by

S2(x) =
1
δπ
− a2 1 + δ

6

(
cos2 x− 1

2

)
+ b cosx ,

with an arbitrary constant b ∈ IR. Remembering the normal form of the
pitchfork bifurcation, it is no surprise that we have to go to O(ε3):

S′′3 + S3 − (1 + δ)S3

= − 1
π
S1 + (1 + δ)

(
S1S2 − S1S2 +

1
δπ
S1 −

1
6
S3

1 +
1
2
S1S2

1

)
,

S′3(0) = S′3(π) = 0 ,

The solvability condition is equivalent to the equation

a

(
1− a2 π

24
(1 + δ)(4 + δ)

)
= 0 ,

leading to the bifurcating solutions

S(x) = 1 +
1
δ
± ε

√
24

π(1 + δ)(4 + δ)
cosx+O(ε2) .

Since the cell density has the same qualitative behaviour as the chemical con-
centrations, the cells tend to aggregate close to one of the boundary points.
Both bifurcating solutions can be expected to be asymptotically stable. It
can be shown that stationary solutions with this qualitative behaviour exist
for all M > M0. The important ideas and further references can be found
in [4].
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10.4 The 2D elliptic-parabolic Keller-Segel model – concen-
tration

10.5 The derivation of the Keller-segel model from a weakly
coupled stochastic particle system

10.6 A chemotaxis model including volume filling

10.7 Aggregation by chemotaxis including volume filling and
small diffusivity

11 Cell-cell adhesion

Microscopic one-dimensional model for cell-cell adhesion and volume filling
[1]:

d%j
dt

= T (j + 1→ j)%j+1 + T (j − 1→ j)%j−1

−(T (j → j + 1) + T (j → j − 1))%j ,

with T (j → j + 1) = (1 − %j+1)(1 − α%j−1)/h2 and 0 ≤ α ≤ 1, where the
first factor is due to volume filling and the second due to cell-cell adhesion.
It is easily shown that 0 ≤ %j(0) ≤ 1 for all j ∈ ZZ implies 0 ≤ %j(t) ≤ 1 for
all j ∈ ZZ, t ≥ 0. The equation can also be written as

d%j
dt

=
Kj+1 − 2Kj +Kj−1

h2
, Kj = %j + α%j(%j−1%j+1 − %j−1 − %j+1) .

With %j(t) ≈ %(jh, t), the macroscopic limit h→ 0 formally gives

∂t% = ∂2
xK(%) , K(%) = %− 2α%2 + α%3 ,

which can be written as the nonlinear diffusion equation

∂t% = ∂x(D(%)∂x%) , D(%) = 1− 4α
3

+ 3α
(
%− 2

3

)2

. (49)

The initial value problem for this equation maybe ill-posed, since for α >
3/4, the diffusivity takes negative values in a %-interval around % = 2/3. On
the other hand, by the boundedness of %j , a weak limit (as h → 0) %(x, t)
of the piecewise constant extension (in space) of %j(t) exists. In general, it
cannot be expected to solve (49) because of the ill-posedness of this equation.

An understanding of the situation for h � 1 can be achieved by a tool
from numerical analysis, called the modified equation. When passing from
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the microscopic to the macroscopic model, not only the leading order terms
are used, but also the first significant corrections. In our case we obtain by
Taylor expansion around x = jh:

Kj = K(%) + αh2%
(
(%− 1)∂2

x%− (∂x%)2
)

+O(h3) .

The modified equation

∂t% = ∂2
x

[
K(%) + αh2%

(
(%− 1)∂2

x%− (∂x%)2
)]

,

is of fourth order. Since for 0 ≤ % ≤ 1, the leading order coefficient is
nonpositive, well posedness can be expected (although it would be difficult
to prove). Obviously, the macroscopic limit h → 0 again leads to (49).
However, this changes, when the fast variable

y =
x

h
√
α

is introduced:

αh2∂t% = ∂2
y

[
K(%) + %

(
(%− 1)∂2

y%− (∂y%)2
)]

,

Now, the limit h→ 0 leads to the stationary fourth order equation

0 = ∂2
y

[
K(%) + %

(
(%− 1)∂2

y%− (∂y%)2
)]

, (50)

which can be integrated twice. In the first integration we set the constant
of integration equal to zero which guarantees a bounded flux in terms of the
original variable x. The second integration then leads to

c = K(%) + %
(
(%− 1)∂2

y%− (∂y%)2
)
,

with the integration constant c. This equation can be put into Hamiltonian
form by the transformation % = 1− eu:

∂2
yu =

c−K(1− eu)
e2u(1− eu)

= f(u, c) .

For 3/4 < α < 1 (which we assume in the following), there is an interval
of c-values such that there are three steady states u1(c) < u3(c) < u2(c)
(f(uj(c), c) = 0), where u1 and u2 are saddles and u3 is a center. Generically,
there exists a homoclinic orbit encircling u3, which either connects u1 or u2

with itself. For one parameter value c = ccrit, however, separating the two
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generic situations, this degenerates to a heteroclinic cycle consisting of two
heteroclinic orbits, connecting u1 with u2 and vice versa (see [1] for more
details on these statements). For later reference, we introduce

%1 := 1− eu1(ccrit) > %2 := 1− eu2(ccrit) ,

and recall that there exist bounded solutions of the limiting equation (50)
for y ∈ IR, connecting %1 (at y = −∞) to %2 (at y =∞) and vice versa.

Numerical simulations with the full microscopic model suggest that the
periodic solutions of (50) encircling %3 = 1 − eu3 describe the oscillations
observed when parts of the initial data for the density lie in the forbid-
den interval (%, %), where the diffusivity D(%) is negative. After a while, a
coarsening of these oscillations is observed, where the solution shows rapid
changes (almost jumps) across the forbidden %-interval. These jumps can be
explained analytically by the heteroclinic orbit solutions of (50) connecting
%1 and %2, which satisfy

%2 < % < % < %1 .

After this initial coarsening, a purely macroscopic model can be used for the
description of the dynamics. In regions, where %(x, t) < % or %(x, t) > %, the
limiting diffusion equation (49) can be used. These regions are separated
by points x0(t), where jumps between, e.g., %(x0−, t) = %2 and %(x0+, t) =
%1 occur. The dynamics of these jump points are a consequence of mass
conservation. Integrating (49) with respect to x from a to b with a <
x0(t) < b gives∫ b

a
% dx+ (%2 − %1)ẋ0 = (D(%)∂x%)(b)− (D(%)∂x%)(a) .

The limits a→ x0−, b→ x0+ complete the derivation of an ODE for x0(t):

ẋ0 =
(D(%)∂x%)(x0+)− (D(%)∂x%)(x0−)

%2 − %1
.
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