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In the first article, the authors developed a model based on comparison of simple thermody-
namic quantities. The present article turns a different approach; it includes the dynamic of the
lamellipodium, with details such as dendritic nucleation, elongation, capping and disassembly of
the actin filaments. This makes the model more prone to mistakes, but gives some explanation
why the cells acquire exactly the shape they have, while the first article assumes very simplified
shapes and does not provide any connection between geometric shape of the cell and the structure
of lamellipodium. Here however, the authors analyze the feedback between the actin density and
the edge shape and try to explain, why does the shape remain stable, when the cell moves forward.
As in the first article the model is based on the fish epidermal keratocyte cells.

The authors implement a model using a computer simulation, which consist mainly of three steps:

1. update the actin density using the cell front

Therefore they define their own "Mathematical model of actin dynamics"

2. compute local protrusion velocity from actin density

3. update the shape of the edge

For the last two points, they use the formulas from the "Elastic polymerization ratchet
model" by Mogilner and Oster (1996) and some from "Graded radial extension model"
(Lee et al. 1993b).

After describing the mathematical models mentioned above, the authors want to adjust the
parameters in these models to match the biological facts. To do this they proceed in the following
order:

1. They state the results of biological observations.

2. They investigate qualitatively the properties of actin density in few special cases in the
proposed "Mathematical model of actin dynamics". More precisely, they:

• investigate the case of flat leading edge. This allows them to prefere the "local" scenario
over the "global" one. (see next page)

• investigate how small indentations or bumps on the leading edge influence the actin
density. They predict, that this leads to instability of the cell shape for smaller values
of capping parameter and to stability for larger values. They conclude from this, that
the capping parameter shouldn’t be to small.

3. They present the average measured actin density and the average leading edge shape from
experiment. Then they compare the actual average density with the densities predicted from
the "Mathematical model of actin dynamics" applied on the given average shape. They do
this for different capping parameters and choose the closest reasonable parameter. Important:
On this stage they assume the leading edge shape as constant and do not use the "Elastic
polymerization ratchet model".
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4. Afterwards, they use the experimental data about the edge shape and calculate, which veloc-
ities are necessary for different sections of the edge, to retain the edge shape. (The measures
show that the shape is stable). They put these velocities into a graph together with the
experimental data for the actin density on the same section. Now they can adjust the pa-
rameters in the formula of the "Elastic polymerization ratchet model" to comply with the
graph.

5. Finally, they simulate the entire model with estimated parameters with the iterative pro-
cedure described above and get a stable shape of the leading edge, which approximately
complies with the measurments.

1 The mathematical model of actin dynamics

The leading edge is described by the solid curve y = f(x). We describe the actin network
along the cell front between the lateral edges −L < x < L. When the cell movement is steady,
the shape of the leading edge is constant (solid and dashed curves). Before a filament gets capped
and disappears from the leading edge, its tip remains localized at the leading edge along which
it glides laterally while growing (dashed segments). It is assumed that all filaments are oriented
either −35◦ or 35◦ relative to the x-axis, i.e. either negative or positive. With p−(x, θ) and p+(x, θ)
respectively, we designate the number of filaments of the given orientation divided by the length
of the segment parallel to the x-axis, which they intersect.

1.1 Main model equation
δp±

δt︸︷︷︸
density change

= ± δ

δx
(v±p±)︸ ︷︷ ︸

lateral flow

+βb1,2(p−, p+)︸ ︷︷ ︸
branching

− γp±︸︷︷︸
capping

(1)

We assume initial conditions p−(L) = 0 and p+(−L) = 0 (i.e. no right- (left-) pointing filaments emerge
from left (right) lateral edge).

The right side of the equation consists of three terms:

1. Lateral drift of the growing filaments; the corresponding rate of the flow, v±, can be
obtained from the geometric considerations:

v±(x, t) =
∓ δf
δt

δf
δx − cot(±35◦)

Important: the term v contains the edge-shape function f . (the goal of the authors is to
investige the feedback between the actin density and edge shape.) In the special case of the
steady protrusion of the leading edge with constant shape and velocity V:

v±(x, t) =
V

± δf
δx + 1.42

The case of δfδx = 0 (flat leading edge) is presented as an important example, as the equations
can be solved analytically.
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2. The second term describes branching, which is modeled by the constant rate β multiplied
by some function dependent of the densities of the left- and right- oriented filaments. In the
article, the authors consider two possible choices for such function:

Local scenario assumes that the Arp2/3 complexes (which are distributed gradually along
the edge) activate branching only at their present location. That means: there is
a constant number of new branch nucleations for each section of the edge. New
branches are always nucleated on the filaments of the opposite orientation. We
assume that the filaments on the same location x have equal chance to nucleate
new branch. A constant number β of nascent filaments are nucleated per second
per micron of the cell boundary, therefore:

b1(p−, p+) = p∓(x,t)
p+(x,t)+p−(x,t) (unclear notation; ∓ correspond the choice in equation 1.)

Global scenario assumes that the Arp2/3 can cause nucleation of a new branch on any location
along the leading edge (when e.g. the Arp2/3 is floating more freely along the cell
edge). A constant number βL of new nascent filaments are nucleated per second
over the whole leading edge:
b2(p−, p+) = Lp∓

P
, with P =

∫ L
−L(p+(x) + p−(x))dx the total number of filaments.

3. The third term describes capping of the filaments. The capping proteins float freely, there-
fore each filament has equal probability to be capped.

2 The elastic polymerization ratchet model
by Mogilner and Oster is used to model the protrusion of the leading edge. It is

Vn ≈ V0 exp

(
− frδ

kBT

)
, (2)

where V0 is the free polymerization velocity, fr is the membrane resistance force per filament, δ is the
length increment of the fiber at one instance of monomer assembly and kBT is the thermal energy

The authors assume fr = F
p(x)−p0 , where p0 is some constant.

They introduce the notation ω = Fδ
fBT

and assume it constant. Altogether:

Vn(x) ≈ V0 exp

(
− ω

p(x) − p0

)
(3)

3 Experimental observations of the keratocyte cells
The theoretical considerations above allow us to choose different parameters describing branching
and capping rate, the free polymerization velocity, etc. Moreover, we can choose between local and
global branching model. The authors list some observations and compare them step by step with
simulations of some special cases of the model, in each step adjusting some parameters.

3.1 Shape and motion of the cell are steady
The keratocytes have a comparably stable shape, especially on the cell front. The fluctuations
can be measured by recording the difference in the area , ∆Fi, between the leading edge of the
cell at time ti and the leading edge of the time averaged cell shape (see picture). To record
the changes of area at the leading edge only and to exclude the changes due to lateral dis-
placement of the cell and the retraction at the rear, the measurment was restricted to a strip
(dashed vertical lines) parallel to the direction of motion and between the rightmost position
of the left boundary of the cell and the leftmost position of the right boundary of the cell.
The measurements show, that ∆Fi averages around 1.85% and normally doesn’t exceed 3%.
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3.2 Actin filament density
Fluorescence microscopy reveals, that the filament density is at maximum in the center of the
leading edge and decreases towards the edges.

Experiment: The authors treated the cell with a low concentration (2µM) of cytochalasin D,
a drug that, similar to actin-capping proteins, blocks actin polymerization at the barbed filament
end. This shall have the same effect as an increase of capping rate (and shall therefore decrease
actin polymerization).

Result: After the treatment the cell edge became more flat-like.

4 Special case of the flat leading edge
I.e. when f ′(x) = 0. This makes the rate on flow v∓ of the lateral drift constant and simplifies the
equation 1 significantly.

The authors assume that the shape of the leading edge doesn’t change, when the cell moves
forward (i.e. f ′ stays equal 0). At least in the article they do not prove this with equation 3
from the elastic polymerization ratchet model, but only calculate the static distribution of actin
density, without examining how this distribution would influence the shape of the leading edge.
This hardly makes sense in the longer time scale, but in shorter time scale it allows us to observe
some phenomena.

4.1 Analytic solutions for slow and fast capping
We can write the equation 1 in a nondimensional form and find approximate analytic solutions for
special cases for very slow and very fast capping (γ � 0.01 1

s and γ � 0.01 1
s respectively).
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local global

γ � 0.01 1
s p ≈ βL√

2V

√
1 −

(
x
2L

)2
p ≈ βL√

2V
cos
(
πx
4L

)
γ � 0.01 1

s p ≈ β
γ p ≈ πβ

4γ cos
(
πx
2L

)
at −L+ ε < x < L− ε

4.2 Numerical solutions for the intermediate values of γ
For the intermediate values of γ, there is no analytic solution; therefore the authors calculated
stationary solutions numerically for three different values; γ = 0.001 1

s , γ = 0.01 1
s and γ = 0.1 1

s .
The obtained actin densities p(x) have the following properties:

1. p(x)=p(-x)

2. The solutions are convex; they have maximum at the center and the density decreases to the
sides; this is a result of the boundary conditions p−(1) = 0 and p+(−1) = 0 (All values on
the graphs are scaled).

The shape of the density curves can be characterized especially by the following two properties:

1. The ratio between the center and the sides; p(0)
p(±1)

2. The actin density can either grow gradually from the sides to the center or grow quickly at
the sides and have a flat form in the center.

Lower capping rates; γ = 0.001 1
s , γ = 0.01 1

s
At the lower capping rates the actin filaments grow very long. This ”globalize” the actin

dynamics, as the actin is redistributed along the leading edge. This leads to very similar profiles
for the global and local branching model. Lower capping rates are less biologically relevant!

Higher capping rates γ = 0.1 1
s

In the local model, the actin density along the edge is determined by the balance between
capping rate and the nucleation of new branches (which is here constant, as on every section of the
leading edge, the same number of new branches will be nucleated. Only on the sides the number
of new nucleations is lower). Therefore the density curve is flat.

On the other hand, in the global model, there are more new nucleations on the sections with
higher actin density, therefore the differences between densities multiply. The curve gets a spike-like
form.

Conclusion: We can predict that the local model is the right one, because in the experiment with
increasing capping rate, the leading edge gets flatter.
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5 How the shape of the leading edge determines the actin
density: theory

It is expected: If the leading edge is flattened or indented on some section, then the actin filaments
are depleted here, which causes even lower polymerization and decreases the protrusion rate. This
would cause an additional increase of the indentation, if not countered by some other impact.

On the other hand, if the leading edge has an outgrowth the filaments could accumulate there and
the outgrowth would grow even more.

This is countered by the growth of very long actin filaments at lower capping rates which redistributes
the actin along the edge.

On the figure we see stationary solutions of the filament density with the capping rate γ = 0.25 1
s

(dashed) and γ = 0.1 1
s (solid) for given leading edge (stars). The first leads to instability, while the

second suggests that the shape is more stable. This coincides with the experiment with the added
cytochalasin D, which increases the capping rate and causes the cell shape to be more unstable
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and undergo larger fluctuations.

6 Estimating γ by comparing theory and experiment
The authors measured the shapes of 15 fish keratocyte cells and compared the mean shape of the
leading edge with the mean distribution of the actin filaments. Then they compare the actual
average density with the densities predicted from the "Mathematical model of actin dynamics"
applied on the given average shape. They do this for different capping parameters and choose
the closest reasonable parameter. The visual impression is that γ = 0.08 1

s gives a better fit than
γ = 0.05 1

s or γ = 0.05 1
s .

7 How the actin density shapes the leading edge; adjusting
the parameters of the ratchet model

The experimental observations show, that the leading edge retains steady shape. After the graded
radial extension model (Lee et al. 1993), this means that the leading edge has to grow in the
direction normal to the boundary with the velocity

vn(x) =
V√

1 + (f ′(x))2

where V is the cell protrusion velocity. As the velocity of each section of the leading edge is known,
we can now compare the velocity with actin filament density on the same section and try to adjust
the equation 3 from the elastic ratchet polymerization model, so that the equation would bring the
wanted velocity by given actin density. The graphics show that this is indeed possible. The graph
c) depictures results for a single cell, while d) depictures the scaled parameters for 15 different
cells, obtained as in c). With exception of one (which we ignore), they are comparably close to
each other. The author chose the mean values of these 15 examples as parameters for the model

8 Evolution and stability of the coupled (actin desity/cell
shape system: theory:

Now we have all parameters and can combine both the equations for the impact of the edge shape
to the actin density and the impact of the actin density to the edge shape to make an iterated
simulation with a computer. The authors state that the obtained leading edge shape and the actin
filament density are asymptotically stable and resistant to stochastic fluctuations of branching and
capping rate if the capping rate is not set to high.
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