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Abstract. Sections and 2 give a general overview of biofluiddynamic aspects of microorganisms
possessing flagella and of related organisms, followed by more detailed accounts of (i) motions in
eukaryotic flagellates (protozoans and algae), based on the propagation of "bends" along flagella with
the characteristic "9+2" structure, (ii) motions in bacteria propelled by "bundles" of flagellar
filaments of quite different structure, each driven by a "rotary motor" at its base. For analyzing all
these motions, it is argued that a true "flagellar hydrodynamics" is now needed. This should replace the
"flagellar dynamics" (representing the fluid medium by crude resistance coefficients) which hitherto
has been universally used, but whose accuracy is insufficient for the modern microbiologist’s
requirements. Mathematical methods are applied to initiate the development of such a flagellar
hydrodynamics in 3. Finally, in 4, its conclusions are summarized in nonmathematical language.
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I. Introduction. I am most appreciative of the honor of being selected to
speak in memory of John von Neumann, and am happy to accept the invitation to
survey a "significant field" or area of science where application of mathematics
can yield important results. Here at Rensselaer Polytechnic Institute I gave, two
years ago, a series of ten lectures surveying rather a wide domain of the life
sciences which seemed to me to come into that general category. Those lectures
were published this year by SIAM as a book, Mathematical Biofluiddynamics. In
today’s lecture, I am going to concentrate on one special field within that wide
domain where the story can now be taken much further through a considerable
deepening of understanding achieved during the past two years.

* Received by the editors June 16, 1975.
? Department of Applied Mathematics and Theoretical Physics, University of Cam-

bridge, Silver St., Cambridge, England CB3 9EW.
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162 JAMES LIGHTHILL

Biofluiddynamics is concerned with the mechanics of the relative motions
between living organisms and fluids. External biofluiddynamics deals with an
organism’s motions in relation to the dynamics of a fluid medium surrounding it,
as in the study of aquatic animal locomotion or animal flight. Internal biofluid-
dynamics analyzes fluid motions inside an organism as in the study of circulation
and respiration. A characteristic feature of biofluiddynamics in general is
interaction between the motions of the fluid and of boundaries to it taking the form
of highly flexible, actively motile tissue.

Within that extensive domain this lecture concentrates exclusively on one
particular field: the biofluiddynamics of microorganisms. I want to give rather
hurriedly a broad overview of this field as a whole, and then survey in greater
depth, and in some mathematical detail, that special area within it singled out in
my title, Flagellar hydrodynamics.

Before doing so, may I acknowledge how much I have benefited from
cooperation with the interdisciplinary group of zoologists and hydrodynamicists
at the California Institute of Technology studying these matters under the
leadership of Charles Brokaw and Theodore Wu, respectively, as well as from
similar interdisciplinary work in England bringing in many zoologists such as
Michael Sleigh and Torkel Weis-Fogh, biophysicists such as Michael Holwill and
Kenneth Machin, and hydrodynamicists such as John Blake, Allen Chwang and
David Katz. May I also acknowledge the 1974 Caltech Symposium, "Swimming
and Flying in Nature" as a most noteworthy interdisciplinary discussion, with
extensive sessions on the biofluiddynamics of microorganisms, where the sum-
mary lectures by Howard Berg and by Peter Satir, on prokaryotic and eukaryotic
flagella respectively, were of especial value. Finally may I thank the staff of the
NERC Culture Centre of Algae and Protozoa in Cambridge for giving me such
valuable help in the study of part of their magnificent collection.

The part of biology I want to concentrate on today is the part concerned with
organisms at a very low level of organization into cells with differentiated
functions. I am concerned to quite a major extent with organisms that are
unicellular, although their reproductive cycles may involve the successive appear-
ance of cells of various different types. I refer also to organisms in the form of
aggregations of cells which may be quite large in number but which do not show
any enormously greater degree of differentiation than that just mentioned.

In this respect the organisms I discussmthe protozoans, the bacteria, the
algae and the fungi--are those lying at about the lowest levels of organization in
the animal and plant kingdoms. These, indeed, are levels where most of the classic
criteria for distinguishing between animals and plants break down, and fine
gradations are observed between organisms where plant-like characteristics
predominate and those where animal-like characteristics predominate, with
suggestions of evolutionary developments having proceeded in both directions.
These fine gradations of characteristics are particularly noticeable amongst the
single-celled flagellate microorganisms, to which I give special attehtion.

On the other hand, there are more fundamental differences distinguishing the
eukaryotes, or organisms whose cells incorporate membrane-bound nuclei and
many other membrane-bound organelles, from the prokaryotes (including bac-
teria) which have no internal membrane-bound organelles. I have attempted in
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FLAGELLAR HYDRODYNAMICS 163

Fig. 1 to give a diagrammatic guide to many interesting groups of microorganisms
possessing flagella (all included within the central circle) and to related groups of
organisms. The definite boundary in the form of a circular arc separating
prokaryotes from eukaryotes recognizes the sharpness of that distinction.

SOME PtItOOR/NIStI / I:::LAGELL.K (,C.EN’TRtkL GI.’KCLF..) AN]) ,ELA3"F.’D 0RGANISPIS

FIG. 1. A general overview of microorganisms with flagella and related organisms

Amongst the eukaryotes, however, there are rather fine gradations between
the organisms most plant-like in character shown on the left and those most
animal-like in character shown on the right. A region of overlap between spheres
of interest of the botanists and the zoologists is particularly evident in the middle
column, where seven different groups of organisms are noted each of which is
studied by zoologists as an order within the flagellate protozoans and by botanists
as part of a class of algae. Throughout Fig. 1, a class or an order is indicated in
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164 JAMES LIGI-ITHILL

block capitals, under which is usually shown a highly diagrammatic sketch of some
species within it, in some stage of its life cycle. For the organisms possessing
flagella (within the central circle) a partial indication of which organism has been
picked out for diagrammatic representation has been given by writting the name
of its genus (only) in italics. Figure 1 is used in more detail in 2 to survey the
biofluiddynamics of microorganisms possessing flagella (whether prokaryotic or
eukaryotic) and of related organisms, as a background to those mathematical
studies of flagellar hydrodynamics which follow. Section 2 makes brief reference
also to various occurrences of similar biofluiddynamic phenomena among
metazoans (so-called higher animals), of which the most obvious case is the
tendency for nearly all metazoan sperm cells to be flagellate.

From a mathematical point of view, a feature common to all the biofluid-
dynamics of microorganisms is the overwhelming dominance of surface forces,
such as pressure and viscous stresses, over volume forces such as inertial effects. In
the dynamics of the fluid itself this means that fluid accelerations can be neglected
and the forces on each fluid element due to pressure and viscous stress regarded as
in balance. This leads to the Stokes form of hydrodynamic equations, which have
the great merit of being linear, even though very little experience of solving them
subject to conditions specified on filamentous boundaries exhibiting large-
amplitude undulations has hitherto existed.

In the dynamics of a swimming organism itself, the same insignificance of
inertial effects means that, at each instant, its net swimming velocity of translation
through the fluid is determined by the following condition: this translational
motion, combined with such undulatory motions as the organism is making, will
generate zero resultant [orce on the body. This is a single 3-vector condition to
determine a single 3-vector unknown" the swimming velocity.

It must be recognized, however, that even a system of force with zero
resultant may have a net moment, setting the organism into rotation with
negligible time-lag under these conditions with inertial effects insignificant. The
full dynamical problem, then, is to determine a pair of 3-vectors: both a
translational velocity of the organism relative to the fluid and an angular velocity
of rotation; to determine, in other words, a general motion of the type of which a
rigid body is capable; basically, by applying a pair of 3-vector conditions, equating
to zero the net force and the net moment on the body. The organism’s motile
activity, in fact, is able to specify the instantaneous rate of deformation of its
external surface only "to within an arbitary rigid-body movement". That move-
ment, comprising a translation and a rotation, is uniquely determined by the
requirement that the forces between the body and the fluid form a system of forces
with zero resultant and zero moment.

I shall argue that flagellar dynamics, meaning the dynamics of organisms
possessing flagella, have been worked out quite well along these lines for a variety
of organisms, subject to the limitation that simple local resistance coefficients have
been used to specify the force with which the fluid acts on a flagellum. These are
coefficients of proportionality between the force acting on unit length of flagellum
and its instantaneous velocity relative to the undisturbed fluid. Effectively, their
use eliminates all real hydrodynamics from the problem through the fiction that
the fluid resists any local movement with a local force proportional to its velocity.
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FLAGELLAR HYDRODYNAMICS 165

It is twenty years since certain famous values for resistance coefficients for
motions of a flagellum normal and tangential to itself were suggested by Gray and
Hancock (1955). These are very crude representations of interaction with the
fluid, suggested by known resistance coefficients for motion of a rigid cylinder.
When they were introduced, they represented a very important advance, facilitat-
ing rough approximate analyses of many significant problems of flagellar
dynamics; for example, relations between wave velocity and swimming speed,
studies of the movements of a cell body in response to flagellar motions,
estimations of flagellar rate of working for comparison with chemically deter-
mined metabolic rates, predictions of flagellar waveforms which minimize power
requirements for given swimming speed, etc. Above all, they facilitated investiga-
tions of models of those presumed internal processes whereby an organism may
generate the flagellar motions observed. Because the assumed resistance coeffi-
cients are proportional to fluid viscosity, models for the internal flagellar
mechanics could be systematically tested by comparison of their predictions
with experiments on the organism’s locomotion in fluids of many different vis-
cosities.

There are, however, many reasons why now, twenty years later, it is
appropriate to initiate a true flagellar hydrodynamics, including analysis of the
motions of the fluid medium itself. One reason is that these fluid motions may, for
example, influence greatly the ways in which an organism either senses, or feeds
from, its environment; indeed, some flagellates are sessile, with the flagella having
no locomotor function but exclusively generating currents for feeding purposes.
Secondly, from a mathematical point of view, it can be argued that the whole
concept of local resistance coefficients is particularly inappropriate to a hyd-
rodynamics governed by the Stokes equations, because the fundamental singular
solution of those equations (which is the "stokeslet", representing the velocity
field of a concentrated force) shows an inverse-first-power law of spatial
attenuation; therefore, local forces do not produce merely local effects, but also
long-range effects which need to be taken into account in studying the biofluid-
dynamics of a flagellate organism.

Yet another important consideration is that tentative preliminary studies bf
flagellar hydrodynamics, already noted in Chapter 3 of my book, suggested that
any attempt at a "best possible" representation of the force distribution through
resistance coefficients demands coefficients significantly greater than the
Gray-Hancock values hitherto used in most studies of flagellar dynamics.
Admittedly, the Gray-Hancock values were perfectly adequate for many rough
approximate analyses of the general type that I just listed. After twenty years,
however, the analyses where order-of-magnitude accuracy is enough have
essentially been done, and the use of a more accurate representation of the force
distribution has become necessary if mechanisms which energize and control
flagellar motions are to be identified more precisely.

Admittedly, for much work of this kind, it will still be convenient to use the
machinery of resistance coefficients. It is therefore arguable that the results of any
calculations in flagellar hydrodynamics should, where possible, be given in two
forms: on the one hand in terms of a "best possible representation through
resistance coefficients", and on the other hand in any fuller and more accurate
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166 JAMES LIGHTHILL

manner such as may be achieved through any more complicated method of
representation, possibly for use in studies of a more refined nature.

A variety of such results are given in both forms in 3 below for a number of
problems of interest. They consistently confirm the point noted above, that
resistance coefficients if used should be taken significantly greater than the
Gray-Hancock values, as well as giving many other suggestions relevant to the
biofluiddynamics of microorganisms.

2. Biofluiddynamic aspects of microorganisms possessing flagella and of
related organisms.

2.1. A general overview. Figure 1 gives a highly simplified general overview
of the taxonomy of protozoans, bacteria, algae and fungi, aimed at helping those
unfamiliar with that vast assemblage of organisms to find their way about the
different major groupings within it. Figure 1 is also intended to draw special
attention, among that vast assemblage, to the microorganisms with flagella
included within the central circle.

It is worth reemphasizing the almost continuous gradations between plant-
like and animal-like organisms illustrated in this figure. All life, of course, is
founded on the activities of the autotrophic organisms: those with the characteris-
tically plant-like ability to use various pigments to photosynthesize organic
material. The omnibus expression "algae" is often used to include, primarily, the
autotrophic (that is, photosynthetic) organisms which are at a very low level of
organization into cells with differentiated functions. They range from a wide
variety of single-celled organisms, through linear filamentous assemblages of cells
known as trichomes, to variegated aggregations of still relatively undifferentiated
cells into a much more complex thallus which as in the large seaweeeds may be
very extensive. The most widely used fundamental classification of the algae is
into classes, all of whose names end in "-phyceae", and fourteen such classes are
noted in Fig. 1. irom the study of some of those, however, like Euglenophyceae
and Dinophyceae, we derive clear indications of how colorless organisms lacking
photosynthetic pigments and feeding heterotrophically (that is, from absorbed
organic matter) many have evolved out of autotrophic single-celled algae. For
example (Leedale (1967)), the genus Euglena is famous for including a subgenus
of such colorless algae otherwise very similar to pigmented members of the genus;
and conversely, some pigmented members are able to feed heterotrophically
when they are kept in the dark.

It is understandable that protozoologists, with their general interest in
single-celled motile heterotrophic organisms, should have gven attention to
groups like these (Sleigh (1973)), assigning them in their nomenclature to a
flagellate class (called Flagellata or often Mastigophora) divided into orders all of
whose names end in "-ida". Some imperfect attempt at reconciliation of the
algological and protozoological nomenclatures has been made in Fig. 1 (see
especially the central column).

One class of algae (the blue-green Cyanophyceae) is prokaryotic: its cells
lack membrane-bound organelles. The only other prokaryotes (if we put aside the
viruses and rickettsiae, which of course are entirely dependent on cells of otherD
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FLAGELLAR HYDRODYNAMICS 167

organisms for their growth and multiplication) are the bacteria, a very extensive
class within which it is usual to place all the organisms without photosynthetic
pigments; even an order like Beggiatoales whose members in many other respects
are analogous to blue-green algae such as Oscillatoria. I should note also that one
other order of bacteria (Pseudomonadales) contains not only colorless members
but also a substantial minority of otherwise generally similar organisms (suborder
Rhodobacteriineae) that contain certain photosynthetic pigments, though not
those characteristic of the blue-green algae.

The word flagellum is used both for the filamentous attachments that confer
motility on some bacteria and for the fundamentally different whip-like orga-
nelles that play an important role in locomotion and feeding in a vast range of
eukaryotic organisms. This use of the word in two quite different senses must
certainly be regretted, even though it has helped me choose a concise title for my
lecture which covers just about the only feature which the two types of flagellum
have in common: the associated hydrodynamics. In other respects, the bacterial
flagellum is completely different from the eukaryotic flagellum, about whose
structure indeed we have considerably more comprehensive information. I shall
postpone to 2.3 any discussion of bacterial locomotion, a field where many fine
researches now in progress appear to be resolving some of the doubts and
difficulties that have hitherto beset it, and concentrate initially on the properties of
eukaryotic flagella.

No flagella are present among the the red algae Rhodophyceae, but all the
other classes of eukaryotic algae (Chapman and Chapman ( 1973)) possess flagella
of fundamentally indentical structure involving the 9 + 2 arrangement that I shall
describe in more detail later, comprising 9 "doublet"-microtubules arranged in a
circle around 2 central microtubules. The diameter of this circle is 0.2/zm and that
of the external membrane is typically about 0.25/m, rising to about 0.4/xm in
certain flagella that carry an "intraflagellar rod" alongside the 9 + 2 structure
(e.g., in euglenids). An identical morphology is found wherever flagella occur in
the protozoans (Sleigh (1973)), suggesting of course that this unique 9 + 2
structure in the eukaryotic flagellum first evolved in a group of organisms that
were common ancestors to all the flagellated algae and protozoans.

Outside the flagellates there are two protozoan classes--the opalinates and
the true ciliates--which use the cooperative effect of large numbers of waving cilia
for purposes of locomotion and feeding, and every one of these cilia has exactly
the same 9 + 2 form and cross section as are found in a single flagellum of one of
the flagellates. Finally, every flagellum or cilium occurring in metazoans possesses
either the basic 9 + 2 structure or a structure obviously derived from it by some
sort of "compounding" and/or reduction of central elements.

In certain classes of algae left outside the central circle, like the brown
seaweeds Phaeophyceae or the diatoms Bacillariophyceae, the role of flagella is
strictly limited. In the main "vegetative" phase of a brown seaweed (involving
simple cell growth and cell division) they are absent. However, in this phase
sporangia form and ultimately release reproductive cells known as zoospores,
which in many of the genera are motile (through the agency of flagella rather
similar to those in the zoospores of Xanthophyceae). Most diatoms in theirD
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168 JAMES LIGHTHILL

vegetative phase are isolated plane-symmetric cells with a characteristic hard
silica wall; their normal propagation by cell division is again periodically
interrupted by formation of spores that in some genera possess such flagella.

An intermediate status is represented in Fig. 1 by names shown overlapping
the central circle like those of the green algae. Many of the Chlorophyceae in their
vegetative phase consist of an extensive thallus, which periodically releases
zoospores characterized by a pair of identical flagella emerging at the anterior
end. The class, however, includes one important order, Volvocales, whose
vegetative cells are themselves motile, appearing either as single cells as in
Chlamydomonas or aggregated into colonies as in Volvox. Chlamydomonas
swims actively with its two flagella, normally moving forwards by motions like
those of the human breaststroke, though sometimes it rotates by making those
motions with one flagellum only while the other remains passive. It can also be
induced to beat a hasty retreat with the flagella extended while undulations pass
from base to tip along them. It is hardly surprising that some zoologists have taken
an interest in these particular flagellates, most of which are green, but some of
which are colorless and heterotrophic, and have assigned them to a protozoan
order Phytomonadida (Mackinnon and Hawes (1961)).

The related Prasinophyceae are rather more commonly single-celled flagel-
lates with either 1, 2 or 4 flagella, although a nonmotile filamentous stage in the
life cycle can occur as in Prasinocladus. An extreme form of the arrangement of
two equal flagella emerging at the end of an axis of symmetry is seen in
Nephroselmis, where that axis has become a short one. This organism commonly
moves with both flagella undulating (Parke and Rayns (1964)).

The only kind of motility I am going to discuss in detail is that which
organisms so achieve by moving one or a few flagella. Nevertheless, I shall first
refer to motility of certain other kinds as of some general biofluiddynamic interest.

Certain groups of microorganisms are famous for their ability to perform a
"gliding" motion along the boundary of a fluid medium. Among the Bacil-
lariophyceae (diatoms), members of the order Pennales commonly exhibit a
remarkable ability to glide, either over the smooth surface of a glass slide or even
over a surface with roughnesses on the same scale as the organism itself. They
seem to achieve this by exuding from a thin slit, or "raphe", a thin thread of
viscoelastic mucus which, adhering to the surface, can impart a thrust to the cell
sufficient to overcome hydrodynamic resistance (Harper and Harper (1967)).
Similar movements, similarly associated with a viscoelastic secretion, are found in
at least one family (Desmidiaceae) of green algae.

The well known movement of certain blue-green algae including Oscillatoria,
which is paralleled in some of their colorless analogues (the Beggiatoales,
normally placed among the bacteria), combines forward creeping at an interface
with a slow transverse oscillation of the anterior end of the trichome with period a
few seconds. On Oscillatoria, surface fibrils have been identified and tentatively
implicated (Halfen and Castenholz (1970)) as a contributory influence on these
gliding motions, possibly together with some kind of secretion.

Another important kind of motility in microorganisms that is affected by
special rheological properties of internal fluids is cytoplasmic streaming. This is
prominent throughout the protozoan class Rhizopoda, which for purposes of

D
ow

nl
oa

de
d 

10
/0

7/
16

 to
 7

7.
80

.1
9.

24
5.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



FLAGELLAR HYDRODYNAMICS 169

locomotion and feeding depends critically on the extension and contraction of
pseudopodia. The associated cytoplasmic streaming is most evident in members of
the order Amoebida. The extension of their blunt or "lobose" pseudopodia with
rounded ends is achieved by an internal cytoplasmic streaming which is very
clearly visible. A critical role in these internal motions is played by gel-sol
transitions. The continual large-scale changes of external shape play a part in both
locomotion and feeding.

Although the motility of an organism such as Amoeba itself appears to be of a
fundamentally different character from that of the flagellates, the diversity of the
order Amoebida taken as a whole gives many indications of relationships to other
protozoan classes. In some of the genera, organisms show various interesting
responses to environmental changes: for example, to lack of moisture by forming
a spherical, strongly walled cyst within which the organism remains inert until the
environment becomes more moist; or conversely responding to a major dilution
of the liquid environment by growing some flagella which may proceed to propel
the organism away from its nutrient-deficient location (Mackinnon and Hawes
(1961, p. 26)). Some other organisms (Rhizomastigida) may execute amoeboid
movement and yet possess a permanent flagellum; those perhaps lie almost on the
boundary between rhizopods and flagellates, but from the points of view of Fig. 1
must clearly be placed within the central circle. For example, Mastigamoeba,
besides exhibiting cytoplasmic streaming, often pulls itself forward by undulations
passing along its flagellum from tip to base (Sleigh (1973, p. 36)).

Within parasitic genera of Amoebida, certain species form a cyst within
which cell division takes place. This forms a link with the extensive protozoan class
Sporozoa, where a spherical cyst within which spore formation occurs is normally
an important stage in the life cycle, but this class of parasitic organisms will not
figure significantly in the present survey, owing to its restricted degree of
biofluiddynamic interest.

A certain degree of cytoplasmic streaming is readily observed in some of the
flagellates proper, including many of the Euglenida; in those it produces definite
and substantial fluctuations of shape, although they are not nearly so marked as in
Amoeba, and the dominant motile role is played by the flagella. A similar
combination of two kinds of biofluiddynamic interest is exhibited by the slime
moulds, usually studied (Smith (1955)) as a botanical class Myxomycetae
remotely related to the fungi proper, but occasionally described as a rhizopod
order (Mycetozoia) by protozoologists. The vegetative phase exhibits very
marked cytoplasmic streaming, often in an exceedingly "naked" form with
regularly reversing flow taking place in the branches of an intricate open network
known as a plasmodium. Ultimately one or more sporangia are formed from
which there emerge zoospores which are amoeboid in some genera but flagellate
in others (such as Physarum).

The fungi proper are far more definitely plant-like in character (Smith
(1955)) except, of course, that they also are entirely heterotrophic. Members of
the class Phycomycetae (often called the "lower" fungi) generate a wide range of
different types of spore, including flagellated zoospores with either one or two
flagella. "Higher" fungi have much more distinctive types of spore, without
flagella, although in the case of the Basidiomycetae we find that dispersion of the
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170 JAMES LIGHTHILL

species is often achieved by a different kind of spore locomotion: the basidium,
through a mechanism that remains obscure, acts as a gun which explosively expels
the spore, at a speed far exceeding the terminal velocity of these light objects.
Accordingly, the trajectory is practically two straight lines (one followed by the
spore in the direction of discharge till its momentum is almost spent, and one
vertically downwards with the terminal velocity)--a trajectory so different from
the familiar parabola characteristic of heavy objects that one mycologist
christened it the "sporobola"!

Returning to the rhizopod protozoans, we must note that their pseudopodia
instead of being lobose as in most of the Amoebida may often take fine
filamentous forms (which need of course to be sharply distinguished from
flagella). The Testacea are amoeboid organisms living in a sort of shell or "test",
from openings in which they extrude pseudopodia of either lobose or filamentous
form; but the especially famous and abundant order of shelled protozoans is the
Foraminifera, with their variously "sculpted" shells from which a network or
reticulum of filamentous pseudopodia emerge for purposes of feeding. Some
Foraminifera use the reticulum also for locomotion to pull themselves along some
surface such as that of a seaweed (Mackinnon and Hawes (1961, p. 51)).

An especially interesting filamentous pseudopodium is the axopodium found
in Heliozoa and some Radiolaria. The organisms are typically spherical floating
protozoans, from which emerge axopodia, each possessing an axial skeletal
element that allows them to remain rigid. The skeletal element is commonly
formed by means of an arrangement of microtubules, which however, is geometri-
cally quite different from that found in flagella and involves a much greater
number of separate microtubules. Feeding often proceeds through partial with-
drawal of one or more axopodia to which food particles have adhered. In addition,
heliozoans have been observed moving over a solid surface by a rolling mechan-
ism (Sleigh (1973, p. 161)) brought about by cyclic extension and withdrawal of
the axopodia.

The last biofluiddynamic topic that I wish to touch upon briefly before
focusing attention on flagellar hydrodynamics proper is the role played in
locomotion and feeding of ciliates by the cooperative action of large members of
waving cilia. I mentioned that cilia have the same internalstructure as flagella, but
of course their hydrodynamics is quite different because it depends on the
statistical effect of the very large number of organelles involved.

We can quickly pass over the small isolated class Opalinata with only four
genera, all found in frogs’ guts and all of which except in the possession of cilia are
completely different from the true ciliates. In particular, they lack a mouth and
take only liquid food through the cell membrane. They do possess more than one
nucleus but are without the big macronuclei found in ciliates. Their methods of
multiplication are also quite different, involving on the one hand cell divisions of a
very simple kind, and on the other hand a cyst stage for the part of the life cycle
spent outside the host. Finally, their locomotion is different: the cilia remain very
close together while a wave of movement passes over them like the undulation of a
field of corn, the animal progressing slowly in the opposite direction to the wave.
Both observation and hydrodynamic analysis indicate (Blake and Sleigh (1974))
that this method of organizing ciliary locomotion through a fluid generates speeds
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FLAGELLAR HYDRODYNAMICS 171

less by an order of magnitude than the method mainly used by true ciliates; but
possibly for opalinates in the rectum of a frog it may be more important that the
motions are effective in a crawlingmode, with the cilia beating against the gut wall,
so as to avoid elimination when the frog defecates!

True ciliates are animals far more complex in several different ways (Sleigh
(1973)). They exhibit a specialized type of binary fission at an equatorial plane
involving replication of the whole ciliate’s intricate structure. This is sometimes
preceded by the unique sexual process of conjugation where two cells are closely
juxtaposed and one of the two gamete nuclei in each is passed to the other cell
across a cytoplasmic bridge. Only the ordinary nuclei (or "micronuclei") take part
in the sexual process, which is preceded by the disintegration of the one or more
big macronuclei (which are involved only with the various metabolic functions
of the cell). The daughter cells then proceed to reconstitute the numbers of
macro- and micronuclei characteristic of the species.

Each cilium arises from a "basal granule" or "kinetosome", and the cilia are
typically arranged in rows called kineties. They are important both for locomotion
and feeding, with the relative importance varying in different groups of
ciliates. They are primarily important for locomotion in the Gymno-
stomatida, which have no specialized mouth ciliature and where cilia are
distributed uniformly over the surface, although with kineties converging towards
the general mouth area. Motions of somatic cilia of this general type have been
particularly studied in the Hymenostomatida (e.g., Tetrahymena and
Paramecium), where they are found along with some specialized mouth ciliature.
Each somatic cilium makes its effective stroke in a condition of temporary
separation from adjacent cilia, as a nearly rigid rotation about the base pushing
fluid along the body surface in a direction opposite to that of locomotion. The
recovery stroke takes place in a different plane, almost tangential to the surface,
again with the cilium almost rigid (much more so than was formerly believed from
observations made at right angles to the kineties). The wave of motions is
"dexioplectic" in the sense that it passes spirally forwards and to the right
(Machemer (1972), Sleigh (1974)); it is this organization of the motions which
avoids interference between the actions of adjacent cilia. As a result, anorganism
0.25 mm long may move at speeds of 1 to 2 mms-.

Specialized mouth ciliature may include (i) a group of cilia essentially
coalesced to form an undulating membrane generating a flow of fluid bearing
suspended food particles towards the mouth cavity, and (ii) a complex structure
known as the AZM (adoral zone membranellae), where again each membranella
consists of many cilia more or less adhering to one another. In Fig. 1, four of the
orders in the subclass Spirotricha (Mackinnon and Hawes (1961), Sleigh (1973))
are mentioned, with some illustration of the prominent spiral arrangement of the
AZM which facilitates feeding (and usually locomotion as well) by a biofluid-
dynamically interesting propeller-like action of considerable vigor. A few of these
like Stentor in the Heterotrichida retain somatic ciliature but most commonly this
is lost, or else replaced as in the Hypotrichida by cirri, each of which is a bundle of
numerous adhering cilia that wave as one.

Contractility of the cell body, acting as an important defense mechanism, is
found in many members of this subclass, including Stentor; and similarly the
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172 JAMES LIGHTHILL

elegant Tintinnopsis campanula is able to contract its cell into the relatively rigid
"|orica". Certain members of the order Peritrichida like Vorticella are at most
times sessile, using the ciliature only for feeding, and are famous for the
exceptionally rapid contractility of the stalk or "spasmoneme".

I will now terminate this extremely brief look at a few ciliate orders by
mentioning the aberrant Suctorida, which in the adult stage lack cilia together!
However, in other ways they are like ciliates: they possess macro- as well as
micronuclei and exhibit conjugation, normally between two neighboring sessile
animals, and furthermore do produce larvae that use somatic cilia to swim to find a
new attachment site. Possibly a certain degree of biofluiddynamic interest is
afforded by the hollow tentacles of adult Suctorida such as Discophrya which can
exert a powerful suction effect, holding on to some prey, puncturing its cell
membrane and sucking out its contents.

2.2. Eukaryotic flagellar motions. Now it is necessary to consider flagellar
motions in more detail. Several times I have mentioned undulations in a
eukaryotic flagellum. It is important to recognize that these take place without any
changes in its cross-sectional dimensions, which are fixed by the geometry of the
9 / 2 microtubules. Similarly, there is no stretching of the flagellum, or indeed
even of the individual microtubules. We shall see later that to form a bend the
microtubules on the outside of the bend make "walking" movements on the little
"limbs" by which they are attached to neighboring microtubules, and conversely
the microtubules on the inside of the bend make opposite walking movements,
generating a bend through this active shear in the plane of the bend fitting in a
greater length of (unstretched) microtubule on the outside of the bend opposite a
smaller length of (unstretched) microtubule on the inside of the bend.

Undulations, then, take place in an effectively inextensible flagellum and so
can only take the form of transverse waves, similar in appearance to those which
can be passed along a rope by shaking one end, even though, of course, quite
different mechanisms for generating the waves operate in the two cases. Now, the
classical paradox of a transverse undulation passing along a rope (say from left to
right) is that although at every point there is always an appearance of something
moving to the right, no net displacemen[ to the right occurs. The explanation of
the illusion is, of course, that the eye is sensitive to motions of the rope normal to
itself but not to tangential motions. The normal resultant of the velocity of a
particle of rope has always a left-to-right component, as the eye observes.
Accordingly, the average normal resultant points from left to right. Evidently, to
balance that, there must be an exactly equal and opposite average tangential
resultant, pointing from right to left, equal and opposite because the tangential
and normal resultant add up to the total velocity of a particle of rope, whose
average is zero.

An undulation, then, as it propagates along any flagellum attached to a cell
body, generates average normal motions relative to that body which are in the
direction of propagation. These are accompanied by equal, and oppositely
directed, average tangential motions.

With this background we can readily appreciate the significance of local
resistance coefficients which may be so anisotropic that the fluid resists normal
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FLAGELLAR HYDRODYNAMICS 173

motions of a small length of smooth flagellum with a force almost double that with
which it resists equal tangential motions. This law of Gray and Hancock, which has
a crude approximate validity even though I will seek to refine it in 3, implies that
the average fluid forces opposing normal motions (which are in the direction of
propagation, relative to the cell body) are almost double those acting to resist the
equal and opposite tangential motions. The difference is a net thrust, opposite to
the direction of propagation, for such a smooth flagellum.

Evidently this net thrust generates a motion of the organism as a whole in a
direction opposite to the direction of propagation at such a speed that the
resistance to that motion just balances the thrust. In this way Mastigamoeba, as we
saw, is pulled forwards by the undulations passing along an anterior flagellum
from tip to base, whereas a dinoflagellate like Gymnodinium is pushed forwards
by undulations passing along a posterior flagellum from base to tip.

It has long been recognized that the above argument goes into reverse for an
organism which propagates a planar waveform along a flagellum with projecting
mastigonemes in the plane of the undulation (Holwill and Sleigh (1967)).
Mastigonemes are "hairs" about 1/zm long and 0.02/zm thick projecting on both
sides of the flagellum of (say) a chrysophycean like Ochromonas or a xanthophy-
cean zoospore. They remain stiff during its motion (Holwill (1974)). Such
mastigonemes, when the flagellum moves in their own plane, make the coefficient
of resistance significantly greater for tangential motions than for normal motions.
Therefore, planar undulations of this type of flagellum generate a thrust in the
direction ofpropagation, and indeed the organisms are observed to pull themselves
forwards by propagating such a wave from base to tip.

Most algologists and protozoologists make a distinction between, on the one
hand, flagella bearing true mastigonemes thus stiffly projecting on both sides
roughly at right angles, with the apparent function of changing the relative values
of tangential and normal resistance coefficients in planar motions, and on the
other hand flagella as in Euglena exhibiting much flimsier tinsel-like hairs, usually
on one side only. (The German word for tinsel, "Flimmer", is, however, often
used to describe either type of flagellar projection.) These much flimsier
attachments (not illustrated in Fig. 1) are likely, particularly in spiral motions
characteristics of euglenid flagella, to produce comparable small increases in both
the normal and tangential resistance coefficients and therefore to give basically
the same dynamic properties as a smooth flagellum (if anything, a little enhanced).
Neglecting those refinements, together with any similar effects of scales covering
the flagella in, for example, the Prasinophyceae (Chapman and Chapman (1973,
p. 28)), I propose to discuss the observed motions of all such organisms in what
follows from the simplified standpoint of smooth-flagellum analysis.

I want to emphasize that my earlier explanations of why a wave propagated
along a smooth flagellum generates a thrust in a direction opposite to that of
propagation are valid both for planar waveforms of any shape (whether sinusoidal
or otherwise...) and also for three-dimensional waveforms such as spirals. It is
worth noting that planar waveforms have the disadvantage that the thrust they
generate is spatially inhomogeneous, being significantly positive in those parts of
the wave where the normal resultant is greatest because they are inclined
substantially to the direction of propagation, while actually becoming negative
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174 JAMES LIGHTHILL

(though small in magnitude) in parts nearly parallel to that direction. We shall see
that such spatial inhomogeneity increases the energy cost required to produce a
given net thrust.

By contrast, a spiral waveform, that has all parts equally inclined to the
direction of propagation, can generate thrust homogeneously, with a significant
reduction in the total energy cost required to produce given thrust. On the other
hand, the forces generated by a spiral wave in a single flagellum combine to give
not only a resultant thrust but also a resultant moment about the axis of the spiral.
The net effect is that not only does the organism as a whole move in the direction
of the thrust, but also the cell body has to rotate, at such an angular velocity that
the couple opposing its rotation balances that generated by the spiral undulation
(Chwang and Wu (1971)). This rotation of the cell body must produce some
additional energy dissipation; nevertheless, the fatter the cell, the more readily it
can generate this opposing couple with a relatively slow rotation and therefore a
relatively sma|l additional energy dissipation.

Thus, propagation of a spiral waveform along a single flagellum generates
thrust efficiently, but it generates also a couple that causes the cell body to rotate at
some additional energy cost. Note also this rotation of the body is likely to
generate an equal rotation in any flagellum attached to it. This can have two
alternative possible drawbacks: if on the one hand the cell body’s own motions are
simply added on (as rigid body rotations) to the motions of the spiral, they give it a
supplementary corkscrew motion which generates a force opposing the thrust due
to the undulation (so that the net thrust is reduced). On the other hand, a
kinematically possible alternative mechanism which has been suggested in
another context (Wang and Jahn (1972)) is flagellar self-rotation, whereby the
whole length of the spiral flagellum generates active shearing movements that
allow it to avoid normal displacements and merely twist everywhere about its own
curved axis, but this solution would bring its own internal metabolic costs and
control complexities.

It hardly appears fanciful to see in the special morphological features of many
flagellates (Fig. 1) a series of methods of reaping the advantages of spiral-wave
propagation without the disadvantages. Evidently flagella like those of
Chlamydomonas, which are "isokont", that is, equal and symmetrical, can avoid
generating any couple whenever they beat symmetrically. Many other biflagellate
organisms possess, on the other hand, a main propulsive flagellum and a
subsidiary flagellum whose functions may well include control of rotation about
the antero-posterior axis. For example, in a dinoflagellate like Gymnodinium, this
is the transverse flagellum which undulates in a transverse groove to generate a
couple about that axis. Similarly, in the Desmophyceae, a subsidiary flagellum
makes a relatively slow beat while the propulsive flagellum pulls the organism
forwards by means of a fast tip-to-base undulation (Chapman and Chapman
(1973, p. 148)).

Some support of the proposition that the transverse flagellum in Dinoflagel-
lida may have a role in increasing thrust through control of rotation is provided by
an important observation of Jahn, Harmon and Landman (1963) on Ceratium
tripos. Admittedly, they noted that the posterior flagellum often makes planar
undulations; nevertheless it is very likely that it can additionally propagate a
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FLAGELLAR HYDRODYNAMICS 175

helical wave to generate fast motions. Jahn et al. (1963, p. 360) observed that the
organism’s substantial rotation (as viewed along its direction of locomotion) was
anticlockwise or clockwise according as the transverse flagellum was or was not
beating. This strongly suggests that (i) with inert transverse flagellum, the
posterior flagellum propagates a helical wave generating a clockwise rotation of
the cell body, which in turn produces an additional corkscrew motion of the helix
that reduces its net thrust; whereas (ii) the beating of the transverse flagellum can
reverse that rotation, adding an anticlockwise corkscrew motion to the flagellum
and so actually increasing its thrust.

In Euglena the interesting and superficially awkward arrangement of its one
effective flagellum may have even more subtly turned what is potentially the main
disadvantage of spiral undulations into an advantage. Euglena exhibits very
clearly those body rotations which (as usual) are necessitated by the unbalanced
couple due to the spiral undulation of its flagellum. When it moves forwards, with
the flagellum characteristically trailing from the anterior end (and giving thrust by
a base-to-tip spiral undulation), it seems inevitable that these rotations of the
body must be transmitted past the 180 bend. (All the indications are that the
9 + 2 structure is unable to sustain the high local torsion that would otherwise be
required.) But a rotation in being transmitted by the torsional stiffness of a flexible
filament around a 180 bend reverses the sense of its rotation in space. If the
resulting reversed rotation simply adds to the spiral undulation a rigid corkscrew
motion, this accordingly has now the right sign to add to its propulsive thrustma
really useful bonus from the extra rate of energy expenditure required for body
rotation! This mechanism requires only a minimal amount of active shearing
(confined to a cyclic active shear in the 180 bend itself at the frequency of body
rotation)--far less than is required by the hypothesis of general flagellar
self-rotation.

From among the considerable diversity of modes of locomotion found in
other euglenids, I pick out those of Peranema, a colorless organism that ingests
particulate food through its mouth-like cytostome. Its anterior flagellum is
thickened (like that of Euglena) by the presence of an "intraflagellar rod"
alongside the 9 + 2 structure. It swims in a spectacular manner with this flagellum
stretched forwards; the posterior half remains almost motionless, while a very
energetic propulsive spiraling proceeds at the anterior end. The body is observed
to turn in response to the resulting couple but (probably owing to its fatness) the
angular velocity of turn is slow enough to reduce only slightly the propulsive effect
of the spiral undulation. (There is a thin posterior flagellum, which is observed to
adhere closely to the cell; this is unlikely to have a rotation-controlling function
since any couple which it generated in forward motion would be small owing to the
proximity of the cell body.) Peranema is additionally able, at an interface, to
execute a gliding motion (associated like that of diatoms with a viscoelastic
secretion) with the anterior flagellum straight except for quite a slow movement at
the tips (Chen (1950)).

The Cryptophyceae are a not so well-known group of single-celled organisms
that may be pigmented or colorless. They have a rather characteristic asymmetri-
cal form and two slightly unequal tinsel-like flagella, whose motions it would be
interesting to record and analyze. Members of the genus Cryptomonas are green
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and may be observed moving in rather a versatile manner in cultures, either
forwards or backwards and usually slowly rotating about the antero-posterior
axis.

The Xanthophyceae are a class of pigmented algae (usually yellow-green)
where the vegetative phase may involve various colonial figgregations and
filament-like or sac-like forms or may consist of single cells. Such a vegetative
single-cell may be flagellate, or else amoeboid, or even capable of alternating
between the two forms. All the Xanthophyceae, however, form flagellated
zoospores, which typically swim around quite fast. The longer of their two
unequal flagella bears mastigonemes and propels the zoospore with a planar
undulation just as in Ochromonas.

The Chloromonadophyceae are a small class with pigmented and nonpig-
mented members, all single-celled (Chapman and Chapman (1973, p. 140)).
They show a certain amount of cytoplasmic movement even in their typical
biflagellate state (the cells may also repond to environmental changes by adopting
amoeboid or encysted forms). In locomotion, one of the two flagella trails and
could possibly have a rotation-controlling function.

The Chrysophyceae are a large class, including many single-celled forms,
mostly pigmented (yellow to golden-brown) but some colorless, together with a
variety of colonial aggregations and branched-filament forms. Both in typical
single-celled forms like Ochromonas and in typical zoospores of multicellular
forms, there is a propulsive flagellum with mastigonemes and (sometimes) an
additional short smooth flagellum (however, both isokont and rhizopod forms are
known). Ochromonas, as we saw earlier, swims forward with a base-to-tip planar
undulation. Algologists normally include among the Chrysophyceae the identi-
cally pigmented single-celled uniflagellates with an internal siliceous skeleton that
some zoologists have assigned to an order Silicoflagellida. They have slender
pseudopodia and a flagellum with mastigonemes, presumably executing a similar
planar undulation.

I want to refer next to a wide variety of organisms each of which is sessile for a
significant part of its life cycle, during which, however, it continues to make very
active flagellar movements. These are organisms where the locomotor function of
flagellar movements may go into abeyance but the feeding function remains.
Often the cell is attached to an inert cup-shaped lorica.

One famous pigmented chrysophycean Dinobryon secretes such a lorica to
which it remains attached by a contractile cytoplasmic "stalk". A daughter cell
often builds its lorica on the mouth of an empty old one, generating a colony of
tree-like appearance. Dinobryon is often found (Sleigh (1973, p. 264)) in waters
that are oligotrophic (deficient in salts needed for algal growth) and the continual
activity of its flagella (broadly like those of Ochromonas) may be important for
maintenance of its salt intake by ensuring a steady relative flow of fluid past the
colony.

The Bicoecida, a group of heterotrophic flagellates usually classified as a
protozoan order, may have evolved from colorless derivatives of such loricate
chrysophyceans. Bicoeca uses its secondary flagellum to attach the cell to the
lorica which it has secreted (and which in turn is usually attached to some
substrate). The primary flagellum with its mastigonemes performs a vigorous
base-to-tip undulation (Sleigh (1973, p. 122)), but the thrust it generates (also
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directed from base to tip, because of the mastigonemes) is balanced by the tension
in the secondary flagellum. Opposed to that thrust, however, is an equal reaction
force on the water, which causes it and any food particles suspended in it to stream
continuously towards the organism, which ingests particles by means of
pseudopodia.

Rather a different structure is exhibited by Choanoflagellida, possessing only
a single flagellum with which they exert a thrust in the opposite direction--into the
lorica, for example, in Salpingoeca. The reaction on the water is then to force it
away from the cell; part of this water current is filtered by the "collar" of fine
pseudopodia which trap and ingest food particles suspended in it. Some
other genera of these "collar-flagellates" form small colonies (Sleigh (1973,
p. 121)).

One special reason why this order is interesting derives from the fact that the
mechanically active elements in sponges (members of the phylum Porifera, at the
next level of animal organization into cells with differentiated functions above the
Protozoa) are the "flagellated chambers" made up of "choanocytes", cells
fundamentally similar to those of the Choanoflagellida. The skeleton of the
sponge provides support for a complicated ducting system giving access of water
to numerous different flagellated chambers where the pumping activity of the
choanocytes ensures a steady through-flow and the capture of food particles by
the filtering action of the collars (see, for example, Hyman (1940, pp. 284-364)).

Another remarkable group of single-celled flagellates, some with capabilities
of attachment to a substrate, are the Haptophyceae. They possess a pair of isokont
flagella like Chlamydomonas and they also possess a third fibrillar organelle which
is not a flagellum and indeed never exhibits flagellar beating movements or
undulations. This is the "haptonema" with its unique structure of microtubules
(characteristically 7 instead of the 9 + 2 in a flagellum) and its capacity for coiling
and uncoiling (Sleigh (1973, p. 32)). Chrysochromulina sometimes makes free
swimming movements like Chlamydomonas, either with breaststroke-like
motions of its two flagella or with undulations, and with the haptonema either held
out rigidly in front or else trailing. Alternatively, it uses the haptonema to attach
itself to a substrate while the flagella continue to beat vigorously. The resulting
water currents may assist in feeding because, although the organism photosyn-
thesizes, it also ingests food particles at the pole opposite to the point of
attachment (Chapman and Chapman (1973, p. 172)).

There is in the flagellates just one more special type of structure that I should
like to describe because of its definite biofluiddynamic interest. This is found in
Trypanosoma, an extensive genus of organisms with complicated life cycles
(Mackinnon and Hawes (1961, p. 117)), some members of which are notoriously
dangerous to man. It is the bloodstream form (trypomastigote) of Trypanosoma
that characteristically exhibits an "undulating membrane". This is a true mem-
brane, continuous with the cell membrane and with the membrane around the
axoneme (9 + 2 structure), and thus is quite different from the so-called undulat-
ing membrane in ciliates (made up of a mass of more or less adhering cilia). When
the axoneme undulates, a wave passes down the whole undulating membrane,
with very marked propulsive effect.

The same phenomenon is found in Trichomonas, an organism that possesses
also an interior skeletal rod (axostyle) and three anterior flagella. In this lecture,
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178 JAMES LIGHTHILL

however, I shall not try to analyze these complex motions, or those of flagellates
possessing great numbers of flagella. Hexamitawas named when it was believed to
have six, but in fact has eight, and others (in the order Hypermastigida) may have
hundreds (Mackinnon and Hawes (1961, p. 138)). It is probably from flagellates
of such a type that the true ciliates evolved.

2.3. Bacterial flageilar motions. I return now to the locomotion of bacteria,
and to the character of those filamentous attachments commonly associated with
their locomotion which are called "bacterial flagella" even though they differ
fundamentally from eukaryotic flagella in all save perhaps a few hydrodynamic
aspects! I shall discuss primarily locomotion associated with the movements of
such bacterial flagella, although referring also to bacterial locomotion associated
with analogous movements of a cell body. I shall say no more about those orders of
bacteria which apart from being colorless appear quite closely related to blue-
green algae (including Beggiatoales, with their cells arranged in filamentous
"trichomes" capable of a gliding motion as already discussed, Chlamydobac-
teriales, with trichomes enclosed in sheaths, and perhaps Hyphomicrobiales, with
branching filaments) but I will in passing mention a different gliding phenomenon
exhibited by the single-celled flexible elongated Myxobacteriales at an interface
(Weibull (1960)). This gliding motion is ascribed by some authors to yet another
viscoelastic secretion, but by some to a sort of worm-like creeping.

The names of two exceedingly large orders of bacteria are placed at the top of
the central circle in Fig. 1: Eubacteriales and Pseudomonadales. Each is shown
overlapping the boundary of that circle because, while each order contains a vast
number of members with flagella (of which a few are illustrated), each also
contains a very large number of nonmotile members (including in particular
almost all the organisms of "coccus" shape--spherical or spheroidal).

The types of flagellar arrangement found in those members of the two orders
which are motile are, however, quite different (Salle (1961)). In the variously
shaped Pseudomonadales, all flagella are "polar" in the sense that they emerge
from one or both ends of some axis through the organism. At each "pole" there
may emerge either no flagella, or one, or a few, or many, but there are no other
locations where flagella emerge. By contrast, motile members of the Eubac-
teriales, which are usually rod-shaped, have flagella that are "peritrichous" in the
sense that they arise (whether in moderate number as in Proteus mirabilis or in
large number as in Salmonella typhosa) from locations all around the cell body.

It must be emphasized that the difficulties of obtaining data on locomotion
are enormously greater for bacteria than for eukaryotic flagellates because
dimensions are less by an order of magnitude. A bacterial cell has typical
dimensions of order 1 to 3/zm (in the region where Brownian motion is
significant), as compared with values of order 10 to 30/m for typical flagellates
(and much larger values still for many euglenids and dinoflagellates). The
thickness of a bacterial flagellum is of order 0.02/m, as against 0.2 zm for the
eukaryotic 9 + 2 structure even without its enveloping membrane. Crudely, we
can say that all dimensions are down by an order of magnitude, producing many
general difficulties in studying the motions and the particular difficulty that theD
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FLAGELLAR HYDRODYNAMICS 179

individual bacterial flagellum cannot normally be resolved with the light micro-
scope.

Admittedly there have existed for many years various ingenious techniques
for "staining" the bacterium and its flagella in such a way that photomicrographs
showing the shapes of the flagella (as thickened by the stain) could be obtained.
More recently, electron micrography enormously increased the quantity of
anatomical data available. There is, however, a grave lack of techniques for
obtaining detailed kinematical information on the motions of bacterial flagella.
Only in the last 2 years has it become possible, from many fragmentary
indications, to piece together a picture that begins to appear self-consistent.

In the organisms with around six peritrichous flagella (Proteus mirabilis or
Bacillus megaterium or the well-known Escherichia coli, on which much of the
research work has been done), the types of gross motion of the cell as a whole that
it is necessary to account for are as follows (see, for example, Berg and Brown
(1972)). The bacterium performs something like the mathematician’s idealized
concept of a "random walk": it alternates "runs" and "twiddles" (also called
"tumbling"). The "run" is a period of approximate motions in a straight line,
pushed by the activity of a "bundle" of flagella behind it. This bundle involving all
of the flagella, forced close together by hydrodynamic (and possibly also other)
forces, scatters enough light to be visible against a dark field. The "twiddle" (or
"tumble") involves a random change of direction: for one brief instant the flagella
are not aggregated together; then the bacterium makes another "run" in a new
direction with them gathered behind it in a- propulsive "flagellar bundle" once
more.

The behavioral reaction called "chemotaxis" whereby a bacterium statisti-
cally tends to go up any gradient of one category of solvents called "attractants",
but to go down any gradient of another category of solvents called "repellents",
has been shown to be generated by a variation in the frequency of "twiddles".
Essentially the organism makes those sudden changes of direction less frequently
when its chemoreceptors sense an increasing concentration of attractant (or a
decreasing concentration of repellent), whereas it twiddles more frequently on
sensing a decreasing concentration of attractant (or an increasing concentration of
repellent). Crudely speaking, it observes the following strategy: when things are
improving, "keep going", and otherwise "look around".

Recent work by Macnab and Koshland (1974), extending earlier work there
referred to, demonstrated that a very high intensity of light in a certain (blue) part
of the spectrum acted as a repellent in the sense that it increased the frequency of
twiddles reversibly. This work should not be confused with the classical phenome-
non of "phototaxis"nthe light-seeking response observed in many of the
photosynthesizing bacteria. The new experiment, carried out on a species of
Salmonella, used an arc lamp of very high intensity with various filters including a
yellow filter that was briefly removed generating more frequent twiddles and
replaced restoring the normal frequency.

A’very interesting by-product of this use of illumination of exceptionally high
intensity was the greatly improved visibility achievable in oil-immersion dark-
field microscopy. This confirmed very clearly the general impression of previousD
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180 JAMES LIGHTHILL

authors that the flagellar bundle forms a left-handed helix, the same shape as a
stationary flagellum is shown to have under the electron microscope. Further-
more, in this experiment the individual flagella could be momentarily disting-
uished during a "twiddle" as temporarily separated from one another.

It has long been recognized that a flagellar bundle in the shape of a
left-handed helix may propel a bacterium in one of two ways: eitherit may be given
a clockwise rigid rotation (or nearly rigid rotation) like a corkscrew from its base
inside the cell wall, or it may propagate a wave from base to tip just like a
eukaryotic flagellum. In either case, the moment on the helix must be balanced by
a moderate anticlockwise rotation of the cell body; this either reduces the
rotational velocity of the flagellar corkscrew relative to the water by around 20%
or else makes a similar reduction in the propulsive thrust of the spiral wave by
adding on an opposing corkscrew-like rotation. Observations show, indeed, just
such a counterbalancing rotation of the cell body (anticlockwise as seen looking
backwards along the flagellar bundle). This supports the view that one of those
two mechanisms is responsible but gives no help in distinguishing between them.

At first sight, the theory that the base region of each bacterial flagellum
"contains a rotary bearing and motor" that can generate a continuous rotation of
the flagellum relative to the cell body (at around 10 to 20 revolutions per second)
seems "unbiological", mainly because no such system was ever developed in the
vast range of different types of locomotion achieved by eukaryotes (though
admittedly the evolutionary pressures on the bacteria in their quite different range
of sizes were quite different). Recently, however, the weight of evidence
supporting the idea of a rotary motor has begun to appear very strong indeed.

One way of distinguishing a bundle of rods that are all separately rotating
from a different situation involving turning of the bundle as a whole (as the
spiral-wave hypothesis requires for the flagellar bundle) is that tying together two
points on different rods stops them from rotating independently but does not
prevent turning of the bundle as a whole. Now, many antibodies are known that
attach themselves selectively to the flagella of Escherichia coli; some are
monovalent (attaching themselves at a single site) and some are divalent.
Normally a divalent antibody will attach itself to two sites on one and the same
flagellum, when its effect on restricting the motility of the bacterium should be no
greater than in the monovalent case; but there is a certain small probability that it
may attach itself at sites on two separate flagella, tending to tie them together. It
was interesting, therefore, that the concentration of antibody required to remove
the motility of half the bacteria in the sample was two orders of magnitude lowerfor
divalent than for monovalent antibodies, tending (Berg and Anderson (1973)) to
support the theory of separate rotation. More recently, polystyrene latex beads
0.7tm in diameter have been attached to bacterial flagella and observed
(Silverman and Simon (1974)) to rotate in the opposite sense to the cell body, in
further support of the theory.

It is necessary at this stage to recall that a bacterium has all of its cytoplasm
surrounded by a "cytoplasmic membrane", which in turn is surrounded by a
separate "cell wall". It has long been known that a flagellum emerges through a
hole in the cell wall from a "base area" associated with the cytoplasmic mem-
brane. In several species, base areas of disc-like character have been identified.
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FLAGELLAR HYDRODYNAMICS 181

The rotary motor could be the result of a continuously active shearing process
between such a disc and the cell wall (Berg and Anderson (1973), Berg (1974)).
We shall see later that this is indeed a more plausible location for processes
converting chemical into mechanical energy than is the exceedingly restricted
cross section of the flagellar filament itself.

On the rotary hypothesis, the "twiddle" is regarded as a brief period when
some of the rotary motors go into reverse, causing the bundle to fly apart as
different flagella are subjected to opposing forces. When all are rotating in the
same sense once more, the bundle tends to form up along some different direction.

Before going into more detail on mechanisms, I want to indicate something of
the diversity of bacterial motions that are found. Among bacteria with peritrich-
ous flagella, cooperative motions by a large number of individual bacteria are
sometimes observed, as when a colony of Bacillus alvei, half a millimeter in
diameter, moved a distance of over a centimeter in one hour (Salle (1961, p. 93))
during which the colony continued to keep together. Again, the order
Caryophanales includes three interesting genera Caryophanon, Lineola and
Oscillospira consisting of long trichomes (as much as 30/zm in length) of actively
motile pertrichous bacteria. Cooperative motions would repay study from the
standpoint of the rotary hypothesis.

Among the Pseudomonadales with polar flagella there is beginning to emerge
a considerable amount of evidence to support the rotary hypothesis, even in a
Pseudomonas species (cirronellosis) that is monotrichous (with one flagellum
only). In that species the flagellum is again a left-handed helix (Taylor and
Koshland (1974)) which pushes the cell body by rotation which is clockwise
(looking along the flagellum from its base). Rotation is reversed for brief periods
(corresponding to tumbling in a peritrichous bacterium) during which the
organism briefly retreats before making the next advance. Again, the stalked
bacterium Caulobacter is monotrichous, pushing itself by the action of the
flagellum at one end of the stalk during its motile phase before using the stalk to
attach itself to a substrate (Salle (1961, p. 410)).

Other species of Pseudomonas have a greater number of polar flagella
operating in a bundle. With the Pseudomonadales generally the small polar areas
of the cytoplasmic membrane which include the points of origin of all the flagella
have structures that are recognizably different from the rest of the membrane and
may well be associated with generating flagellar rotation. This is true both of the
only such area in Selenomonas, which includes the origins of around 20 different
flagella (Kingsley and Hoeniger (1973)), and of the two polar areas in Spirillum
each with several flagella attached to it (Smith and Kottter (1971, p. 226)).

Spirillum is an unusual genus in many ways: the cell is much longer (5 to
20/zm) than most bacteria, and has a spirally twisted shape. The flagella are short
in relation to the size of the cell. One reasonable counterargument to the view that
flagellar rotation is "unbiological" is based on the fact that for many years
bacteriologists accepted the idea that the special motion of Spirillum is generated
by flagellar rotation (Weibull (1960, p. 166)). During motion, the flagella all
rotate in the same sense about a longitudinal axis, each tuft being visible as a
blurred cone. The body reacts by rotation in the opposite sense which, because of
its spiral shape, propels it through the medium (Chwang, Wu and Winet (1972)).
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182 JAMES LIGHTHILL

Superficially, members of the order Spirochaetales resemble Spirillum, but
their locomotion is quite different and does not really come within my subject
because they are completely without flagella. The only analogous structure they
possess is a fibril spirally wound (quite tightly) around the spirally shaped body.
Problems of how it and other features of the organisms may act to make possible a
helical propulsive motion with longitudinal moments in balance remain exceed-
ingly challenging and probably farther from a solution than any that we have
encountered in this brief tour of Fig. 1 (for an excellent modern analysis, see
Chwang, Winet and Wu (1974)).

I shall now conclude that tour by mentioning the extraordinary symbiotic
relationship between a trichomonad flagellate Mixotricha paradoxa (500zm
long) and a very large number of adherent spirochaetes (about 10/,m long)
attached all over its surface by special "brackets" to give it the appearance of a
ciliate. The highly complex symboisis that is involved (Cleveland and Grimstone
(1964)) produced convergence on a mode of locomotion, with coordinated
waving of the dense mass of attached spirochaetes, that is quite uncannily similar
to the locomotion of ciliates with somatic ciliature.

2.4. Fiagellar structures. Now I shall supplement what I have said
about flagellar motions with some brief notes about the structures of the two
fundamentally quite different kinds of flagella of which I have been speaking,
beginning with the perhaps simpler bacterial flagellum. In electron micrographs of
bacterial flagella (Fig. 2) it is always possible to distinguish two quite different
parts: the proximal highly curved region called the "hook" (about 4 diameters

FIG. 2. An intact bacterial flagellum and hook: 500,000 (Smith and Koffler (1971))

long) and the remaining region with relatively much lower curvature, called the
flagellar filament proper. There is clear evidence of a relatively looser connection
between hook and filament--that is, a connection whose strength is less than that
of the components separatelymsince mechanical or chemical methods of detach-
ing flagella from bacteria frequently also detach the hooks from the filaments
(Fig. 3).

D
ow

nl
oa

de
d 

10
/0

7/
16

 to
 7

7.
80

.1
9.

24
5.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



FLAGELLAR HYDRODYNAMICS 183

FiG. 3. Detached flagella and hooks (Smith and Koffler (1971))

A differential solubility of hooks and filaments can be further used to isolate a
preparation consisting of hooks alone (Fig. 4). Chemical analysis of isolated
hooks, and of isolated filaments, has demonstrated definite chemical differences,
although these are relatively minor differences between proteins of broadly
similar primary structure (Smith and Koffler (1971, p. 237)).

The protein of which flagellar filaments are made is relatively well known
(because it has been isolated for much longer and in large quantities) and is called
flagellin. Each species of bacterium produces a different flagellin with slightly but
not greatly different amino-acid composition (Smith and Koffler (1971, p. 240)).
Molecular weights are in the range 30,000 to 50,000.

The most characteristic property of flagellin is its ability to assemble into
flagella-like filaments (Fig. 5). Both these reconstituted filaments and natural
flagellar filaments are in the form of helical tubes with empty central core (Smith
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184 JAMES LIGHTHILL

FIG. 4. Preparation of hooks alone (Smith and Koffler (1971))

and Koffler (1971, p. 282): see also Fig. 6). Such a tubular structure accords with
various possible arrays of flagellin subunits that have been hypothesized.

Many different mutant forms of bacteria without normal motility have been
produced. Certain mutants of Salmonella are unable to move their flagella,
although those flagella themselves are immunologically indistinguishable from
those of normal cells. This is at least consistent with the rotary hypothesis that the
source of motion is not in the filament itself but in the rotation of a basal structure
to which the hook attaches it.

Mutants were used by Silverman and Simon (1974) to obtain evidence very
strongly in support of the rotary hypothesis. For some time it had been known that
a peritrichous bacterium might become attached by one of its flagella to the glass
of a microscope slide, and would then be seen to rotate for an extended period.
This observation was again consistent with the view that the flagellum is attached
to a basal structure which rotates relatively to the cell, so that fixing the flagellum
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FLAGELLAR HYDRODYNAMICS 185

FIG. 5. Flagella-like filaments reconstituted from flagellin in solution (Smith and Koffler (1971))

causes the cell to rotate in the opposite direction. That argument is not at all
conclusive, however, because the cell’s rotation could possibly be generated by
the motile activity of the other flagella. To exclude that possibility, Silverman and
Simon (1974) carried out a variety of experiments on Escherichia coli:

(i) experiments with normal cells where a protein-deficient diet has been
used to limit flagellin synthesis, to such an extent that the cell possesses only one
flagellum of significant length; nevertheless, when that flagellum is attached to a
slide the cell body shows the usual speed of rotation;

(ii) experiments with mutant cells whose flagella are straight and have been
found unable to produce any locomotion; the cell attached by one of those straight
flagella nevertheless shows the usual speed of rotation;

(iii) experiments with a mutant which synthesizes no flagellar filaments at all
but only extended "hook" regions called "polyhooks" which again are unable to
produce locomotion; nevertheless the polyhook originates from the basal region
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186 JAMES LIGHTHILL

FIG. 6. An empty core is visible (Slaytr and Glauert (1973)) in electron micrographs o]: cross-

fractured bacterial flagella: a, 200,000; b, 140,000

just like a normal hook and appears to be rotated relative to the cell body in the
normal way because the cell body is again seen to rotate in the opposite direction.

Specifically, the cell rotates for tens of minutes at around 1000 revolutions a
minute! Almost all the time it is rotating anticlockwise as observed on the
microscope slide (in agreement with the idea of a rotary "motor" tending to turn
the flagellum clockwise relative to the cell body), but there are brief periods of
rotation in the opposite sense. This is consistent with the view that the "twiddles"
are brief periods of anticlockwise rotation of one or more flagella.

Strong confirmation of this view is provided by the further work of Larsen,
Reader, Kort, Tso and Alder (1974). Using the "polyhook" mutant, they showed
that the normal tendency to anticlockwise rotation was reversed by additions of
"repellent" solvents, in agreement both with the observed tendency of such
solvents to generate frequent twiddles and with the proposed association of
twiddles with reversal of rotation.
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FLAGELLAR HYDRODYNAMICS 187

Much work remains to be done before a clear picture of the postulated rotary
motor can emerge. Fig. 7 is a diagrammatic sketch pieced together by Berg (1974)
from the fragmentary evidence so far available.

The bacterial flagellum’s rotary motor
as postulated by Berg (1974):

Normal ’run’ (propulsive pushing) is generated by
clockwise rotation. A ’twiddle’ (’tumbling’) is
generated by momentary anticlockwise rotation.

FIG. 7. The bacterialflagellum’s rotary motor as postulated by Berg 1974)

It will also be of great importance to elucidate the special role of the hook. In
a peritrichous bacterium the expeditious formation of a new flagellar bundle after
each twiddle might be accelerated if the hook could flexibly transmit the rotation
generated by the "motor" round the 90 bend. (This would be analogous to the
apparent capacity of the proximal portion of the flagellum of Euglena for
transmission of a rotation around a 180 bend.)

Hydrodynamic studies may play a significant role in answering questions like
this and also questions about the characteristics of the motor and the influence of
flagellar deformability. Such studies can begin from existing data on bacterial
locomotion in fluids of different viscosity (see, for example, Schneider and
Doetsch (1974) and the discussions by Berg and Anderson (1973) and Berg
(1974)). Different observers agree with swimming speed in many different species
increases somewhat as the viscosity increases above that of water, although
decreasing at viscosities beyond about 5 times that of water. However, it remains
hard to disentangle the possible influences contributing to these effects: for
example, (i) the characteristics of the motor, (ii) the effects of flagellar deforma-
bility tending to compress (shorten) the helix at high thrusts, (iii)opposing
hydrodynamic effects tending to increase cohesion of the bundle when viscous
forces are large, and (iv) the effects of the helix angle (see 3) on hydrodynamic
efficiency.

By comparison with the extremely recent experiments described above that
gave such strong support to the rotary hypothesis for bacterial flagella, it was
earlier by some few years that the critical experiments throwing light on the mode
of action of eukaryotic flagella took place. Work refining the description of the
axoneme (9 + 2 structure) proceeded in parallel with work identifying its
fundamental method of functioning.

We can now say (Ringo (1967), Warner (1970), Warner and Satir (1973))
that the axoneme consists of 9 doublet-tubules equally spaced in a circle
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188 JAMES LIGHTHILL

surrounding 2 singlet-tubules (Fig. 8). The doublet-tubule is made up of a
complete tubule of circular cross section, called an A tubule, clutched by another
so-called B tubule whose cross section is an incomplete circle. On the otherside of
the A tubule are the "limbs" that it uses (as is now supposed) to "walk" along the
adjacent doublet-tubule.

Eukaryotic flagella derive their motility from the internal
9 + 2 structure (or Axoneme):

0.2/zm

The flagellar membrane surrounds this axoneme in all
cases (and surrounds additionally, in Euglenida, Dino-

flagellida and Kinetoplastida, an intraflagellar rod).

FIG. 8. Axoneme structure, after Warner and Satir (1973)

Some details of the finer structure of the A and B tubules are also given in Fig.
8. The protein of which they are composed, often called tubulin, is closely similar
to the well-known protein actin that occurs in muscle fibers; its molecular weight is
of order 50,000. The "limbs" are individual molecules of another protein called
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FLAGELLAR HYDRODYNAMICS 189

dynein (Gibbons (1965)) which plays a role similar to the muscle-fiber protein
myosin, and like it has a high molecular weight (of order 500,000) although its
shape is quite different. "Walking" is believed to involve the breaking of existing
chemical bonds between dynein limbs on an A tubule and molecules of tubulin on
the B tubule of an adjacent doublet, followed by the formation of new bonds with
molecules farther along the same B tubule. This (like the similar process with
actin-myosin bonds in muscle) generates active shearing between adjacent
doublet-tubules.

Another similarity to muscular activity is that this "walking" is powered by
the dephosphorylation of ATP (adenosine triphosphate). The mitochondria in a
flagellate cell generate the ATP which diffuses down the flagellum to activate the
making and breaking of dynein-tubulin bonds.

Many of the fundamental experiments on the details of this activation process
have been carried out on spermatozoa of higher animals. Nevertheless, the 9 + 2
structure of the axoneme is so closely similar throughout the vast majority of
flagellate cells that it is reasonable to presuppose a common basic mode of action
of axonenes with that stucture.

Summers and Gibbons (1971) worked with "naked" axonemes, obtained
from sea urchin spermatozoa when the flagellar membranes that normally
surround the axonemes are. removed by "digestion" with a suitable biochemical
agent. Naked axonemes, unlike normal flagella (consisting of an axoneme
surrounded by a flagellar membrane), are directly sensitive to ATP in solution in
the surrounding medium. Summers and Gibbons showed that this response to
ATP always takes the form of an active sliding of doublet-tubules over neighbor-
ing doublet-tubules. Summers (1974) obtained identical results on bull sperm.

These findings strongly confirmed the conclusion of Satir (1968) to the effect
that a flagellum bends by means of such active sliding without any extensions or
contractions of tubules. Such a conclusion strongly contrasts with the classical
behavior of an elastic rod, whose plane cross sections remain plane in the bent
condition, leading to extension on the outside of the bend and contraction on the
inside. Active sliding means that plane cross sections need not remain plane, so
that bending becomes fully compatible with the inextensibility of each separate
tubule.

Satir recognized that, with inextensible tubules of fixed total length, a
flagellum or cilium with just one bend in it must have the distal end of a tubule on
the inside of the bend protruding beyond the distal end of a tubule on the outside
of the bend. His experiments on a cilium from the gill of a bivalve mollusc
confirmed this, showing in fact that the extra amount by which the inner tubule
protruded was exactly what would be predicted by this geometrical consideration
if the tubules were supposed inextensible (Fig. 9). Then the work with "naked"
axonemes confirmed the hypothesis of sliding of inextensible tubules by direct
observation at all points along the tubule.

In the 9 + 2 structure, the role of the two singlet-tubules in the center has not
yet been defined with conclusive precision (but see Warner and Satir (1974)for a
detailed analysis of their recent data relevant to this matter). Speculatively, it is
thought to be concerned with the control of the active-shear process. Those
central tubules could be sensitive either to flagellar curvature, or to an integrated
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190 JAMES LIGHTHILL

\

FIG. 9. Model offlagellar bending, supported by the experimental work of Satir (1968)

measure of changing curvature such as the sliding of doublet-tubules past them, or
both. Various models for the propagation of both planar and helical waves down a
flagellum have been discussed (see, for example, Brokaw (1972a), (1972b)).
These different models make different assumptions regarding the active bending
moments, or active shearing forces, generated by the "walking" of doublet-
tubules as a response, either immediate or delayed, to variables such as could be
sensed by the singlet-tubules.

The merits of those different models can, it is hoped, be evaluated by
combining them with knowledge on flagellar hydrodynamics and comparing the
resulting theoretical conclusions with observations in fluids of different viscosities.
Extensive work on these lines has been attempted without, as yet, any conclusive
results being reached. Nevertheless, the hope of ultimately reaching more precise
conclusioias in future studies of this kind remains a major incentive to those
refinements of flagellar hydrodynamics which we attempt in 3.

3. Application o| mathematics to flagellar hydrodynamics.
3.1. Fundamentals ot flageilar hydrodynamics. The motion of fluid around

a microorganism follows the same rule as does the microorganism’s own motion"
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FLAGELLAR HYDRODYNAMICS 191

the forces on any particle of fluid are in equilibrium. The pressure force on such a
particle is -grad p per unit volume (acting down the pressure gradient), and the
viscous force per unit volume is /xV2u (representing a diffusive transfer of
momentum brought about by the fluid’s viscosity/z). The momentum equation

(1) -grad p+/./,7211 "--0

equates the vector sum of these two forces to zero because, on the scale of a
microorganism, fluid inertia is negligible. The velocity field u also satisfies the
equation of continuity,

(2) divu= 0,

appropriate to an incompressible fluid.
Any potential flow u grad (where V2q 0) satisfies these.equations, with

the pressure simply constant (because the viscous force vanishes). However, the
set of potential flows is far too restricted to include any that satisfy the no-slip
condition at a solid boundary, such as the surface of a microorganism. The velocity
of the fluid at such a surface must equal the velocity of the solid surface itself; yet a
potential flow is uniquely determined by requiring just the velocity components
normal to the surface to match, which leaves a mismatch between the tangential
velocity components.

For example, a dipole (or "source doublet") of vector strength G (directed
from the negative towards the positive source) has

grad div

if r is distance from the dipole. This velocity field falls off rapidly as r increases,
according to an inverse-cube law. On a particular spherical surface r a, the
normal components of and of a constant vector V are equal if

(4) G= 2a3U;

however, the dipole velocity field (3) would be compatible with a translational
motion of the sphere r a at velocity U only if slip (tangential movement of fluid
relative to the surface) were possible.

We widen the set of solutions of the Stokes equations (1) and (2) by including
cases with nonuniform pressure p, which itself, however, must satisfy V2p 0
(divergence of (1)). A fundamental solution of great importance is the stokeslet,
representing the effect of a concentrated external force F’ acting at a single point of
the fluid; that is, of a delta function distribution of force per unit volume which
modifies the force-balance equation (1) to become

(5) FS(r)-grad p +/xV2u 0.

Here r stands for vector displacement from the point of application of the force.
Taking the divergence of (5) gives

(6) Vp div [F(r)],
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192 JAMES LIGHTHILL

whose solution for p is the potential

of a dipole. The strength of the dipole is (-F) with the convention adopted above
(unlike that used in Lighthill (1975) with the vector strength pointing from the
positive towards the negative source).

The associated velocity field can be written in many different ways. One of
those is as

(8) =6,rr/xr+ grad div

Both terms in the stokeslet velocity distribution (8) share the famous inverse-first-
power dependence on r (the distance from the point of application of the force).
The first term, with the same r--dependence in every direction, represents the
spherical mean of (average value over a sphere of radius r); the second term
modifies this with second order surface harmonics (e.g., by a factor 1 +P(cos 0)
for the component parallel to F). However, it is the second term in (8) which
entirely generates the viscous force to balance the gradient of the pressure
distribution (7); the first term generates no viscous force but must be incorporated
in (8) if the equation of continuity (2) is to be satisfied (Lighthill (1975)).

On a given spherical surface r a, the second term in (8) can be completely
cancelled by adding on a dipole velocity field (3) of strength

aF
(9) G

6#"
The fluid velocity on r a then takes a constant value

F
(o) u

6rga"

The combined stokeslet F and dipole G can therefore represent a fluid motion for
r => a which matches perfectly with the translational motion at velocity U of a solid
spherical boundary r a. The sphere acts on the fluid with a net force satisfying
the Stokes relationship (10). Amusingly enough, the required dipole strength (9)
can be written as -,n’a3U, opposite in sign to the value (4) that generates the
irrotational flow field with just the normal components of velocity matched.

This Stokes formula (10) for the force F required to move a sphere at velocity
U can be written

(11) F= 11.66p,UV1/3

in terms of the sphere’s volume V =4 3
Tra The work of Pironneau (1973) and

Bourot (1974) shows that the coefficient 11.66 in (11) is not far above the
minimum possible value for resistance to motion of a body of volume V; this
minimum coefficient of 11.13 is attained for axial motion of the body of revolution
shown in Fig. 10. Such drag formulas for shapes similar to cell bodies of
microorganisms are of importance in flagellar hydrodynamics because they
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FLAGELLAR HYDRODYNAMICS 193

FIG. 10. Shape having the least resistance, among bodies o]: revolution of given volume moving
axisymmetrically with given velocity (Bourot (1974)); some streamlines o" the fluid flow relative to the
body are also shown

suggest how much thrust an attached flagellum must provide to propel the
organism at a given velocity.

It is worth emphasizing that the classical paradox concerning the inverse-
first-power "stokeslet" velocity distribution (8), namely the fact that in
unbounded fluid it has infinite energy, completely disappears in these applications
to swimming microorganisms. Because the totalC’orce on the organism is zero ( 1),
its total reaction on the water must be zero. Thus, the flow field is a combination of
(i) stokeslet fields associated with flagel|ar thrust and (ii) stokeslet fields associated
with equal and opposite cell body drag. Because the vector sum of all the stokeslet
strengths in zero, the inverse-firsr-pover terms in the combined far fields must
cancel. Accordingly, the kinetic energy of the fluid takes a sensible finite value
(without any modified theory based on the "Oseen equation" having to be
introduced).

The flow field due to the thrusting action of a flagellum may be described (see
below) by use of a distribution of stokeslets along its centerline, representing the
instantaneous distribution of forces with which different parts of the flagellum act
on the fluid. Dipoles may be combined with the stokeslets (rather as in the
spherical case) so that the velocity field closely satisfies the boundary condition for
a particular flagellar motion, related to the assumed force distribution. Finally, if
this relationship can be inverted, then the force distribution may be known for a
given flagellar motion, to a far better approximation than if Gray-Hancock
resistance coefficients were used.

With such a program in mind, I first rewrite the stokeslet velocity distribution
(8) with the differentiations of r-1 carried out explicitly as

r2F + (F ..r)r.(12) u=
8 r/xr

3
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194 JAMES LIGHTHILL

a vector field which is the sum of a parallel field and a radial field. Then I state the
relationship of flagellar motion to flagellar force distribution in a style appropriate
to a mathematical commemorative lecture as follows.

THEOREM 1. If f(s) is the force per unit length with which a flagellum of small
radius a acts on a fluid, where the variable s signifies length measured along the
centerline of the flagellum from some given cross section, then the resulting fluid
motion can be represented by a distribution of stokeslets along the centerline, of
strength f(s) per unit length, accompanied by dipoles of strength

(13) -aI"(s)

per unit length; here [ (s) is the vector normal to the centerline obtained by resolving
[(s) onto the plane normal to the centerline. This fluid velocity field closely matches
flagellar motions w such that the whole cross section where s So moves with velocity

rf(s) +[[(s)" ro]ro(14) W(So) [.,(So) + 3 ds’,
47r/x o> 8rro

here 6 1/2ae= 0.82a and ro is the position vector of the point So on the centerline
relative to the point s.

Historical notes. The general idea of Theorem 1 and of its proof was given in
special cases by Hancock (1953) before he joined Sir James Gray to produce an
approximate result in terms of resistance coefficients (Gray and Hancock (1955)).
Results similar to Theorem 1 were given in very general cases by Batchelor (1970)
and Cox (1970), who used a series expansion in integer powers of a parameter
e =[ln (2//a)]-1, where is a flagellar length scale. Retention of one or two terms
in such an expansion involves errors whose magnitude depends on the size of the
logarithm of 21/a (which, for example, may only be 4.6 for 21/a 100). The word
"closely" is used in Theorem 1 to indicate that, by contrast, the error in (14) tends
to zero linearly (rather than logarithmically) as (a/l) O.

Interpretative notes. Theorem 1 is stated in terms of a single flagellum but can
be regarded as applying equally to more than one flagellum with different ranges
of s used for different flagella. Equation (14) gives only the flagellar velocity
associated with the flagellar force distribution; the total flagellar velocity includes
a contribution from the flow field generated by the movement of the cell body. For
movements close to a microscope slide, Theorem 1 needs to be modified by
including with each stokeslet the effects of its image system in that plane solid
boundary (Blake (1971)). Finally, I reemphasize that practical use of (14) must
involve some form of inversion of the relationship to derive the force distribution
t(s) in terms of the flagellar velocity distribution w(s). Equation (14) makes this
computationally feasible because it relates those two distributions as functions of
just one independent variable s, representing position on the centerline, with all
variations at right angles to the centerline completely eliminated.

Sketch of a proof of Theorem 1. The proof that the whole surface of the cross
section at So moves with the velocity (14) is facilitated by a special choice of axes
with origin O at the center of that cross section and x-axis tangential to the
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FLAGELLAR HYDRODYNAMICS 195

centerline. The main point that needs to be established is that contributions of
stokeslets close to the origin O (with ro < q, where q is a large multiple of the radius
a, but a small fraction of a flagellar wavelength) produce, together with their
associated dipoles (13), a surface velocity given by (14) with the integral limited to
ro<q. In fact (12) shows that the other stokeslets, at distances to> q, generate at
the cross section center O a velocity given by the integral (14) limited to ro > q; but
they are far enough away from O for (i) the velocity field they generate to vary
negligibly over the cross section of radius a centered on O, and for (ii) the
inverse-cube velocity fields due to their accompanying dipole distributions (13) to
be negligible at that cross section.

As regards the contribution from singularities within ro < q, we may verify
first that they take the form (14) in the simplest case when in that region the
flagellum is effectively cylindrical, and F(s) is effectively a constant vector
(fx, fy, f). Then (12) shows that the velocity field generated by the tangential
stokeslet distribution fx (with which no dipole distribution (13) is associated) can
be written

f- (lr (x-X)(x-X) (x-X)y
3 r3

(15) ,,. -+ dX,

where

(16) r [(x X)2 + y2 + z2]1/2
represents distance from a stokeslet at (X, 0, 0). Now on the surface of the cross
section x 0, y2 + z 2 a 2, we have r (X2 + a 2)1/2. The y- and z-components of
(15) are then zero (each as the integral of an odd function of X), while its
x-component can be evaluated, through an integration by parts in its second term,
as

fx (I dX [X
q I_ VX) fx [4sinh-l() 2q ]q-

87r/Z --(q2 q_ a2)1/2,(17)
87r/x q r _q q

With an error of order (a/q)2, we can replace (17) by

(18) fx (41n2q 2)= fx (4In q)8r -- 8u
=1with 6 ae. This is the same as

(19) I fx 2ds

<ro<q 8"rr/a, ro
which is exactly the contribution to the x-component of (14) from the f-
component of t(s) in ro < q.

Similarly, the velocity field generated by the stokeslet distribution fy, with its
accompanying dipole distribution -ae[y/41, is

(20) y_ 8"rr/x
fy [((x-x)y’rz+y2r yz)+-la2(-3(x-X)y’r2-3y2’-3YZ)]r- dX,

q
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196 JAMES LIGHTHILL

which on the cross section x 0, y2+ z2= a2, is easily evaluated because, with
O(a/q)2 again neglected,

f_ dX 3a2I_ dX
(21)

r3 = 7q q

(both taking the value 2/a2), so that the terms in y2 and yz that vary round the
cross-sectional surface cancel out. Accordingly, (20) has y-component

fr (21n2q+l)= fY + fr (21n q)(22)
8rr/x -- 4rr/x 8rrtx ’which is the contribution

fY +f Lds(23)
4 <o< 8ro

to the y-component of (14) from the/y-component of f(s) in ro < q. The proof for
the z-component fz proceeds exactly as for the y-component.

Although the above proof was limited to the very restrictive condition of
uniform stokeslet distribution and zero centerline curvature in ro < q, we can
readily verify that departures from these conditions are unimportant if the radius
a is much less than other lengths in the problem, the error varying linearly (rather
than logarithmically) with that ratio of lengths. For example, if the centerline were
the locus of (X, X2, 0), with the curvature in the plane z 0, then y must be
replaced in (15) and (16) by y X2. This on the cross section x 0, y2 + z 2 a 2

makes

(24) r IX2 -I- (y -/KX2)2 -- z2] 1/2,

which to a first approximation in is

(25) r [(1 Ky)2X2 + a2],/2,

exactly as if X were replaced by (1 Ky)X. This produces relative errors O(a) in
the constancy of the velocity distributions (19) and (23) all around the cross
section; that is, errors varying linearly with the ratio of the flagellar radius a to the
radius of curvature of its centerline.

Again, the effect of nonuniformity in stokeslet distribution may be tested by
inserting a factor (1 + x) within the integrals (15) or (20) to allow for the effect of a
component of the stokeslet distribution varying at a relative rate sc per unit length
of centerline. The result is to change (15) by an amount

(26) (0, sy, z)fx.. (_21n2q__+2)8zr/z a

representing a relative error O(a) varying linearly with the ratio of a to the
length scale -1 of variation of stokeslet strength. The same order of magnitude
error is produced in (20).

By arguments along these general lines we can conclude that under flagellar
conditions a close approximation to the velocity distribution (14) is produced all
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FLAGELLAR HYDRODYNAMICS 197

over the cross section. This conclusion is applied to several problems of flagellar
hydrodynamics in the sections that follow.

3.2. Spiral flagellar motions. It is natural to investigate in the first place
those spiral flagellar configurations which were shown in 2.2 and 2.3 to be so
important for eukaryotic and bacterial flagella respectively. I begin with a
clarification of the kinematics of the different motions that can occur, including
spiral undulations and corkscrew rotations, confining myself in this section,
however, to somewhat idealized spirals of constant radius and constant pitch.

A spiral undulation with constant radius b and constant pitch implies motions
of the fiagellar centreline which can be described by equations

(27) y b cos [k(s ct)], z b sin [k(s ct)], x as,

in terms of the distance s measured along the centerline; note that the motions
involve no rotation of the flagellar surface about the centerline. In (27), the axis of
the spiral is taken as the x-axis, and the condition that the flagellum is inextensible
may be written

(28) (Ox/Os) + (Oy/Os)2 + (Oz/Os)2 1,

or

(29) a
9 + b2k 2 1.

Any structure capable of generating bends, like the axoneme of the eukaryotic
flagellum, can generate such a spiral undulation by the simultaneous propagation
of bends in the y- and z-directions.

It must be emphasized that the motions described by equations (27) include
no translation (that is, swimming) or rotation. Any translation or rotation that
they induce in the organism as a whole must be added on (see below) to give a
description of the whole flagellar motion.

The undulation (27) has a wavelength A measured along the flagellar
centerline equal to

(30) A 27r/k,

and a "pitch" (wavelength measured along the x-axis, which is the axis of the
spiral) equal to

(31) A aA= 27ra/k.

The wave travels along the curved centerline at velocity c, corresponding to
propagation in the x-direction at velocity

(32) V=ac;

this V, of course, is the speed of the wave along the axis of the spiral relative to a
fixed position on the flagellum such as its base or tip. Note also that equation (27)
represents a right-handed or left-handed spiral according as the system of axes
(x, y, z) is right-handed or left-handed.

Because there is always instantaneous equilibrium between the forces acting
on a microorganism, or between those forces (1) that act on a nearby particle of
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198 JAMES LIGHTHILL

fluid, flagellar hydrodynamics can always be completely analyzed at a single
instant of time, say, 0. At that instant, a point on the centerline (27) has position
(x, y, z) equal to

(33) (as, b cos ks, b sin ks)

and velocity (2, 1), 2) equal to

(34) w= (0, bkc sin ks, -bkc cos ks).

The unit vector tangential to the centerline is

(35) (, -bk sin ks, bk cos ks),

obtained by differentiating (33) with respect to s; equation (29) confirms that it
has unit magnitude. Note that, as is true of any wave motion of constant
amplitude, the motion of the centerline relative to the velocity (V, 0, 0) of wave
propagation is a purely tangential motion

(36) w-(V, O, O)= -c(a, -bk sin ks, bk cos ks)

of constant speed c; in other words, the frame of reference travelling at the wave
velocity is one in which the flagellum "appears stationary" because its motions are
purely tangential.

We shall see that the spiral undulation (27) by itself (that is, in the absence of
an additional swimming velocity of translation) fails to satisfy the conditions of
instantaneous equilibrium because it generates a net thrust in the negative
x-direction. Conversely, if a translational velocity (- V, 0, 0) were superimposed
on its motion, the flagellum would move purely tangentially (with negative
x-component); a flagellar drag (force in the positive x-direction) would result,
supplementing the drag on the cell body when moving at velocity (- V, 0, 0) to
produce a positive total drag on the organism. Evidently, at some intermediate
velocity of swimming

(37) (- U, 0, 0)

with 0 < U< V, the necessary condition of zero net force on the organism can be
met.

If the drag on the cell body were negligible, the organism would move at the
zero-thrust swimming speed Uo, such that the spiral experiences zero net force
when its centerline velocity is a linear combination of the fields (34) and (37). At
this swimming speed, the drag opposing the spiral’s tangential motions is just
balanced by the thrust created by its normal motions. Often, any extra drag of the
cell body may only slightly disturb this balance; in such a case the organism’s
swimming speed is only a little less than the zero-thrust value Uo.

On the other hand, we have seen in 2.2 that the cell body may play a more
significant role in balancing the axial couple generated by the spiral undulation of
a eukaryotic flagellum. To make this quantitative, we first note that the velocity
(34) of the point (33) on the flagellar centerline can be written

(38) w (- to, 0, 0) x (x, y, z),
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FLAGELLAR HYDRODYNAMICS 199

with

(39) to kc.

This emphasizes the point, made many times in 2, that in spiral undulation the
motion of the flagellar centerline is exactly equivalent to a corkscrew-like rigid
rotation of the instantaneous spiral shape (with angular velocity oJ about the
negative x-axis). Indeed, a bacterial flagellum (or flagellar bundle) of spiral form,
being given (according to the rotary hypothesis) such an angular velocity oJ, would
experience exactly the same motion (38) of its centerline. (The only difference is
that any rigid corkscrew rotation, unlike the spiral undulation, makes the flagellar
surface rotate about its centerline; a distinction used in 2.4 to evaluate the
rotary hypothesis).

It is not surprising, since the spiral undulation (34) is equivalent to a
centerline rotation (38) at an angular velocity (39) about the negative x-axis, that
we shall find hydrodynamic forces acting on the spiral which give not only a thrust
but also an opposing positive couple about the x-axis. Calculation of this couple is
an important aim because, as we saw in 2.2, it may act in various ways to
determine the rotation of the organism as a wholemand hence to determine in
many cases an additional rotary motion

(40) (1), O, O) x (x, y, z)

which must be combined with the spiral undulation (38) and the translation (37) to
give a total centerline velocity

(41) w (- U, wEb sin ks, WEb cos ks),

with the angular velocity of effective corkscrew rotation changed from o kc as in
(39) to

(42) OE 0--1.

We recall three interesting ways in which this modified effective rotation
may be determined. In cases with a cell body on the axis of the flagellar spiral, but
without activity in any secondary flagellum, l) represents the rotation about the
x-axis of the organism as a whole, and is positive, taking a value between 0 and
such that the positive couple resisting effective corkscrew rotation with net
angular velocity (42) is exactly balanced by the negative couple resisting cell body
rotation at angular velocity l). Balancing the couples in this case reduces the
effective corkscrew rotation and hence the swimming speed.

By contrast, may be negative in two other interesting cases. Action of the
transverse flagellum in dinoflagellates may reverse the rotation of the cell body, by
acting on it with a negative couple. Alternatively, for Euglena it was argued in
2.2 that a positive angular velocity of the cell body may generate (on transmis-

sion round a flexible 180 bend) a negative angular velocity l) in the flagellum. In
both cases, the effective corkscrew action is increased, leading to increased
swimming speed.
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200 JAMES LIGHTHILL

To sum up the kinematics of spiral flagellar motions of constant radius b and
constant pitch, the total velocity w of a general point (33) on the centerline can be
written in the form (41) as a combination of:

(i) a translational motion (37) with swimming speed U;
(ii) an effective corkscrew motion (38), where o)= kc for a eukaryotic

flagellum, while o) for bacterial flagella or bundles on the rotary
hypothesis represents their actual velocity of corkscrew rotation;

(iii) an additional angular velocity (1), 0, 0) in either case, determined by the
condition of zero net couple on the organism.

This distribution of w is now applied, with Theorem 1, to determine the distribu-
tion of the force f(s) per unit length with which the flagellum acts on the fluid.

In this section the analysis is carried out without reference to any special "end
effects" at the tip or base of the flagellum; this avoids consideration of any special
geometrical or kinematic features of the tip or base motions. In parts of the spiral
not close to the ends, it is reasonable to seek a form for f(s) that is invariant under
any transformation which leaves unaltered the equation (33) of the spiral: in
particular, a shift in the origin of s to (say) So, together with a translation of the
coordinate axes through a distance aSo in the x-direction and a rotation of them
through an angle kSo about it. Such an invariant form

(43) t(s) (g, h sin ks, -h cos ks)

(where g and h are constants) will indeed be found to give satisfactory results.
In this section we determine the zero-thrust swimming speed; namely, the

value Uo for which the centerline velocity distribution (41) is compatible with a
force distribution (43) with zero resultant: that is, with g 0; more general cases
are postponed to 3.4. In this case, the force distribution (43) acting on the fluid at
the location (33) is equivalent to a couple per unit length:

(44) (x, y, z) x (0, h sin ks, h, cos ks) (- bh, O, 0).

The equal and opposite reaction of the fluid on the flagellum is a positive couple
about the x-axis, of magnitude bh per unit length, which, as discussed above,
would be involved in determining ft. The rate of working against this opposing
couple is

(45) E=wzbh
per unit length. The zero-thrust swimming speed Uo may be only a slight
overestimate of U in cases where the cell body drag is small compared with the
opposing forces competing to determine the net thrust on the flagellum.

In this case g=0, the force distribution (43) has (according to (35)) a
tangential component

(46) (0, h sin ks, -h, cos ks). (a, -bk sin ks, bk cos ks)= -hbk.

The vector f, (s) normal to the centerline referred to in Theorem 1 can be obtained
by subtracting from [(s) its tangential resultant to give

(47)
(s) =[(s)+ hbk(a, -bk sin ks, bk cos ks)

ha(bk, a sin ks, -a cos ks).
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FLAGELLAR HYDRODYNAMICS 201

We can now write down the equation (14) stated in Theorem 1; we choose to
write it down at So 0, provided that this flagellar cross section which is the origin
of s has been chosen far from the ends of the flagellum. It follows from the
invariance of the vector quantities concerned under the coordinate transforma-
tion described above that the equation if satisfied at So 0 must be satisfied for any
other So not influenced by end effects.

By (41) with U= Uo, (43) with g=0 and (47), the equation (14) with So=0
becomes

ha
(-Uo, 0,--WEb) -(bk, O, -a)

(48)
r(0, h sin ks, -h cos ks)+ (bh sin ks)ro+ ds,

o> 8"rr/xr

where the position vector ro of the point s 0 on the centerline relative to the
point s given by (33) is

(49) ro (-as, b(1-cos ks), -b sin ks),

with magnitude

(5O) ro [a2s 2 + 2b2(1 -cos ks)] 1/2

Note that the y-components of both sides of the vector equation (48) are
identically zero" in particular, the y-component of the right-hand side is the
integral of an odd function of s which converges for large Isl.

The x-component of (48) gives

0 sin 0 dO
(51) 4r/xUo=-habk+habk [az02+2(l_a2)(l_cos 0)]3/2,

where the substitution ks 0 has been made in the integral, and

(52) e k6 1/2(ka)e 0.82ka 5.2(a/A),

and the integral of an even function of 0 has been written as twice the integral for
positive 0. The integrand in (51) behaves like 0-1 as 0 0 but converges absolutely
for large 0, so that the integral can be written

(53) -In e + A(a),

where the function Al(a) is easy to compute and is plotted in Fig. 11.
A different integral, appearing in the z-component of (48), can similarly be

written

(54)
sin2 0 dO

0)]3/2= --In e + A2(a)
[a202 + 2(1 a2)(1 -cos

where the function A2(a is also plotted in Fig. 11. On the other hand, one more
integral appearing in the z-component of (48) may through an integration by parts
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0’5-

0’4-

0"3-

0.2-

0"1-

0. 2

0 ’60 0’8 O" 0"4 0"2
FIG. ll. The ]:unctions Al(c) and A2(a) defined in (53) and (54)

be expressed in terms of A1 and A2"

(55)

(56)

I cos 0 dO
[a202 + 2(1 a2)(1 cos 0)] 1/2

-In e + a2A l(a) + (1 a2)A2(a) 1.

Accordingly, the x- and z-components of (48) become

47r/xUo habk[-1-1n e +Al(a)],

4rltOEb h[-( 1 a 2) (2 a 2) In e + a2A(a + 2( 1 a2)A2(a )].
The equations (56) are important in three ways. Their ratio gives the result

Uo (1-a2)[-1-1n e +Al(a)]
(57)

VE --(1 a2)-- (2 a 2) In e + a2A(a) + 2(1 a2)A2(a)
for the ratio of the zero-thrust swimming speed Uo to the apparent wave velocity
VE awE/k (apparent velocity of waves relative to the organism as modified by
the corkscrew effect of the organism’s own rotation). This is plotted in Fig. 12 as a
function of a2= 1-b2k 2 for various values of A/a (where A is wavelength
measured along the flagellar centerline), corresponding by (52) to values of
e 5.2a/A.

Again, using (45), we can write the rate of working against the fluid per unit
length of flagellum, E, in terms of the swimming speed Uo, as

E 4"n’[-(1 a2)-(2- a2) In e +a2A(a)+2(1-a2)A2(a)](58)
/,U(2) a2(1 a2)[ 1 -In e + A,(o)]2

This ratio is plotted in the lower part of Fig. 12. Although the minimum at around
2c 0.5 had been suggested by theories using Gray-Hancock resistance coeffi-

cients (Holwill (1966, p. 773)), the absolute values of rate of working for given
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FLAGELLAR HYDRODYNAMICS 203
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ratio E/tU, where
E energy dissipation

per unit length,
/ viscosity of medium,
U swimming speed.

b radius of spiral;
k 2rt/A, where
A wavelength as
measured along spiral;

axial direction-
cosine of spiral;

wavelength as
measured along
axis A.

FIG. 12. Zero-thrust swimming o[ spirals

swimming speed obtained by use of those coefficients are much too low (see 3.3
for a full discussion). At the bottom of Fig. 12, note also the alternative scale in
terms of the aspect ratio 2b/A of the spiral (ratio of diameter to pitch).

Lastly, equations (56) can be used to determine the couple bhL acting on a
flagellum of total length L, of which a nondimensional form X is plotted in Fig. 12.
For some organisms, the angular velocity 11 of their rotation is determined by the
condition that this couple is balanced by the couple DO resisting cell body
rotation. Here D is the rotational damping coefficient of the cell body (couple
resisting rotation at unit angular velocity). Then the balance equation

(59) DI) bhL 4"a’l,b 2r.oEXL
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204 JAMES LIGHTHILL

can be used with (56) to determine the factor

(60) Vz_to__V_z__ toz l+h,
V to tOE+

by which the apparent wave velocity falls short of the real velocity of the wave as
generated by the organism, or by which the effective angular velocity of rotation

oz falls short of the value o kc obtained when the cell body does not rotate.
Equation (58) confirms that the swimming speed Uo is reduced by the same factor,
which is easily obtained from the values of X in Fig. 12 when the nondimensional
form D/(4rqb2L) of the rotational damping coefficient of the cell body is known.

Alternatively, on the hypothesis ( 2.2) that the rotation of the cell body of
Euglena induces an equal and opposite corkscrew rotation of the flagellum,
equations (59) and (60) can still be used with the sign of D changed. In that case,
the swimming speed Uo is enhanced by a factor (60) which exceeds 1.

3.3. Suboptimal representations by local resistance coelticients. Although a
particular flagellar motion like that of 3.2 may be analyzed to good accuracy by
means of Theorem 1, which also will be shown to yield admittedly more laborious
analyses of further problems to similar accuracy in 3.4, nevertheless for many
crude studies it remains desirable (see 1) to use a simple representation of
flagellar dynamics by means of local resistance coefficients. In this section we
investigate, through use of material derived from 3.2, what values of the
resistance coefficients may give best results in studies of typical flagellar motions.
We seek, in other words, a suboptimal representation of flagellar dynamics by
optimizing within the subset of representations of that dynamics by means of
resistance coefficients.

The classical representation due to Gray and Hancock (1955) uses results
which we found in passing during the proof of Theorem 1. The tangential velocity
(18), generated all over the surface of a cross section by a tangential force per unit
length fx acting at all points within a distance q from it, suggests a local tangential
resistance coefficient (force per unit length divided by velocity) equal to

27r/x
1,(61) Kr In (2q/a)-

by contrast, the normal velocity (22), generated by a normal force per unit length
acting at all points within a distance q, suggests a normal resistance coefficient

47rp,
1"(62) KN In (2q/a)+5

Unfortunately, these values are not uniquely determinate because they depend on
the choice of q. However, the fact that this dependence is only logarithmic led
Gray and Hancock to the view that a high degree of accuracy in the choice of q
would not be important to a first approximation. In fact, they selected a value for q
equal to one particular quantity with the dimensions of length characteristic of the
problem: the flagellar wavelength h.

There is one obvious criticism of this choice for q: it violates the assumption
explicitly made in the proof of Theorem 1 that q is small compared with the
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FLAGELLAR HYDRODYNAMICS 205

flagellar wavelength. This violation can be expected to be serious, especially
because it grossly falsifies the assumption of uniform force per unit length applied
by the flagellum within a distance q around a cross section. A preliminary study by
Lighthill (1975) suggested that actually the resistance coefficients (61) and (62)
may be much more reliable with

(63) q/A 1/(2rre) 0.09,

where y 0.577 is Euler’s constant. Evidently, this choice of q satisfies by a whole
order of magnitude the requirement that it be small compared with A; further-
more, some calculations for relatively small amplitude suggest that (63) is the
preferred value in that case.

The differences between choosing q h and q =0.09A remain important
even after logarithms have been taken as in (61) and (62). Various theoretical
arguments which as just mentioned tend to support a choice near q 0.09A were
probably known to Gray and Hancock. On the other hand, they were aware of a
practical difficulty associated with such a choice; namely, that the ratio of
resistance coefficients,

(64) r KT/KN,

tends (Lighthill (1975)) to take a value (almost 0.7) oo large to accord with
observed ratios of swimming velocity to wave velocity. The fact that the choice
q , by reducing r much nearer to the limiting value 0.5, improves the
agreement with those observed ratios seems to have weighed strongly with Gray
and Hancock in making that choice.

Although preliminary attempts to resolve this conflict of arguments regard-
ing the choice of q were made by Lighthill (1975), we shall find a more satisfactory
resolution in this section. Essentially, (63) is the right choice for q (although for
highest accuracy, should be replaced in it by the wavelength A measured along
the curved flagellum), but a more careful calculation of KT omits the - in (61).
This confirms that the true resistance coefficients are much larger than Gray and
Hancock supposed, but leaves their ratio (64) rather little changed.

To arrive at these conclusions, we find first what are the effective resistance

coecients in the zero-thrust spiral motions analyzed in 2.2. The tangential
velocity of the flagellum (scalar product of (35) and (41)) is

(65) Uoa-oJb2k.
The ratio of the tangential force per unit length (46) to this, by equations (56), is
the tangential resistance coefficient

(66) KT-- 2rtx
2A (a)+(1-aZ)Az(a)"-In e -+ a

On the other hand, the normal velocity of the flagellum (magnitude of the
projection of (41) on to the plane normal to the flagellum) is

(67) Uobk + tOEba.
The ratio of the normal force per unit length (47), with magnitude ha, to this is the
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206 JAMES LIGHTHILL

normal resistance coefficient

(68) KN -In e +(202- 1)Al(a) + 2(1 c2)Az(a)"

The significance of these results can best be appreciated if we calculate the
value of

(69) 4rr/x 2rr/x
KN KT

This is a quantity which greatly influences the degree of departure of rK from 0.5.
Furthermore, it is a quantity which on the Gray-Hancock models (61) and (62)
must take the value 1 whatever the value o[ q. For zero-thrust spiral motions,
however, the value of this quantity is

2)[A2(a) A(70) +(1 -a

Figure 13 (chain-dotted line) shows that this always remains substantially less than
the Gray-Hancock value 1. For small-amplitude undulations (with 1- a2= b22
small), it is exactly ; furthermore, it remains close to for all values of the
amplitude (falling a little below as the amplitude increases and then rising a little
above it).

Note that for zero-thrust spiral motions, the resistance coefficients (66) and
(68) by themselves can give as much information, and to the same good accuracy,
as Theorem 1. In fact, analysis of the motion using those resistance coefficients
would give accurate values of both the tangential and normal components of
velocity (65) and (67), from which values of both Uo and tOE could be inferred
agreeing exactly with the results (56) derived from Theorem 1 for a force
distribution (0, h sin ks, h cos ks) exerted by the spiral (33). This makes it very
interesting that expression (69) takes for these accurate resistance coefficients a
value close to and not the value 1 which has hitherto been exclusively used.

In Fig. 13, the value of q such thatthe accurate expression (68) forKN coincides
with the classical expression (62) is also plotted (plain line), as a fraction of the
wavelength A 27r/k (wavelength measured along the curved centerline of the
flagellum). This value is

(71) q= 1
A 27r

--exp [(2a2- 1)AiCa) + 2(1 -aZ)AzCa) 1],

which agrees in the small-amplitude limit a--> 1 (when Al(a)---> 1-3, and A-> A)
with the value (63) proposed by Lighthill (1975) after calculations for normal
distributions of stokeslets along flagella with small-amplitude undulations. Figure
13 shows, furthermore, that (q/A) remains close to this value 0.09 for all
amplitudes. We conclude that normal resistance coefficients for zero-thrust spiral
motions are the same as the values we obtain by calculating the normal velocity of
a cross section resulting from a uniform distribution of normal force per unit
length confined to within a distance 0.09A of that cross section, and ignoring the
curvature of that same length of flagellum.
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01

GRAY-HANCOCK

(T’!.IJ. 2 1:,KN1I!.1.KT
GRAY-HANCOCK (q/h X/A-(z)

/ /’4" n# exactxvalue
2111-[of

\ KN KT/
(THIS DIFFERENCE IS INDEPENDENT
OF THE CHOICE OF q)

0 0-2 0’.4 6

0.8 0.6 0.4

exact value of q/A

to make KN
4

In 2q

exact value of q/A

b2k:2
tO make KT

2
In 2q

C2 (instead of the Gray-Hancock
representation KT =. 2TI-[ )

In 2q
a 2

FIG. 13. Properties of the normal resistance coefficient KN and the tangential resistance coefficient
KT, calculated exactlyfor the zero-thrust swimming ofspirals, are here compared with properties that were
assumed by Gray and Hancock (1955)

Lighthill (1975) assumed, after obtaining (62) with q 0.09A as the value of
KN for small amplitude, that the value of Kw would necessarily be given by (61)
with the same value of q, but we now see that this is not the case. Indeed, for
general amplitude, the conclusions that (62) is accurate with q- 0.09A and that
(69) takes a value close to imply that to good accuracy

2r/x(72) KT= In (2q/a)’
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208 JAMES LIGHTHILL

with q 0.09A; a formula differing from (61) in the omission of the - in the
denominator. Furthermore, Fig. 13 plots (as a broken line) the value

q--l exp[aA- (a)+(1-a)A(a) 1](73)
A 27r

for q which makes (72) coincide exactly with (66), and we see that it remains even
closer to 0.09 than does the earlier expression (71).

As far as the numerical values of (62) and (72) are concerned, the introduc-
tion of the reduced value q 0.09A instead of the Gray-Hancock value q A
=aA changes the denominator by a considerably larger amount (up to

(which altered (61) into (72)).-In (0.09)= 2.4) than does the omission of the -Nevertheless, this omission of the - has important consequences through its
effect on the dynamically significant ratio (64).

The conclusion that in a zero-thrust spiral flagellar motion the resistance
coefficients take forms (62) and (72) (with q 0.09A) greatly different from the
Gray-Hancock values is so important that we may usefully probe further the
reasons for the difference. It is easiest to dig these out of the mathematical analysis
in the limiting case of small-amplitude undulations when the formulas simplify
considerably. The wavelengths , and A coincide in that limit when (62) and (72)
become accurate with q 0.09A. Lighthill (1975) already explained in detail why
q =0.09 is the right choice either for planar or spiral undulations of small
amplitude. Here we are primarily concerned with supplementing those explana-
tions so as to elucidate fully why in addition the - term must be removed from
(61) to make the tangential resistance coefficient as in (72).

Looking back to how the - term appeared in (61), we see that it corresponds
to the 2 in (18), which in turn comes from the integration by parts in (17). On the
other hand, its cancellation in the analysis of the spiral undulation comes from the
appearance of the -1 term in (55), again derived from an integration by parts.
More careful study shows that in the limit of small amplitude these two constitute
one and the same integration by parts over different ranges of integration.
Furthermore, if they are carried out as a single operation over the full range of
integration, no integrated term appears at all.

To see this, we recall that (12) divided the field of a stokeslet into the sum of a
parallel field and a radial field. These are illustrated in Fig. 14. Section 3.2 used a
stokeslet distribution along the flagellar centerline whose strength

(74) f(s) (0, h sin ks, -h cos ks)

per unit length has zero axial component. Accordingly, any x-component (axial)
of velocity cannot be part of the parallel field associated with the stokeslet (74). It
must come entirely from its radial field, whose axial component can, according to
(12), be written

(75)
(F r) x X_ (F r) 0 ()87rid, r3 -r OX

Here r denotes displacement from a stokeslet F whose position has x-coordinate
X. In the application to a distribution of stokeslets (74) along a flagellar centerline
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210 JAMES LIGHTHILL

(33) with X as, and small amplitude b, the O/OX can here be replaced, with a
small relative error in the limit b - 0, a 1, by d/ds. The associated axial velocity
distribution then becomes, on integration by parts,

’(st ’ d ( )ds :’ l] dr’(s "- /dSds.(76) gr; ds L 87rtz r 87r.r

When we evaluate this axial velocity distribution at a point on the surface of
the flagellum, we find that the integration by parts (76) effectively combines both
the integration by parts (17) in the proof of Theorem 1 and the subsequent
integration by parts (55) in the application of Theorem 1 to a spiral undulation.
Note that the integrated term is now zero; indeed, since the stokeslet distribution
f(s) has no axial component, the term f(s) r simply oscillates between finite limits
(determined, actually, in Fig. 14) while r -* o. On the other hand, its evaluation as
in the proof of Theorem 1 between limits lying at a distance q, large compared with
the flagellar radius a but small compared with the flagellar wavelength, would
(Fig. 14) make it equal to (-ft/47r/x) where ft is the tangential component of f.
This fact was used in the proof of Theorem 1 and led to the e term in the value

e. Conversely, the application of Theorem 1 to spiral undula-deduced for 6 a
tions involves the determination of integrals such as (76) with r replaced by the
distance ro from a point on the flagellar centerline and with the range of
integration limited to values of ro > 6. The integrated term would then (see Fig. 14
again) have a value of +ft/47rtx, half contributed from each of the points where
ro 6. When, however, we carry out the integration (76) over the full range of
integration (- c, o), these two expressions cancel and the total integrated term is
zero.

To evaluate the remaining term in the axial velocity distribution (76), we
calculate, or derive geometrically as in Fig. 14, that -d[t(s). r]/ds is the
component o[ (s) along the centerline’s tangent at the cross section where the
velocity is being evaluated. Note that this last term in the axial velocity distribution
(76), although derived from the radial-field element in (12), has through the
integration by parts acquired the same form as the parallel-field element of a
stokeslet with an axial strength equal to this tangential component of t(s). It may
be directly combined with the parallel-field element associated with the original
stokeslet (transverse to the axis).

The resulting combined field (which omits only (i) the transverse component
of the radial-field element and (ii) the field of the associated dipoles (13); fields
which after cancellations are found in (79) below to yield just a normal velocity
distribution) takes the form of the parallel-field element (only) due to a stokeslet
distribution whose vector strength is the sum of the axial and transverse stokeslet
strengths determined above. Those have (Fig. 14) equal components in the
direction of the tangent to the centerline where the velocity is being evaluated;
components adding up to twice the component ft(s) of (s) along that tangent. The

Figure 14 shows, indeed, that even when the integral is calculated over a finite range (the finite
length of the flagellum), the integrated term is already small if the ends are at least half a wavelength
away.
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FLAGELLAR HYDRODYNAMICS 211

associated tangential velocity distribution is

f 2ft(s) ds
(77)

8zr/xr

and in the limit of small amplitude, this is an integral of the form evaluated by
Lighthill (1975, p. 52) for sinusoidally fluctuating ft(s) as

ft(s0)2ft(s----------’[2Ko(ka)],--, [-In (1/2ka)- 7]
87rtz

(78)
_-ft(s) In m2q with q k-le -’/ 0.09h.

2zr/z a

This confirms that it is the vanishing of the integrated term in the integration by
parts (76) that brings about the replacement of the Gray-Hancock tangential
resistance coefficient (61) by the improved form (72).

There is, however, no corresponding change to the form of the normal
resistance coefficient (62), where the + term results from the contribution of the
dipole distribution, exactly as in the proof of Theorem 1. The axial velocity
distribution in the small-amplitude limit makes a contribution to normal velocity
negligible compared with that of the transverse velocity distribution. The calcula-
tion (20) and (21) for the effect of the y-component of stokeslet strength and the
corresponding calculation for the z-component remain valid for strengths varying
sinusoidally with a wavelength very large compared with a and make that normal
velocity distribution

In(S0)In(s) ds+,(79)
8 rr/zr 87r/z

where the latter term comes as in (22) from the rapidly convergent integral of r-3

(with t,(s) remaining close to In(SO) where r-3 is significant). Expression (79), as
above, becomes

(80)
L(So)
[2Ko(ka)+ 1] f"(s)[ln +

yielding the value (62) for the normal resistance coefficient.
The above analysis merely confirms for small amplitude what the preceding

computations showed to be true for general amplitudes. I have thought it worth
recording, however, because it explains the breakdown of the very plausible
arguments of Gray and Hancock to the effect that, balancing the + in the normal
resistance coefficients, a - must be included in the tangential coefficient.

Another significant application of these small-amplitude arguments is to
planar undulations, which were seen in 2.2 to be characteristic of many flagellate
motions and which are considerably harder than spiral undulations to treat in the
general large-amplitude case. We find that (62) and (72) with q 0.09A again give
the suboptimal representation of the motion by resistance coefficients, this time in
the sense that they are the values needed to give the correct asymptotic forms of
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212 JAMES LIGHTHILL

the zero-thrust swimming velocity and the rate of working as the amplitude tends
to zero.

Briefly, the argument goes as follows. Stokeslets of strength (0, h sin ks, 0)
per unit length, distributed along a plane sinusoid (s, b cos ks, 0) of small amp-
litude b, make the quantity f(s) r in (76) equal to

(81) h sin ks(b cos kso-b cos ks).

It oscillates between finite limits, again making the integrated term zero. Minus its
derivative is

(82) -d[f(s). r]/ds hbk(-cos ks cos kso+cos 2ks).

The stokeslet field which affects the tangential velocity distribution is now the sum
of the parallel-field components (only) of axial stokeslets of strength (82) and of
transverse stokeslets of strength h sin ks. Its velocity component in the direction
of the tangent at (So, b cos kso, 0) is

f hbk(-cos ks cos kso+cos 2ks)dS_bk sin kso
h sin ksds

L 8lr J- 87rtxr
(83) S hbk I_ cs 2kS

ds"
hbk cos k (s So)

ds +
8 ’lz r8rtx r

In (83) the first term is independent of So and equal to

hbk 2q,hbk
[2Ko(ka)] --ln(84)

87rtx 47r/x a

with q =0.09A; this represents the tangential velocity’s mean value--its only
property needed for determining the swimming velocity. The mean tangential
force-hbk is related to it by the resistance coefficient (72). The normal resis-
tance coefficient, on the other hand, takes the value (62) by the same argument
(79) and (80) as in the spiral case.

Note that the second integral in (83) can be expressed, taking s- So as a new
variable, as

(85)
hbk cos 2kso ( f cos 2k(s so) ds),8 7rtx r

where the integral in brackets is independent of So, so that (85) has zero mean
value as assumed above. This is one of several second-harmonic terms which are
necessarily present for planar (as opposed to spiral) undulations. Kinematically,
the flagellum’s inextensibility requires y-components of velocity bkc sin ks to be
accompanied by x-components U-1/4b2k2c cos 2ks, where U is the swimming
velocity. This cos 2ks term does not, however, affect the mean tangential velocity

(86) -U-1/2b2k2c.

Finally, second-harmonic axial forces are necessary (in addition to first-harmonic
transverse forces) if the kinematically correct second-harmonic axial velocity is to
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FLAGELLAR HYDRODYNAMICS 213

be generated; but these do not affect the mean tangential force (84), or its relation
to the mean tangential velocity (86). Furthermore, these second-harmonic forces
are of the second-order in amplitude so that their rate of working is negligible (of
fourth order compared with the leading second order term, 1/2hbkc per unit length).

To sum up, we have shown that a suboptimal representation of zero-thrust
flagellar undulations by normal and tangential resistance coefficients requires

4 7r/x 2 7r/x
1 KT--(87) KN In (2q/a)+ In (2q/a)

with q 0.09A (where A is wavelength measured along the flagellum) for either
spiral or planar motions of small amplitude, and also for spiral undulations of
arbitrary amplitude. In the absence of other information, it would be reasonable
to use (87) also for planar undulations of arbitrary amplitude.

3.4. Superior representations of more general flagellar motions. In this
section, putting aside representations of flagellar motions by resistance coeffi-
cients, resume the study of how Theorem 1 can be used to find better
representations, this time of motions more general than the zero-thrust spiral
motion studied with end effects neglected in 3.2. Two more motions are
analyzed, though still with end effects largely neglected: a spiral motion as
modified to give nonzero thrust, and then the same motion as further modified by
the velocity field associated with the counterbalancing drag force on the cell
body. Actually, there is a sense in which neither of these analyses can completely
neglect the ends of the flagellum; certainly the conclusions, unlike those of 3.2,
depend upon its total length L. The methods do, nevertheless, involve some
averaging over the length L and avoid going into details of force distribution very
near the ends, thus avoiding complications associated with the kinematics of the
basal region of a flagellum where it is attached to the cell body, or any vagaries of
flagellar tip movements.

I already indicated in 3.2 how the theory of spiral motions would have to be
modified to apply to motions with nonzero thrust. A flagellar motion generating a
mean thrust per unit length g in the negative x-direction exerts on the fluid an
equal and opposite mean force (+ g, 0, 0) per unit length. A distribution along the
spiral (33) of stokeslets with a nonzero mean (g, 0, 0) and the right invariance
properties was written down in (43). Then, however, Theorem 1 was applied to
this distribution, in (48), only in the case g- 0. Now we determine what extra
velocity field must be added to the right-hand side of (48) when the extra constant
value (g, 0, 0) is added on to the stokeslet strength.

This extra stokeslet strength Af(s)- (g, 0, 0) per unit length has tangential
component ga by equation (35). The associated vector Afn(S) normal to the
centerline referred to in Theorem 1 is obtained by subtracting from Af(s) its
tangential resultant to give

(88)
Afn(S A[(S)- gol(ol, bk sin ks, bk cos ks)

gbk(bk, a sin ks, -a cos ks).

D
ow

nl
oa

de
d 

10
/0

7/
16

 to
 7

7.
80

.1
9.

24
5.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



214 JAMES LIGHTHILL

Theorem 1 then gives the extra flagellar velocity Aw at So 0 associated with this
A(s) as

..gbk (bk, O, -a)+ fr rg(g, O, O)-(gas)ro
(89) Aw

47r/z 0>6 87rt.tr ds

with ro as in (49).
Although the integral in (48) was evaluated between the limits s -oe and

s +oe in order to estimate w at s- 0 with end effects neglected, a modified
procedure is needed for the integral in (89), which does not converge as Isl-, oo.
We evaluate it between limits -Sl and +s2, representing the ends of the
flagellum, and express the "neglect of end effects" only in the assumption that

(90) 01 kSl and 02-- ks2

are both very large.
The x-component of (89) involves an integral

(91) fr ds (I_
-’s

i6S)ds (f_- fo.) dO+ + [a202+ 2(1 a2)(1 _COS 0)]1/2"
0>6 ro s, ro

The integrand in (91) behaves like 101 as 101-,0 but like  - 101 as 101- oo, so
that the integral can be written for large 01 and 02 and small e as

(92) a -1 In (01 02) 2 In e 2A3(a),

where the function A3(o (independent of 01, 02 and e) is easy to compute and is
plotted in Fig. 15.

]’0-

0’2

A3 (ct)

ol.2

0 08 06 0"4

FIG. 15. The function A3(c defined in (92)
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FLAGELLAR HYDRODYNAMICS 215

Note also that expression (91), on integration by parts, becomes

I_ 0 :il I O[ot20+(1-ct2)sinO]dO
(93) az02+2(l_a2)(1_cos 0)]1/ + [c202+2(1_c2)(1_cos 0)]3/2

taken between the same two pairs of limits. We can use the function Al(c)defined
in (53) to express part of the integral in (93)" the part involving 0 sin 0 which
converges as 10] oo. It follows by equating (92) and (93) for large 01 and 02 that
the other part can be written

( f_-e ieoz) 01202d0
0)]3/2(94) 0,

+ [a202 + 2(1 o2)(1-cOS
-1 2 2[A3(a) +(1 o2)a (o) -+- o -1 1],=c In(0102)-2a lne-

a result which allows (89) to be evaluated in terms of the computed functions
Al(a) and A3(c only.

Equation (89) specifies the change Aw, due to a mean thrust g per unit length,
in the value of w at s 0 given by (41). This implies a change A U U- Uo in the
swimming speed U from its zero-thrust value Uo, and a corresponding change
AWE, given by the x- and z-components of (89) as

47r/(AU) -g[1-a2+a -1 In (01 02)-(1 +a2) In e

-1(95) -2A3(a)-(1-a2)Al(ct)-a + 1],

47r/x(AtoE)b -gabk[- 1-1n e +A(a)],

equations that supplement (56) in the case g 0.
Strictly speaking, the quantity In (01 02) appearing in the expression (95) for

A U is not independent of the choice of origin--that is, the choice of position So 0
along the flagellum where AU is being evaluated. However, in a spiral of total
length L, the value of In (0102) when the origin lies at a distance o.L from one tip
(where 0 < o. < 1) is

(96) 2 In (kL)+ln [o-(1-o-)],

whose value averaged with respect to o- is

(97) (ln (01 02) 2 In (kL)-2.

Note that the exact expression (96) remains within +/- 0.6 of the average expression
(97) whenever 0.07 < o- < 0.93. As that amount of variation is unimportant in (95)
when compared with the large terms proportional to In (kL) and In e, we assume
that In (01 02) can to adequate approximation be replaced by the averaged value
(96) in a theory, that does not attempt to investigate end effects. This assumption is
later checked in a particular case.

We calculate the quantitative implications of the above theory when the
flagellar thrust has to balance a cell body drag 67rlUA. Here A is defined as the
radius of a sphere with the same drag as the cell body, and we briefly postpone
consideration of any interaction between the flow fields associated with flagellar
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216 JAMES LIGHTHILL

thrust and cell body drag. Thus we simply take the thrust per unit length of
flagellum in the above analysis as

(98) g 6,rqxUA/L.

The total swimming velocity U can now be written as a sum of terms from
(56) and (95), where g is replaced in terms of this total U itself by (98). This gives

(99) 4zqxU habk[-1-1n e +A(a)](1 +xItA/L)-1,

where the nondimensional factor

(oo)
[2- a- 3a- +2a -1 In (kL)- (1 +a 2) In e 2A.(a)

-(1 aZ)A,(a)]
is plotted in Fig. 16. Similarly the total effective angular velocity tOE can be written

12-

(for-@ =2i".x

"’’ \\-\. /

/ A 200

o/( ca
/o /

"/../(addition to for
/ each doubling of L

- q (for any--)
Ct2 00 0"8 0"6 0"4 2

; 0"2 0"4b2k2 0"6 0"8

o. o-2 o o. o.5 o 6"3 (2b/X)

COEFFICENT IN THE SWIMMING SPEED
REDUCTION FACTOR 1/ A/L),
AND RELATED QUANTITIES.

FIG. 16. Thrusting motion of spiral flagella
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FLAGELLAR HYDRODYNAMICS 217

as the sum of terms from (56) and (95), with g replaced in terms of h by (98) and
(99), to give

4rtwEb h[-(1-az)-(2-a 2) In e + aZAl(a)
(101)

+2(l_aZ)Az(a)] 1 +qA/L
1 +A/L’

where

(102) -q=
3 2a (1-az)[-1-1n e+Al(a)]2

[-(1-az)-(2-a 2) In e + c2Al(a) + 2(1 aZ)Az(a)]

is also plotted in Fig. 16. (For the quantity " additionally plotted in Fig. 16, see
(110) below.)

Figure 16 essentially sums up all the information we need for comparing
nonzero-thrust spiral motions with the zero-thrust spiral motions described in Fig.
12. Thus it follows from (99) and (101) that values of U/VE (ratio of swimming
speed U to apparent wave velocity V aoJ/k), of E/IU2 (where E is rate of
working per unit length of flagellum), and of X (the nondimensional form defined
in (59) of the moment of the spiral flagellum) are changed from their zero-thrust
values by the following factors:

U VE changed by factor

E/Id,U2 changed by factor

X changed byfactor

( + A//)-’;
(1 + A/L)(1 + qA/L);

(1 +A/L)(1 +qA/L)-.
Evidently, the changes depend very critically on A/L; they are greatest for the
rate-of-working factor E/IU2, substantial for the swimming-speed ratio U/V,
and insignificant (since -q is very much smaller than itself) for the moment
ratio X. Actually, the fact (Fig. 16) that q is everywhere less than 0.05 means
that to close approximation, the changes result exclusively from the change (99) in
U alone, dividing the ratio U/V by one factor I+A/L, and multiplying
E/tU2 by two such factors.

The psi coefficients in these nonzero-thrust correction factors 1 +A/L are
seen in Fig. 16 to take values in the region 10 to 15, considerably greater than the
values around 5 obtained by use of the same resistance coefficients as for
evaluation of the zero-thrust swimming speed (see, for example, Lighthill (1975,
p. 55)). Indeed, the whole idea of a local resistance coefficient is peculiarly
inappropriate to the evaluation of this change in swimming velocity due to a
distribution of thrust all along the flagellum. Whereas in the zero-thrust case there
is cooperative application of force from within a certain radius 0.09A of any given
point, but the effects of the fluctuating forces further from the point essentially
cancel, no such localization of the effects of a uniform distribution of thrusting
forces can be expected; they exercise coooperative action all along the flagellum.
This brings about a considerably greater change in swimming velocity than would
be predicted from the high values of resistance coefficients associated ( 3.3) with
the analysis of the zero-thrust case.
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218 JAMES LIGHTHILL

To anyone who, in spite of the above considerations, may nevertheless seek a
treatment in terms of resistance coefficients, the following very crude approach
may be suggested. A single special "axial resistance coefficient" may be used to
determine the nonzero-thrust correction to swinming speed. This resistance
coefficient Kx is defined as the ratio of thrust per unit length to the resulting
swimming-speed reduction

(104) Kx g/(- A U) 6zqz/.

The idea is that an organism swimming at velocity U< Uo is essentially imposing
on the undulating spiral an effective motion in the opposite direction at velocity
Uo U AUrelative to its natural zero-thrust motion. The resistance K( A U)
to that provides a thrust g per unit length which balances the drag resisting the
forward movement of the cell body.

With this background, it is interesting that the values of calculated in Fig.
16 enable us to express Kx in the form

27qx
(105) Kx In (2q/a)

used for tangential resistance coefficients in 3.3, and that the q so calculated is
related as in Fig. 17 to the component aL of the flagellum’s length in the

If the spiral’s axial resistancecoefficient

Kx (ratio of thrust per unit tength to
associated swimming-speed reduction)

is written 21 the rcttio of q to
In 2q

Cl

the unstretched length I=ctL of the

flagellum tokes thesevolues

0.3 q

0"2

.]

--=lO0
_.A 200a

c2

0 0"8 0"6 0"4 0-2

FIG. 17. Cooperation radius of thrusting activity, q, for spiral flagella

direction of propagation, that is, the distance within which the thrusting forces act
cooperatively. The ratio q/l take the value

(106) q e-3/2 0.22
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FLAGELLAR HYDRODYNAMICS 219

for a 1, and values rather smaller than that for ocher values of a. A value around
q- -l is found for values of a giving high-efficiency spiral motions (cf. Fig. 12),
suggesting that sufficient accuracy in very crude calculations may be obtained by
using (104) and (105) with q =gl as a typical radius of cooperative thrusting
action. This approximation leads to a reduction factor

(107) (I+A/L)-1 with :-3[ln(//3a)]-1

on the swimming velocity of a cell body with drag 6"rqxUA.
There is just one case when the above values of Kx may be related to

accurately known quantities. In the limit a 1, K tends to the tangential
resistance coefficient for a straight cylinder of length L and radius a. This quantity
has been known for some time (Cox (1970, p. 805)) to take the value given by
(105) and (106). This confirms the above method based on using an average value
(97) for In (01 02) (whereas a "Gray-Hancock" approach, assigning to In (01 02) its
maximum value 2 In (1/2kL) attained at tr , would incorrectly give q/l the value

--1/2e =0.30).
Another, really more useful, representation of the expression (95) for the

change A,U in swimming speed is suggested when we recognize that the thrust g
per unit length generating that change corresponds to a thrust ga -1 per unit axial
distance. This is because by (33) the axial separation of the stokeslet s from the
cross section s 0 is

(108) X as.

The inverse-first-power dependence on X of the effect of axial stokeslets of
strength ga -1 per unit axial distance on the axial velocity at X- 0 is asymptoti-
cally

(109)
ga dX

4rlXl’
which on integration to large values of IxI leads to the term -ga- In (01 02) in the
expression (95) for 47r/x(AU). This suggests that we seek to express the exact
expression (95) as

( f - IcX2) ga-l dX
(110) 47r/z(A U) +

where X1 as 1, X2 as2, and the value of sr such that (110) coincides with (95) is
easily computed and is plotted in Fig. 16.

Equation (110) states that the excess swimming speed at the cross section
X 0 due to axial stokeslets ga -1 per unit axial distance distributed along the
spiral is exactly equal to the solution of a much simpler problem" determine the
excess swimming speed on the axis of the spiral resulting from the same stokeslets
distributed along all parts of the axis except those within a small distance " of the
origin. All the complicated local effects of the spiral geometry are here rep-
resented through sr, which has been calculated exactlywhereas interactions over
longer distances (comparable with a wavelength) are well represented by the
simple asymptotic velocity field (109).
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220 JAMES LIGHTHILL

These ideas suggest a method for estimating the effect of a thrust per unit
length which may vary slowly along a spiral flagellum. We assume that it generates
an axial velocity field given by (109), associated with stokeslets of strengths ga -1

per unit axial distance distributed along the axis of the spiral, but with the velocity
at any cross section equal to the resulting velocity on the axis determined by
ignoring stokeslets within an axial distance ’. This assumption should give a good
approximation because (109) should be accurate at larger distances while, if g is
varying slowly, the local effects of the spiral geometry may be well represented by
the form obtained as in (110) by taking g constant. In this case, then, (110) may be
used with g g(X).

We illustrate the above ideas by applying them tentatively to estimate the
effects of mutual interaction between flagellar thrust and cell body drag, in the
special case of a spherical cell body of radius A propelled by a spiral flagellum of
length L much greater than A. Then it is convenient to relocate the origin of x at
the join between the two, with the center of the sphere at x -A and the spiral
extending from x 0 to x l, where

(111) l=aL

is the unstretched length of the spiral. (The same analysis applies whether we are
dealing with a posterior flagellum in base-to-tip undulations or an anterior
flagellum in tip-to-base undulations.)

This is a case when some significant variation in T(X), the thrust per unit axial
distance (replacing ga- in the above analysis), must be expected; particularly, an
increase near the cell body, which tends to drag nearby fluid along with it requiring
the flagellum locally to exert increased thrust. The drag D on the cell body must be
balanced by the total thrust"

I0(112) D T(X) dX.

Conversely, the cell body moves at swimming velocity U through a fluid
which is being induced to move in the opposite direction by the thrust of the
flagellum. Using the induced velocity at the center of the sphere as an estimate of
this effect, we obtain

(113) D =67rtxA U+
47rtx(A +X)

as an estimate of the resulting increased drag.
Finally, we must write down the axial velocity U at the position x Xo of

the flagellum as a sum of (i) the value of -Uo (where Uo is the zero-thrust
swimming speed); (ii) the effect of a stokeslet of strength -D situated at the
sphere’s center x =-A; (iii) the effect of the distribution of thrust T(X); as

(114) U= Uo- 47r/x(A
+ +

o+C 4rr/xlX- Xol
Here the formula (110) for velocity field due to thrust has been modified by
choosing a new origin (so that the velocity field is written down now at x Xo) and
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FLAGELLAR HYDRODYNAMICS 221

by replacing ga -1 by T(X). Equation (114) must hold for each Xo (although we
neglect end effects and do not seek answers for Xo very close to 0 or/); thus it is an
integral equation for T(X) which must be satisfied for some constant values of U
and D which in turn must satisfy (112) and (113).

To the same approximation as was made in the first half of this section, with a
logarithmic term replaced by its average as in (97), the solution is quite easily
obtained in the form

C
(115) T(X) B +

A +---"
Substituted in (114), this gives

D
47rtz( Uo- U)+ (B +

C )lnXo(l-Xo)A + Xo A + Xo 2
(116) C (Xo+A)2-sr2+ In

A +Xo A(l+A)

The right-hand side of (116) is approximated by replacing ln[Xo(l-X)] by its
average

(117) 2 In 1-2

as in (97), and similarly replacing In [(Xo + A)2 .2] by the average in 0 < Xo< of
its value with the small sr2 term neglected:

(118) )- ln[(Xo+a)]dXo [(l+A)ln(l+A)-A lnA-/],

which for A much smaller than takes the same value (117). Equation (116) then
becomes

(119) 4r(Uo-U)+A+oo B+A+Xo -2 +A ln-2
which is satisfied if the constants B and C satisfy

(120) 4(Uo-U)=2B ln-i D=C 21n+lnx-4
In the meantime, the solution (115) makes (112) and (113) become

(121) D=BI+CIn, D=6wAU+A B lnx+
These four equations for the unknowns B, C, D and U are readily solved.

From the second and third of them, the relationship between the coefficients B
and C takes the .simple form

/-2)(122) BI 2C(ln
The third and fourth equations then give the relation between B and U (again
with A taken much smaller than l) as

In (l/A)-
=6’txAU.(123) Bl 1 - 2(In (//’)-2)
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222 JAMES LIGHTHILL

The first equation then gives the swimming speed as

ln(l/A)-
(124) U= U/{1 + [3-(ln 1)] [1 +2(In (l/)-)

Note that in (124) the first square bracket is exactly the value (A/L) given
in (99) by the theory with flow field interactions between flagellum and cell body
neglected, as the definition of sr implies. Accordingly, in the factor (1 +A/L) by
which the swimming speed U is reduced below the zero-thrust value Uo as a result
of the thrust needed to balance the drag on a cell body of radius A, consideration

flow field interactions has the effect oflowering the value o] through division by

[ ln(I/A)-](i/)_(125) 1 +2(ln
Values of this factor, which are easily obtained from the values of " given in Fig.
16, are in typical cases a little less than 1.5, producing a significant but not
overwhelming lowering of the value of xp; that is, a lowering in the extent of the
reduction of swimming velocity due to cell body drag.

3.5. Flow fields generated by flagella. An account of flagellar hyd-
rodynamics should go beyond the calculation of relationships between flagellar
movements in fluid and the associated forces, and beyond the estimation of
hydrodynamic effects on microorganism locomotion, to study also the fluid flow
fields generated by flagella, with their special significance not so much for
locomotion as for feeding. In this attempt to initiate hydrodynamic studies of
flagellar motions, therefore, I include a section on flow fields and their relevance
to the feeding problems of microorganisms, although I limit the discussion to one
extreme case only: the case of sessile organisms, for which locomotion is
altogether absent. The entire function of flagellar thrust is then to generate a flow
field for feeding purposes, that thrust being balanced by an equal and opposite
reaction from a stalk which attaches the organism to a substrate ( 2.2).

I estimate the flow field in this case partly because it is an extreme case of very
definite interest and partly because it is one which avoids the particular complica-
tion investigated at the end of 3.4: there is no motion of the cell body through the
fluid contributing to the forces driving the fluid motion.

Actually, the study of this flow field illustrates rather well the power of the
method of 3.2 and 3.4 based on first determining the zero-thrust swimming
speed Uo and then the change A U U- Uo in swimming speed associated with a
given thrust g per unit length. Evidently, the sessile case requires U--0, which
implies that A U--Uo. In the notation of the axial resistance coefficient Kx
defined by equation (104), this implies a thrust per unit length

(126) g KxUo.
Thus the flagellar thrust, generated when a sessile organism makes given

flagellar undulations, may be simply written down in terms of (i) the zero-thrust
swimming speed associated with the same undulations and (ii) the axial resistance
coefficent Kx associated with the flagellar configuration. For example, if the
flagellar undulations took the form of a spiral of constant radius and constant
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FLAGELLAR HYDRODYNAMICS 223

pitch, the expression (126) could be immediately evaluated from the values of Uo
given in Fig. 12 and the values of- 6rrl/Kx given in Fig. 16.

Actually, it is doubtful whether any sessile organisms make use of spiral
undulation. Evidently, this would be impossible unless the organism’s attachment
to the substrate had enough torsional strength to balance the hydrodynamic
moment. Planar undulations are common, however. Accordingly, it may be
desirable here to indicate how the thrust per unit length g would be estimated for
planar undulations. In fact, this illustrates well the utility of suboptimal represen-
tations by resistance coefficients in problems where calculations of superior
accuracy have not yet been done.

First, we may estimate the zero-thrust swimming speed Uo, even (see the end
of 3.3) for planar undulations of arbitrary amplitude, by using the resistance
coefficients (87) with q 0.09A (where A is curvilinear wavelength). Their ratio is

(127) rK KT/KN -"-- In

It is known (Lighthill (1975, Chap. 3)) that analysis of planar undulations by use of
resistance coefficients gives a value

Uo (1-/3)(1- r<)
(128)

V 1--+rK
in terms of rK and of/3, the mean square cosine of the angle between the flagellar
tangent and the swimming direction.

While for the zero-thrust case we use these results with a small value
q 0.09A for the "cooperation radius" of thrusting activity, we estimate the other
factor in (126) differently. Because ( 3.4) the axial resistance coefficient Kx
relates the distribution of thrust g along the flagellum to the change in swimming
speed it produces, a "cooperation radius" proportion to the axial extent of the
thrust distribution is appropriate, and we accordingly choose Kx as in (105),
taking a value of q around -1 as suggested by Fig. 17.

Note that the associated rate of working is the same as when the same
undulations produce zero-thrust swimming. This is because (i) a zero-thrust
system of forces does work at the same rate after a uniform axial velocity is
superimposed, and (ii) a uniform thrust per unit length g does no work in a motion
with zero mean axial velocity.

The large-scale flow field generated by the flagellar motions is primarily that
of the thrust distribution (126). The reasons for this is that zero-thrust flow fields
have a small-scale character, extending a distance of considerably less than a
wavelength from the flagellum. This can be seen mathematically from the fact that
solutions of the Stokes equations (1) and (2) which vary sinusoidally in the
x-direction like exp (2rix/A) decay exponentially with distance (y2 + z 2) 1/2 from
the x-axis, roughly like

(129) exp [- 2"n’(y 2 + z2)1/2/i].
In other words, the associated flow fields are merely local. Experimental confir-
mation of this for zero-thrust swimming of a nematode worm by planar undula-
tions is given in Fig. 18, a flow visualization due to Gray (1968).
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224 JAMES LIGHTHILL

(a)

3

tc) -I
FIG. 18. Flow visualization (Gray (1968)) of the pattern of streamlines in the neighborhood of a

swimming nematode worm Turbatrix. Undulatory locomotion of such an organism is a true zero-thrust
swimming since there is no separate drag element to be propelled

This suggests that the large-scale flow field can be represented along the lines
suggested near the end of 3.4 by means of a simple uniform distribution along the
axis

(130) T gL/l

of thrust per unit axial distance, where L and are the flagellum’s stretched and
unstretched lengths. This is because the difference between the complicated real
distribution of force on the fluid and that simple uniform distribution of thrust
along the axis is a zero-thrust distribution, which generates merely a small-scale
localized flow field.

Now, the streamlines associated with a uniform axial distribution of force T
per unit length along an axial segment of length are easy to compute and are
displayed in Fig. 19. The flow field has axial symmetry of course; it also has fore-
and-aft symmetry about the segment’s midpoint. The streamlines are the same
whether the flagellum is thrusting to the right or to the left, the flow being in the
direction opposite to the thrust. For the smooth flagella here considered, then, the
flow would be in the direction of propagation of the undulation.
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FLAGELLAR HYDRODYNAMICS 225

10

axis of symmetry axis of symmetry

Flow field generated by thrust, uniformly distributed along the thick line.
(Streamlines shown are meridian sections of streamtubes enclosing fluid flow
rates in integer multiples of 0.0125 TI2//, where T is thrust per unit length.)

FG. 19. Approximate flow field generated by the flagellum of a sessile organism

The streamlines in Fig. 19 are meridian sections of stream-tubes enclosing
volume flow rates of fluid taking values which are integer multiples (from 1 to 10)
of a flow rate 0.0125 Tl2/lx. Thus, when the diagram is rotated about the axis of
symmetry, there is equal flow rate in each of the annular regions between the
tubes. Note that, since the thicknesses of these regions show little variation with
distance from the axis, their cross-sectional areas should increase linearly with
that distance, consistently with the flow velocity falling off as an inverse-first-
power of that distance.

The calculation neglects, of course, any interference with the flow field due to
the presence of the cell body, or of a "collar" of fine pseudopodia filtering the flow
as in choanoflagellates, or of a cup-shaped lorica to which the cell body may be
attached. These, however, are obstacles of relatively modest scale which may only
slightly deform the flow field. By contrast, if there were a plane solid substrate
close to the flow of Fig. 19, a very considerable deformation would be induced.
This could be represented (Blake (1971)) by an image system in the solid wall,
consisting predominantly of equal and opposite stokeslets at the mirror-image
positions. Those would reduce the flow of Fig. 19 considerably if the wall were
close by.

This argument makes evident the important role of the stalk in those sessile
microorganisms that generate flows for feeding purposes by flagellar motions. The
flows generated would be considerably reduced were it not for the fact that the
stalk allows the flagellum to operate well clear of where the solid substrate can
interfere significantly with its flow field. Mathematically, the stalk ensures that the
image stokeslets remain at a distance from the flagellum of over twice the length of
the stalk and lorica combined.

It is worth asking what type of flagellar motion requires least rate of working
to generate a given volume flow through a disc of radius R at the base of the
flagellum (representing, for example, the "collar" of a choanoflagellate). The
calculations leading to Fig. 19 show that flow rate to be

TR 2

(_) TR2 2l(131) Q
4/z

sinh-1 In -D
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226 JAMES LIGHTHILL

Now (130) allows T to be written ga -1, where for general planar undulations
a l/L is the mean value of that cosine of the angle between the flagellar tangent
and the axis whose mean square is/3. With (126), this gives

(132) O=a UoR In

On the other hand, the rate of working by the flagellum was shown earlier to
be the same as for zero-thrust swimming at velocity Uo. This rate of working is
known (Lighthill (1975, pp. 59, 60) with zero substituted for his parameter ) to
take the value

(133) KLU(1-r)-(1-)-(1-+r)[-(1-+r)-r],
_1/2--1 2which is a minimum when a 2 (1 + r This value (close to the value of

for minimum energy dissipation by spirals shown in Fig. 12) implies that motions
where in most parts of the flagellum the tangent makes an angle with the axis
around 40 dissipate least energy for given zero-thrust swimming speed Uo.

By contrast, a minimization of (133) for given flow rate O involves smaller
values of a 2 and ; that is, larger amplitudes of undulation. The difference results
almost entirely from the a- factor in (132), since the logarithmic dependence
(105) of Kx on tends partly to cancel the variation in the In (2UR) factor. If fixing
O does cause Uo to vary in proportion to a, the rate of working (133) again has a
minimum for given when a 2 takes its greatest possible value (the mean square
cosine, , cannot be less than the square of the mean, a2). That minimum in turn
varies with in proportion to 1 + r(1-)-; this expression decreases towards
an asymptote of 1 as decreases towards zero, implying that the rate of working
will be near its minimum for given induced flow when the amplitude of undula-
tions is so large that , the mean square axial direction cosine of the flagellar
tangent, is small.

The theory suggests, then, that whereas undulations of moderate amplitude
minimise the rate of working by a flagellum needed to generate a given swimming
speed, the minimum needed to generate a given flow near the anterior end of the
cell body may be attained for undulations of much larger amplitude. In sessile
organisms, undulations of such unusually large amplitude are, in fact, commonly
observed (M. A. Sleigh, private communication).

This section, however, has made only a small beginning in the study of flow
fields generated by flagella. It will be particularly interesting to investigate in the
future what flow fields relevant to the feeding problems of moving organisms may
be generated by the opposing action of flagellar thrust and cell body drag (see
3.4). An extended hydrodynamic theory for flagella with mastigonemes ( 2.2) is

also most desirable and could be used to throw light on several questions relevant
to flow patterns with a feeding function.

4. Conclusions. In this Lecture, I first tried to indicate how rich an area of
science is the biofluiddynamics of microorganisms with flagella and related
organisms; then, in order to suggest what significant contributions can be made to
it by a proper application of mathematics, I analyzed in detail certain selected
problems of flagellar hydrodynamics. Obviously, the range of biofluiddynamic
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FLAGELLAR HYDRODYNAMICS 227

phenomena which I briefly surveyed (with references) in 2 is enormously wider
than the limited range of problems which I analyzed in 3; in making such a wide
survey, my aim was to interest fellow applied mathematicians in the possibility of
seeking to analyze in a broadly similar manner many other problems in the
biofluiddynamics of microorganisms. Now I want to conclude by emphasizing that
it is necessary to communicate the conclusions of any such analysis to colleagues
(including colleagues in the life sciences) in clear nonmathematical language.
Accordingly, I end my lecture by giving that s,ort of summary of the conclusions of
3.

The political principle DIVIDE AND RULE applies to the hydrodynamic
analysis of flagellar motions (whether they be the undulations of a eukaryotic
flagellum or the postulated rotary motions of a bacterial flagellum or bundle). It is
important to distinguish between the velocity-generating function of a flagellar
motion and its thrust-generating function; especially, because the nature of the
interaction with the fluid medium in the exercise of these two functions is quite
different. Fortunately, the two functions can be analyzed separately and then the
results can be combined (in quite a simple manner) to study any particular
problem of interest.

Specifically, we can analyze first ( 3.2) the zero-thrust swimming which the
motion of the flagellum would generate if the cell body to which it is attached had
no hydrodynamic resistance to be overcome. This represents the "natural"
swimming brought about by the flagellar motions themselves in the absence of any
counterbalancing drag force. Then the velocity-generating function of the flagel-
lar motions must produce its maximum effect: the zero-thrust swimming speed.

Once we know what zero-thrust swimming a particular flagellar motion will
produce, we can readily understand the same motion’s thrust-generating function.
The principle DIVIDE AND RULE means that we must think separately about
zero-thrust swimming and the change due to thrusting, as follows.

Obviously any hydrodynamic drag on the cell body slows down the organism
to below the zero-thrust swimming speed. The flagellum is then being held back
from going at its full zero-thrust speed; we can say that relative to that zero-thrust
swimming motion, it is drifting backwards. Now, quite simply; thrust consists of the
resistance opposing that drift backwards, and the swimming speed adjusts itself
( 3.4) so that this thrust exactly balances the drag resisting the forward motion of
the cell body.

The interaction with the fluid medium involved in the velocity-generating
(zero-thrust) function of flagellar motions has these general characteristics:

(i) the associated flow fields are highly localized (see Fig. 18);
(ii) on the flagellum, there is a rather small "cooperation radius" (distance

within which different cross sections of the flagellum are pushing fluid
with forces nearly equal in magnitude and direction);

(iii) as a consequence, the effective "resistance coefficients" (normal and
tangential) take values much larger than the classical values due to Gray
and Hancock (1955), although their ratio is little changed (conclusions
on this matter are summarized at the end of 3.3; see also Fig. 13);

(iv) although total thrust is zero, the resultant action of the hydrodynamic
forces on the flagellum may be a couple, tending to rotate the organism at
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228 JAMES LIGHTHILL

an angular velocity determined by the balance between this couple and
the damping couple resisting rotation of the cell body;

(v) the resulting corkscrew rotation of an attached spiral flagellum modifies
its motions in a manner that has to be taken into account in determining
its zero-thrust swimming speed ( 3.2; see also 2.2);

(vi) it is the zero-thrust swimming characteristics of flagellar motions (see
Fig. 12 for data on these in the case of spiral motions) that determine the
rate at which they do work even in the thrusting case.

By contrast, the interaction with the fluid medium involved in the thrust-
generating function of flagellar motions (which is associated with a backward drift
relative to the zero-thrust swimming velocity) has these general characteristics:

(i) the associated flow fields are on a large scale (Fig. 19);
(ii) there is a large "cooperation radius" of thrusting activity (comparable to

the length of the flagellum);
(iii) as a consequence, the total resistance to the abovementioned backward

drift (namely, the thrust) can be described by means of a special
resistance coefficient (105) much smaller than those involved in the
determination of zero-thrust swimming;

(iv) thrusting activity makes negligible change to those couples involved in
determining the organism’s rotation;

(v) neither does it change the rate at which the flagellar motions do work
(although it involves a reduction in the swimming speed for the same
rate of working).

The simple way in which knowledge of the different characteristics of the
interaction of flagellar motions with the fluid medium in the velocity-generating
and thrust-generating cases can be combined for the analysis of a particular
problem is illustrated in 3.5 by the study of flow fields generated by flagellar
motions in sessile organisms. These are stationary relative to the undisturbed fluid;
therefore, relative to the zero-thrust swimming speed, they drift backwards at the
zero-thrust swimming speed itself! Accordingly, they exert a thrust determined, as
the resistance opposing that backward drift at the zero-thrust swimming speed,
from the use of a resistance coefficient at the lower level associated (see above)
with a large cooperation radius of thrusting activity.

This thrust, being opposed by an equal and opposite reaction in a stalk
attaching the organism to a substrate, does not move the organism. The corres-
ponding reaction on the fluid, however, generates a large-scale flow field (Fig. 19)
that can be important for feeding purposes. Interestingly enough, the undulations
required to generate a given flow rate with minimum rate of working are of much
greater amplitude than those characteristic of swimming with minimum rate of
working.

Beyond the analyses of 3.2-3.5 that I have briefly summarized above, I see
great scope for use of the basic theorem of 3.1 to study a much broader range of
flagellar motions. Evidently, the computational possibilities of using that theorem
to determine force distributions associated with a wide variety of flagellar velocity
distributions are substantially enhanced, now that first approximations based on
much better resistance coefficients than were previously available can be used to
initiate an iteration. Those end effects that were neglected in 3, and many other
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effects involving quite different shapes of flagellar motion, may well yield to
numerical analysis along these lines. At the same time, it will be most important
that such investigation of hydrodynamical interactions is carefully integrated, in
the way I have tried to exemplify in this Lecture, with the necessary analysis of the
kinematics, and more generally of the mechanics, of the organism’s own motion.
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