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Abstract. Based on the decay of relative entropies for the probability distri-

butions of Markov processes, different methods for proving decay to equilib-

rium have been established. The standard situation is coercivity of the entropy
dissipation, called Poincaré inequality in analogy to diffusion processes, which

is either proved directly or as a consequence of the Bakry-Emery approach via

the decay of the entropy dissipation. Even in the absence of the Poincaré in-
equality decay to equilibrium is still possible, a situation called hypocoercivity.

A short formal derivation of relative entropy dissipation via a local version

is given. The connection to the Γ-calculus, to the time reversal of diffusion
processes, and several other applications are addressed. Finally, a number of

recently developed approaches for proving hypocoercivity are presented for the
prototypical model problem, the kinetic Fokker-Planck equation.

This is work in progress.
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1. Motivation

We consider a system of linear ODEs with constant coefficients:

dp

dt
= Ap ,(1)

with unknown p(t) = (p1(t), . . . , pN (t)) ∈ RN , t ≥ 0, and given constant A ∈
RN×N . We assume that the initial datum p(0) is a probability distribution on

{1, . . . , N}, i.e. pn(0) ≥ 0, 1 ≤ n ≤ N , and
∑N
n=1 pn(0) = 1, and we want

this property to be conserved by the dynamics given by (1). This leads to the
requirements

Amn > 0 , 1 ≤ m 6= n ≤ N ,

N∑
m=1

Amn = 0 , 1 ≤ n ≤ N ,(2)

where the strict inequality would not be necessary, but is assumed for convenience.
It is easily seen that it implies pn(t) > 0, 1 ≤ n ≤ N , t > 0, abbreviated as p(t) > 0
in the following.

Lemma 1. Let (2) hold and let p(t), q(t) ∈ RN be solutions of (1) with q(t) > 0,
t ≥ 0. Then

dH(p|q)
dt

= −
N∑

m,n=1

Anmqm

(
pn
qn
− pm
qm

)2

≤ 0 , with H(p|q) :=

N∑
n=1

(pn − qn)2

qn
.

Proof. First we note that (1) can be written in the form

dpn
dt

=
∑
m 6=n

(Anmpm −Amnpn) , 1 ≤ n ≤ N .

Using this, a straightforward computation gives

dH(p|q)
dt

=

N∑
n=1

∑
m 6=n

[
Anm

(
2pnpm
qn

− p2
nqm
q2
n

)
−Amn

p2
n

qn

]
.

The proof is completed by m↔ n in the last term in the bracket. �

This somehow miraculous result can be used for a complete analysis of the long
time behavior of solutions of (1).

Lemma 2. The system (1) has a unique steady state p∞ such that
∑N
n=1 p∞,n = 1.

It satisfies p∞ > 0.

Proof. First, it is easily seen that the real parts of the eigenvalues of A are non-
positive, because otherwise initial conditions for p and q could be chosen such that
H(p|q) would increase exponentially, which is impossible by the previous result. On
the other hand, zero is an eigenvalue of A as a consequence of (2). Therefore, for
large enough µ > 0, the matrix A+µI has only positive entries (by (2)), and it has
the eigenvalue µ, which is also the eigenvalue with the largest real part.

At this point we need a result from linear algebra, the Perron-Frobenius theorem
(see, e.g., [41]). It says that for positive matrices the spectral radius is a simple
eigenvalue with a positive eigenvector (where positive is always meant component-
wise). Obviously, this eigenvalue has to be µ for the matrix A+ µI, implying that
zero is a simple eigenvalue of A with a positive eigenvector, which can be scaled to
become a probability distribution p∞. �
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Lemma 3. Let p(t), t ≥ 0, be a solution of (1), where p(0) is a probability distri-
bution. Then, as t→∞, p(t) converges to p∞ exponentially.

Proof. With λ := minm 6=nAnm/p∞,n > 0, we have

dH(p|p∞)

dt
≤ −λ

N∑
m,n=1

(
p∞,m

(pn − p∞,n)2

p∞,n
+ p∞,n

(pm − p∞,m)2

p∞,m

− 2(pn − p∞,n)(pm − p∞,m)

)
.

The term in the second line disappears, since both p(t) and p∞ are probability
distributions, implying

dH(p|p∞)

dt
≤ −2λH(p|p∞) .

By the Gronwall inequality (https://en.wikipedia.org/wiki/Grönwall′s inequality)
we get exponential decay of (the square of the weighted `2-Norm of p−p∞) H(p|p∞)
to zero. �

In the following we shall explain general principles leading to results like Lemma
1 in much more general situations, motivated by ideas from stochastic processes. If
the existence of an appropriate equilibrium can be verified, as in Lemma 2, then in
many cases the result of Lemma 1 can be strengthened to provide convergence to
equilibrium, as in Lemma 3.

2. Continuous time stochastic processes

This section is a ridiculously short and incomplete collection of some important
notions, which will be used in this course. See, e.g., [12] for much more.

Definition 1. Let (Ω,F , P ) be a probability space. A continuous time stochastic

process (CTSP) in Rd is a family of random vectors {Xt}t∈[0,∞), i.e.

Xt = (X1,t, . . . , Xd,t) : Ω→ Rd and

{ω ∈ Ω : Xi,t(ω) ≤ α} ∈ F , i = 1, . . . , d , t ≥ 0 , α ∈ R .
For fixed ω ∈ Ω, the map t 7→ Xt(ω) is called a sample path.

The Borel σ-algebra Bd is the smallest σ-algebra on Rd containing all sets of the
form (−∞, α1]× · · · × (−∞, αd]. A random vector X induces the probability space
(Rd,Bd, PX), where the probability

PX(A) = P ({ω ∈ Ω : X(ω) ∈ A}) , A ∈ Bd ,
is called the law of X. For CTSPs we shall assume that the law is given in terms
of a probability density p(x, t), x ∈ Rd, t ≥ 0:

PXt(A) =

∫
A

p(x, t)dx .

Remark 1. Here we mostly concentrate on describing CTSP in terms of their laws
at different times, i.e. vary ω for each fixed t. Alternatively, the pathwise view, i.e.
vary t for each fixed ω, sees a CTSP as a function valued random variable. This
leads to probability distributions on function spaces, which is much more sophisti-
cated from the analysis point of view. This is necessary when properties of sample
paths are of interest, a subject we only touch peripherically in the following.
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Expectation values of functions of random variables are given by

Ep(t)(f) := E(f(Xt)) =

∫
Rd
f(x)p(x, t)dx =: 〈fp(t)〉

Obviously, probability densities p have to satisfy p ≥ 0 and 〈p〉 = 1. An example is
the Gaussian

p(x) = (2πσ2)−d/2 exp

(
−|x− µ|

2

2σ2

)
with mean µ ∈ Rd and variance σ2 > 0 (i.e., if the Gaussian is the density of X,
then E(X) = µ, E((X −µ)2) = σ2). For random vectors X and Y , the probability
distributions of X and of Y are called marginals of the joint distribution for (X,Y ).
In terms of the probability densities p(X,Y ) for (X,Y ), pX for X, and pY for Y ,

pX(x) =

∫
Rd
p(X,Y )(x, y)dy , pY (y) =

∫
Rd
p(X,Y )(x, y)dx

hold.

The conditional expectation. We recall the definition P (A|B) = P (A∩B)/P (B)
of the conditional probability of A under the condition B. For fixed B with P (B) > 0
this defines a new probability distribution, which allows to compute expectation
values, called conditional expectation. What we shall need, is the conditional ex-
pectation E(f(X)|Y = y) for two random vectors X and Y . Our formal derivation
will be based on a discretization Rd =

⋃
j∈N Cj (into disjoint cubes Cj) with xj ∈ Cj

and ∆C := |Cj | � 1, j ∈ N, which implies

P (X ∈ Cj |Y ∈ Ck) =
P(X,Y )(Cj × Ck)

PY (Ck)
≈
p(X,Y )(xj , xk)(∆C)2

pY (xk)∆C
,

and therefore

E(f(X)|Y ∈ Ck) ≈
∑
j∈N

f(xj)
p(X,Y )(xj , xk)

pY (xk)
∆C .

This allows to formally pass to the limit ∆C → 0, xk → y, leading to the desired
formula

E(f(X)|Y = y) =

∫
Rd
f(x)

p(X,Y )(x, y)

pY (y)
dx .

Strictly speaking, this formula can of course only be used when pY > 0. A general
definition of conditional expectation, not necessarily based on probability densities,
is rather involved [12].

The random vectors X and Y are called independent, if

E(f(X)|Y = y) = E(f(X)) =

∫
Rd
f(x)pX(x)dx ∀ y ∈ Rd .

This holds of course, if p(X,Y ) is factorized: p(X,Y )(x, y) = pX(x)pY (y).
Properties of CTSP can often be described in terms of there finite-dimensional

distributions, i.e. (Xt1 , . . . , Xtn) for arbitrary n ∈ N and 0 ≤ t1 < . . . < tn.
For example: A CTSP has independent increments, if the random vectors Xt1 ,
Xt2 − Xt1 , . . . , Xtn − Xtn−1

are mutually independent for all finite-dimensional
distributions.

An important class of CTSPs are martingales. They satisfy

E(|Xt|) <∞ , E(Xt+h|Xt = x) = x ∀ t ≥ 0 , h > 0 , x ∈ Rd .
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If a CTSP has independent increments and constant mean, i.e. E(Xt) = E(X0),
t ≥ 0, it is a martingale. A complete definition of martingales and several of their
properties can be found in [12].

A Markov process is a CTSP without memory: For every t ≥ 0, knowledge of
the distribution at time t is sufficient for predicting the process at later times. In
terms of an arbitrary finite-dimensional distribution this can be formulated as

E(f(Xtn)|(Xt1 , . . . , Xtn−1
) = (x1, . . . , xn−1)) = E(f(Xtn)|Xtn−1

= xn−1) .

In terms of probability densities for three times s < u < t, this translates to

p(Xt,Xu,Xs)(x, z, y)

p(Xu,Xs)(z, y)
=
p(Xt,Xu)(x, z)

pXu(z)
=: πt,u(x, z) ,

where the right hand side is called transition probability density, which satisfies the
Chapman-Kolmogorow equation

πt,s(x, y) =

∫
Rd

p(Xt,Xu,Xs)(x, z, y)

p(Xu,Xs)(z, y)

p(Xu,Xs)(z, y)

pXs(y)
dz =

∫
Rd
πt,u(x, z)πu,s(z, y)dz .

Every CTSP with independent increments is a Markov process. A Markov process
is called homogeneous, if the transition probability density can be written in the
form πt−s(x, y). With p(x, 0) = p0(x), we then have

p(x, t) = (T (t)p0)(x) :=

∫
Rd
πt(x, y)p0(y)dy ,

where the propagation operator {T (t)}t≥0 is a semigroup as a consequence of the
Chapman-Kolmogorow equation:

T (t+ s) = T (t)T (s) , t, s ≥ 0 .

Its generator will be denoted by

L∗p := lim
h→0+

T (h)p− p
h

,

for all p such that the limit exists (formally). Accordingly, we shall from now on
write T (t) = eL

∗t.
In the following we shall sometimes write 〈f, g〉 instead of 〈fg〉, to emphasize

the role of 〈·, ·〉 as a duality pairing. The dual L of L∗ (〈Lp, q〉 = 〈p, L∗q〉) is called
the generator of the (homogeneous) Markov process, and we will try to explain this
terminology in the following.

We start by stating some properties of {eL∗t : t ≥ 0} and the semigroup {eLt :
t ≥ 0}, generated by L. eL

∗t acts on the space of bounded measures on Rd (typically
probability measures), and it preserves mass, such that, when p0 is a probability
measure on M , then also p(t) = eL

∗tp0 is a probability measure for all t ≥ 0, i.e.

〈L∗f〉 = 0 , 〈eL
∗tf〉 = 〈f〉 , L1 = 0 .

If p0 is the probability distribution of X0, then the solution p(t) = eL
∗tp0 of the

forward Kolmogorov equation

∂tp = L∗p ,

subject to the initial condition p(0) = p0, is the probability distribution of Xt, t ≥ 0.
Note that the transition probability density can be written as πt(x, y) = (eL

∗tδy)(x),
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where δy denotes the Delta distribution concentrated at y. Expectation values can
be computed via the Feynman-Kac formula

E(f(Xt)) = Ep(t)(f) = 〈f, p(t)〉 = 〈eLtf, p0〉 .
For a deterministic initial position, p0 = δx, this produces the recipe E(f(Xt)) =
u(x, 0), where u(x, s) is the solution of the backward Kolmogorow equation

∂su+ Lu = 0 , 0 ≤ s ≤ t ,(3)

subject to the terminal condition u(x, t) = f(x). This can be seen as a consequence
of Ut := u(Xt, t) being a martingale, when u solves the backward Kolmogorov
equation, i.e.

d

dt
E(Ut) =

d

dt
〈up〉 = 0 .(4)

We shall need a more general version of the Feynman-Kac formula, employing the
conditional probability density

πt−s(·, y) = eL
∗(t−s)δy

for (Xt|Xs = y), t ≥ s ≥ 0, giving the joint probability density

p(Xt,Xs)(x, y) = (eL
∗(t−s)δy)(x)p(s, y)(5)

for (Xt, Xs). Therefore

E(f(Xt)g(Xs)) =

∫
M

∫
M

f(x)g(y)(eL
∗(t−s)δy)(x)p(s, y)dx dy

= 〈f, eL
∗(t−s)(gp(s))〉 = 〈eL(t−s)f, gp(s)〉 , t ≥ s ≥ 0 .(6)

This can be used in a straightforward computation, producing an explanation for
calling L the generator of the Markov process:

0 = E

([
f(Xt)− f(Xs)−

∫ t

s

Lf(Xr)dr

]
g(Xs)

)
, t ≥ s ≥ 0 .(7)

3. Diffusion processes

Let {ξj : j ∈ N} be a sequence of independent identically distributed random
variables with E(ξj) = 0, E(ξ2

j ) = 1, j ∈ N, and let

Sk :=
k∑
j=1

ξj , k ≥ 1 ,

implying E(Sk) = 0, E(S2
k) = k. Now define a CTSP Bnt by Bn0 = 0,

Bnk/n := n−1/2Sk , k ∈ N ,

and linear interpolation between these gridpoints, giving E(Bnt ) = 0, E((Bnt )2) ≈ t
as n → ∞. These properties are essentially enough to prove that Bnt tends to a
(weak) limit Bt as n → ∞. The CTSP Bt is called one-dimensional Brownian
motion. The computation

Bnk/n −B
n
l/n√

k/n− l/n
=
Sk − Sl√
k − l

,

suggests Hölder continuity of Bt with exponent 1/2, since the right hand side has
variance 1. Actually it can be proven that sample paths of Brownian motion are
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almost surely (i.e., with probability 1) Hölder continuous with any exponent smaller
than 1/2 and almost surely not Hölder continuous with any exponent bigger than
1/2. On the other hand the above equation can also be written as

Bnk/n −B
n
l/n =

Sk − Sl√
n

=
1√
n

k∑
j=l+1

ξj ,

which, by the fact that all ξj have the same law, implies that Bnk/n −B
n
l/n has the

same law as Bn(k−l)/n. In the limit n → ∞ this leads to the result that Bt has

stationary increments, which means that the law of Bt − Bs, t ≥ s, only depends
on t− s. One consequence of this, which shall be used below, is

E((Bt+∆t −Bt)2) = E(B2
∆t) = ∆t .(8)

The central limit theorem implies that for fixed t the distribution of Bt is Gaussian
with mean 0 and variance t:

πt(x, 0) = (2πt)−1/2e−x
2/(2t) .

The notation indicates that Brownian motion is an homogeneous Markov process
with transition probability density

πt(x, y) = (2πt)−1/2e−(x−y)2/(2t) .

This is the fundamental solution of the heat (or diffusion) equation ∂tp = 1
2∂

2
xp,

showing that one-dimensional Brownian motion is generated by the second deriva-
tive:

L = L∗ =
1

2
∂2
x .

Another standard way to derive this starts with choosing ξj ∈ {−1, 1} at the begin-
ning of this section. This implies that only points on the grid {k/

√
n : k ∈ Z} can

be reached. Then one writes a system of difference equations for the probabilities
on this discrete probability space and passes to the limit n→∞.

The CTSP Bt = (B1,t, . . . , Bd,t) with independent one-dimensional Brownian
motions B1,t, . . . , Bd,t is called d-dimensional Brownian motion. The probability
distribution of Bt is the d-dimensional Gaussian

πt(x, 0) = (2πt)−d/2e−|x|
2/(2t) ,

and it is generated by the Laplace operator: L = L∗ = ∆x/2.
Solutions of an autonomous stochastic differential equation (SDE) of the form

dXt = b(Xt)dt+ σdBt(9)

with a vector field b and a d × d-matrix σ are called diffusion processes. We shall
assume σ to be invertible. The equation is usually written in this form (not ’divided’
by dt) since Bt is not differentiable. Its actual meaning is given by the integral
equation

Xt = X0 +

∫ t

0

b(Xs)ds+ σBt ,

(note that B0 = 0). Since Bt is continuous almost surely, short time existence
and uniqueness of continuous sample paths (with X0(ω) and Bt(ω)) is guaranteed
almost surely for Lipschitz continuous b. As for ODEs, this can be shown by Picard
iteration.
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Often the volatility matrix σ is allowed to depend on the state, i.e., σ = σ(Xt),
which makes the interpretation of (9) significantly more complicated. The term
σBt in the integral formulation then has to be replaced by the stochastic integral∫ t

0
σ(Xs)dBs, whose definition and properties are rather different from standard

integrals because of the roughness of Bt. In the following we continue with the
assumption of constant σ in order to stay away from these difficulties.

In order to find the generator of a diffusion process we use (3), (4). So we assume
that Ut = u(Xt, t) is a martingale and compute for small ∆t > 0

Ut+∆t − Ut = u(Xt+∆t, t+ ∆t)− u(Xt, t) ≈ ∂tu(Xt, t)∆t

+∇xu(Xt, t) · (Xt+∆t −Xt) +
1

2
(Xt+∆t −Xt)

tr∇2
xu(Xt, t)(Xt+∆t −Xt) .(10)

Noting that

Xt+∆t −Xt = b(Xt)∆t+ σ(Bt+∆t −Bt) +O(∆t2) ,

and, motivated by (8), considering Bt+∆t − Bt as an O(
√

∆t)-term, the approxi-
mation in (10) means that terms up to O(∆t) have been kept. The approximation
can be simplified further:

Ut+∆t − Ut = (∂tu(Xt, t) + b(Xt) · ∇xu(Xt, t)) ∆t+∇xu(Xt, t) · (σ(Bt+∆t −Bt))

+
1

2
(Bt+∆t −Bt)trσtr∇2

xu(Xt, t)σ(Bt+∆t −Bt) +O(∆t3/2) .(11)

Now we compute the expectation (using the martingale property of Ut, as well as
(8) in the second line), divide by ∆t and pass to the limit ∆t→ 0:

0 = ∂tu+ Lu , with Lu = b · ∇xu+∇x · (D∇xu) , D =
1

2
σtrσ .

This is the backward Kolmogorow equation for the diffusion process. Actually it
can also be derived by first passing to the limit ∆t→ 0 in (11), giving the result of
the Ito Lemma

dut = (∂tu+ Lu)dt+∇xu · (σdBt) ,
which, however, requires the rather sophisticated proof of the formal equation
(dBi,t)

2 = dt, which we only have used for the expectation of the left hand side.
The law of the diffusion process solves the forward Kolmogorow equation

∂tp = L∗p = ∇x · (D∇xp− bp) .

4. Jump processes

Let λ > 0, N 3 n > λ, and let {ξj : j ∈ N} be a sequence of independent
identically distributed random variables with ξj ∈ {0, 1}, P (1) = λ/n. We define a
CTSP by

Nn
t :=

k∑
j=1

ξj ,
k

n
≤ t < k + 1

n
,

implying that for every t ≥ 0, Nn
t is a nonnegative integer and, by elementary

combinatorics,

P (Nn
t = l) =

(
k

l

)(
λ

n

)l(
1− λ

n

)k−l
,

k

n
≤ t < k + 1

n
.(12)
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We also get

E(Nn
t ) =

λk

n
, E((Nn

t − λk/n)2) =
λk

n

(
1− λ

n

)
,

k

n
≤ t < k + 1

n
.

As in the previous section, the uniform (as n→∞) boundedness of these moments
can be used to pass to a weak limit in the CTSP, producing the homogeneous
Poisson process Nt with intensity λ, satisfying

P (Nt = l) =
(λt)l

l!
e−λt ,

which can be obtained from (12) by using k ≈ nt and passing to the limit. The
Poisson process is a Markov process with stationary independent increments.

If the (random) time, where Nt jumps from l to l+ 1 is denoted by Tl, then the
lengths Tl+1 − Tl of the time intervals between jumps have independent identical
distributions, given by the Exponential(λ) law:

P (Tl+1 − Tl > ∆t) = e−λ∆t .

Considering the state space R, the probability density of the law of Nt can be
written as

p(x, t) = e−λt
∞∑
l=0

(λt)l

l!
δl(x) .

Differentiation with respect to time gives

∂tp(x, t) = λ(p(x− 1, t)− p(x, t)) = (L∗p(t))(x) ,

and, thus, the generator of the Poisson process is given by

(Lu)(x) = λ(u(x+ 1)− u(x)) .

The Poisson process is the simplest example of a jump process. In the following
we shall be interested in more general compound Poisson processes, which can be
seen as generalizations in two directions. First, we allow state dependent intensities
λ(x) ≥ 0, meaning that after a jump taking us to state x ∈ Rd, the time to the
next jump is Exponential(λ(x)) distributed. At the time of the jump, the new state
x′ is also chosen randomly, according to the probability density k(x → x′) ≥ 0,∫
Rd k(x→ x′)dx′ = 1. This leads to

(L∗p)(x) =

∫
Rd
λ(x′)k(x′ → x)p(x′)dx′ − λ(x)p(x) .

This is often written in terms of the rate W (x→ x′) := λ(x)k(x→ x′):

(L∗p)(x) =

∫
Rd

(W (x′ → x)p(x′)−W (x→ x′)p(x))dx .

For jump processes the forward Kolmogorow equation ∂tp = L∗p is often called the
master equation. The generator of the jump process is given by

(Lu)(x) =

∫
Rd
W (x→ x′)(u(x′)− u(x))dx′ .
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5. Space homogeneity – Lévy processes

We call a (time) homogeneous Markov process space homogeneous, if its tran-
sition probabilities πt(x, y) are translation invariant with respect to (x, y), i.e.
πt(x, y) = πt(x − y). Recalling for this case the joint probability distribution
p(Xt,Xs)(x, y) = πt−s(x − y)p(s, y) for (Xt, Xs), t ≥ s, (see (5)), we can determine
the law of increments from

EXt−Xs(f) =

∫
Rd×Rd

f(x− y)πt−s(x− y)p(y, s)dx dy =

∫
Rd
f(z)πt−s(z)dz .

This shows that a time and space homogenous Markov process has stationary in-
crements.

Lévy processes are CTSP Xt with independent, stationary increments, satisfying
X0 = 0. Examples are diffusion processes with constant drift, i.e. Xt = σBt + tb,
and compound Poisson processes with X0 = 0 and translation invariant jump rate
W (x′ → x) = W (x− x′).

By Xt =
∑n
k=1(Xkt/n − X(k−1)t/n), a Lévy process at each time t ≥ 0 can be

written as the sum of arbitrarily many i.i.d. random vectors, a property called
infinite divisibility. It can be used for proving the space homogeneity of Lévy
processes with the aid of the characteristic function χ(ξ, t) := E(eiξ·Xt), i.e. the
Fourier transform of p(t). The above splitting leads to

χ(ξ, t) = (χ(ξ, t/n))n ,

implying, at least formally, χ(ξ, t) = e−tΨ(ξ) with some characteristic exponent
Ψ(ξ). Since χ(·, t) is the Fourier transform of p(t) = eL

∗tδ0 (p0 = δ0 sinceX0 = 0), it
is obvious that L∗ is a pseudo-differential operator with symbol −Ψ, i.e. application
of L∗ corresponds to multiplication by −Ψ in Fourier variables. Therefore L∗ is a
convolution operator and, thus, translation invariant in space.

Infinite divisibility straightforwardly implies

E(Xt) = tE(X1) , V (Xt) = tV (X1) ,

which is used in the following computation, where we restrict ourselves to d = 1 for
simplicity:

Ψ(ξ) = − logχ(ξ, 1) = −∂t(χ(ξ, 1)t) |t=0= lim
t→0

1− χ(ξ, t)

t

= lim
t→0

1

t
E(1− eiξXt + iξXt)− iξE(X1)

= lim
t→0

∫
R

1− eiξy + iξy

y2
µt(y)dy − iξE(X1) ,

where µt(y) = y2p(y,t)
t is bounded in L1 as t→ 0, since∫

R
µt(y)dy =

E(X2
t )

t
= V (X1) + tE(X1)2 ,

and the function 1−eiξy+iξy
y2 can be continuously extended to y = 0 by the value

ξ2/2. Denoting by µ0 a (vage, restricting to a subsequence) limit of µt as t → 0,
we obtain

Ψ(ξ) =

∫
R

1− eiξy + iξy

y2
µ0(dy)− iξE(X1) .
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Note that µ0 is a bounded measure with µ0(R) = V (X1). With the notation

b := E(X1)−
∫
|y|>1

µ0(dy)

y
, D =

µ0({0})
2

, ν(dy) =
µ0(dy)

y2
for y 6= 0 ,

this becomes the Lévy-Khinchine representation

Ψ(ξ) = −iξb+Dξ2 +

∫
y 6=0

(1− eiξy + iξy1|y|<1)ν(dy) .

An ambiguity in the construction affecting the definition of b is the cutoff for large
values of y. Sometimes it might be more convenient to replace y1|y|<1 by something
continuous like y

1+y2 .

The general result is that also for d > 1 and without the assumption of bounded
variance the characteristic exponent has a representation

Ψ(ξ) = −iξ · b+ ξ · (Dξ) +

∫
y 6=0

(1− eiξ·y + iξ · y1|y|<1)ν(dy) ,(13)

with a vector b ∈ Rd, a positive semidefinite matrix D ∈ Rd×d, and the Lévy
measure ν, satisfying

∫
y 6=0

min{1, |y|2}ν(dy) < ∞. Inverse Fourier transformation

gives

(L∗p)(x) = ∇ · (D∇p(x)− bp(x))

+

∫
y 6=0

(
p(x+ y)− p(x)− y · ∇p(x)1|y|<1

)
ν(dy) .(14)

The first part describes a diffusion process with constant drift. The second needs
a little explanation. If the Lévy measure is integrable around y = 0, the gradient
term in the integral could be included in the definition of the drift vector b. The
integral then describes a jump process with ν(dy) = W (y)dy in the notation of the
previous section.

If ν has a stronger singularity at y = 0, the gradient term might be necessary for
the existence of the integral. The standard example for this situation is fractional
diffusion with W (y) = |y|−d−α, where 0 < α < 2, and with

Ψ(ξ) =

∫
Rd
eiξ·y|y|−d−αdy = |ξ|α

∫
Rd

cos(z1)|z|−d−αdz = cα,d|ξ|α .

By the symmetry of W the gradient term in the integral can be dropped, if the
integral is interpreted as principal value.

6. Time reversal – decay of the relative entropy

We are looking for a time reversed version of (7) and compute

E([f(Xt)− f(Xs)]g(Xt)) = 〈g, f p(t)〉 −
〈
eL(t−s)g, f p(s)

〉
=

∫ t

s

(〈
−LeL(t−r)g, f p(r)

〉
+
〈
eL(t−r)g, f L∗p(r)

〉)
dr

= −
∫ t

s

〈
eL(t−r)g, p(r)L

p(r)
f
〉
dr ,

with

L
p(t)

f =
1

p(t)
(L∗(fp(t))− fL∗p(t)) ,(15)
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implying

0 = E

([
f(Xt)− f(Xs) +

∫ t

s

L
p(r)

f(Xr)dr

]
g(Xt)

)
, t ≥ s ≥ 0 .(16)

The operator L
p(t)

can be seen as the generator of the time reversal of the process
{Xt : t ≥ 0} with probability distribution {p(t) : t ≥ 0}.

If Xt is stationary, i.e. p(t, x) = p∞(x) with L∗p∞ = 0, and if the detailed balance
condition

p∞L = L∗(p∞·)
holds, then Xt is time reversible, i.e. L

p∞
= L. The computation

〈L∗(p∞f), g〉 = 〈Lf, p∞g〉 = 〈f, L∗(p∞g)〉
shows that detailed balance is equivalent to the symmetry of the operator L∗(p∞·).

Let p(t) = eL
∗tp0 and q(t) = eL

∗tq0 denote the probability densities of Xp
t and,

respectively, Xq
t . Then a straightforward computation shows that p/q solves the

backward Kolmogorow equation of the time reversal of Xq
t , i.e.,

∂t

(
p

q

)
− L

q
(
p

q

)
= 0 ,

implying the backward martingale property: For t ≥ s,
p(t, x)

q(t, x)
= E

(
p(s,Xq

s )

q(s,Xq
s )

∣∣∣ Xq
t = x

)
.

The following formal computation can be used instead, without explicit referral to
time reversal:

p(t, x)

q(t, x)
=

1

q(t, x)

(
eL
∗(t−s)p(s)

)
(x) =

1

q(t, x)

〈
eL
∗(t−s)p(s), δx

〉
=

〈
p(s)

q(s)
,
q(s)

q(t, x)
eL(t−s)δx

〉
.

The second factor on the right hand side can be interpreted as the probability
density for Xq

s under the condition Xq
t = x. For the following, it is only important

that it is a probability density:

1

q(t, x)

〈
q(s), eL(t−s)δx

〉
=

1

q(t, x)

〈
eL
∗(t−s)q(s), δx

〉
= 1 .

Thus, for a convex function U , the Jensen inequality implies

U

(
p(t, x)

q(t, x)

)
≤
〈
U

(
p(s)

q(s)

)
,
q(s)

q(t, x)
eL(t−s)δx

〉
,

leading to the pointwise estimate for the local relative entropy

hU (p(t)|q(t))(x) := q(t, x)U

(
p(t, x)

q(t, x)

)
≤
[
eL
∗(t−s)hU (p(s)|q(s))

]
(x) .(17)

Integration with respect to x gives the decay of the entropy of p relative to q,

HU (p(t)|q(t)) := 〈hU (p(t)|q(t))〉 ≤
〈
eL
∗(t−s)hU (p(s)|q(s))

〉
= HU (p(s)|q(s)) ,

by the conservation property of the forward Kolmogorow semigroup. For the typical
choices of U , satisfying U(1) = U ′(1) = 0, the local relative entropy hU (p|q) is a
measure for the distance between p and q.
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Example 1. (The heat equation) For better appreciation of the local entropy in-
equality (17), we reformulate the proof for a simple example. Note that there is no
integration by parts.

Lemma 4. Let p(x, t) ≥ 0 and q(x, t) > 0 satisfy ∂tp = ∆xp, ∂tq = ∆xq, t > 0,
and let U ∈ C2([0,∞)) be convex. Let furthermore u(x, t, s), t ≥ s > 0, satisfy

∂tu = ∆xu , t ≥ s , u(t = s) = hU (p(s)|q(s)) .

Then

hU (p(t)|q(t))(x) ≤ u(x, t, s) , 0 < s ≤ t , x ∈ Rd .

Proof: Let v(x, τ, s) := u(x, s+ τ, s). Then

∂τv = ∆xv , v(τ = 0) = hU (p(s)|q(s)) .

Therefore, of course,

∂τ (∂sv) = ∆x(∂sv) , ∂sv(τ = 0) = ∂shU (p(s)|q(s)) .

Since u(x, t, s) = v(x, t− s, s), we have w := ∂su = −∆xu+ ∂sv, which solves

∂tw = ∆xw , w(t = s) = −∆xh(p(s)|q(s)) + ∂shU (p(s)|q(s))

= −U ′′
(
p(s)

q(s)

)
q(s)

∣∣∣∣∇x p(s)q(s)

∣∣∣∣2 ≤ 0 .

The maximum principle implies w = ∂su ≤ 0 which completes the proof. �

Example 2. (Diffusion processes – the Fokker-Planck equation) The generator of
the time reversal of the diffusion process [22] is, according to (15), given by

L
p
f = ∇x · (D∇xf) +∇xf ·

(
2D∇xp

p
− b
)
.

The time reversed process Xτ = XT−τ can be seen as governed by the SDE system

dXτ =

(
2D∇xp

p
− b
)

(Xτ )dτ + σdBτ .

Remark 2. Some of the uneasyness of PDE people with the idea of time reversal of
diffusion is justified, since the coefficient ∇xp/p might blow up at τ = T (t = 0),
when the initial density p0 is nonsmooth.

Obviously, a stationary diffusion process with distribution p∞ is time reversible,
iff D∇xp∞ = bp∞, which is however only possible when D−1b is a gradient field.
In this special case, i.e. b(x) = −D∇Φ(x) we also need to assume that Φ is a
confining potential, satisfying e−Φ ∈ L1(Rd) and shifted such that 〈e−Φ〉 = 1. The
probability distribution of Xt then satisfies the Fokker-Planck equation

∂tp = L∗p = ∇x · (D(∇xp+ p∇xΦ)) ,(18)

with the unique equilibrium p∞ = e−Φ. The symmetrized form

L∗p = ∇x · (Dp∞∇x(p/p∞))

of the Fokker-Planck operator immediately implies the detailed balance property

L∗(p∞f) = ∇x · (Dp∞∇xf) = p∞Lf .
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Example 3. (Jump processes) In

(L∗p)(x) =

∫
M

[W (x′ → x)p′ −W (x→ x′)p]dx′ ,

we have adopted the convention of kinetic transport theory to abbreviate p(x′) and
p(x) by p′ and, respectively, p. The generator and the time reversed version are
given by

(Lf)(x) =

∫
M

W (x→ x′)(f ′ − f)dx′

and, respectively,

(L
p
f)(x) =

∫
M

W (x′ → x)p′

p
(f ′ − f)dx′

Time reversibility obviously requires an equilibrium satisfying

W (x′ → x)p′∞ = W (x→ x′)p∞ , x, x′ ∈M .

This is actually the origin of calling this condition detailed balance, since it means
that in equilibrium the integrand in the master equation vanishes identically, i.e.
each jump x → x′ is balanced by its inverse. In the context of jump processes
detailed balance is sometimes also called micro-reversibility.

Example 4. (Lévy processes) For a general Lévy process with generator (14) and
characteristic exponent (13) the existence of a stationary distribution cannot be
expected. For diffusion the addition of a drift resulting from a confining potential Φ
helped, with the classical example Φ(x) = |x|2/2 leading to a Gaussian equilibrium.
In [20], Lévy-Fokker-Planck operators of the form

L∗p = L∗Lévyp+∇ · (xp)

with an operator L∗Lévy of the form (14), have been studied. Equilibria can be
constructed by employing the Fourier transform. The Fourier transform

p̂∞(ξ) =

∫
Rd
eiξ·xp∞(x)dx

of an equilibrium distribution has to satisfy

Ψp̂∞ + ξ · ∇p̂∞ = 0 ,

with the auxiliary condition p̂∞(0) = 1. The ansatz p̂∞(ξ) = e−A(ξ) leads to

ξ · ∇A = Ψ , A(0) = 0 ,

with the solution

A(ξ) =

∫ 1

0

Ψ(sξ)

s
ds = −iξ · b+

1

2
ξ · (Dξ) +

∫
y 6=0

∫ ξ·y

0

1− eiu + iu1|y|<1

u
du ν(dy) .

For a diffusion process the equilibrium distribution is a Gaussian with mean b. On
the other hand for the fractional diffusion case Ψ(ξ) = |ξ|α we obtain A(ξ) = |ξ|α/α,
i.e. p∞ is the transition probability density of the pure fractional diffusion process
for time intervals of length α−1.

The author is not aware of results concerning the time reversibility of the sta-
tionary process with probability density p∞.
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7. The entropy dissipation rate – decay to equilibrium by
entropy/entropy-dissipation inequalities

The arguments of the previous section do not provide information about the
dissipation rate of the relative entropy. Therefore, we compute the derivative of the
right hand side of (17):

∂s

(
eL
∗(t−s)

[
q(s)U

(
p(s)

q(s)

)])
= −eL

∗(t−s)iU (p(s)|q(s)) ,(19)

with the local Fisher information

iU (p|q) = L∗
(
qU

(
p

q

))
− U ′

(
p

q

)
L∗p−

(
U

(
p

q

)
− p

q
U ′
(
p

q

))
L∗q ≥ 0 .(20)

Integration with respect to s leads to the local (relative) entropy dissipation relation

hU (p(t)|q(t))− eL
∗(t−s)hU (p(s)|q(s)) = −

∫ t

s

eL
∗(t−r)iU (p(r)|q(r))dr ,

and a further integration with respect to x to the global result

HU (p(t)|q(t))−HU (p(s)|q(s)) = −
∫ t

s

IU (p(r)|q(r))dr ,

with the Fisher information IU (p|q) = 〈iU (p|q)〉.

Remark 3. We point out two simple properties of the local Fisher information.

• The local Fisher information is linear in L∗, i.e. for a sum of operators the
contributions to the local Fisher information can be computed separately.

• For multiplication operators and for differentiation operators, i.e. operators
satisfying the Leibniz product rule, the local Fisher information vanishes.

When an equilibrium p∞ with L∗p∞ = 0 exists, and the entropy/entropy-dissipation
inequality

IU (p|p∞) ≥ λHU (p|p∞) , with λ > 0(21)

holds, then p(t) = eL
∗tp0 → p∞ as t → ∞ exponentially in the sense of relative

entropy.

Example 5. (Diffusion processes) For the diffusion process of Example 2 with L∗p =
∇x ·(D∇xp)−p∇x ·b−b ·∇xp only the diffusion term contributes to the local Fisher
information, since the second and third terms are multiplication and differentiation
operators, respectively. We obtain

iU (p|q) = qU ′′
(
p

q

)
∇x
(
p

q

)tr
D∇x

(
p

q

)
≥ κqU ′′

(
p

q

) ∣∣∣∣∇x(pq
)∣∣∣∣2 ,

with the coercivity constant κ > 0 of the diffusion matrix. When D−1b is not a
gradient field and detailed balance is impossible, showing the existence of a positive
equilibrium p∞ can be difficult (see [1] for some results), and we shall assume it in
the following.

For U(z) = (z − 1)2/2, the inequality (21) is a consequence of the weighted
Poincaré inequality

κ〈|∇xu|2p∞〉 ≥ λ〈u2p∞〉 for 〈up∞〉 = 0 ,



16 C. SCHMEISER

which holds, if

lim inf
|x|→∞

log(1/p∞(x))

|x|
> 0 .

In the detailed balance situation p∞ = e−Φ this means that the confining potential
grows at least linearly.

Example 6. (Jump processes) The jump process of Example 3 has the local Fisher
information

iU (p|q)(x) =

∫
M

W (x′ → x)q′
[
U

(
p′

q′

)
− U

(
p

q

)
− U ′

(
p

q

)(
p′

q′
− p

q

)]
dx′ .

The term in the bracket is called the Bregman distance (associated to U) between
p/q and p′/q′.

For the case of local micro-reversibility, i.e. W (x′ → x)p′∞ = W (x → x′)p∞
for all x, x′ ∈M , entropy dissipation has been known (in kinetic transport theory,
where x represents velocity) for a long time. Without micro-reversibility it is more
recent knowledge in the mathematics community [11] (see, however, [40]).

For U(z) = (z − 1)2/2, the local Fisher information is given by

iU (p|q)(x) =
1

2

∫
M

W (x′ → x)q′
(
p

q
− p′

q′

)2

dx′ .

With the equilibrium p∞ and with the standard assumption W (x′ → x) ≥ λp∞(x),
λ > 0, we have the local entropy/entropy-dissipation inequality

iU (p|p∞)(x) ≥ λp∞
2

((
p

p∞
− 1

)2

+

∫
M

p′
2

p′∞
dx′ − 1

)
≥ λhU (p|p∞)(x)

Integration gives (21) and therefore exponential decay of the relative entropy but,
by (19), actually the stronger local result

hU (p(t)|p∞)(x) ≤ e−λteL
∗thU (p0|p∞)(x) .

Under the additional assumption W (x′ → x) ≤ Λp∞(x) this can be put to use
in the following way: In this case it is easy to show that a bound of the form
p0(x) ≤ cp∞(x) is preserved by the evolution. Since then also hU (p0|p∞), satisfies
such a bound, the same holds for eL

∗thU (p0|p∞). The local decay result then implies

|p(x, t)− p∞(x)| ≤ Ce−λt/2p∞(x) , for all x ,

for an appropriate constant C > 0.
If M = Rd and an accelerating force F ∈ Rd is added, the resulting forward

Kolmogorow operator

(L∗p)(x) = −F · ∇xp+

∫
M

[W (x′ → x)p′ −W (x→ x′)p]dx′

produces the same local Fisher information and, thus, the distance between two
solutions tends to zero, although it is known that an equilibrium does not exist, if
the scattering rate λ(x) =

∫
M
W (x→ x′)dx′ decays too fast as |x| → ∞ [38]. This

effect is called run-away. The result that the distance between solutions shrinks
even in this case does not seem to be known in the kinetic theory community, and
the entropy decay, in case an equilibrium exists, is again rather recent knowledge
(see, e.g. [7]).
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Example 7. (Growth and fragmentation of biopolymers) In the previous example,
a strictly positive jump rate W has been assumed. The following will show that
this is not necessary for the validity of the Poincaré inequality, although the local
version fails.

A typical situation for linear actin polymers in biological cells is that they are
anchored at one end to a protein complex promoting polymerization. On the other
hand there is a severing process, cutting polymers at random positions. The cut-off
pieces are then depolymerized completely in a fast process. A simple model for the
length distribution of the active polymers is given by [17, 30]

∂tp+ v∂xp = κ

(∫ ∞
x

p′ dx′ − xp
)

= κ

∫ ∞
0

[H(x′ − x)p′ −H(x− x′)p]dx′ ,

x > 0, subject to the boundary condition p(0, t) = 0, with the polymerization speed
v > 0, the severing rate constant κ > 0, and the Heavyside function H. Note that
this is different from most fragmentation models (see, e.g. [29]), since the cut-off
pieces are thrown away. The unique equilibrium distribution is given by

p∞(x) =
κx

v
exp

(
−κx

2

2v

)
.

With U(z) = (z−1)2/2, we can take the local Fisher information from the preceding
example, since the transport term does not contribute:

iU (p|p∞)(x) =
1

2

∫
M

H(x′ − x)p′∞

(
p

p∞
− p′

p′∞

)2

dx′ .(22)

This does not permit a local entropy/entropy-dissipation inequality, but for the
global Fisher information symmetrization implies

IU (p|p∞) =
1

4

∫
M

∫
M

(H(x′ − x)p′∞ +H(x− x′)p∞)

(
p

p∞
− p′

p′∞

)2

dx′dx

≥ 1

2

√
ve

κ

∫
M

∫
M

p′∞p∞

(
p

p∞
− p′

p′∞

)2

dx′dx = 2

√
ve

κ
HU (p|p∞) ,

where the maximal value
√
κ/(ve) of p∞ appears.

Example 8. Fractional diffusion is generated by

L∗p = −P.V.
∫
Rd

p− p′

|x− x′|d+α
dx′ ,

with 0 < α < 2, where P.V. denotes the principal value. Up to a multiplicative
constant, this is, at least when applied to smooth functions, equivalent to the
pseudo-differential operator −(−∆)α/2p (defined via the Fourier transform). For
U(z) = z2/2, a straightforward computation gives

iU (p|q) =
1

2

∫
Rd

q′

|x− x′|d+α

(
p

q
− p′

q′

)2

dx′ .

The corresponding entropy/entropy-dissipation inequality IU (p|q) ≥ λHU (p|q) for
q(x) decaying sufficiently fast as |x| → ∞ has been proven in [35].

Example 9. The concept of generalized relative entropy, developed in [32, 33], also
fits into the framework of Markov processes after a transformation. For illustration
we consider the finite dimensional situation as in [37], Section 6.3. Consider a
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matrix A = (amn)m,n=1,...,d with positive entries amn > 0. Then the Perron-
Frobenius theorem states that the spectral radius λ of A is a simple eigenvalue with
an eigenvector with positive components. Therefore there are unique normalized
left and right eigenvectors φ and, repectively, R, such that,

A∗φ = λφ , AR = λR , φn, Rn > 0 ,

d∑
n=1

Rn =

d∑
n=1

Rnφn = 1 .

The goal is to analyze the long-time behavior of solutions of

du

dt
= Au , un(0) ≥ 0 ,

d∑
n=1

un(0) > 0 .

The new unknown p(t) is defined by

pn(t) =
e−λtφnun(t)∑d
m=1 φmum(0)

,(23)

satisfying, with the diagonal matrix Φ := diag(φ1, . . . , φd),

dp

dt
= L∗p , L∗ = ΦAΦ−1 − λ , pn(0) ≥ 0 ,

d∑
n=1

pn(0) = 1 .

Since the rows of L∗ add up to zero, p(t) is a probability distribution on Rd, and
L generates a Markov process. The unique equilibrium is given by p∞ = ΦR. The
local relative entropy can be written as

hU (p|p∞)n = φnRnÛ

(
rn
Rn

)
,

where r(t) = e−λtu(t) and Û is a rescaled version of U . The right hand side is the
local generalized relative entropy of r relative to R. The local Fisher information
according to (20) is given by

iU (p|p∞)m

=

d∑
n=1

ΦmamnRn

[
U

(
pn
p∞,n

)
− U

(
pm
p∞,m

)
− U ′

(
pm
p∞,m

)(
pn
p∞,n

− pm
p∞,m

)]
.

Example 10. Generalized relative entropies have originally been introduced for the
analysis of age structured population models like

∂tu+ ∂au = −ν(a)u , u(0, t) =

∫ ∞
0

B(a)u(a, t)da ,

with u(·, t) the population density with respect to age a at time t (see [37]). The
a-derivative in the differential equation describes aging, the right hand side is the
death rate with an age dependent rate constant ν(a) ≥ 0. The right hand side of
the boundary condition is the birth rate, again with an age dependent rate constant
B(a) ≥ 0.

The ansatz u(a, t) = eλtR(a) leads to the equation∫ ∞
0

B(a) exp

(
−λa−

∫ a

0

ν(a′)da′
)
da = 1 ,
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whose unique solution λ ∈ R is called the Malthus parameter and corresponds to
the dominating eigenvalue in the previous example. The result corresponding to
the Perron-Frobenius theorem, namely the unique solvability of

λR+ ∂aR = −νR , R(0) =

∫ ∞
0

BRda ,

∫ ∞
0

Rda = 1 ,

λφ− ∂aφ = −νφ+ φ(0)B ,

∫ ∞
0

Rφda = 1 ,

and R,φ > 0 has been proven in [37].
Analogously to (23), we define the new unknown

p(a, t) =
e−λtφ(a)u(a, t)∫∞

0
φ(a′)u(a′, 0)da′

,

satisfying

∂tp+ ∂ap = −φ(0)B

φ
p , p(a = 0) =

∫ ∞
0

φ(0)B(a′)

φ(a′)
p(a′)da′ .(24)

It is easily seen that p(·, t) is a probability density for t ≥ 0 and, again, the entropy
of p relative to p∞ = φR is the generalized relative entropy if written in terms of
r(a, t) = e−λtu(a, t).

In this case, the formula (20) for the local Fisher information gives zero since
the actual dissipation of relative entropy is derived from the boundary terms in
integrations by parts (see again [37] for details):

d

dt

∫ ∞
0

(p− p∞)2

2p∞
da

=
φ(0)

2R(0)

((∫ ∞
0

BR
p

p∞
da

)2

−
∫ ∞

0

BRda

∫ ∞
0

BR

(
p

p∞

)2

da

)
,

where the right hand side is nonpositive by the Cauchy-Schwarz inequality and
vanishes only for p = p∞.

However, there is an alternative way to arrive at the entropy dissipation: The
problem for p can be interpreted as containing a jump process, where all jumps go
to a = 0 with the rate W (a′ → a) = δ(a)φ(0)B(a′)/φ(a′), leading to an equivalent
formulation of (24):

∂tp+ ∂ap = δ(a)

∫ ∞
0

φ(0)B(a′)

φ(a′)
p(a′)da′ − φ(0)B

φ
p .

Employing (22), we arrive at an alternative representation of the relative entropy
dissipation, corresponding to U(z) = (z − 1)2/2:

IU (p|p∞) =
1

2

∫ ∞
0

φ(0)B

φ
p∞

(
p(0)

p∞(0)
− p

p∞

)2

da

=
1

2

∫ ∞
0

φ(0)B

φ

(p− p∞)2

p∞
da+

3

2

(p(0)− p∞(0))2

p∞(0)
.

It is now obvious that exponential decay can be shown under the assumption
φ(0)B/φ ≥ λ > 0, which is also used in [37].
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Example 11. The idea of the previous example can be used in various situations.
We look at a simple example. Consider the heat equation on a bounded domain
Ω ⊂ Rd with homogeneous Dirichlet boundary conditions, i.e.

∂tu = ∆xu , on Ω , u = 0 , on ∂Ω ,

and positive square integrable initial data: u(x, 0) = u0(x) > 0. Let λ be the
largest eigenvalue of the Laplacian with these boundary conditions and φ(x) > 0
the corresponding eigenfunction normalized to

∫
Ω
φ2dx = 1. Then we have

〈φu(t)〉 = eλt〈φu0〉 .

Therefore

p(x, t) :=
φ(x)u(x, t)e−λt

〈φu0〉
is for each t ≥ 0 a probability density on Ω. It satisfies the Fokker-Planck equation

∂tp = −λp+ φ∆x

(
p

φ

)
= ∇x ·

(
φ2∇x

p

φ2

)
.

Since the flux can be written as φ2∇x p
φ2 = φ∇xu − u∇xφ, zero flux boundary

conditions are appropriate as a consequence of the homogeneous Dirichlet conditions
for the original problem.

The optimal constant in the Poincaré inequality with weight φ2 is easily seen to
be the difference between the first two eigenvalues of the Laplacian, which is the
expected result.

8. Γ-calculus – the Bakry-Émery approach

In this section we assume detailed balance, i.e. the existence of a positive equi-
librium distribution p∞ (L∗p∞ = 0), satisfying p∞Lf = L∗(p∞f) for all f . With
the observation that then also p∞e

Ltf = eL
∗t(p∞f) holds, the right hand side of

(17) (local relative entropy) with q = p∞ can be written as

eL
∗(t−s)hU (p(s)|p∞) = p∞Ψ(t− s) , with Ψ(s) = eLsU

(
p(t− s)
p∞

)
,

where the definition of Ψ is motivated by the Γ-calculus [5], since

∂sΨ(s) = eLsΓU (u(t− s)) ,

with

ΓU (u) = L(U(u))− ∂tU(u) = L(U(u))− U ′(u)Lu , u =
p

p∞
.

For the choice U(z) = z2/2, ΓU is the carré du champ operator [5], which can be
derived as the quadratic form corresponding to the bilinear expression

1

2

(
L(uv)− uLv − vLu

)
.

Note that for arbitrary U the local Fisher information can be expressed in terms of
ΓU :

iU (p|p∞) = p∞ΓU

(
p

p∞

)
.

A relation like the Poincaré inequality (21) can in general not be expected between
the local quantities Ψ and ∂sΨ (or between the local relative entropy and the
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local Fisher information). The Bakry-Émery approach [4] (see also [3]) is based on
another differentiation,

∂2
sΨ(s) = eLsΓU,2(u(t− s)) , with ΓU,2(u) = LΓU (u)− ∂tΓU (u) ,

and to relate ∂sΨ and ∂2
sΨ.

Example 12. For the diffusion process described by the Fokker-Planck equation
(18) we assume D = Id×d, i.e. Lu = ∆xu − ∇xΦ · ∇xu, in order to simplify the
otherwise very complicated expression for ΓU,2. We obtain

ΓU (u) = U (2)(u)|∇xu|2

and

ΓU,2(u) = 2U (2)(u)∇xutr∇2
xΦ∇xu+ 2U (2)(u)|∇2

xu|2

+4U (3)(u)∇xutr∇2
xu∇xu+ U (4)(u)|∇xu|4 .

It is easily seen that the sum of the last three terms is nonnegative for admissible
entropy generating functions U , which are not only convex, but also satisfy the
differential inequality

2(U (3))2 ≤ U (2)U (4) ⇔
(

1

U (2)

)(2)

≤ 0 .

A family of admissible choices is given by

Ur(z) =
zr − 1− r(z − 1)

r − 1
, 1 < r ≤ 2 , U1(z) = z log z − z + 1 ,

where the latter is the limiting case of the former as r → 1.
Under the Bakry-Émery condition ∇2

xΦ ≥ λ/2 > 0, ΓU,2(u) ≥ λΓU (u) follows,
with the consequence ∂2

sΨ ≥ λ∂sΨ. An application of the Gronwall lemma implies
the pointwise estimate

ΓU (u)(t) ≤ e−λseLsΓU (u)(t− s) for s ≤ t .
Since the semigroup eLs conserves the integral with weight p∞, integration and
s = t give

IU (p|p∞) ≤ e−λtIU (p0|p∞) ,

with

IU (p|p∞) =

∫
Rd
p∞U

(2)

(
p

p∞

) ∣∣∣∣∇x( p

p∞

)∣∣∣∣2 dx .
Since the Fisher information IU (p|p∞) is the time derivative of the relative entropy,
integration of this result leads to exponential decay of the relative entropy (using
the fact that the relative entropy decays to zero).

9. The kinetic Fokker-Planck equation – hypocoercivity

The evolution of probability densities f(t, x, v), x, v ∈ Rd, corresponding to the
stochastic differential system

dX = V dt ,

dV = −(V +∇xΦ(X))dt+
√

2 dB ,

is governed by the kinetic transport equation

(25) ∂tf + Tf = Cf ,
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with the transport operator Tf = v · ∇xf −∇xΦ · ∇vf , a confining potential Φ(x)
as above, and the collision operator Cf = ∇v · (∇vf + vf).

(Torus) We shall also consider a variant, referred to as (Torus) in the following,
where instead of using a confining potential, confinement is achieved by restriction
of the position variable to the d-dimensional flat torus Tdx, i.e. (Tf)(x, v) = v ·
∇xf(x, v), (x, v) ∈ Tdx × Rdv.

The solution, subject to the initial condition f(t = 0) = f0, is written as f(t) =
eLtf0, L = C − T. As t → ∞, it is expected to converge to a constant multiple of
F (x, v) = exp(−|v|2/2 − Φ(x)) ∈ L1(R2d), where the constant is determined from
the initial condition by mass conservation:∫

eLtf0 dv dx =

∫
f0 dv dx , t ≥ 0 .

In the case (Torus), the equilibrium is position-independent: F (x, v) = exp(−|v|2/2).
It turns out that a convenient functional analytic setting for (25) is L2(dσ) with

dσ = dv dx/F . In L2(dσ), the transport operator T is skew-symmetric and the
collision operator C is symmetric and negative semi-definite, providing the entropy
decay relation

1

2

d

dt
‖f‖2 = 〈Cf, f〉 ≤ 0 .

Contrary to the previous section, the entropy dissipation rate

−〈Cf, f〉 =

∫
F

∣∣∣∣∇v ( fF
)∣∣∣∣2 dx dv

is not coercive and vanishes already for local equilibria f = h(x)e−|v|
2/2 ∈ N (C).

Despite of this fact, decay to global equilibrium (with h(x) = const) is expected.
This property is then called hypocoercivity [42]. The kinetic Fokker-Planck equa-
tion is the prototypical example and has witnessed several approaches for proving
hypocoercivity. The powerful approach of Desvillettes and Villani [13] has been
generalized to prove strong decay to equilibrium for the Boltzmann equation [14],
but it only provides algebraic decay for smooth solutions. First results on expo-
nential decay have been based on spectral estimates [23]. Villani [42] has initiated
the search for generalized entropies with coercive dissipation rates (see also the
earlier work [34]). His method, motivated by hypo-elliptic theory, is based on an
H1 setting. Comparable results have been derived recently by Baudoin [6] employ-
ing the Γ2 calculus, an extension of the Γ calculus discussed above. Smoothness
requirements for the initial conditions have been removed in [16] by a new strategy
for finding modified entropies.

10. The Mouhot-Neumann-Villani approach

To keep computations simple, we replace the potential Φ(x), confining in position
space, by restriction of the dynamics to a torus represented by [0, 1]d. However, in
this section we consider a different collision term. We consider the problem

∂tf + v · ∇xf = Cf = ρfM − f , f(t = 0) = f0 ,

∫
f0 dv dx = 0 ,

where

M(v) = (2π)−d/2e−|v|
2/2 and ρf (x, t) =

∫
f(x, v, t)dv
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are the normalized Gaussian and, respectively, the position density. The integral
condition on the initial datum means that f denotes a perturbation of a nontriv-
ial equilibrium. Integrations with respect to x and v are always over [0, 1]d and,
respectively, Rd, if not indicated otherwise. We present a (maybe slightly simpler)
variant of the procedure of [34].

The relaxation operator Cf = ρfM − f satisfies∫
fCf

dv

M
= −

∫
(Cf)2 dv

M
,

suggesting to use the Hilbert space L2(dx dv/M) with scalar product 〈·, ·〉 (different
from the earlier sections) and norm ‖·‖ as functional analytic framework. Obviously,
the nullspace of C is spanned by M and Πf = ρfM is the corresponding orthogonal
projection. With this notation, the above equation can be written as

〈Cf, f〉 = −‖(1−Π)f‖2 .

After this preparation we explain the main idea of the approach: The information
missing in the entropy dissipation

1

2

d

dt
‖f‖2 = −‖(1−Π)f‖2 ,(26)

has to come from the transport term v · ∇xf . A term with a sign can be produced
by taking the gradient with respect to v, followed by multiplication with ∇xf . This
observation leads to the computation

d

dt
〈∇xf,∇vf〉 = −‖∇xf‖2 − 2 〈(1−Π)∇xf,∇vf〉+

∫
vf ∇xρf dv dx .(27)

The first term on the right hand side suggests to add this to the entropy dissipation
equation. However, this idea produces a number of difficulties. First, the correction
to the entropy is not coercive and, second, it is not clear how to control the other
two terms on the right hand side. Coercivity of the entropy can be achieved by
extending it to a full norm on H1(dx dv/M). For this purpose we compute

1

2

d

dt
‖∇xf‖2 = −‖(1−Π)∇xf‖2 ,(28)

and

1

2

d

dt
‖∇vf‖2 = −〈∇xf,∇vf〉+ d‖Πf‖2 − ‖∇vf‖2 ,(29)

where the second term on the right hand side follows from the computation

〈∇v(ρfM),∇vf〉 = −
∫
ρfv · ∇vf dv dx = d

∫
ρ2
f dx = d‖Πf‖2 .

Now we are ready to define a modified entropy functional by

H[f ] :=
1

2

(
‖f‖2 + α‖∇xf‖2 + β‖∇vf‖2 + 2γ 〈∇xf,∇vf〉

)
,

with α, β, γ > 0, satisfying γ2 < αβ, which makes
√
H(f) a norm on H1(dx dv/M).

With the estimates∣∣∣∣∫ vf dv

∣∣∣∣ ≤ ‖(1−Π)f‖L2(dv/M) ⇒
∣∣∣∣∫ vf ∇xρf dv dx

∣∣∣∣ ≤ ‖Π∇xf‖‖(1−Πf)‖
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and with the Poincaré inequality ‖Π∇xf‖ ≥ ‖Πf‖ on the torus we obtain

d

dt
H[f ] ≤ −

(
1− γc

2

)
‖(1−Π)f‖2 −

(
α+ γ − β

2a
− γ

b

)
‖(1−Π)∇xf‖2

−A‖Π∇xf‖2 −
(
β − aβ

2
− bγ

)
‖∇vf‖2

−
(
γ − γ

2c
− β

2a
− βd−A

)
‖Πf‖2 ,

with A, a, b, c > 0, assuming that all the parantheses can be made nonnegative.
Actually, with

a = c = 1 , b =
1

4(1 + 2d)
, α = 4(1 + 2d) +

3

8(1 + 2d)
,

β =
3

4(1 + 2d)
, γ = 1 , A =

1

16
,

we get αβ − γ2 > 2 and

d

dt
H[f ] ≤ − 1

8(1 + 2d)
‖f‖2H1(dx dv/M) ≤ −λH[f ] ,

for some λ > 0.

11. Hypoellipticity from a hypocoercivity approach

As opposed to the equation treated in the previous section, solutions of the ki-
netic Fokker-Planck equation are expected to be infinitely smooth although the
evolution operator is not elliptic. This property of the equation is called hypoellip-
ticity, and it has been known for this equation since the 1930s, when Kolmogorow
explicitly computed a fundamental solution [28].

It has been shown by Villani [42] (Appendix A.21) that hypocoercivity estimates
can be used for showing hypoellipticity. The presentation in this section has been
inspired by [24].

It is a simple observation that for solutions of the heat equation ∂tu = ∆xu on
Rd, the functional

‖u(·, t)‖2L2(Rd) + 2t‖∇xu(·, t)‖2L2(Rd)

is nonincreasing in time, implying the estimate

‖∇xu(·, t)‖L2(Rd) ≤ ‖u(·, 0)‖L2(Rd)(2t)
−1/2 ,

i.e. regularity in x for every positive t even for initial data without regularity
assumptions.

This idea can be combined with the approach of the previous section to obtain
a similar result for the kinetic Fokker-Planck equation

∂tf + v · ∇xf = ∇v · (∇vf + vf) ,

with x ∈ Td, v ∈ Rd. We introduce the new unknown

h(x, v, t) :=
f(x, v, t)

M(v)
,

with the normalized Gaussian M , leading to the evolution equation

∂th+ v · ∇xh = Ch = ∆vh− v · ∇vh .
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Remark 4. Since the approach used here and in the previous section relies on using
the gradient with respect to v, it makes a difference to use h instead of f . Actually,
in [34] a third option is chosen, namely the unknown fM−1/2 = hM1/2, which
makes the collision operator symmetric with respect to the L2-norm without weight.

Mass conservation now reads∫
h(·, ·, t)dµ =

∫
h0dµ , with dµ := M dv dx ,

where the right hand side is again assumed to vanish in the following. In this section
the notation 〈·, ·〉 and ‖ · ‖ are used for the scalar product and, respectively, norm
in L2(dµ). This implies the properties

〈Ch, g〉 = −〈∇vh,∇vg〉 , −〈Ch, h〉 ≥ ‖h‖2 ,

of the collision operator, where the constant 1 in the Poincaré inequality is optimal.
We start with computing time derivatives as in the previous section:

1

2

d

dt
‖h‖2 = −‖∇vh‖2 ,

1

2

d

dt
‖∇xh‖2 = −‖∇x ⊗∇vh‖2 ,

1

2

d

dt
‖∇vh‖2 = −‖∇2

vh‖2 − ‖∇vh‖2 − 〈∇xh,∇vh〉 ,

d

dt
〈∇xh,∇vh〉 = −2

〈
∇x ⊗∇vh,∇2

vh
〉
− ‖∇xh‖2 − 〈∇xh,∇vh〉 .

Now we define the functional

H[h(t), t] :=
1

2

(
‖h‖2 + αt3‖∇xh‖2 + βt‖∇vh‖2 + 2γt2 〈∇xh,∇vh〉

)
,

with γ2 < αβ, and estimate its time derivative

d

dt
H ≤ −

(
1 + βt− β

2

)
‖∇vh‖2 − t2

(
γ − 3α

2

)
‖∇xh‖2

+t(2γ − β − γt) 〈∇xh,∇vh〉 .

With the choice β = 2γ, this can be estimated further:

d

dt
H ≤ − (1− γ) ‖∇vh‖2 − t2

(
γ − 3α

2

)
‖∇xh‖2 − γt2 〈∇xh,∇vh〉 .

With the choices α = 1/2, β = 7/4, and γ = 7/8, the condition γ2 < αβ is
satisfied and the right hand side is nonpositive for t ≤ 2/7. Therefore we obtain
the regularity estimates that for initial data h0 ∈ L2(dµ),

‖∇xh‖ = O(t−3/2) , ‖∇vh‖ = O(t−1/2) , as t→ 0 .

Note that the result for the v-derivatives is as for the heat equation, which is not
surprising since the operator is elliptic in v.
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12. ’Bakry-Émery meets Villani’ (copyright F. Baudoin [6])

A subtitle of this section could be hypocoercivity by the Γ-calculus. Compared
to [6] we keep computations simpler by replacing the potential Φ(x), confining in
position space, by restriction of the dynamics to a torus, considering the same
problem as in the preceding section, also using the unknown h, satisfying

∂th = ∆vh− v · ∇vh− v · ∇xh =: Lh

We shall need the carré du champ

Γ(f, g) =
1

2
(L(fg)− fLg − gLf) , Γ(f) := Γ(f, f) = |∇vf |2 ,

and its iteration

Γ2(f) =
1

2
LΓ(f, f)− Γ(f, Lf) = |∇2

vf |2 + |∇vf |2 +∇vf · ∇xf ,(30)

where the computation of the latter is somewhat lengthy, but straightforward.
Because of the hypocoercivity, an auxiliary carré du champ and its iteration are
needed:

ΓZ(f, g) := Zf · Zg , Z = 2∇x +∇v , ΓZ(f) := ΓZ(f, f) ,

and

ΓZ2 (f) =
1

2
LΓZ(f, f)− ΓZ(f, Lf) = |Z ⊗∇vf |2 + Zf · ∇vf + Zf · ∇xf .

Another preparation step is the simple proof of

(31) Γ2(f) + ΓZ2 (f) ≥ 2|∇xf +∇vf |2 =
1

4
ΓZ(f)− 1

2
Γ(f) +

∣∣∣∣∇xf +
3

2
∇vf

∣∣∣∣2 .
Finally, the Poincaré inequality∫

(Γ(f) + ΓZ(f))dµ ≥ κ
∫
f2dµ

will be needed, which is a consequence of the standard Poincaré inequality on Tx
and of the weighted Poincaré inequality on Rv with weight e−|v|

2/2: Actually we
have

Γ(f) + ΓZ(f) = 4|∇xf |2 + 2|∇vf |2 + 4∇xf · ∇vf ≥ (3−
√

5)(|∇xf |2 + |∇vf |2) .

On the other hand, with Πf =
∫
f Mdv,∫ (

|∇xf |2 + |∇vf |2
)
dµ ≥

∫
|∇xΠf |2dx+

∫
f2dµ−

∫
(Πf)2dx ≥

∫
f2dµ ,

showing that the Poincaré inequality holds with κ = 3−
√

5. Now we define

Ψ(s) = eLs
(

3

4
h(t− s)2 + Γ(h(t− s)) + ΓZ(h(t− s))

)
and compute

Ψ′(s) = eLs
(

3

2
Γ(h) + 2Γ2(h) + 2ΓZ2 (h)

)
(t− s) ≥ 1

2
eLs(Γ(h) + ΓZ(h))(t− s) ,

using (31) and the maximum principle. Now we integrate and use mass conservation
and the Poincaré inequality:

d

ds

∫
Ψ(s)dµ ≥

∫ [
1− ε

2
(Γ(h) + ΓZ(h)) +

εκ

2
h2

]
(t− s)dµ = λ

∫
Ψ(s)dµ ,
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with λ = 2κ
3+4κ ≈ 0.2523 (for optimal ε). The consequence∫

Ψ(t)dµ ≥ eλt
∫

Ψ(0)dµ

is equivalent to∫ (
3

4
h(t)2 + Γ(h(t)) + ΓZ(h(t))

)
dµ ≤ e−λt

∫ (
3

4
h2

0 + Γ(h0) + ΓZ(h0)

)
dµ ,

which in turn is equivalent to exponential decay of the H1(dµ)-norm of h (by

Γ(h) + ΓZ(h) ≥ (3 −
√

2)(|∇xh|2 + |∇vh|2)) or the H1(dσ)-norm of f from the
preceding section, assuming H1-regularity of the initial data. The method and the
result are in principle the same as in [34], [42]. However the clean computations
lead to a very agreeable estimate of the spectral gap λ.

13. Sharp decay rates

Here we consider the kinetic Fokker-Planck equation on whole space with an
harmonic oscillator force field:

∂tf + v · ∇xf − x · ∇vf = ∇v · (∇vf + vf) ,(32)

with x, v ∈ Rd. The collision operator on the right hand side vanishes for Maxwellian
velocity distributions, whereas the transport operator on the left hand side vanishes
for functions of the total energy |x|2 + |v|2. Combining these observations leads to
the equilibrium

f∞(x, v) = (2π)−d exp

(
−|x|

2 + |v|2

2

)
,

i.e. the normalized Gaussian in R2d. With z = (x, v) the equation can be written
in the form

∂tf = ∇z · (D∇zf + Cz f) ,(33)

with

D =

(
0 0
0 Id

)
, C =

(
0 −Id
Id Id

)
,

a degenerate Fokker-Planck equation because of the degenerate diffusion matrix.
If we start with studying the characteristic ODEs from the first order part of the

operator, (
ẋ

v̇

)
= −C

(
x

v

)
=

(
v

−x− v

)
,

then we observe that there is a lack of coercivity,

1

2

d

dt
(|x|2 + |v|2) = −|v|2 ,

although the eigenvalues

λ± =
1± i

√
3

2
of C have positive real part 1/2. With a modified norm hypocoercivity can be
shown and even the sharp decay rate is obtained:

d

dt
(|x|2 + |v|2 + x · v) = −(|x|2 + |v|2 + x · v) .
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Note that

|x|2 + |v|2 + x · v = ztrPz , with P =

2d∑
j=1

pj ⊗ pj ,

where p1, . . . , p2d are a complete set of eigenvectors of Ctr. This idea can be ex-
tended to cases, when C is not diagonalizable:

Lemma 5. ([2]) Let all eigenvalues of the matrix C have positive real parts with
minimum µ.
a) If all eigenvalues with real part µ are nondefective (i.e. algebraic multiplicity =
geometric multiplicity), then there exists a positive definite symmetric matrix P ,
such that

CtrP + PC ≥ 2µP .

b) In the presence of defective eigenvalues with real part µ: For every ε > 0 there
exists a positive definite symmetric matrix P (ε), such that

CtrP + PC ≥ 2(µ− ε)P .

This can be used for solutions of ż = −Cz, since

d

dt
(ztrPz) = −ztr(CtrP + PC)z ≤ −2µ ztrPz .

Remark 5. Also the result b) of the lemma is sharp in the sense that in this case
the best possible decay to equilibrium is like e−µttk = O(e−(µ−ε)t).

Returning to PDEs, we follow [2] and consider general equations of the form
(33) with positive semidefinite D ∈ Rn×n and with C ∈ Rn×n (not necessarily
symmetric) having eigenvalues with positive real parts. The Fourier transform

f̂(ξ, t) satisfies

∂tf̂ = −ξtrDξ f̂ − ξtrC∇ξ f̂ .
We look for an equilibrium f∞ which is a generalized Gaussian such that f̂∞(ξ) =
exp(−ξtrKξ/2) with symmetric K. This leads to the condition

ξtr(−D + CK)ξ = 0 ∀ ξ ,

meaning that CK −D is antisymmetric, and K has to satisfy the continuous Lya-
punov equation

2D = CK +KCtr ,(34)

which has a unique, symmetric, positive semidefinite solution [27]. For existence
and uniqueness the assumptions on the spectrum of C are sufficient. Positive semi-
definiteness is inherited from D. For an integrable equilibrium we need, however,
K > 0.

Lemma 6. ([2]) Let <(σ(C)) > 0. Then the solution K of (34) is regular, iff there
is no eigenvector of Ctr in the nullspace of D.

Proof: Assume K is not regular, i.e. ∃v 6= 0 with Kv = 0. Then

2vtrDv = vtrCKv + vtrKCtrv = 2vtrCKv = 0

and, thus, Dv = 0, implying KCtrv = 0. Since C is regular, Ctrv 6= 0 is another ele-
ment of the nullspace ofK. Iterating the argument, we get that span{v, Ctrv, . . . , (Ctr)n−1v}
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is a Ctr-invariant subspace of the nullspace of D. In other words: The nullspace of
D contains an eigenvector of Ctr.

On the other hand, assume ∃ v 6= 0 with Ctrv = λv and Dv = 0. Then

0 = 2vtrDv = vtrCKv + vtrKCtrv = 2<(λ)vtrKv ,

Therefore K is nonregular since <(λ) > 0. �

Remark 6. The condition that the nullspace of D does not contain eigenvectors of
Ctr is equivalent to the Hörmander condition for hypoellipticity of (33). It is needed
for generalizing the computation of Kolmogorow [28] of a smooth fundamental so-
lution (see [2, 25]).

With the equilibrium f∞(z) = CK exp(−ztrK−1z/2) and with h = f/f∞, we
compute the dissipation of the quadratic relative entropy:

d

dt

∫
Rn

(h− 1)2

2
f∞dz = −

∫
Rn
∇zhtrD∇zh f∞ dz .

The Bakry-Émery method is not feasible because of the lack of coercivity. The
approaches of the last three sections can be seen as the search for a matrix P , such
that the functional

S(h(t)) :=

∫
Rn
∇zhtrP ∇zh f∞ dz

has good decay properties, or as a modification of the Bakry-Émery approach,
where in the entropy dissipation the diffusion matrix D is replaced by P . A long
computation [2] gives

d

dt
S(h) = −

∫
Rn
∇zhtr

(
KCtrK−1P + PK−1CK

)
∇zh f∞ dz

−2

∫
Tr
(
D∇2

zhP∇2
zh
)
f∞dz

The identity Tr(DAPA) = Tr(
√
DA
√
P (
√
DA
√
P )tr) (for symmetric A) shows

that the last term is nonpositive. It remains to choose P . We use Lemma 5 with
C replaced by KCK−1 (with the same spectrum as C), and with this choice of P
we obtain

d

dt
S(h) ≤ −2λS(h)

with λ = µ if all eigenvalues of C with real part µ are nondefective, and λ = µ− ε
with arbitrarily small ε otherwise. Therefore S(h) decays exponentially, implying
exponential decay of the entropy dissipation, which is dominated by S(h). The

last step, to transfer the decay to the relative entropy, is as in the Bakry-Émery
approach leading to∫

Rn

(f − f∞)2

2f∞
dz ≤ Ce−2λt , for a C > 0 .

It is proved in [2] that the constant λ is sharp. This is seen either by the explicit
example

f(z, 0) = (1 + z0 · z)f∞(z) with Cz0 = µz0 ,

with the exact decay rate or by a complete spectral analysis of the problem.
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Finally we return to the kinetic Fokker-Planck equation (32). Our computations
at the beginning of this section show that in this case K is the identity matrix.
Therefore we can use the same P as for the characteristic ODEs and obtain

S(h) =

∫
Rd

(|∇xh|2 + |∇vh|2 +∇xh · ∇vh)f∞ dx dv ,

which decays with the optimal rate e−t.

14. Hypocoercivity without regularity

Here we shall apply the methodology of [16] to

(35) ∂tf + Tf = Cf , Tf = v · ∇xf , Cf = ∇v · (∇vf + vf) ,

x ∈ Td, v ∈ Rd, t > 0, subject to the initial condition f(t = 0) = f0 with vanishing
total mass:

∫
f0dv dx = 0. As mentioned above, the transport operator T is skew

symmetric and the collision operator C symmetric negative semidefinite with respect

to L2(dσ), dσ = e|v|
2/2dx dv.

We interpret the equation as an abstract ODE on a Hilbert space H, and will
pose a list of assumptions on the operators T and C, which will be checked later
for the Fokker-Planck equation.

The simplest example. is a second order ODE system with

T =

(
0 −1
1 0

)
, C =

(
0 0
0 −1

)
.

Although the entropy dissipation− d
dt |f |

2 = 2f2
2 is only semidefinite, the eigenvalues

of C − T are given by λ = (−1 ± i
√

3)/2 and solutions decay exponentially, an
example of hypocoercivity. The secret lies in the fact that solutions do in general
not remain in N (C) = {(f1, 0)} by the rotational motion caused by T, except when
the global equilibrium f = 0 has been reached (instability of hydrodynamic states in
the language of Desvillettes and Villani [14]). For this simple problem, the method
of [16] amounts to the introduction of a modified entropy of the form

H[f ] :=
1

2
|f |2 + εf1f2 ,

with small positive ε, and with the dissipation

− d

dt
H[f ] = εf2

1 + (1− ε)f2
2 − εf1f2 .

For small enough ε, both H and its dissipation are obviously coercive, implying
exponential decay.

The general approach. We consider the abstract ODE

(36) ∂tf + Tf = Cf ,

in an Hilbert space H with a symmetric negative semidefinite (’collision’) operator
C and an antisymmetric (’transport’) operator T, and with the ortogonal projection
Π : H → N (C). The main ingredients of the general approach are the assumptions
of

H1. Diffusive macroscopic limit: ΠTΠ = 0,
H2. Microscopic coercivity: −〈Cf, f〉 ≥ λm‖(1−Π)f‖2, λm > 0, and
H3. Macroscopic coercivity: ‖TΠf‖2 ≥ λM‖Πf‖2, λM > 0.
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We construct a modification of the relative entropy, i.e. the square of the norm,
which is norm equivalent, and with the goal to make use of H3. The modified
entropy is given by

H[f ] =
1

2
‖f‖2 + ε〈Af, f〉 , A = [1 + (TΠ)∗TΠ]−1(TΠ)∗ ,

with ε > 0.

Lemma 7. ([16]) The operators A and TA are bounded by 1/2 and, respectively, 1
in the operator norm.

Proof: The equation Af = g is equivalent to (TΠ)∗f = g + [1 + (TΠ)∗TΠ]g. The
scalar product with g gives

‖TΠg‖2 ≤ ‖g‖2 + ‖TΠg‖2 = 〈f,TΠg〉 ≤ ‖TΠg‖2 +
‖f‖2

4
,

implying both results, noting that A maps to N (C) and, thus, TΠg = TAf . �

As a consequence,
√
H[f ] is an equivalent norm for ε < 1. The time derivative

of the modified entropy is given by

d

dt
H[f ] = 〈Cf, f〉 − ε〈ATΠf, f〉 − ε〈AT(1−Π)f, f〉+ ε〈TAf, f〉+ ε〈ACf, f〉 .

The important additional term on the right hand side is the second. The operator
ATΠ is the image of the nonnegative operator (TΠ)∗TΠ under the map z 7→ z

1+z .
It therefore has the same spectral decomposition, and assumption H3 can be used
to get

〈ATΠf, f〉 ≥ λM
1 + λM

‖Πf‖2 .

It remains to estimate the remaining three terms. It is an important observation
that

〈TAf, f〉 = 〈TA(1−Π)f, (1−Π)f〉 , 〈ACf, f〉 = 〈AC(1−Π)f, f〉 ,

where the second is obvious and the first a consequence of H1. Under the additional
assumption of

H4. Boundedness of auxiliary operators: ‖AT(1−Π)f‖+ ‖ACf‖ ≤ CM‖(1−Π)f‖,

and with Lemma 7 the estimate

d

dt
H[f ] ≤ −(λm − ε)‖(1−Π)f‖2 − ελM

1 + λM
‖Πf‖2 + εCM‖(1−Π)f‖ ‖f‖

holds, implying (as for the model problem) that the dissipation of H[f ] is coercive
for ε small enough. This implies the existence of constants C, λ > 0 such that

‖e(C−T)t‖ ≤ Ce−λt .

Explicit formulas for C and λ in terms of λm, λM , and CM can be found in [9].
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The kinetic Fokker-Planck equation. With the operators T and C from (35)
and H = L2(dσ) the orthogonal projection to N (C) is given by

(Πf)(x, v) = ρf (x)M(v) , M(v) = (2π)−d/2e−|v|
2/2 , ρf (x) =

∫
Rd
f(x, v)dv .

The marginal density ρf is called the macroscopic or position density. We consider
solutions with

∫
Td ρf (x, t)dx = 0.

With TΠf = vM · ∇xρf , Assumption H1 is a consequence of the fact that the
flux associated to local equilibria of the form ρ(x)M(v) vanishes:

∫
vM dv = 0.

It is called ’diffusive macroscopic limit’ since it is responsible for the fact that the
diffusive rescaling t→ t/ε2, x→ x/ε in (35) and the subsequent macroscopic limit
ε→ 0 lead to a diffusion equation for the limit of ρf .

Assumption H2 is equivalent to the weighted Poincaré inequality∫
Rd
|∇vh|2M dv ≥ λm

∫
Rd

(
h−

∫
hM dv

)2

M dv ,

(f = hM) which holds for the Gaussian weight M . Similarly the macroscopic
coercivity assumption H3 is equivalent to the Poincaré inequality on the torus,

‖TΠf‖2 =

∫
Td
|∇xρf |2dx ≥ λM

∫
Td
ρ2
f dx , for

∫
Td
ρf dx = 0 .

The action of the operator A can be described as follows: Af = ρAfM , where ρAf
is the unique solution of

∆xρAf − ρAf = ∇x ·
∫
Rd
vf dv .

Instead of directly proving the boundedness of AT, we consider the adjoint

(AT)∗ = −T2Π(1 + (TΠ)∗TΠ)−1 .

Similarly to above we have that (AT)∗f = −T2(ρM) with ρ satisfying

∆xρ− ρ = −ρf ,
and ‖T2(ρM)‖2 = 3‖∇2

xρ‖2L2(dx). So the boundedness of (AT)∗, and thus of AT,

is a consequence of the (L2 → H2)-regularization of the elliptic equation on the
torus: ‖ρ‖H2(dx) ≤ c‖ρf‖L2(dx).

Finally, the boundedness of AC is a consequence of the preliminary computation
ρTCf = −∇x ·

∫
vf dv, showing that AC = −A. Thus, H1-H4 holds with the con-

sequence that solutions of (35) with zero total mass converge to zero exponentially
in terms of the norm in L2(dx dv/F ), if the initial datum f0 is in this space. In
particular, no smoothness of f0 is required as in the results in the previous sections
with the methods of [6, 34, 42].

Finally it should be noted that the method of [16] presented in this section has
also been applied to velocity jump processes, where C is an integral operator and
the semigroup generated by L = C− T does not have any smoothing properties.

15. Hypocoercivity and fast-reaction limit for a kinetic system with
chemical reactions

The hypocoercivity approaches presented in the preceding sections are rather
robust. In this section we consider a model for a simple chemical reaction network
where the transport of the species is described by a kinetic model, and we follow
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[36]. This is the first nonlinear problem considered here, and it can be seen as a
transition to the following sections.

The chemical process is simple pair generation and recombination. We consider
a background of particles with vanishing average velocity. These particles can split
into pairs of particles of two different species A and B, and the reverse reaction
is also possible, where one particle of species A and one particle of species B re-
combine and become a background particle. We assume the concentrations of A
and B to be much smaller than the background concentration, which is therefore
assumed given and stationary. When a pair of particles is created, their velocities
are randomly sampled from a Gaussian velocity distribution with mean zero and
fixed (background) temperature. The recombination rate is assumed independent
of the velocities of the recombining particles. This leads to the model

∂tf + v · ∇xf = M(v)− ρgf ,
∂tg + v · ∇xg = M(v)− ρfg ,

(37)

where f, g are the phase space densities of the species A,B, and the definitions of the
normalized Maxwellian M and of the position densities ρf , ρg are as above. This
is based on a nondimensionalization, where the reference velocity is the thermal
velocity corresponding to the background temperature. The first terms on the
right hand sides describe the generation of particle pairs, and the last terms their
recombination.

Like in previous examples we choose the domains x ∈ Td, v ∈ Rd, and initial
conditions

f(x, v, 0) = fI(x, v) , g(x, v, 0) = gI(x, v) .(38)

There is one conserved quantity, the difference of the numbers of particles of species
A and B:∫
Td×Rd

(f(x, v, t)− g(x, v, t))dx dv =

∫
Td×Rd

(fI(x, v)− gI(x, v))dx dv , t ≥ 0 .

As t→∞, we expect convergence of (f, g) to (f∞, g∞) = (ρ∞M, 1
ρ∞
M) where ρ∞

is the unique positive solution of

|Td|
(
ρ∞ −

1

ρ∞

)
=

∫
Td×Rd

(fI(x, v)− gI(x, v))dx dv .

The relative entropy functional

(39) H(f, g) =

∫
T3

∫
R3

[
f ln

f

f∞
− f + f∞ + g ln

g

g∞
− g + g∞

]
dv dx ,

decreases as long as (f, g) is different from (ρ(x)M(v), 1
ρ(x)M(v)) for some ρ(x):

(40)
d

dt
H(f, g) =

∫
T3

∫
R3

∫
R3

(MM ′ − fg′) ln

(
fg′

MM ′

)
dv′ dv dx ≤ 0 ,

showing that we are again confronted with the problem of a lack of coercivity of
the entropy dissipation. The question of finding suitable entropy functionals will
be the subject of the following sections.

Solvability of the problem under suitable assumptions on the initial data is a
consequence of a maximum principle:
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Theorem 8. ([36]) Assume there exist positive constants γ1 < ρ∞ and γ2 such
that

(ρ∞ − γ1)M ≤ fI ≤ (ρ∞ + γ2)M and 1
ρ∞+γ2

M ≤ gI ≤ 1
ρ∞−γ1M .

Then the initial value problem (37), (38) has a unique global mild solution (f, g) ∈
C([0,∞), L∞(dx dv/M))2 satisfying, for all (x, v, t) ∈ Td × Rd × [0,∞),

(ρ∞ − γ1)M(v) ≤ f(x, v, t) ≤ (ρ∞ + γ2)M(v) , ,

and
1

ρ∞+γ2
M(v) ≤ g(x, v, t) ≤ 1

ρ∞−γ1M(v) .

Note that this not only an existence and uniqueness result, but also shows neutral
stability of the equilibrium state in L∞(dx dv/M).

Hypocoercivity. We start by showing linearized asymptotic stability, i.e. we
prove convergence to zero of solutions of the linearized system

∂tf + v · ∇xf = −ρ∞Mρg −
1

ρ∞
f ,

∂tg + v · ∇xg = − 1

ρ∞
Mρf − ρ∞g ,

(41)

satisfying ∫
Td×Rd

(f(x, v, t)− g(x, v, t))dx dv = 0 , t ≥ 0 .(42)

Note that after linearization we are not interested in positive solutions anymore,
and (41) does not describe a Markov process. However, introducing −g as a new
variable, nonnegativity of f and −g and their total mass would be preserved. Any-
way, a suitable functional analytic setting can be deduced from ’quadratization’
(i.e. quadratic approximation close to the minimizer) of (39):

H(f∞ + f, g∞ + g) ≈ ‖f‖2L2(dx dv/f∞) + ‖g‖2L2(dx dv/g∞) =: ‖(f, g)‖2 .

This defines the Hilbert space H in the abstract formulation of the problem with

T(f, g) =

(
v · ∇xf
v · ∇xg

)
, C(f, g) =

(−ρ∞Mρg − 1
ρ∞
f

− 1
ρ∞
Mρf − ρ∞g

)
.

The orthogonal projection to N (C) is given by

Π(f, g) =
ρf − ρg
ρ2
∞ + 1

(
ρ2
∞
−1

)
M

Now we compute

−〈C(f, g), (f, g)〉 =
1

ρ∞
‖f − ρfM‖2L2(dx dv/f∞) + ρ∞‖g − ρgM‖2L2(dx dv/g∞)

+
1

ρ2
∞

∫
Td

(ρf + ρ2
∞ρg)

2dx

and

‖(1−Π)(f, g)‖2 = ‖f − ρfM‖2L2(dx dv/f∞) + ‖g − ρgM‖2L2(dx dv/g∞)

+
1

ρ∞(1 + ρ2
∞)

∫
Td

(ρf + ρ2
∞ρg)

2dx
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proving microscopic coercivity,

〈C(f, g), (f, g)〉 ≤ −λm‖(1−Π)(f, g)‖2, with λm = min

{
ρ∞,

1

ρ∞

}
.

For proving macroscopic coercivity, we need

‖Π(f, g)‖2 =
ρ∞

1 + ρ2
∞
‖ρf−ρg‖2L2(dx) , ‖TΠ(f, g)‖2 =

ρ∞
1 + ρ2

∞
‖∇x(ρf−ρg)‖2L2(dx) ,

showing macroscopic coercivity with λM = 1, using
∫
Td

(ρf − ρg)dx = 0 and the
optimal constant 1 in the Poincaré inequality on the torus. The conditions ΠTΠ = 0
and the boundedness of AT are shown as in the previous section for the kinetic
Fokker-Planck equation. Finally, the boundedness of AC is a consequence of the
obvious boundedness of C. Thus Assumptions H1–H4 of Section 14 are satisfied,
showing that solutions of the linearized system (41) satisfying (42) converge to zero
exponentially in H.

In view of the maximum principle estimates from the existence theorem, this
result can be extended to a local asymptotic stability result for the nonlinear prob-
lem.

Theorem 9. ([36]) With the assumptions of Theorem 8 with γ1, γ2 small enough,
the solution (f, g) of (37), (38) converges to the steady state (f∞, g∞) as t → ∞,
exponentially in H (defined above).

For the proof, the modified entropy for the linear problem is used. The differ-
ence between the nonlinear reaction operator and its linearization can be bound
by γ‖(f − f∞, g − g∞)‖, where γ is small if γ1, γ2 are. Therefore the nonlinear
perturbation term can be dominated by the entropy dissipation.

In [36], also a second proof of Theorem 9 is given, based on the methods pre-
sented in Section 10. The result is analogous except H1-regularity assumptions on
the initial data. Since decay in Sobolev spaces with higher differentiability order
can also be proven, the maximum principle estimates can be replaced by Sobolev
imbedding for the control of the nonlinearity.

Fast-reaction limit. Entropy estimates are THE basic tool for a rigorous deriva-
tion of macroscopic limits of kinetic models, with many examples in the literature,
culminating in the derivation of the incompressible Navier-Stokes equations from
the Boltzmann equation [21].

In the system (37) we introduce a macroscopic length scale, which is by a large
factor 1

ε bigger than the mean free path between reaction events. The dimension-
less parameter ε is called the Knudsen number. Since the equilibrium velocity
distribution M is unbiased, i.e. it has mean velocity zero, we expect a diffusive
macroscopic limit and choose a parabolic rescaling of time by 1

ε2 . This leads to the
rescaled system

ε2∂tf + εv · ∇xf = M(v)− ρgf ,
ε2∂tg + εv · ∇xg = M(v)− ρfg .

(43)
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The first step is to use the entropy dissipation (40) and to integrate with respect
to time

ε2H(f(T ), g(T )) +

∫ T

0

∫
T3×R6

(fg′ −MM ′) ln

(
fg′

MM ′

)
dv′ dv dx dt(44)

= ε2H(fI , gI) .

Now some useful information has to be extracted from this. Heuristically, smallness
of the entropy dissipation means that its quadratic approximation −〈C(f, g), (f, g)〉
controlling ‖(1−Π)(f, g)‖2 can be used. Rigorously, one has to work a little harder,
using the inequality (

√
a− 1)2 ≤ 1

4 (a− 1) ln a.

Lemma 10. ([36]) Let H(fI , gI) < ∞. Then the entropy dissipation relation (44)
implies (1−Π)(f, g) = O(ε) in L2(R+,H).

As a consequence there exists ρ(x, t), still depending on ε but uniformly bounded
by the maximum principle estimates, such that

f⊥ :=
f − ρM

ε
and g⊥ :=

g −M/ρ

ε

are uniformly bounded in L2(R+,H). Therefore, after division by ε, the system
(43) reads

ε∂tf + v · ∇xf =
M(v)− ρgf

ε
= −ρg⊥ρM −

1

ρ
f⊥ +O(ε) ,

ε∂tg + v · ∇xg =
M(v)− ρfg

ε
= −ρf⊥

1

ρ
M − ρ g⊥ +O(ε) .

(45)

The uniform boundedness of the right hand sides permits the application of an
averaging lemma to obtain some smoothness in x of the position densities of f
and g. With the help of an interpolation result similar to the Aubin-Lions lemma
eventually strong convergence of ρ can be shown [36]. The final limiting equation
will be the conservation law

∂t(ρf − ρg) +∇x ·
∫
Rd
v(f⊥ − g⊥)dv = 0 .

The flux can be computed from the limit of (45):∫
Rd
v(f⊥ − g⊥)dv = −ρ∇xρ+

1

ρ
∇x
(

1

ρ

)
= −

(
ρ+

1

ρ3

)
∇xρ .

The limiting density ρ satisfies

∂t

(
ρ− 1

ρ

)
= ∇x ·

((
ρ+

1

ρ3

)
∇xρ

)
,

which can be written as a nonlinear diffusion equation for u = ρ− 1/ρ. A rigorous
convergence result has been proven in [36].

16. Entropies for nonlinear problems – 1. Inverting the equilibrium
distribution

Consider initial value problems for nonlinear abstract ODEs,

∂tp = F (p) , p(0) = p0 ,(46)
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where p0 ∈ L1
+(M,dµ) for some measure space (M,dµ). We assume that the

evolution preserves total mass and nonnegativity, such that p(t) ∈ L1
+(M,dµ) and

〈p(t)〉 :=

∫
p(t)dµ = m := 〈p0〉 , t ≥ 0 .

It will be useful to permit arbitrary positive m (which is of course not necessarily
mass in applications), and not only probability distributions. We shall assume the
existence of a one-parameter family {p∞(m) : m ≥ 0} ⊂ L1

+(M,dµ) of equilibria
with the total mass as parameter:

F (p∞(m)) = 0 , 〈p∞(m)〉 = m, m ≥ 0 .

Furthermore we assume that p∞(m) is a pointwise strictly increasing function of
m:

m 7→ p∞(m,x) strictly increasing ∀x ∈M .(47)

In the linear case, where F = L∗ generates the evolution of the law of an homoge-
neous Markov process, we have

p∞(m,x) = mp∞(1, x) ,

and the condition (47) is satisfied, whenever the probability density p∞(1) is strictly
positive, as has been assumed in the previous sections. The dissipation of relative
entropy (Section 7) relies on the inequality

d

dt
HU (p|p∞(1)) =

〈
U ′
(

p

p∞(1)

)
L∗p

〉
≤ 0

for arbitrary convex U . We attempt to generalize this situation by interpreting the

ratio p(x)
p∞(1,x) as the unique solution m of the equation p(x) = p∞(m,x). Therefore

the following recipe is suggested: First, find φ(p, x) by inversion of the equilibrium
distribution with respect to m:

m = φ(p, x) ⇐⇒ p = p∞(m,x) , p > 0 , x ∈M .

Second, check if

〈χ (φ(p))F (p)〉 ≤ 0 .

for any increasing χ. If yes, the relative entropy

HU (p|{p∞}) := 〈Φ(p)〉 , with Φ(p, x) =

∫ p

p∞(m,x)

χ(φ(q, x))dx

is nonincreasing along solutions of (46). The notation for the relative entropy should
be a reminder that its definition requires the whole family of equilibria.

The question is of course: Does this ever work? The answer is yes for large
groups of examples, but not always.

Example 13. An ODE system: We start with M = {1, 2} and the system

ṗ1 = p2 − p2
1 , ṗ2 = p2

1 − p2 ,

with p1, p2 ≥ 0 and p1 + p2 = m conserved. We compute

p∞,1(m) =
1

2

(
−1 +

√
1 + 4m

)
, p∞,2(m) = m+

1

2

(
1−
√

1 + 4m
)
,

and

φ1 = p1 + p2
1 , φ2 =

√
p2 + p2 ,
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and we obtain

〈χ (φ(p))F (p)〉 = −
(
χ(p1 + p2

1)− χ(
√
p2 + p2)

)
(p2

1 − p2) ≤ 0 ,

for any monotone χ. With χ = id we obtain the entropy

p2
1

2
+
p3

1

3
+

2p
3/2
2

3
+
p2

2

2
.

Example 14. Nonlinear parabolic conservation laws,

∂tp+∇x · f(p) = ∇x · (D(p)∇xp) ,
with M = Rd, given nonlinear flux function f(p), and positive semidefinite diffu-
sivity matrix D(p), have constant solutions. This suggests to use φ = p and to
compute

〈χ(p)F (p)〉 = −〈χ′(p)∇xptrD(p)∇xp〉 ≤ 0 ,

for χ′ ≥ 0. For degenerate D, smooth solutions exist in general only for finite time,
and the continuation by weak solutions is nonunique. In this situation, entropy
decay can be used as part of the definition of solutions, reestablishing uniqueness
(see, e.g. [10]).

Example 15. The Pauli exclusion principle in kinetic models: We consider a model
for an ensemble of fermions, e.g. electrons, moving in a stationary background
with constant temperature. The Pauli exclusion principle for fermions means for a
semiclassical kinetic description that there is an upper bound, here 1, for the phase
space density (see, e.g. [31]). An appropriate kinetic model has the form

∂tf + v · ∇xf = Q(f) :=

∫
R3

(f ′(1− f)M − f(1− f ′)M ′)dv′ ,

with the normalized Maxwellian velocity distribution M(v). A family of equilibria
is given by the Fermi-Dirac distributions

f∞(µ, v) =
1

1 + e|v|2/2−µ
,(48)

with the Fermi energy µ ∈ R. Expressing eµ from this formula suggests trying〈
χ

(
f

M(1− f)

)
F (f)

〉
= −

∫
MM ′(1− f)(1− f ′)

(
f

M(1− f)
− f ′

M ′(1− f ′)

)
×
(
χ

(
f

M(1− f)

)
− χ

(
f ′

M ′(1− f ′)

))
dv′ dv dx ≤ 0 .

Again any increasing χ is possible. In [39] the macroscopic limit has been carried
out, and χ(z) = −1

1+z was convenient. Another interesting choice is χ = ln, leading
to the entropy∫ (

|v|2

2
f + f(ln f − 1) + (1− f)(ln(1− f)− 1)

)
dv dx ,

which would be called the free energy in thermodynamics.
In [7] a constant electric field described by the vector E ∈ R3 has been added:

∂tf + v · ∇xf + E · ∇vf = Q(f) .

The main idea still works. However, serious work is required to show the existence
of a family of equilibria f∞(m), satisfying E · ∇vf∞ = Q(f∞) and having the
required strict monotonicity property with respect to m. The entropy estimate
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is instrumental for carrying out the macroscopic limit, in this case a nonlinear
hyperbolic conservation law.

Example 16. The reaction-kinetic system from Section 15: We recall that for this
problem we had

f∞(x, v) = ρ∞M(v) , g∞(x, v) =
1

ρ∞
M(v) ,

meaning we can take

φ(f, g, v) =

(
f

M(v)
,
M(v)

g

)
.

The fact that we do not have total mass conservation but conservation of the dif-
ference of the masses shows in the fact that the second component is a decreasing
function of g. If we multiply the right hand sides of (37) by χ(f/M) and, respec-
tively, χ(M/g), take the difference and integrate, we obtain∫

Td×R2d

(
(MM ′ − fg′)χ

(
f

M

)
− (MM ′ − f ′g)χ

(
M

g

))
dv′ dv dx

=

∫
Td×R2d

MM ′
(

1− fg′

MM ′

)(
χ

(
f

M

)
− χ

(
M ′

g′

))
dv′ dv dx ≤ 0 .

With χ = id and with χ = log, we obtain the entropy densities

h(f, g) =
f2

2M
−M log g ,

and, respectively,

h(f, g) = f log(f/M)− f + g log(g/M)− g ,

the second being the choice in Section 15.

Example 17. BGK models: In [15] the macroscopic limit of models of the form

∂tf + v · ∇xf −∇xV (x) · ∇vf = γ

(
|v|2

2
− µ(ρf )

)
− f ,

has been carried out for various choices of the equilibrium profile γ. The Fermi
energy µ(ρ) is determined by the assumption of mass conservation:∫

Rd
γ

(
|v|2

2
− µ(ρ)

)
dv = ρ .

Under the assumption that γ is decreasing with sufficient decay, µ(ρ) is uniquely
determined and strictly increasing. As an entropy density, the free energy∫ f

φ(g, v)dg =

∫ f ( |v|2
2
− γ−1(g)

)
dg =

|v|2

2
f −

∫ f

γ−1(g)dg ,

has been used in [15].
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17. Entropies for nonlinear problems – 2. The logarithmic entropy
for mass action kinetics

Chemical reaction networks with mass action kinetics always dissipate the log-
arithmic relative entropy. This result will be proven in this section, following the
fundamental work [26] on this subject.

Chemical reaction networks are described by lists with entries of the form

Cj :=

m∑
l=1

yljAl
kij−→

m∑
l=1

yliAl =: Ci ,

where A1, . . . ,Am are chemical species, types of molecules, and ylj ∈ N0 are sto-

ichiometric coefficients, combined into complex vectors yj = (y1
j , . . . , y

m
j ), i.e. m-

dimensional multi-indices, describing the complexes C1, . . . , Cn. The stoichiometric
coefficients encode the information, how many molecules of species Al are consumed
(ylj) and produced (yli) in the reaction Cj → Ci.

The goal is to derive a mathematical model for the evolution of the species
concentrations c(t) = (c1(t), . . . , cm(t)) in a well stirred reactor. It will be based
on the assumption of mass action kinetics, which means that the reaction rate rij ,
i.e. the number of reaction events Cj → Ci per time is given by the model

rij(c) = kijc
yj := kij

m∏
l=1

(cl)y
l
j , i, j = 1, . . . , n .

with the standard notation for vectormulti−index. The constants kij ≥ 0 are called
rate constants, and we use the convention kij = 0, if Cj → Ci does not appear in
the list of reactions, as well as kii = 0. We also introduce the rate of formation of
complex Ci by

gi(c) =

n∑
j=1

(rij(c)− rji(c)) ,

and the species formation vector

f(c) =

n∑
i,j=1

rij(c)(yi − yj) .

The latter can also be written as f = Y g with the stoichiometric matrix Y =
(y1, . . . , yn) ∈ Rm×n and the complex formation vector g = (g1, . . . , gn). The
desired model for the dynamics is the ODE system

ċ = f(c) ,(49)

which is completely determined by the stoichiometric matrix Y and by the rate
constant matrix K := (kij) ∈ Rn×n, whence we call 〈Y,K〉 a mass action system.

The mass action kinetics implies that the admissible set Rm+ is invariant under the
flow. The order of the reaction Cj → Ci is given by |yj |, and it is obvious that for a
system of only first order reactions the complexes can be identified with the species
and (49) is linear.

We introduce the stoichiometric space

S := span{yi − yj : kij > 0} ⊂ Rm .
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It is obvious that f(c) ∈ S and that for the initial conditions c(0) = c0 ∈ Rm+ we

have that c(t), t ≥ 0, lies in the reaction simplex (c0 + S) ∩ Rm+ . If S 6= Rm then

vectors 0 6= φ ∈ S⊥ provide conservation laws

d

dt
φ · c = 0 .

In particular, we say that the system is conservative, if there exists such a φ with
all entries positive, i.e. if S⊥ ∩ Rm+ 6= {}. In this case all reaction simplices are
bounded. An example of this situation occurs, when all reactions conserve mass,
i.e.

M · yi = M · yj , ∀ kij > 0 ,

where M = (M1, . . . ,Mm) ∈ Rm+ is the vector of molecular masses of the species.

Then the reaction simplex is a subset of {c ∈ Rm+ : M · c = M · c0}.
The form

f(c) = Y g(c) = Y (R(c)−R(c)tr)1

of the species formation vector (with R = (rij) ∈ Rn×n and 1 = (1, . . . , 1) ∈ Rn)
suggests to distinguish between different kinds of equilibria, and we shall only be
interested in equilibria in Rm+ .

Therefore the equilibrium set is defined by

E := {c ∈ Rm+ : f(c) = 0} .

Obviously c ∈ E iff g(c) ∈ kerY . The subset of complex balanced equilibria is given
by

C := {c ∈ Rm+ : g(c) = 0} ,

and the even smaller subset of detailed balanced equilibria by

D := {c ∈ Rm+ : R(c) = R(c)tr} .

There are 4 different situations for the equilibrium set E = Rm+ ∩ g−1(kerY ), de-
picted in Fig. 1:
a) g(Rm+ ) ∩ kerY = {}, which implies E = {}.
b) g(Rm+ ) ∩ kerY = {0}, which implies C = E 6= {}.
c) 0 /∈ g(Rm+ ) ∩ kerY 6= {}, which implies E 6= {}, but C = {}.
d) g(Rm+ )∩kerY contains 0 and at least one other point, which implies {} 6= C 6= E.

Examples:
a) A1 → A2,
b) A1 → A2 → A3 → A1,
c) A1 → A2, 2A2 → 2A1.

It will be shown below that case d) cannot occur for mass action kinetics. In
other words: If a mass action kinetic network has one complex balanced equilibrium,
then we are in case b) and all equilibria are complex balanced.

Definition 2. A J-tuple of different complexes Cj1 , . . . , CjP is called a reaction cycle of length J ,
iff kj1j2 , . . . , kjP−1jP , kjP j1 > 0.

Definition 3. A mass action system 〈Y,K〉 is called cyclic, if it only consists of
one reaction cycle, i.e. kj,j+1 > 0 for j = 1, . . . , n with indices understood modulo
n, and all other kij = 0.
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Figure 1. From [26]. Possible relations between kerY and g (Rm
+ )

(with V + = Rm
+ ). The ◦ on kerY indicates the origin of Rn.

For a cyclic mass action system we have

f(c) =

n∑
j=1

kj+1,j c
yj (yj+1 − yj) , g(c)j = kj,j−1c

yj−1 − kj+1,jc
yj .

If there exists a complex balanced equilibrium a, then

κ = kj+1,ja
yj > 0 , j = 1, . . . , n .(50)

Therefore

f(c) = κ

n∑
j=1

( c
a

)yj
(yj+1 − yj) ,

where the division c/a of vectors is meant componentwise, just as log c used below.
We compute

log
( c
a

)
· f(c) = κ

n∑
j=1

( c
a

)yj (
log
( c
a

)yj+1

− log
( c
a

)yj)
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Lemma 11. Let φ : D(φ) ⊂ R → R strictly increasing, let ξ1, . . . , ξn ∈ D(φ),
n ≥ 2, and set ξn+1 := ξ1. Then

Φn(ξ1, . . . , ξn) :=

n∑
j=1

ξj(φ(ξj+1)− φ(ξj)) ≤ 0 ,

with equality, iff ξ1 = · · · = ξn.

Proof. By induction with respect to n: For n = 2, obviously

Φ2(ξ1, ξ2) = (ξ1 − ξ2)(φ(ξ2)− φ(ξ1)) ≤ 0 ,

with equality, iff ξ1 = ξ2.
Now let the statement hold for some n and let ξ1, . . . , ξn+1 ∈ D(φ) with (w.l.o.g.)

ξn+1 = max{ξ1, . . . , ξn+1}. Then

Φn+1(ξ1, . . . , ξn+1) = Φn(ξ1, . . . , ξn) + (ξn+1 − ξn)(φ(ξ1)− φ(ξn+1)) .

By the induction hypothesis and by ξn+1 ≥ ξ1, ξn, this is the sum of two nonpositive
terms, which completes the proof. �

Corollary 12. If a cyclic mass action system has a complex balanced equilibrium
a, then the relative entropy (called the pseudo-Helmholtz function in [26])

H[c|a] :=

n∑
j=1

(
cj log

(
cj
aj

)
− cj + aj

)
,

generated by U(z) = z log z− z+ 1, is a Lyapunov functional, i.e. for solutions c(t)
of (49) we have

d

dt
H[c|a] = log

( c
a

)
· f(c) ≤ 0 ,

with equality iff c is a complex balanced equilibrium, which is true for every equilib-
rium.

Proof. By Lemma 11, d
dtH[c|a] = 0 iff( c

a

)yj
= const ,

holding, by (50), iff

kj+1,jc
yj = const ,

which is equivalent to c being a complex balanced equilibrium. Since obviously
d
dtH[c|a] = 0 for every equilibrium, every equilibrium is complex balanced. �

This result will be used by showing that every mass action system can be de-
composed into cycles.

Lemma 13. Every mass action system 〈Y,K〉 with K 6= 0 and with a complex
balanced equilibrium contains a reaction cycle.

Proof. Let a be a complex balanced equilibrium. Then

ayi
n∑
j=1

kji =

n∑
j=1

kija
yj , ∀ i = 1, . . . , n .

Since there exists at least one ki1,j > 0, the right hand side of this equation for
i = i1 is positive. Now the equation implies the existence of ki2,i1 > 0. Repeating
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the argument with i = i2 leads to ki2,i3 > 0 and, eventually to an arbitrarily long
chain. Since there is only a finite number of complexes, it has to contain a reaction
cycle. �

Theorem 14. Let 〈Y,K〉 be a mass action system with K 6= 0 and with a complex
balanced equilibrium a. Then

K =

R∑
r=1

Kr ,

where 〈Y,Kr〉 is cyclic with complex balanced equilibrium a, 1 ≤ r ≤ R.

Proof. By Lemma 13, 〈Y,K〉 contains a cycle Ci1 , . . . , CiP . Define

κ1 := min
p=1,...,P

{kip+1,ipa
yip}

and

k1
ip+1,ip :=

κ1

ayip
≤ kip+1,ip , p = 1, . . . , P ,

k1
ij = 0 , for all other (i, j) .

Then
〈
Y,K1

〉
is cyclic with complex balanced equilibrium a, K1 ≤ K, K − K1

has at least one positive entry less than K, and 〈Y,K −K1〉 still has the complex
balanced equilibrium a. Iterating this process leads to

K −
R∑
r=1

Kr = 0 ,

after R ≤ n2 steps. �

Corollary 15. The result of Corollary 12 holds for every mass action system.

The result is of course also true for detailed balanced equilibria a, where

R(a) = R(a)tr ⇔ κij := kija
yj = kjia

yi , ∀ (i, j) ,

but there is a simpler proof:

log
( c
a

)
· f(c) =

m∑
l=1

n∑
i,j=1

log

(
cl

al

)
yli(kijc

yj − kjicyi)

=

m∑
l=1

n∑
i,j=1

κij

(( c
a

)yj
−
( c
a

)yi)
log
( c
a

)yi
= −1

2

m∑
l=1

n∑
i,j=1

κij

(( c
a

)yj
−
( c
a

)yi)(
log
( c
a

)yj
− log

( c
a

)yi)
≤ 0 .(51)

At this point we stop the presentation of the theory of mass action kinetics, but
not without mentioning that there are results on the existence of complex bal-
anced equilibria and on their uniqueness within a reaction simplex. This requires
additional conditions on the reaction network (see, e.g., [18]).

Example 18. Extension to continuous species spaces: As in Example 15 we consider
fermions. However we do not model their interaction with a background, but we
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consider binary collisions. The corresponding semiclassical model is the quantum
Boltzmann or Uehling-Uhlenbeck equation (see, e.g., [8])

∂tf + v · ∇xf(52)

=

∫
R3×S2

B(ω, v − v∗)(f ′f ′∗(1− f)(1− f∗)− ff∗(1− f ′)(1− f ′∗))dω dv∗

where f(x, v, t) is the phase space distribution function. On the right hand side
f, f∗, f

′, f ′∗ mean evaluation at v, v∗, v
′, and, respectively, v′∗, where the post-collisional

velocities v′, v′∗ are given in terms of the pre-collisional velocities v, v∗ by

v′ = v − ((v − v∗) · ω)ω , v′∗ = v∗ + ((v − v∗) · ω)ω ,

which can be seen as a parametrization of the set of all quadruples (v, v∗, v
′, v′∗)

satisfying momentum and energy conservation:

v + v∗ = v′ + v′∗ , |v|2 + |v∗|2 = |v′|2 + |v′∗|2 .

On the other hand, in the setting of colliding spheres, the interpretation of ω is
the direction between the centers of the spheres. More generally, the collision cross
section B describes the physical nature of the interaction. It has the pre-post-
collision invariance property B(ω, v′ − v′∗) = B(ω, v − v∗).

It is easily seen that Fermi-Dirac distributions (48) with constant Fermi energy
are equilibria of (52).

We can write (52) as a system of two equations for f and g = 1− f :

∂tf + v · ∇xf =

∫
R3×S2

B(ω, v − v∗)(f ′f ′∗gg∗ − ff∗g′g′∗)dω dv∗ ,

∂tg + v · ∇xg =

∫
R3×S2

B(ω, v − v∗)(ff∗g′g′∗ − f ′f ′∗gg∗)dω dv∗ .

Note that the system propagates the property f + g = 1, and that for each value
of µ ∈ R it has the positive equilibrium

f∞ =
1

1 + e|v|2/2−µ
, g∞ =

e|v|
2/2−µ

1 + e|v|2/2−µ
.

The terms on the right hand sides of the system for f and g can be seen as the
model for a fourth order chemical reaction

A1,v +A1,v∗ +A2,v′ +A2,v′∗
→ A1,v′ +A1,v′∗

+A2,v +A2,v∗ ,

where species A1,v corresponds to a particle with velocity v, and A2,v to available
space at velocity v. Since not only the integrals, but the integrands vanish at
(f∞, g∞), the equilibrium is detailed balanced. The transport terms on the left
hand side are generators of a Markov process and, thus, we expect the logarithmic
relative entropy∫ (

f log

(
f

f∞

)
− f + f∞ + g log

(
g

g∞

)
− g + g∞

)
dv dx

=

∫ (
f log

(
f

f∞

)
+ (1− f) log

(
1− f

1− f∞

))
dv dx ,

to be nonincreasing along solutions, which can be easily checked as in (51).
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