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Preface

Statistical developments have in many cases been driven by applications in science.

While genetics was always an important area that encouraged statistical research,

recent technological advances in this discipline pose ever new and challenging prob-

lems to statisticians.

This thesis covers the application of model selection to QTL mapping, i.e. lo-

cating genes that influence a quantitative character of an organism. The existing

statistical framework was taken as a starting point that has been adapted and mod-

ified to be applicable to QTL mapping. The requirements included good computa-

tional performance, robustness, consideration of prior information and treatment of

incomplete data.

The key results from my thesis are covered in three joint publications:

• Baierl, A., Bogdan, M., Frommlet, F. and Futschik, A. (2006). On Locating

Multiple Interacting Quantitative Trait Loci in Intercross Designs. Genetics

173, 1693–1703

• Baierl, A., Futschik, A., Bogdan, M. and Biecek, P. (2007).Locating multiple

interacting quantitative trait loci using robust model selection. Accepted in:

Computational Statistics and Data Analysis

• Zak, M., Baierl, A., Bogdan, M. and Futschik, A. (2007). Locating multiple

interacting quantitative trait loci using rank-based model selection. Accepted

in: Genetics
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Chapter 1

An Introduction To ...

1.1 Quantitative Genetics

Quantitative genetics, a statistical branch of genetics, tries to give a mechanistic

understanding of the evolutionary process based upon the fundamental Mendelian

principles. The goal of the evolutionary process, the optimal value of a trait, can be

predicted nearly solely by natural selection. Issues that arise when trying to explain

how the optimum is obtained, like

• the time it takes an optimal trait value to evolve

• how the genetic variation necessary for adaption arises

• the amount of expected phenotypic variation

• the role of non-adaptive evolutionary change caused by fluctuation of gene

frequencies and mutations

are addressed by the discipline of quantitative genetics.
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1.1.1 Quantitative Traits and Quantitative Trait Loci

In quantitative genetics, we study biological traits of individuals that are continuous

or quantitative like the yield from an agricultural crop, the survival time of mice

following an infection or the length of a pulse train, a song character, of fruit-flies.

The observed trait value (phenotype) P of an individual can be divided into the

combined effect of all genetic effects G and and environment-dependent factors E:

P = G+ E

The genetic effect can be based upon very few genes or even a single gene or it

can be composed of a number of genes. Clearly, this distinction largely determines

the distributions of the phenotype and has obvious consequences for the statistical

methodology to be used. In fact, Mendel in his historic experiments on peas inves-

tigated traits like color or shape that were influenced by single or very few genes

and were therefore qualitative. In quantitative genetics, we study traits that are

influenced by several genes, i.e. are polygenic, and we call the locations of these

genes quantitative trait loci (QTL). More precisely, a quantitative trait locus is not

necessarily identical with the according gene, but can be any stretch of DNA in close

distance to the gene. For polygenic traits, the phenotype can be either continuous or

also discrete (e.g. counts, categories) in case of an underlying quantitative character

with multiple threshold values.

In the case of polygenic traits, we divide the genetic effects further into separate

contributions of single genes (additive and dominance effects) and the interaction

between genes (epistasis). Obviously, the different genetic components cannot be

estimated from a single observation, but by assessing a sample of individuals. In

order to be able to separate genetic and environmental effects, the relatedness of the

individuals has to be known. Here, an important distinction concerning the origin



8

of the data has to be done: data from

• controlled programs imposed on domesticated species that are usually per-

formed with specific sets of relatives of specific ages in specific environmental

backgrounds

• natural populations like mammals, where we have a lack of experimental con-

trol.

1.1.2 Historical Developments

Francis Galton, a half-cousin of Darwin, founded the biometrical school of hered-

ity by focusing on the evolution of continuously changing characters (Galton (1889,

1869)). The main principles of quantitative genetics have been outlined by R. A.

Fisher (1918) and S. G. Wright (1921a,b,c,d). Both showed that the Mendelian

principles can be generalized to quantitative traits. Their methods were soon in-

troduced into animal and plant breeding (e.g. Lush (1937)). But it took until the

late 20th century (e.g. Bulmer (1980)) that the principles of quantitative genetics

began playing an important role in evolutionary biology. With the rapid advances in

molecular biology it became possible to actually identify loci underlying quantitative

variation, an empirical return to the theoretical roots of quantitative genetics.

The early work in quantitative genetic theory and the need for quantitative meth-

ods to model and describe the distributions of continuously distributed characters led

the development of modern statistical methodology. Francis Galton introduced the

idea of regression and correlation by his regression toward the mean of parent and off-

spring measurements. Fisher (1918) introduced the concept of variance-component

partitioning in order to separate the total phenotypic variance into additive, domi-

nance, epistatic and environmental parts. Wright (1921a) developed the method of

path analysis to analyze the inheritance of body characteristics in animals.
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1.2 Model Selection

1.2.1 Concept

A conceptual model is a representation of some phenomenon, data or theory by

logical and mathematical objects. In the case of statistical models, nondeterministic

phenomena are considered. Suppose we have collected data, Y , and we have a

number of competing models of different kind and complexity available to describe

the data. We call the collection of candidate models M. The model selection

problem is now to choose – based on the data Y – a ”good” model from the set of

possible models M.

Generally, a complex model will fit the data better than a simple model, but

might do worse in extrapolating to related sets of data, i.e. another random sample

Y + independent of Y , which seems to be a natural requirement.

These issues were already addressed by William of Ockham (1285-1347) by his

principle of parsimony or Ockham’s razor, which says: ”entities should not be mul-

tiplied beyond necessity” or in other words: ”it is in vain to do with more what can

be done with fewer”. Hence, simple models should be favored over complex ones

that fit data about equally well. The critical point of his principle is however kept

quite vague, namely the term ”necessity” or the definition of what can be done with

fewer and with more.

In statistical terms, the tradeoff between goodness-of-fit and simplicity can be

interpreted as a compromise between bias and variance. The bias of the model will

be larger for a simpler model while increasing the complexity of the model increases

its variance.

Model selection employs some measure of optimality to choose between models

of different classes and complexities.
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1.2.2 Model selection criteria

There are two major classes of model selection criteria available. The first group

aims at selecting the model with the largest posterior probability while the second

approach tries to minimize the expected predictive error of the model. The most

prominent and widely used members of the two classes are the Bayes Information

Criterion (BIC, Schwarz (1978)) and the Akaike Information Criterion (AIC, Akaike

(1973)), respectively. Both are applied in the following way: For a random sample

Y of sample size n, we choose model M with p-dimensional parameter vector θ

that attains the smallest value of the respective criteria. Both criteria consist of

two terms, minus two times the log-likelihood of the data under the model plus a

penalty term:

BIC(M) = −2 logL(Y |M, θ) + p log n (1.1)

AIC(M) = −2 logL(Y |M, θ) + 2p (1.2)

The following sections give a detailed motivation of the two model selection criteria.

Bayesian information criterion

Suppose we have a set of candidate models Mi, i = 1, . . . , m and corresponding

model parameters θi. The Bayesian approach to model selection aims at choosing the

model with maximum posterior probability. Suppose π(Mi) is the prior probability

for model Mi and f(θi|Mi) is the prior distribution for the parameters of model Mi.

Then the posterior probability of a given model is proportional to

P (Mi|Y ) ∝ π(Mi)P (Y |Mi) (1.3)

with

P (Y |Mi) =

∫

L(Y |θi,Mi)f(θi|Mi)dθi (1.4)
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Generally, the prior over models is assumed uniform, so that π(Mi) is constant.

This assumption will be relaxed in Section 1.3.2. The asymptotically relevant (for

large n) terms in P (Y |Mi) can be isolated using a Laplace approximation, leading

to

logP (Y |Mi) = logL(Y |θ̂i,Mi) −
pi
2

log 2π +
1

2
log |H| + O(n−1) (1.5)

Here θ̂i is a maximum likelihood estimate, n is the sample size and pi is the number

of free parameters in model Mi. |H| is the pi× pi Hessian matrix of logP (θi|Y,Mi):

H = ∂2

∂θ∂θT logL(Y |θi,Mi)|θ̂i
. For large sample sizes, the terms independent of n

in Equation 1.5 can be dropped and log |H| can be approximated by pi

2
log n. This

leads us to:

logP (Mi|Y ) ≈ BIC(Mi) = logL(Y |θ̂i,Mi) −
pi
2

log(n) (1.6)

Therefore, choosing the model with minimum BIC is (approximately) equivalent to

choosing the model with largest posterior probability.

Akaike’s information criterion

Suppose that the observed data Y are generated by an unknown true model with den-

sity function f(Y ). We try to find the closest candidate model Mi, i = 1, . . . , m with

corresponding model parameters θi and probability density function g(Y |θi,Mi), by

comparing f(Y ) and g(Y |θi,Mi). In the case of AIC, the distance is measured by

the Kullback-Leibler distance:

D(f, g(θi)) =

∫

f(y) log
f(y)

g(y|θi,Mi)
dy , (1.7)

which can be written as

D(f, g(θi)) =

∫

f(y) log f(y)dy −
∫

f(y) log g(y|θi,Mi)dy . (1.8)
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Each of the integrals in Equation 1.8 is a statistical expectation with respect to the

true distribution f . When comparing the Kullback-Leibler distance of two candidate

models, the expectation Ef log f(Y ) cancels out. Therefore, we write

D(f, g(θi)) = C − Ef log g(Y |θi,Mi) . (1.9)

Equation 1.9 cannot be evaluated straight forward. D(f, g(θi)) actually describes

the distance between the true model and Mi with a specific parameter value θi.

Therefore, θi is substituted by the value for which D(f, g(θi)) obtains a minimum,

which can be shown to be the MLE θ̂i.

We can now compare the fit of two candidate models, M1 and M2, by taking the

difference:

Ef log g(Y |θ̂2,M2) − Ef log g(Y |θ̂1,M1) .

Another problem becomes obvious when we consider a model M1 that is nested

within a more complex model M2: Ef log g(Y |θ̂2,M2) will never be smaller than

Ef log g(Y |θ̂1,M1). This happens because the same data is used, as so-called training

data set, to estimate θ̂i and, as so-called validation data set, to assess the resulting

fit.

AIC gives an estimate for the optimism of the model fit that arises when training

and validation data set are identical by adding a penalty term (see equation 1.2) to

the log-likelihood of each model. For a derivation of the penalty see e.g. Davison

(2003), p. 150-152.

1.2.3 Model selection vs. Hypothesis Testing

Some important differences between model selection and hypothesis testing.

• Model selection usually involves many fits to the same set of data
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• Hypothesis testing usually requires that the null hypothesis is chosen to be

the simpler of the two models, i.e. that the models are nested. This is not

necessarily true when comparing two candidate models.

• In model selection, we are not always assuming one model to be the true

model. Ping (1997) states that ”the existence of a true model is doubtful in

many statistical problems. Even if a true model exists, there is still ample

reason to choose simplicity over correctness knowing perfectly well that the

selected model might be untrue. The practical advantage of a parsimonious

model often overshadows concerns over the correctness of the model. After

all, the goal of statistical analysis is to extract information rather than to

identify the true model. The parsimony principle should be applied not only

to candidate fit models, but the true model as well.”

1.3 Mapping of Quantitative Trait Loci

As mentioned in Section 1.1.1, a quantitative trait is typically influenced by a num-

ber of interacting genes. In order to locate QTL, geneticists use molecular markers.

These are pieces of DNA whose characteristics (i.e. genotypes) can be determined

experimentally and that exhibit variation between individuals. Their . In organ-

isms where chromosomes occur in pairs (i.e. diploid organisms), the genotype at a

particular locus is specified by two pieces of DNA that are potentially different. If

a QTL is located close to a given marker, we expect to see an association between

the genotype of the marker and the value of the trait.

Locating QTL in natural, outbred, populations is relatively difficult. This is

due to the fact that as a result of crossover events, which occur every time gametes

are produced, the association between a QTL and a neighboring marker may be

very weak. Therefore, to control the number of crossovers, scientists usually use
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data from families with more than one offspring or extended pedigrees (see e.g.

Lynch and Walsh (1998) or Thompson (2000)). Locating QTL is easier and usually

more precise when the data come from experimental populations. Such populations

consist of inbred lines of individuals, who are homozygous at every locus on the

genome (i.e. have identical pairs of chromosomes). By crossing individuals from

such inbred lines, scientists can control the number of meioses (the process in which

gametes are produced) and produce large experimental populations for which the

correlation structure between the genotypes at different markers is easy to predict.

Inbred lines have been created in many species of plant, as well as animal species

(e.g mice). Results from research on experimental populations can often be used

to predict biological phenomena in an outbred population, due to the similarity of

genomes in the two populations (see e.g. Phillips (2002)).

The work presented in this thesis deals exclusively with data from experimental

crosses of well-defined strains of an organism. The process of inbreeding has fixed

a large number of relevant traits in these strains. Therefore, if two strains, raised

under similar environmental conditions, show consistent differences, we can assume

a genetic basis of these differences.

In order to identify the genetic loci responsible for these differences, a series of

experimental crosses between these two strains can be carried out. Two of the most

common approaches are backcross and intercross designs (see Figure 1.1).

1.3.1 QTL Mapping Techniques for Experimental Crosses

Approaches to QTL Mapping (see Figure 1.2) can be divided

• into univariate and multiple methods

• into marker based techniques and methods that estimate the QTL location

• by how they deal with epistasis, i.e. interacting, QTL
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Figure 1.1: Types of experimental crosses. One pair of columns corresponds to the
genome of one individual. The parents (F0–generation) have both identical pairs
of chromosomes, maternal and paternal DNA is indicated by black and white bars,
respectively. The children (F1) inherit one chromosome from their father and one
from their mother. Backcross populations are achieved by crossing children with
either father or mother. In intercross populations, grandchildren (F2) are produced.

• into classical statistical or Bayesian methods

The extension of univariate to multiple methods is preferable for many reasons:

increased power of detection, reduced bias of estimates of effect size and location,

improved separability of correlated effects. This applies especially to QTL mapping,

where marker data is typically non-orthogonal. There are, however, computational

challenges due to the large number of possible models. In the case of marker based

techniques, we typically deal with 50 to 500 possible predictors. The number can

increase dramatically for methods that try to estimate the QTL location more pre-

cisely.

Interactions between QTL effects (i.e. epistasis) are a common phenomenon,

which is supposed to play an important role in the genetic determination of complex
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traits (see e.g. Doerge (2002), Carlborg and Haley (2004) and references given there)

as well as in the evolution process (see e.g. Wolf et al. (2000)). Neglecting these

effects may lead to oversimplified models describing the inheritance of complex traits

and to severely biased estimates of effects. Methodical, there are approaches that

proceed hierarchically, i.e. they consider interactions only between already identified

main effects. This reduces the computational complexity compared to searching for

all possible interaction effects but causes an underestimation of the frequency and

importance of epistasis (Wolf et al. (2000)) and fails to identify interesting regions

of the genome.

A simple marker based univariate approach is to calculate a series of one-factorial

ANOVAs comparing the mean phenotype of individuals with genotype “black”-

“black” and “white”-“black” (and “white”-“white” in case of intercross designs) at

each marker position (“black” and “white” refer to the colors used in Figure 1.1).

Significant differences at particular marker positions indicate a QTL in the proximity

of the marker. Classical interval mapping (Lander and Botstein (1989)) tries to give

more precise estimates of the QTL location. For a dense grid of possible QTL

positions, LOD (logarithm of odds) scores are derived that compare the evaluation

of the likelihood function under the null hypothesis (no QTL) with the alternative

hypothesis (QTL at the testing position).

Methods that try to extend interval mapping to a (pseudo-)multiple approach

while keeping the computational intensity low include multiple interval mapping

(MIM, Kao et al. (1999)), composite interval mapping (CIM, Zeng (1993, 1994))

and multiple interval mapping (MQM, Jansen (1993) and Jansen and Stam (1994)).

MIM first locates all single QTL, then builds a statistical model with these QTL and

their interactions and, finally, searches in one dimension for significant interactions.

CIM and MQM perform interval mapping with a subset of marker loci as covariates

in order to reduce the residual variation. The choice of suitable markers to serve as
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covariates could not be solved satisfactorily (see Broman (2001)).

A semi-Bayesian approach was developed by Sen and Churchill (2001). They

first identify interesting regions on the genome using one- and two-dimensional LPD

(log of posterior distribution) curves, based on multiple imputations of a pseudo-

marker grid. In a subsequent step, QTL from these interesting regions are chosen

by applying a multiple regression model with standard model selection criteria.

Strict Bayesian approaches to QTL mapping were introduced by Yi and Xu

(2002), Yi et al. (2003) and Yi et al. (2005). The methods are based on Markov Chain

Monte Carlo (MCMC) algorithms that sample sequentially from QTL location, QTL

genotype and genetic model. The number of QTL effects is allowed to change by

Reversible-Jump MCMC. Generally, these methods are computationally involved

and challenging to apply (see van de Ven (2004)).
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Figure 1.2: Overview of available techniques for QTL mapping
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1.3.2 QTL Mapping by Model Selection

A multiple, marker based approach that allows for interaction effects independently

of main effects involves fitting a multiple regression model relating the trait values to

the genotypes of the markers. The most difficult part of this process is to estimate

the number of QTL.

Model selection criteria can be employed to solve this problem. Here, we are

less interested in the predictive power of the model than in finding the true minimal

model. The class of the model is fixed as we are only considering linear models.

Estimating the number of QTL corresponds to choosing the complexity of the model.

In the context of QTL mapping, the application of model selection criteria has

been discussed e.g. by Broman (1997), Piepho and Gauch (2001), Ball (2001), Bro-

man and Speed (2002), Bogdan et al. (2004) and Siegmund (2004). In particular

Broman (1997) and Broman and Speed (2002) observed that the usually conserva-

tive BIC has a strong tendency to overestimate the number of QTL. This is maybe

not unexpected since the BIC proposed by Schwarz (1978) is based on an asymp-

totic approximation using the Bayes rule to derive posterior probabilities for all the

competing submodels of a regression model. The BIC cannot be expected to pro-

vide a good approximation in cases where the number of potential regressors is large

compared to n.

To understand this phenomenon, notice that the arguments regarding the asymp-

totics which lead to the BIC imply that the prior is negligible and as a consequence

all models are taken to be equally probable by the BIC. However, if the number of

regressors is very large, then there are many more high dimensional models than

low dimensional ones (when there are p∗ potential regressors there are actually
(

p∗

k

)

submodels of dimension k). As a consequence, it is likely that some of these higher

dimensional models lead to a low value of the BIC just by chance.
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The Modified BIC

Bogdan et al. (2004) propose a modified version of the BIC, the mBIC, which exploits

the Bayesian context of the BIC and supplements this criterion with additional terms

taking into account a realistic prior distribution on the number of QTL.

Assume nm markers, i.e. potential regressors, are available. Considering all

ne = nm(nm − 1)/2 two-way interaction terms, we can construct 2nm+ne different

models. For assigning probabilities to these models, Bogdan et al. (2004) follow the

standard solution proposed in George and McCulloch (1993): the ith main effect and

jth interaction effect appear in the model with probabilities α and ν, respectively.

For a particular model M involving p main effects and q interaction effects we obtain

π(M) = αpνq(1 − α)nm−p(1 − ν)ne−q . (1.10)

This choice implies binomial prior distributions on the number of main and interac-

tion effects with parameters nm and α, and ne and ν, respectively. Substituting α

by 1/l and ν by 1/u leads to

log π(M) = C − p log(l − 1) − q log(u− 1) (1.11)

In the context of multiple linear regression, minimizing the BIC (1.1) is equivalent

to minimizing n log RSS+(p+ q) logn. Hence the modified BIC, mBIC, chooses the

model that minimizes the following quantity:

mBIC = n log RSS + (p+ q) logn+ 2p log(l − 1) + 2q log(u− 1) . (1.12)

Prior information on the number of expected main (ENm) and interaction effects

(ENe) can be used to assign the parameters l := nm/ENm and u := ne/ENe. In the

absence of prior information, Bogdan et al. (2004) propose the use of ENm = ENe =
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2.2. This choice guarantees that the probability of a type I error under H0 using

the appropriate procedure (i.e. detecting at least one QTL when there are none)

is smaller than 0.07 for sample sizes n ≥ 200 and a moderate number of markers

(M > 30).

Bogdan et al. (2004) and Baierl et al. (2006) present the results of an extensive

range of simulations, which confirm the good properties of the standard and extended

version of mBIC when applied to QTL mapping.
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2.1 Summary

A modified version (mBIC) of the Bayesian Information Criterion (BIC) has been

previously proposed for backcross designs to locate multiple interacting quantitative

trait loci. In this chapter, we extend the method to intercross designs. We also

propose two modifications of the mBIC. First we investigate a two-stage procedure

in the spirit of empirical Bayes methods involving an adaptive, i.e. data based choice

of the penalty. The purpose of the second modification is to increase the power of

detecting epistasis effects at loci where main effects have already been detected. We

investigate the proposed methods by computer simulations under a wide range of

realistic genetic models, with non-equidistant marker spacings and missing data.

In case of large inter-marker distances we use imputations according to Haley and

Knott regression to reduce the distance between searched positions to not more

than 10 cM. Haley and Knott regression is also used to handle missing data. The

simulation study as well as real data analysis demonstrate good properties of the

proposed method of QTL detection.

2.2 Introduction

Consider a situation where we have a fairly densely spaced molecular marker map

and our goal is to locate multiple interacting quantitative trait loci (QTL) influencing

the trait of interest. We assume that marker genotype and quantitative trait value

data are obtained by carrying out an intercross experiment using two inbred lines.

Due to the increased number of genotypes for the intercross design, the corre-

sponding number of potential regressor variables describing additive and epistatic

QTL effects is much larger than for the backcross design. We thus adapt the ap-

proach of Bogdan et al. (2004), and construct a modified version mBIC of the BIC

for the intercross design. Additionally, we propose two new modifications of the
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BIC. The first of them is in the spirit of empirical Bayes approaches and is based

on a two-step procedure. In the first step, the proposed mBIC is used for an initial

estimation of the number of QTL and interactions. In the second step, QTL are

located using the mBIC with the penalty modified according to the estimates ob-

tained in step one. The second modification relies on extending the search procedure

and is aimed at increasing the power of detection of interaction effects. We propose

to consider an additional search for interactions which are related to at least one

of the additive effects found in the original scan based on the mBIC. Restricting

our attention to a limited set of interactions reduces the multiplicity of the testing

problem and allows to use a smaller penalty for including interactions.

We perform an extensive simulation study verifying the performance of our

method. In order to account for the more complicated model structure in the in-

tercross design, the range of models considered in the simulations is substantially

larger than in Bogdan et al. (2004). We also include models with non-equidistant

and missing marker data. In situatons when the distance between markers is large,

we use imputations according to Haley and Knott regression to keep the distance

between searched positions smaller than or equal to 10 cM. We also investigate the

use of Haley and Knott regression to handle missing data. Additionally, we apply

our procedure to real data sets and compare the results to standard QTL mapping

techniques. Our simulations as well as the analysis of real data suggest good prop-

erties of the proposed method and demonstrate that the proposed modifications

of the mBIC may help to increase the power of QTL detection while keeping the

proportion of false discoveries at a relatively low level.
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2.3 Methods

2.3.1 Statistical Model

To model the dependence between QTL genotypes and trait values, we use a multiple

regression model with regressors coded as described in Kao and Zeng (2002). This

method of coding effects is known as Cockerham’s model and involves an additive

and a dominance effect for each QTL locus as well as effects modeling epistasis

between two loci. With r QTL this leads to the following linear model:

y = µ+

r
∑

i=1

αixi +

r
∑

i=1

δizi + (2.1)

+
∑

1≤i<j≤r

γ
(xx)
i,j w

(xx)
i,j +

∑

i6=j

γ
(xz)
i,j w

(xz)
i,j +

∑

1≤i<j≤r

γ
(zz)
i,j w

(zz)
i,j + ǫ ,

where y is the trait value, and ǫ ∼ N(0, σ) summarizes environmental effects.

The variables are coded as specified below.

Additive Effects: xi = x(gi) =























1 if ith QTL has genotype gi = AiAi,

0 if ith QTL has genotype gi = aiAi,

−1 if ith QTL has genotype gi = aiai.

Dominance Effects: zi = z(gi) =











1/2 if ith QTL has genotype gi = Aiai,

−1/2 else .

Epistatic Effects:

w
(xx)
i,j = w(xx)(gi, gj) = xi · xj ,

w
(xz)
i,j = w(xz)(gi, gj) = xi · zj ,

w
(zz)
i,j = w(zz)(gi, gj) = zi · zj .

The advantage of the Cockerham parametrization is that under linkage equilib-
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rium, the effects are orthogonal and the coefficients αi, δi and γi,j have a natural

genetic interpretation (see Kao and Zeng (2002)). The formulation of the model al-

lows some of the coefficients to be zero to accommodate cases when there are either

QTL that are not involved in epistatic effects, or QTL that do not have their own

main effects yet influence the quantitative trait by interacting with other genes, i.e.

epistatic effects.

If the experiment is based on a relatively dense set of markers, the first step

in QTL localization could rely on identifying markers which are closest to a QTL.

Thus our task reduces to choosing the best model of the form

y = µ+
∑

i∈I1

αixi +
∑

i∈I2

δizi + (2.2)

+
∑

(i,j)∈U1

γ
(xx)
i,j w

(xx)
i,j +

∑

(i,j)∈U2

γ
(xz)
i,j w

(xz)
i,j +

∑

(i,j)∈U3

γ
(zz)
i,j w

(zz)
i,j + ǫ ,

where I1 and I2 are certain subsets of the set N = {1, . . . , m}, m is the number of

available markers, and U1, U2 and U3 are certain subsets of N × N . Analogous to

the formulas given above, the values of the regressor variables xi, zi, w
(xx)
i,j , w

(xz)
i,j ,

w
(zz)
i,j are defined according to the genotypes of the ith and jth marker. Similarly to

Bogdan et al. (2004), we allow interaction terms to appear in our model even when

the related main effects are not included.

2.4 A Modified BIC for Intercross Designs

In this paper, we construct a version of mBIC suitable for intercross design. Note

that in this design mv = 2m (m possible additive and m possible dominance terms),

and me = 2m(m − 1). Choosing again ENv = ENe = 2.2, the resulting modified
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version of the BIC recommends the model for which

mBIC = n log RSS + (p+ q) logn+ 2p log(m/1.1− 1) + 2q log(m(m− 1)/1.1− 1) ,

(2.3)

obtains a minimum. Here p is equal to the sum of the number of additive and

dominance effects present in the model and q is the number of epistatic terms.

Observe that the proposed penalty for including individual terms is larger in the

intercross design than in the backcross design. This is a result of a larger number

of possible terms in the regression model, which forces us to increase the threshold

for adding an additional term in order to keep control of the overall type I error.

An upper bound for the type I error of the search procedure is derived using the

Bonferroni inequality (see Appendix for details). Simulations show that the upper

bound is close to the observed type I error for markers that are not closer than 5

cM .

Figure 2.1 compares the upper bound on the type I error of the mBIC when the

penalty is adjusted for intercross designs (see Formula (2.3) ) with the related type

I error when the penalty designed for backcross (2p log(m/2.2 − 1) + 2q log(m(m−

1)/2.2− 1)) is used. The results are for m = 132 markers. The graph clearly shows

that for common sample sizes adjusting the penalty is necessary to control the type

I error at a 5% level.

Apart from using mBIC in its standard form (2.3), we developed adaptive strate-

gies to modify the size of the penalty based on the data. In general, available prior

information on the number of main and epistatic effects may be used to adjust the

criterion in the following way:

mBIC1 = n log RSS+(p+q) logn+2p log(2m/ENv−1)+2q log(2m(m−1)/ENe−1) ,

(2.4)

where ENe and ENv denote the expected values of Ne and Nv under the prior
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Figure 2.1: Comparison of the Bonferroni type I error bounds under the null model
(no effects) for the intercross design when the same penalty as in backcross is used
and when the penalty is adjusted accordingly

distribution. If we have no knowledge on the number of QTL, an obvious option is

to use the data to obtain an initial estimation of Ne and Nv. Such estimates for Ne

and Nv could in principle be obtained using standard methods for QTL localization,

e.g. interval mapping. However, due to the known problems related to interval

mapping (many local maxima between markers, difficulties with separating linked

QTL and “ghost” effects) we recommend the application of the standard version of

mBIC (2.3) for an initial search. We denote the number of additive and epistatic

effects found in this initial search by N̂v and N̂m. In the second step, the final

localization of QTL is based on version (2.4) of the criterion, with ENv replaced by
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max(2.2, N̂v) and ENe replaced by max(2.2, N̂e).

In case of a large number of underlying QTL, the reduced penalty in the second

search step increases the power of QTL detection. If in the first search step two or

fewer main and epistatic effects are found, the penalty is not decreased. Thus in

particular under the null model of no effects, the type I error will still be close to

5%.

We also consider a second extension to the search strategy in order to increase

the power of detecting epistatic effects. The described application of the mBIC

takes into account epistatic effects regardless of whether the corresponding main

effects were included in the model or not. Therefore, epistasis can be detected in

cases where main effects are weak or not present at all. Wolf et al. (2000) list the

common practice of fitting epistatic terms after main effects have been included

in the model as a main reason why in many QTL studies, epistasis has not been

detected. However, the price for the possibility of detecting epistasis even if main

effects are not detectable is a relatively large penalty for interaction terms. In

particular for small sample sizes, this results in low detection rates (see Figure

2.2). This observation confirms the statement of Carlborg and Haley (2004) that

epistatic studies ”are most powerful if they use good quality data for 500 or more

F2 individuals”.

For the above reasons, we deploy a third search step that increases the power

of detection for epistatic terms by considering a restricted set of potential terms

based on prior analysis. Specifically, we restrict our attention to those epistatic

effects related to at least one of the main effects detected by an initial search based

on (2.4). Thus the set of epistatic effects to be searched through in this third

step consists of not more than 4p(m− 1) elements, where p is the number of main

effects detected in the 2-step procedure. This allows us to decrease the penalty for

interactions accordingly. The mBIC version used in this last step chooses the model
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Figure 2.2: The dark curves show the percentage of correctly identified additive,
dominance and epistatic effects depending on the heritability. The grey shaded
curves display the expected number of incorrectly selected (linked and unlinked)
markers (n = 200).

which minimizes the quantity

mBIC2 = n log RSS + (p+ q + qa) logn+ 2p log(2m/ENv − 1) +

+ 2q log(2m(m− 1)/ENe − 1) + 2qa log(4p(m− 1)/ENe − 1) , (2.5)

where q is the number of epistatic effects found in the 2-step procedure and qa is the

number of extra epistatic terms considered in the additional search for epistasis.

The penalty for the extra interaction terms in (2.5) is now of the same order

as the penalty for additive terms and thus the power for detecting such epistatic

effects should be comparable to the power of detecting main effects with the same
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heritability.

The identification of the model minimizing (2.3), (2.4) or (2.5) within the huge

class of potential models is by no means trivial. Our approach is to use a forward

selection procedure with the following stopping rule: if a local minimum of the

modified BIC is reached, we still proceed with forward selection, trying to include

(one-by-one) 5 additional terms. If, at some point, this leads to a new minimum,

we temporarily accept this “best” model and continue again with forward selection.

Otherwise none of the additional five effects are added. This approach helps to avoid

premature stopping of the search algorithm at a local minimum. This can be the

case when including two additional regressors improves the model even if each single

one of them does not. The maximum number of additional regressors is set to five

because it is very unlikely that five additional regressors improve the model while

each of them alone does not or only marginally.

Finally, backward elimination is tried, i.e. it is checked whether mBIC can still

be improved by deleting some of the previously added variables.

2.5 Simulations

Simulations are carried out to investigate the performance of our proposed method

of QTL detection in the intercross design under a variety of parameter settings. All

simulations were carried out in Matlab, the complete program is included in chapter

5.

We consider several scenarios involving equidistant markers that are relatively

easy to analyze, and three realistic scenarios designed according to an actual QTL

experiment described in Huttunen et al. (2004).

In our equidistant scenarios, we simulate QTL and marker genotypes on 12

chromosomes each of length 100 cM. Markers are equally spaced at a distance of 10

cM with the first marker at position 0 and the eleventh marker at position 100 of
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each chromosome. This leads to a total number of available markers m of 132 and

the standard version of mBIC (2.3) becomes

mBIC = n log RSS + (p+ q) logn + 9.56p+ 19.33q .

Genome length and marker density are kept constant in all simulations and are in

accordance with previous simulation studies (Piepho and Gauch (2001) and Bogdan

et al. (2004)) in order to increase comparability.

Further details for the equidistant (both simple and more complex) scenarios,

and the realistic scenarios are provided below. We simulated the trait data under

different models of the form (2.1). In all simulations the overall mean µ and the

standard deviation of the error term σ were set to be equal to 0 and 1 respectively.

For each scenario and parameter setting, the simulation results are based on 500

replications.

Among the simulation results we include are the average number of correctly

identified effects, which we denote by cadd, cdom and cepi for additive, dominance and

epistatic effects respectively. In the case of simple models with just one effect, these

quantities are estimates of the power. A main effect is classified to be correctly

identified, if the regression model chosen by mBIC includes the corresponding effect

related to a marker within 15 cM of QTL. An epistatic effect is classified as correctly

identified when the mBIC finds a corresponding effect with both markers falling

within 15 cM of the corresponding QTL. If more than one effect is detected in such

a window, only one of them is classified as true positive. All the other effects are

considered to be false positives.

In our simulation study of more complex equidistant scenarios, we simulated

many QTL with weak effects. In this situation, the confidence intervals for the

estimates of QTL location are often much wider than 30 cM (see e.g. Bogdan and

Doerge (2005)). Thus each of such weak effects will bring a certain proportion of
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”false” positives related to a weak precision of QTL localization, while still providing

an approximation to the best regression model. As a result of this phenomenon, the

total number of false positives typically increases with the size of the model used

in the simulation. Therefore, additionally to the average number of false positives

fp, we report the estimated proportion of false positives within the total number of

identified effects, pfp = fp/(cadd + cdom + cepi + fp).

Simple equidistant scenarios: We first consider the null model, i.e. the situ-

ation where there are no QTL at all. As shown in Figure 2.1, the probability that

at least one effect is incorrectly selected should be below 0.05 when the sample size

is at least 200. Our simulations lead to a percentage of 0.038 of such (familywise)

type I errors when n = 200, thus confirming the theoretical results. The percentage

of errors should decrease with increasing sample size, and indeed for a sample size

of n = 500, the number goes down to 0.02.

Next we consider two experiments to investigate the detectability of QTL effects

depending on their strength, effect type (additive, dominance or epistatic) and on

the total number of QTL. In these experiments we use a sample size of n = 200.

For the first experiment, we generate the data according to three simple models

of the form (2.1). In the first two models (scenarios 1 and 2), one QTL is located

at the fifth marker on the first chromosome. In scenario 1 the QTL has only an

additive effect with the effect size α ranging from 0.2 to 0.6. In scenario 2, the

additive effect is constant (α = 0.7) and a dominance effect δ with values in the

interval between 0.4 and 1.2 is added. For scenario 3 only one epistatic effect (γ
(xx)
1,2 )

between markers number five of chromosome five and six respectively is considered.

The effect size of (γ
(xx)
1,2 ) ranges between 0.4 and 1.6.

In the context of scenarios 1 and 3, we investigate the power of detection in
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dependence on the classical heritability

σ2
∗

1 + σ2
∗

, (2.6)

with 1 being the environmental variance, and σ2
∗ denoting the variance due to the

single genetic effect present (i.e. σ2
∗ = σ2

add in case of an additive effect, and σ2
∗ = σ2

epi

in case of epistasis between two loci).

In scenario 2, the power of detection of the dominance effect should also depend

on whether the corresponding additive effect can be detected, since the error variance

gets smaller, if the additive effect is included into the regression model. In our

experiment the additive effect was almost always detected (power 99%) and we

observed that a good indicator for the power of detection of the dominance term is

its heritability in the model without the additive term

h2
dom =

σ2
dom

1 + σ2
dom

=
0.25δ

1 + 0.25δ
. (2.7)

A comparison of detection rates of additive, dominance and epistatic effects

in dependence on the heritability (as defined in (2.6) for additive and epistatic

effects, respectively and in (2.7) for the dominance effect) is given in Figure 2.2.

The relationship can be seen to be S-shaped and nearly identical for additive and

dominance effects. Although dominance and additive effects are detected with the

same power at a fixed heritability, the actual size of the dominance effects has to

be larger (by
√

2) than the additive effects (σ2
add = a2/2 and σ2

dom = d2/4 for an

additive effect of size a and dominance effect of size d. Hence if σ2
add = σ2

dom, d

has to be a
√

2). For epistatic effects, the power of detection is lower. This can be

explained by the increased penalty of the model selection criterion.

The grey shaded curves in Figure 2.2 display the average number of falsely de-

tected effects, which can be used as an estimate of the expected number of false
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positives. This quantity is an upper bound to the probability of having at least one

incorrect effect in the model. The displayed error rates are fairly constant over the

range of heritabilities considered. They vary between 0.05 (the value achieved by

the model with no effects) and 0.11.

The purpose of the second experiment is to investigate to what extent the power

of detection of individual signals is affected by the amount of QTL influencing the

trait. The number of QTL varies between one and 10, all QTL are on different

chromosomes and therefore unlinked and have only additive effects with αi = 0.5.
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Figure 2.3: Percentage of correctly identified additive effects vs. number of additive
effects. The QTL are unlinked, i.e. located on different chromosomes, and have
effect sizes of 0.5. The solid line is based on simulations where no prior information
is used to derive the penalty terms of the modified BIC. The dashed line repre-
sents simulations with the correct number of underlying effects (1,2,4,7,10) assumed
known. The dotted line corresponds to the two step search procedure based on
Formula (2.4).
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Figure 2.3 shows that the probability of detection using the standard version of

mBIC (2.3) decreases with the number of effects present. This can be explained by

the fact that criterion (2.3) is based on the assumption that the expected number

of effects is equal 2.2. If the correct (but in practice unknown) number of effects

were used instead of 2.2, the percentage of correctly identified additive terms would

increase from 0.543 to 0.761 for 10 underlying effects, from 0.672 to 0.781 for 7

and from 0.763 to 0.7995 for 4 underlying effects. We can obtain a comparable

improvement by applying the two step procedure defined in Formula (2.4) that

involves an estimation of the number of expected effects in the first search step.

The dotted line in Figure 2.3 shows that the power of detection increases while the

proportion of false positives remains stable.

Complex equidistant scenarios: Here, we consider nine more complex models

that involve several effects of different size and type.

For all models, the overall broad sense heritability h2
b = σ2

G/(σ
2
ε + σ2

G) is kept

at 0.7; i.e 70 % of the phenotypic variance is explained by genotypic variation σ2
G.

Fixing the variance caused by environmental effects σ2
ε to 1 leads to a genotypic

variation of 2.3̇, which is then distributed among additive effects (45%), dominance

effects (25%) and epistatic effects (30%). The resulting narrow sense heritability

has an expected value of 0.315. All simulations are done both with sample size 200

and 500.

We consider all combinations of situations involving two, four and eight additive

and epistatic effects. Dominance effects are assigned to half of the loci where additive

effects occur. The epistatic QTL are taken both from the additive effect positions

and from other genome locations. If p additive effects are present, the relative size

of effect i is chosen to yield 100 i
p(p+1)/2

% of the additive heritability. For dominance

and epistatic effects the relative strengths are chosen analogously. We consider the

worst case situation where the QTL positions are always exactly in the middle of
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two markers. Table 2.1 contains a brief summary of the resulting nine scenarios. A

detailed description of all effect positions and strengths can be found on our web

page http://homepage.univie.ac.at/andreas.baierl/pub.html .

Table 2.1: Description of scenarios 1-9

scenario nadd ndom naaepi nddepi nadepi
1 2 1 1 1 0
2 2 1 3 0 1
3 2 1 7 1 0
4 4 2 1 1 0
5 4 2 3 0 1
6 4 2 7 1 0
7 8 4 1 1 0
8 8 4 3 0 1
9 8 4 7 1 0

Columns contain number of additive (nadd), dominance (ndom) and epistatic QTL
for each scenario. Epistatic effects can be of additive-additive (naaepi), dominance-
dominance (nddepi) or additive-dominance (nadepi) type.

Results for simulations with sample sizes of 200 and 500 are described in the

following. Table 2.2 summarizes the average number of correctly identified effects as

well as the average number of false positives and the proportion of false positives for

the standard version of the mBIC (2.3). Table 2.3 gives the corresponding statistics

for modifications based on the two step procedure (see Formula (2.4) ) as well as

for the additional search for epistatic terms with reduced penalty based on Formula

(2.5). Table 2.3 demonstrates that the two step procedure has the potential to

increase the detection power while keeping the observed proportion of false positives

at a level similar to the standard version of the mBIC. The increase in detection rates

gained by this procedure is apparent for models with a larger number of underlying

QTL (scenario 7-9). The performance of the additional search for epistasis based

on (2.5) depends on the actual model. In some cases the corresponding increase in

the number of false positives is larger than the increase in the average number of
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Table 2.2: Simulation results for sample size 200 and 500 (initial penalty)

scenario 1 2 3 4 5 6 7 8 9
cadd 1.818 1.712 1.668 2.424 2.334 2.182 2.950 2.676 2.478
c∗add 1.994 1.988 1.982 3.180 3.166 3.158 4.982 4.976 4.874
cdom 0.966 0.968 0.978 1.296 1.204 1.064 1.348 1.164 0.972
c∗dom 0.932 0.962 0.958 1.814 1.870 1.840 2.626 2.260 2.530
cepi 1.040 0.860 0.470 1.020 0.830 0.390 0.900 0.650 0.250
c∗epi 1.730 2.350 3.690 1.730 2.260 3.280 1.630 1.990 3.110
pfp 0.040 0.053 0.063 0.050 0.044 0.059 0.061 0.065 0.080
pfp∗ 0.027 0.024 0.024 0.020 0.023 0.026 0.023 0.019 0.029
fp 0.160 0.200 0.210 0.250 0.200 0.230 0.340 0.310 0.320
fp∗ 0.130 0.130 0.160 0.140 0.170 0.220 0.220 0.180 0.310

Columns contain the average number of correctly identified additive (cadd), domi-
nance (cdom) and epistatic (cepi) effects. “pfp” denotes the proportion of false posi-
tives and ”fp” the average number of falsely detected effects, respectively. Without
the superscript ”∗”, the results are for a sample size of 200, otherwise they are based
on samples of size 500.

correctly identified effects. We observed this situation to occur under scenarios 1,4

and 7 (one relatively weak epistatic effect related to one of the main effects) and

the sample size n = 200. Notice however that under all these scenarios the gain

in the detection rate was decisively larger than the increase in false positives when

the sample size was n = 500. The additional search for epistatic effects is especially

successful for scenario 9 with a large number of underlying main and epistatic effects.

Figures 2.4 and 2.5 are based on the final search results described in Table 2.3.

They indicate that the ability to detect an effect of a given size depends mainly on

the individual effect heritability h2 = σ2
eff/(σ

2
ǫ + σ2

G).

For the sample size n = 200, the majority of large additive effects (h2 > 0.07) is

detected with a high power (larger then 0.8). While only some fraction of moderate

effects (h2 ∈ (0.04, 0.07)) is detected for n = 200, moderate additive and dominance

effects are almost always detected when n = 500. Epistasis effects are somewhat

harder to detect, the type of epistasis however does not influence the detectability.
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Figure 2.4: Percentage correctly identified additive, dominance and epistatic effects
vs. individual effect heritabilities h2 = σ2

eff/(σ
2
ǫ + σ2

G). Detection rates are taken
from simulations of scenarios 1-9 (see Table 2.3) for n = 200.

The observed proportion of false positives never exceeds 9% for n = 200 and 4% for

n = 500.

Realistic scenarios: As an alternative model, we take the marker setup from

a Drosophila experiment by Huttunen et al. (2004) and also include missing data.

To obtain a more densely spaced set of genome locations, genotype values were

imputed at 35 positions chosen equidistantly between adjacent markers, keeping the

maximum distance between the considered genome locations at not more than 10

cM. Haley-Knott regression (Haley and Knott (1992)) was used to impute values.

See Figure 2.6 for the marker locations.

Our three scenarios permit for different expected proportions (0%, 5%, and 10%
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Figure 2.5: Percentage correctly identified additive, dominance and epistatic effects
vs. individual effect heritabilities h2 = σ2

eff/(σ
2
ǫ + σ2

G). Detection rates are taken
from simulations of scenarios 1-9. (see Table 2.3) for n = 500.

resp.) of marker locations per chromosome where the genotype information is miss-

ing. To permit for comparison, both heritabilities and QTL characteristics are

chosen as in the above mentioned complex equidistant scenario 4 involving four ad-

ditive, two dominance and two epistatic effects, and furthermore the QTL effects

have again been positioned in a distance of 5 cM to the closest marker. For this

experiment we use the sample size n = 200.

According to Table 2.4, the obtained results are similar to those obtained for the

complex equidistant scenario 4 which has the same number and relative strength of

effects. This suggests that our approach does not rely on the somewhat unrealistic

assumption of equidistant markers and no missing data.
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Not surprisingly, the average number of correctly identified markers decreases

slightly when the proportion of missing data increases. The proportion of false

positives on the other hand somewhat increases. This results from a loss of power

as well as a loss of precision in localizing QTL.

2.6 Illustrations

We apply our proposed method to data sets from QTL experiments on Drosophila

virilis and mice, respectively. Huttunen et al. (2004) analyzed the variation in male

courtship song characters in Drosophila virilis. We considered their intercross data

set obtained from 520 males and the quantitative trait PN (number of pulses in

a pulse train). Figure 2.6 shows the positions of the markers used in this experi-

ment (solid lines). Depending on the chromosome, between two and five percent of

the marker data were missing. We used the same imputation strategy as for our

considered realistic scenarios, both for the missing data and the additional genome

positions.

Huttunen et al. (2004) used single marker analysis as well as composite interval

mapping. They found one QTL on chromosome 2, five QTL on chromosome 3

and another QTL on chromosome 4. As they note, four of the five positions found

on chromosome 3 are close together and may well correspond to only one single

underlying QTL.

With our approach and the penalization based on 59 search positions, we found

the same QTL positions on chromosome 2 (at 53.7 cM) and 4 (at 100.2 cM), but

only two positions (at 25.4 and 108.25 cM) on chromosome 3. All QTL found were

classified as additive. The QTL locations pointed out by our method as well as

intervals suggested by Huttunen et al. (2004) are presented in Figure 2.6. In the

results of the additional regression analysis we observed that none of the putative
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Figure 2.6: Genetic map for the Drosophila v. experiment by Huttunen et al. (2004).
Solid horizontal lines indicate observed marker positions, dotted lines show imputed
positions. QTL localized by our proposed method are symbolized by diamonds.
Intervals with significant additive and/or dominance effects found by Huttunen et al.
(2004) applying composite interval mapping are indicated by solid vertical lines.

QTL suggested by Huttunen et al. (2004) on chromosome 3 that were not found

by our method significantly improves our model (corresponding p-values for adding

these QTL were equal to 0.85, 0.34, 0.06 and 0.32). Given these results and the

above remark by Huttunen et al. (2004)), our method might have lead to a more

precise localization of the respective QTL on chromosome 3.

Shimomura et al. (2001) investigated the circadian rhythm amplitude in mice on

192 F2 individuals. Genotypes were observed on 121 markers spread across the 19

autosomal chromosomes with 0-5% of the data missing for most markers. Again,

the same imputation strategy as described in the section on realistic scenarios was
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used.

The analysis presented in Shimomura et al. (2001) consists of single and pairwise

marker genome scans with permutation tests for assessing statistical significance.

They identified one main effect on chromosome 4 at 42.5 cM and one epistatic term

between the previous position and a marker on chromosome 1 at 81.6 cM.

Both QTL were detected by our method, one additive main effect on chromosome

4 and one dominant × additive epistatic effect between the QTL on chromosome

4 and 1. The epistatic term was found in an additional search step based on the

mBIC described in Formula (2.5).

2.7 Discussion

In this paper we use a modification of the Bayesian Information Criterion (mBIC)

to locate multiple interacting quantitative trait loci in intercross designs. The pro-

posed procedure allows to detect multiple interacting QTL while controlling the

probability of the type I error at a level close to 0.05 for sample sizes n ≥ 200.

The main advantages of this procedure include that it is straightforward to apply

and computationally efficient which makes an extensive search for epistatic QTL

practically feasible.

We presented results from simulations with single effects (additive, dominance

and epistatic) of different magnitude and for complex scenarios in order to investi-

gate detection thresholds. We applied our proposed procedure to realistic parame-

ter settings including non-equidistant marker positions and different proportions of

missing values. In order to demonstrate the applicability of our proposed method

when applied to real data, we analyzed two sets of QTL experiments from the genetic

literature, namely one dealing with Drosophila virilis and another one with mice.

Both, our simulation results and our real data analysis confirm good properties of

the proposed modifications to the BIC.
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Compared to the original BIC (see Schwarz (1978)), the mBIC contains an extra

penalty term which accounts for the large number of markers included in typical

genome scans and the resulting multiple testing problem. While a modification of

the BIC is already required when only main effects are considered (see e.g. Broman

and Speed (2002) and theoretical calculations in Bogdan et al. (2004), the multiple

testing problem becomes even more important when epistatic effects can enter the

model regardless of the related main effects, as in our approach.

The simulations reported in this paper show that the mBIC appropriately sepa-

rates additive, dominant and epistatic effects. In the case of closely linked markers

however, our approach sometimes leads to a misclassification of the effect type,

while still correctly identifying the presence of an effect. Hence, we suggest to use

the mBIC rather to locate QTL than to identify the specific effect type. The pro-

cedure should also not be extended to estimate the magnitude of QTL effects or

heritabilities. Estimating parameters after model selection leads to upward biased

estimators of the effect sizes. This is true for any method leading to the choice of

a single set of regressors, i.e. also in the case of the widespread methods based on

multiple tests or interval mapping (see e.g. Bogdan and Doerge (2005)).

The prior for the number of main and epistatic effects in the standard version

of the mBIC (with expected values ENv = 2.2 and ENe = 2.2) allows to control

the probability of the type I error. This is suggested for an initial search in case

of no prior knowledge on the number of effects. When reliable information on the

number of effects is available, we strongly recommend using it for defining ENv and

ENe. Our simulations also show that modifying the prior choices of ENv and ENe in

Formula (2.4) using estimates of the QTL number from an initial search based on the

standard version of the mBIC allows for some increase of power of QTL detection

while preserving the observed proportion of false positives at a level similar to the

standard version of the mBIC. The same holds for the additional search for epistatic
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terms with modified penalties according to Formula (2.5).

In the present paper we apply the mBIC to locate multiple interacting QTL by

choosing the best of competing regression models. Our simulations as well as results

reported in Broman (1997), Broman and Speed (2002) and Bogdan et al. (2004)

show that the proposed forward selection strategy performs very well in this context.

However, the mBIC has also great potential to be used in a stricter Bayesian context.

The majority of currently used Bayesian Markov Chain Monte Carlo methods for

QTL mapping requires multiple generation of all regression parameters and multiple

visits of a given model in order to estimate its posterior probability by the frequency

of such visits (see eg. Yi et al. (2005) and references given there). As a result,

the proposed methods are computationally intensive and are very rarely verified

by thorough simulation studies, which could provide insight into the influence of

the prior distributions. The influence of the choice of priors on the outcome of

Bayesian model selection methods is discussed e.g. by Clyde (1999). Note that the

mBIC provides a method to estimate the posterior probability of a given model

by visiting this model just once. This is because exp(−mBIC/2) is an asymptotic

approximation for P (Y |M) ∗ P (M), where P (Y |M) stands for the likelihood of the

data given model M (see Schwarz (1978)) and P (M) is the prior probability of a

given model. Thus the posterior probability of a given model Mi could be estimated

by

P (Mi|Y ) ≈ exp(−mBICi/2)
∑k

j=1 exp(−mBICj/2)
,

given that the k visited models contain all plausible models. To reach all sufficiently

plausible models, a suitable search strategy needs to be designed. The construction

of such an efficient search strategy is difficult due to the huge number of possible

models (for 200 markers we potentially have 2638800 models). However, we believe

that a numerically feasible procedure permitting to use mBIC in a Bayesian context

might be found by exploiting the specific structure of QTL mapping problems, re-
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stricting the search space and applying a proper adaptation of an efficient MCMC

sampler (see e.g. Broman and Speed (2002)) or a heuristic search strategy like ge-

netic algorithms (see e.g. Goldberg (1989)), simulated annealing (Kirkpatrick et al.

(1983)), tabu search (Glover (1989a), Glover (1989b)) or ant colony optimization

(see e.g. Dorigo et al. (1999)). This would allow to estimate posterior probabilities of

different plausible models as well as to use model averaging to estimate parameters

like effect sizes and heritabilities.

2.8 Appendix

The difference between the mBIC of the null model (mBIC0) and the mBIC of any

one-dimensional model Mi (mBICMi
) is log n+ 2 log(l− 1) or log(u− 1) depending

whether the effect included in the one-dimensional model is a main or epistatic

effect. The number of possible one-dimensional models Mi for intercross designs is

2m+ 4m(m− 1)/2.

In order to derive a bound for the type I error under the null model, we note

that two times the difference of the likelihoods of a one-dimensional model and the

null model is approximately χ2-distributed with 1 d.f.

Applying the Bonferroni inequality gives

P (mBICMi
> mBIC0, for any i) ≤ 4mP (Z >

√

logn + 2 log(l − 1)) +

+ 4m(m− 1)P (Z >
√

log n+ 2 log(u− 1)) + ǫ (2.8)

for the probability of choosing any one-dimensional model, if the null model is true.

The curves shown in Figure 2.1 are derived by evaluating the right hand side of

Equation 2.8 for values of n between 100 and 500 and m = 132. For the backcross

penalty, the parameters l and u are set to m/2.2 and m(m − 1)/4.4, respectively,

whereas for the intercross penalty to u = m/1.1 and l = m(m− 1)/1.1.
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Table 2.3: Simulation results for sample size 200 and 500 (adjusted
penalty)

scenario 1 2 3 4 5 6 7 8 9
cadd 1.822 1.700 1.694 2.494 2.456 2.353 3.086 3.014 2.600
c∗add 1.993 1.990 1.995 3.280 3.238 3.218 5.200 5.163 5.140
cdom 0.978 0.987 0.966 1.302 1.240 1.180 1.504 1.280 1.032
c∗dom 0.938 0.945 0.943 1.865 1.848 1.865 2.833 2.390 2.755
cepi 1.064 0.940 0.482 1.016 0.806 0.380 0.962 0.630 0.252
c∗epi 1.745 2.365 3.780 1.685 2.220 3.410 1.625 1.963 3.278
fp 0.156 0.200 0.228 0.260 0.262 0.280 0.370 0.336 0.346
fp∗ 0.125 0.150 0.230 0.205 0.205 0.260 0.233 0.218 0.270
pfp 0.039 0.052 0.068 0.051 0.055 0.067 0.062 0.064 0.082
pfp∗ 0.026 0.028 0.033 0.029 0.027 0.030 0.024 0.022 0.024

∆ca.epi 0.018 0.130 0.158 0.046 0.112 0.100 0.058 0.128 0.100
∆c∗a.epi 0.150 0.040 0.070 0.185 0.035 0.085 0.145 0.110 0.395
∆fpa 0.07 0.11 0.104 0.082 0.09 0.08 0.066 0.086 0.084
∆fp∗

a 0.065 0.04 0.065 0.035 0.025 0.055 0.05 0.027 0.048
pfpa 0.055 0.074 0.088 0.065 0.069 0.080 0.071 0.075 0.095
pfp∗

a 0.038 0.034 0.042 0.033 0.030 0.035 0.028 0.025 0.027

Simulation results for the two step procedure based on Formula (2.4) and the three
step procedure based on Formula (2.5) are shown. Columns contain the average
number of correctly identified additive (cadd), dominance (cdom) and epistatic (cepi)
effects as well as the average number of falsely detected effects (fp) and the pro-
portion of false positives (pfp) for the two step procedure. The column ∆ca.epi and
∆fpa display average numbers of correctly identified and false positive epistatic ef-
fects that were detected additionally in the third search step based on Formula (2.5);
”pfpa” on the other hand denotes the total proportion of false positives based on the
finally selected model at the end of the third search step. Without the superscript
”∗”, the results are for a sample size of 200, otherwise they are based on samples of
size 500.

Table 2.4: Simulation results for different percentages of missing data

missing cadd cdom cepi pfp
0% 2.486 1.302 1.290 0.043
5% 2.362 1.264 1.140 0.054
10% 2.262 1.160 0.980 0.070

Results of simulations for the realistic scenario with 0%, 5% and 10% of missing
marker data. Columns contain the average number of correctly identified additive
(cadd), dominance (cdom) and epistatic effects (cepi) and the proportion of false pos-
itives (pfp) derived with the two step search strategy based on Formula (2.4).
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3.1 Introduction

The mBIC is based on standard L2 regression, assuming that the conditional

distribution of the trait given the marker genotypes is normal. In practice this

assumption is rarely satisfied. While the Central Limit Theorem shows that

moderate deviations from normality have little influence on the mBIC, the

properties of this criterion deteriorate drastically when the distribution of the trait

has a heavy tail or the data include a certain proportion of outliers. Thus we

consider an alternative approach based on robust regression techniques and

construct robust versions of the mBIC. For this purpose, we use several well known

contrast functions and investigate the resulting versions of the mBIC both

analytically and using computer simulations. It turns out that the robust versions

of the mBIC perform consistently well for all the distributions analyzed and much

better than the standard version of the mBIC in situations when the distribution

of the trait is heavy tailed. A possible exception to this rule is Huber’s contrast

function with a very small k, which we considered as a close approximation to L1

regression. The corresponding procedure was outperformed by the other

considered procedures under several models describing the error.

While the basic idea of including a prior that penalizes high dimensional models

more heavily should be of interest in a more general context, the modification of

the BIC must be adapted to the structure of the model. Thus our investigations

are carried out in an ANOVA setting with one way interactions, as encountered in

the context of QTL mapping. Consequently, our regressors are taken to be the

dummy variables which describe the genotypes of the markers, as well as products

of pairs of these dummy variables.



49

3.2 The statistical model

We start by briefly reviewing the multiple regression model considered. It is an

ANOVA model with one-way interactions and can be used for QTL mapping

within the context of the backcross design. Let Xij denote the genotype of the ith

individual at the jth marker. We set Xij = −1
2
, if the ith individual is homozygous

at the jth marker and Xij = 1
2
, if it is heterozygous. We fit a multiple regression

model of the form

Yi = µ+
∑

j∈I

βjXij +
∑

(u,v)∈U

γuvXiuXiv + ǫi , (3.1)

where I is a subset of the set N = {1, . . . , nm}, nm denotes the number of markers

available, U is a subset of N ×N and ǫi is a random error term. In order to

identify markers which are close to a QTL, we need to select an appropriate

submodel. For this purpose, we allow the inclusion of interaction terms in the

model, even when the corresponding main effects are not included. This approach

is justified by the recent discoveries of genes that do not have their own additive

effects, but only influence a trait by interacting with other genes (see e.g. Fijneman

et al. (1996) and Fijneman (1998)).

For normally distributed errors, ǫi, classical least squares regression is well justified,

for instance, by the Gauss–Markov Theorem. As a result of the Central Limit

Theorem, if the sample is large enough, then the standard test procedures for the

significance of regression coefficients are resistant to moderate deviations from the

assumption of normality. It can be seen that this property is shared by the BIC

and its modification for mapping QTL, the mBIC. However, the estimates and

tests derived under the assumption of normality cannot be expected to work well

in the cases of skewed and heavy tailed distributions. In some situations, as in the

case of the Cauchy distribution, the Central Limit Theorem does not even hold. It
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is also well known that standard L2 regression is highly sensitive to outliers.

Methods of robust regression provide an alternative in such situations. They

perform well under a wide range of error distributions without losing too much

power when normality holds. One approach to obtaining robust regression

estimates is to use M-estimates, i.e. to minimize another measure of distance

instead of the residual sum of squares. Another approach would be to use

MM-estimates, which have the additional property of also being robust with

respect to leverage points (see Yohai (1987)). However, the model considered only

contains dummy variables and, due to appropriate randomization, the design is

close to being balanced. Therefore, leverage points should not be expected. We

thus focus on M-estimates but mention here that our simulations gave nearly

identical results for both M-estimates and the corresponding MM-estimates.

M-estimates of the regression parameters are based on the minimization of
∑n

i=1 ρ(ri), where the ri are the residuals standardized using a robust scale

estimator and ρ(x) is a contrast function. We consider the following popular

contrast functions:

ρHuber(x) :=











k|x| − k2/2 for |x| > k

x2/2 for |x| ≤ k ,
(3.2)

ρBisquare(x) :=











k2/6 for |x| > k

k2

6
[1 − (1 − (x

k
)2)3] for |x| ≤ k ,

(3.3)
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ρHampel(x) :=



































a(b− a+ c)/2 for |x| > c

a(b− a+ c)/2 − a(|x|−c)2

2(c−b)
for b < |x| ≤ c

a|x| − a2/2 for a < |x| ≤ b

x2/2 for |x| ≤ a .

(3.4)

The calculation of regression coefficients based on these contrast functions requires

an iterative method, such as iteratively reweighted least squares. In our

simulations we standardized residuals using the median absolute deviation from the

median. For details on this and other aspects of robust regression (e.g. confidence

regions and tests for M-estimates) see Chapter 7 in Huber (1981). Applications of

robust regression have been discussed, for instance, in Carroll (1980).

Notice that for small k, Huber’s contrast function is very close to the objective

function ρ(x) = |x| used in L1 regression. Among others, we will consider such a

version of Huber’s M-estimate and expect it to provide some insight concerning

the performance of L1–regression. We refer to Bassett Jr and Koenker (1978) for a

more detailed discussion of L1 regression.

In the next section of the paper we discuss the problem of model selection in the

context of robust regression.

3.3 Robust model selection and the modified

BIC

A natural way to obtain a robust version of the BIC (or the mBIC) is to replace

the residual sum of squares in the criterion for model selection by a sum of

contrasts. However, unlike in the L2 case, a sum of contrasts will usually not be

scale invariant. We therefore propose to standardize the Yi in a robust way and
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work with standardized observations, Y
(s)
i , obtained by subtracting the median

and dividing by the median absolute deviation (MAD) as defined in Ronchetti

et al. (1997). Notice that it is necessary to use the same estimate of the MAD in

all the models considered, in order to make comparisons between models possible.

We therefore propose to use the MAD calculated under the null model of no effect

for the purposes of model selection. For the purpose of estimating the parameters

of the various regression models, we additionally rescale the residuals separately

for each model. In our simulations, we used the robust rescaling provided by the

function ’rlm’ in the library MASS of the R package, which is available under

http://www.R-project.org.

This leads to the following robust version of the BIC:

BIC∗
ρ := n log

n
∑

i=1

ρ(Y
(s)
i − x′iθ̂) + k log(n) . (3.5)

Here, x′i denotes the vector of regressors in the model (see 3.1) and θ̂ contains the

regression coefficients estimated using ρ(·) as the contrast function.

An alternative approach proposed by Ronchetti et al. (1997) in the context of

model selection is to rescale the contrast function instead of standardizing the Yi’s.

As before, the same rescaling factors have to be used in all models. Ronchetti

et al. (1997) propose estimation of the rescaling factors based on the largest

possible model. This is not possible in our setup, since the largest possible model

usually contains many more variables than observations. We therefore modified

their approach and estimated rescaling constants under the null model. This way

of rescaling the contrast function led to results that were almost identical to those

obtained after standardizing Y using the MAD from the null model.

It has been shown by Machado (1993) that the robust BIC (3.5) is still consistent

under quite general conditions on the error distribution. Martin (1980), as well as
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Ronchetti (1985), used similar ideas, in order to make the Akaike information

criterion (AIC) robust. However, consistency is a minimal requirement, since the

actual performance of BIC∗
ρ will depend both on ρ(x) and the error distribution.

Indeed this dependence becomes apparent from results in (Jurec̆ková and Sen,

1996, see p. 410), who derived the limiting distribution of

n
∑

i=1

(

ρ(Y
(s)
i − x′iθ̂1) − ρ(Y

(s)
i − x′iθ̂2)

)

for a fixed null model M1 versus a higher dimensional model M2.

In order to obtain more reliable performance of the robust BIC for different

contrast functions ρ(x) and error distributions, it seems natural to renormalize

BIC∗
ρ by taking the limiting distribution of

Dn = n(log
∑

ρ(Y
(s)
i − x′iθ̂1) − log

∑

ρ(Y
(s)
i − x′iθ̂2))

into account. Ideally, BIC(M2) −BIC(M1) should have the same asymptotic

distribution for different ρ and error models. For this purpose, we will derive the

asymptotic distribution of Dn using results from Jurec̆ková and Sen (1996), as well

as the delta method. Since the asymptotic distribution of Dn depends not only on

ρ, but also on the unknown error distribution, the required normalization constant

needs to be estimated.

We compare model M1 with parameter vector θ1 of dimension p1 + q1 and model

M2 with parameter vector θ2 of dimension p2 + q2. M1 is assumed to be a

submodel of M2.

Theorem 1 Let ρ be a contrast function satisfying the regularity conditions

specified in Chapter 5.5 of Jurec̆ková and Sen (1996). Define Ỹ
(s)
i to be the

observations standardized according to the population median and the population

MAD. Furthermore, define the score function ψ(x) = ρ′(x). Let γ =
∫

ψ′(x)f(x)dx,
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σ2
ψ =

∫

ψ(x)2f(x)dx and δ =
∫

ρ(x)f(x)dx, where f(x) denotes the density

function of the error distribution under the true regression model based on the

observations Ỹ
(s)
i . Moreover, let us define the constant ce = 2γδ/σ2

ψ.

Then under model M1

ceDn
d→ χ2

(p2+q2)−(p1+q1) , (3.6)

as the sample size n→ ∞ .

Proof. Let ln(θ) =
∑

ρ(Y
(s)
i − x′iθ), where θ is the true parameter vector. Note

that

1

n
ln(θ) =

1

n

∑

ρ(Y
(s)
i − x′iθ)

p→ E[ρ(Ỹ
(s)
i − x′iθ)] = δ .

From the consistency of M-estimates (see e.g. Huber (1981)) and the uniform

continuity of ln in a neighborhood of θ, it also holds that both

1

n
ln(θ̂1)

p→ δ , and
1

n
ln(θ̂2)

p→ δ , (3.7)

where θ̂1 and θ̂2 are the M-estimates under models M1 and M2, respectively.

Approximating Dn by the first term of its Taylor series expansion leads to

n(log ln(θ̂1) − log ln(θ̂2)) = n(log(1 +
ln(θ̂1) − ln(θ̂2)

ln(θ̂2)
)) (3.8)

=
ln(θ̂1) − ln(θ̂2)

1
n
ln(θ̂2)

+Rn , (3.9)

where

Rn = O

(

(ln(θ̂1) − ln(θ̂2))
2

1
n
l2n(θ̂2)

)

.

Jurec̆ková and Sen (1996) (page 408-416, note their discussion of the extension of

their results to studentized observations) proved that

2γ

σ2
ψ

(ln(θ̂1) − ln(θ̂2))
D→ χ2

(p2+q2)−(p1+q1)
. (3.10)
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Thus to conclude (3.6), it is enough to observe that from (3.7) and (3.10)

Rn
p→ 0

as n→ ∞.

2

For least squares regression, ρ(Y
(s)
i − x′iθ) is equal to the residual sum of squares.

In this situation, asymptotically Dn has a χ2-distribution with (p2 + q2) − (p1 + q1)

degrees of freedom Serfling (1980). Hence, the normalization constant ce is equal

to 1 in this case.

As can be seen from Theorem 1, specific normalization constants (ce) depend on

the error distribution and the ρ-function considered. If the error distribution is

assumed to be known, ce can be derived analytically. The appropriate values for

chosen distributions is shown in Table 3.1. In practice, the error distribution and

ce have to be estimated. For this purpose, we first carry out model selection with

ce equal to 1, i.e. the normalizing constant for Gaussian errors. The empirical

distribution of the resulting residuals is then used to approximate the expected

values, defining γ, σ2
ψ and δ by the corresponding averages (see e.g. page 409

Jurec̆ková and Sen (1996)). Plugging in these quantities leads to the estimate ĉe.

The discussion above leads us finally to the following robust version of the mBIC:

mBIC = ĉen log
∑

ρ(Y
(s)
i − x′iθ̂) + (p+ q) logn + (3.11)

2p log(l − 1) + 2q log(u− 1) ,

where ρ is a given contrast function and θ̂ is the corresponding M-estimate of the

(p+ q)-dimensional parameter vector of the model considered.
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3.4 Comparison of performance under different

error models

3.4.1 Design of the simulations

Simulations are carried out to compare the performance of least squares regression

and robust methods for QTL mapping under a variety of error distributions. We

consider M-estimates for robust models based on the following contrast functions:

ρHuber, ρBisquare and ρHampel. The parameters in the ρ–functions are set to a = 2,

b = 4 and c = 8 for Hampel’s function, k = 1.345 for Huber’s function, and

c = 4.685 for Tukey’s bisquare M-estimator. These are the default parameter

values used in the R-package MASS, which was used to obtain robust regression

estimates. We also chose k = 0.05 for Huber’s M-estimator as a close, smooth

approximation to the L1 contrast function ρ(x) = |x|. Notice that due to the

smoothness of ρHuber, Theorem 1 still applies.

The model selection process was carried out using the standard version of the

mBIC (3.11) with l = nm/2.2 and u = ne/2.2. To solve the problem of searching

over a large class of possible models, we use forward selection.

Three arrangements of marker genotypes with a backcross population of 200

individuals were simulated.

Arrangement 1: One chromosome of length 100 cM with 5 equally spaced markers;

Arrangement 2: Two chromosomes of length 100 cM both with 11 equally spaced

markers;

Arrangement 3: Five chromosomes of length 100 cM each with 11 equally spaced

markers.

Two scenarios were considered for each arrangement: A null model with no effects

and a “3 QTL” model with one main effect of size β = 0.55 and one interaction

effect (involving two loci) of size γ = 1.2. We assumed all the QTL to be located
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at marker positions.

All the methods were applied to each of the arrangements under each of six

different error distributions. 1000 replications were used for arrangements 1 and 2,

whereas we carried out 500 simulations for arrangement 3, which is

computationally quite demanding. The performance of each method was measured

by the average number of correctly identified main and epistasis effects, as well as

the false discovery rate defined as

FDR =
1

n

n
∑

i=1

fp.mi + fp.ei
fp.mi + fp.ei + c.mi + c.ei

,

where the quantities fp.mi and fp.ei denote the number of false positive main and

epistasis effects that were detected in replication i, and c.mi and c.ei are the

number of correctly identified main and epistasis effects, respectively. According to

the definition of the FDR (see Benjamini and Hochberg (1995)), the terms in the

sum corresponding to replicates with no detections are set to be equal to zero.

Under the null model, the false discovery rate is equivalent to the multiple type I

(or familywise) error of detecting at least one incorrect effect.

An inferred main effect was classified as being a false positive, if it was more than

15 cM away from the true QTL or the QTL had already been detected. An

epistatic effect was classified as being a false positive, if at least one of the two

QTL involved was more than 15 cM from the true QTL. Notice that this definition

is fairly strict, since effects that are not very strong often lead to the detection of

markers that are further than 15 cM away from the true QTL (see Bogdan and

Doerge (2005) for a discussion).
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3.4.2 Error distributions

We considered the following error distributions, which were all centered around the

origin and standardized such that the inter-quartile range (IQR = Q75 −Q25) was

1.5.

1. Normal: 1.11 ×N(0, σ2) with σ = 1

2. Laplace (double exponential): 1.08 × 1
2λ
exp(−|λt|) with λ = 1

3. Cauchy(scale = 0.75) with scale = 0.5 × IQR

4. Tukey’s gross error model: 1.081 × (λN(0, σ2) + (1 − λ)N(0, τσ2)) with

λ ∼ Bernoulli(p = 0.95), σ = 1 and τ = 100

5. χ2 centered around the mean with 6 d.f.: 0.342 × (χ2
6 − 6)

6. χ2 centered around the median with 6 d.f.: 0.342× (χ2
6 − x̃6) with x̃6 = 5.348

Table 3.1: Values for normalization constants

error distr. Huberk=0.05 Huberk=1.345 Bisquare Hampel
Normal 1.267 1.079 1.095 1.025
Laplace 1.967 1.397 1.387 1.254
Cauchy ∗ ∗ 2.242 2.428
Tukey 1.770 1.952 1.408 1.653
χ2 1.199 1.153 1.164 1.125
χ2
med 1.295 1.255 1.248 1.165

∗ In the case of the Cauchy distribution, the integral for ρHuber leading to δ is infinite.
The definitions of the error distributions are given in Section 3.4.2.

3.4.3 Results of the simulations and discussion

We focus on two points in particular. The first issue is to investigate whether our

approach of using estimated normalization constants leads to similar values for the
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multiple type I error and the false discovery rate under various models for the

error. We call this property error–robustness. The second issue is whether the

power of our procedure for model selection remains high under non-normal errors

and when outliers are present. We call this property power–robustness.

Table 3.2: Multiple type I errors for Arrangement 1.

error distributions
estimate Normal Laplace Cauchy Tukey Chisq Chisq-med
Huberk=0.05 theor. 10.3 11.6 * 11.7 7.3 9.6
Huberk=0.05 est. 10.2 12.0 9.7 10.3 7.6 10.5
Huberk=1.34 theor. 11.1 10.1 * 15.5 10.7 13.0
Huberk=1.34 est. 12.8 12.1 10.6 10.9 10.6 11.9
Bisquare theor. 11.1 10.6 12.0 13.6 10.5 12.3
Bisquare est. 12.2 12.2 11.4 12.0 10.4 10.6
Hampel theor. 10.8 11.1 12.4 14.6 12.3 12.8
Hampel est. 11.9 11.3 9.5 12.0 11.0 12.3
LmBIC2 12.9 10.6 4.6 7.3 11.1 12.3
LBIC2 26.4 22.1 14.9 18.9 23.5 24.0

Comparison of the probability of type I errors under the null model when the distri-
bution of residuals is assumed to be known (theor., ce) or has to be estimated (est.,
ĉe). For L2 regression, ce is always equal to 1. Definitions of the error distributions
are given in Section 3.4.2.

We start by investigating the error–robustness. The probability of type I errors

under the rules considered for selecting a model can be found in Tables 3.2–3.4.

The two rows associated with each of the procedures present the results in the

cases when the proper theoretical constant was used and when the constant was

estimated (separately for each replicate), respectively. These tables show that the

multiple type I errors using the mBIC and estimated normalizing constants are

comparable for all of the procedures. As expected from the formulae given in

Bogdan et al. (2004), the probability of multiple type I errors for Arrangement 1

(only 5 markers) are approximately 0.1 and lower for Arrangements 2 and 3. For

most of the examples there is only a slight difference between the results obtained
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Table 3.3: Multiple Type I errors for Arrangement 2.

error distributions
estimate Normal Laplace Cauchy Tukey Chisq Chisq-med
Huberk=0.05 theor. 3.4 6.8 * 3.5 2.2 4.3
Huberk=0.05 est. 4.2 5.3 6.2 4.6 5.6 5.6
Huberk=1.34 theor. 4.4 5.1 * 7.2 4.7 7.1
Huberk=1.34 est. 3.6 5.5 4.5 5.8 6.0 6.1
Bisquare theor. 4.1 4.1 4.6 4.8 4.5 6.7
Bisquare est. 3.4 5.0 5.4 5.2 5.4 5.8
Hampel theor. 4.2 5.6 5.9 6.3 5.1 6.5
Hampel est. 4.2 4.6 4.7 5.0 6.5 6.7
LmBIC2 4.4 4.6 8.8 3.4 6.1 5.7
LBIC2 90.4 89.8 81.6 86.9 88.4 88.6

Comparison of the probability of type I errors under the null model when the distri-
bution of residuals is assumed to be known (theor., ce) or has to be estimated (est.,
ĉe). For L2 regression, ce is always equal to 1. Definitions of the error distributions
are given in Section 3.4.2.

using theoretical and estimated constants. The slightly larger difference obtained

for the procedure using the Huber contrast under both the Laplace and heavy

tailed distributions results from the problem of estimating the density of the

Laplace distribution close to 0 (the Huber contrast with k = 0.05 assigns a

relatively large weight to the corresponding residuals) and the tails of the Tukey

distribution (the Huber contrast function tends to infinity as x→ ±∞). Also, note

that the multiple type I error of the procedure for model selection based on the

original BIC is much larger than desired and rapidly increases as the number of

regressors becomes larger. This demonstrates the advantage of using the mBIC

rather than the BIC.

The false discovery rates under the “3 QTL” model can be found in Figures 3.1 to

3.3. They provide a similar picture, showing that our estimated normalizing

constants lead to similar false discovery rates for several models for the error term.

Indeed, the false discovery rates when applying the mBIC are approximately 15%
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Table 3.4: Multiple Type I errors for Arrangement 3.

error distributions
estimate Normal Laplace Cauchy Tukey Chisq Chisq-med
Huberk=0.05 theor. 2.6 5.6 * 3.8 1.4 2.6
Huberk=0.05 est. 5.6 6.8 6.2 3.4 6.4 6.0
Huberk=1.34 theor. 6.4 5.2 * 9.7 2.0 6.6
Huberk=1.34 est. 6.0 5.1 4.6 4.3 4.0 5.0
Bisquare theor. 3.8 4.4 3.6 4.0 3.4 5.0
Bisquare est. 4.8 2.6 3.8 4.6 5.0 5.0
Hampel theor. 5.0 7.2 5.6 7.2 4.4 6.2
Hampel est. 6.4 5.7 4.8 4.8 5.2 6.2
LmBIC2 5.5 2.0 6.5 3.0 3.5 3.5
LBIC2 100 100 99.0 100 100 100

Comparison of the probability of type I errors under the null model when the distri-
bution of residuals is assumed to be known (theor., ce) or has to be estimated (est.,
ĉe). For L2 regression, ce is always equal to 1. Definitions of the error distributions
are given in Section 3.4.2.

for Arrangement 1 and 10% for Arrangements 2 and 3 (recall that a proportion of

these ”false” positives are due to the problem of localizing a QTL accurately).

Least squares regression, in combination with standard BIC, results in false

discovery rates above 20% for Arrangement 1, around 60% for Arrangement 2 and

close to 100% for Arrangement 3, which again demonstrates the necessity of

modifying the original BIC.

Figures 3.1 to 3.3 also provide information regarding the power–robustness. They

present the average detection power (averaged over additive and interaction

effects) and the estimated false discovery rate for the analyzed procedures under

different error distributions. In the case of normal errors, model selection based on

least squares regression and M-estimation performs comparably for all three

arrangements. The only robust regression method which is significantly worse than

L2 regression under normal errors is the one based on the Huber contrast with

k = 0.05. This confirms the low efficiency of L1 regression under normality. The
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Figure 3.1: Percentage of correctly identified main and epistatic effects (shaded bars)
and false discovery rates (horizontal black lines) for Arrangement 1. Definitions of
the error distributions are given in Section 3.4.2

Huber contrast function with k = 0.05 also performed significantly worse than the

other robust methods in the case of the Tukey and χ2 error distributions. Our

simulations demonstrate that standard L2 regression performs relatively well under

the Laplace and χ2 distributions, while it is inferior to some of the robust

methods. The largest difference between L2 regression and robust methods is

observed for the heavy-tailed Cauchy distribution (for which L2 regression fails

completely) and the Tukey distribution, according to which an outlier occurs with

some given probability. Tukey’s bisquare estimate performed well in all the

problems considered.

3.5 Application to real data

We apply our method to a data set obtained from QTL experiments on mice.

Mähler et al. (2002) analyzed the susceptibility to colitis in strains that carry a

deficient IL-10 gene, which is important in controlling the response of the immune
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Figure 3.2: Percentage of correctly identified main and epistatic effects (shaded bars)
and false discovery rates (horizontal black lines) for Arrangement 2. Definitions of
the error distributions are given in Section 3.4.2

system to intestinal antigenes. We consider their data obtained from a backcross

to the less susceptible B6 strain and the quantitative traits MidPC1 and

CecumPC1, which are the first two principal components of four scores measuring

the severity and type of lesions in middle colon and cecum, respectively.

The data set contains 203 individuals and twelve markers from nine chromosomes,

which were selected from a preliminary genome scan of 40 individuals and 67

markers spread over all 20 chromosomes.

Mähler et al. (2002) found one significant main effect for the MidPC1 trait on

chromosome 12, which explains 6.7% of the variance and one possible main effect

for CecumPC1 on chromosome 13, which explains 3.4% of the variance, but no

epistatic effects. The distributions of the residuals under the selected model clearly

deviated from normality by being bimodal in the case of both traits.

The modified BIC based on both least squares and M-estimation confirmed the

main effect for ModPC1. In addition, both methods found an epistatic effect
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Figure 3.3: Percentage of correctly identified main and epistatic effects (shaded bars)
and false discovery rates (horizontal black lines) for Arrangement 3. Definitions of
the error distributions are given in Section 3.4.2

between the marker on chromosome 4 at 71 cM and the marker on chromosome 7

at 46 cM. In the case of CecumPC1, model selection using least squares regression

found no QTL. Using M-estimation with a bi-square, Huber or Hampel contrast

function, we detected two QTL, one on each of chromosome 5 and chromosome 13.

The effect on chromosome 5 is slightly stronger and has a different sign to the

effect on chromosome 13, as suggested by Mähler et al. (2002).

This example illustrates that our robust methods of model selection are capable of

finding additional effects when the distribution of errors is not normal.

3.6 Conclusions

Overall, the performance of the M-estimators considered is superior to least

squares regression in the context of QTL mapping under various conditions.

Considering the wide spectrum of possible error distributions, M-estimates based
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on the contrast functions considered also prove to be more flexible than L1

regression. Among the robust methods considered, Tukey’s bisquare estimate

showed particularly good overall performance.
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4.1 Introduction

An alternative solution to the problem of non-normality of the error distribution is

provided by nonparametric methods based on ranks. In the context of QTL

mapping, this approach has been proposed and investigated e.g. in Kruglyak and

Lander (1995), Broman (2003), or Zou et al. (2003). A major advantage of rank

based statistics is that their distribution under the “null” hypothesis does not

depend on the error distribution. Moreover, as demonstrated in Zou et al. (2003)

(see also Lehmann (1975)), the asymptotic efficiency of rank tests is only slightly

smaller than that of the classical tests when the error distribution is normal, and

much higher when the the error distribution is heavy tailed.

The advantage of rank-based methods over M-estimation discussed in Chapter 3

lies in the smaller computational effort of least squares regression. This can

become relevant in the context of QTL mapping, where the verification of a large

number of competing models is required.

In this chapter, we use the idea of rank tests and propose a new version of the

mBIC which is based on ranks instead of the original trait values. For continuous

error distributions and for the standard null model of no effects, we prove that the

asymptotic distribution of the rank version of the mBIC is the same as the null

distribution of the regular mBIC for normal errors.

4.2 Methods

When applying rank based model selection, one exchanges the trait values by their

ranks. A major advantage of using ranks is that the distribution of the test

statistic under the null hypothesis of no QTL does not depend on the distribution

of the error terms. Using ranks strongly reduces the influence of heavy tails and

outlying observations.
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Our proposed construction of rBIC, the rank version of the mBIC, is very simple.

After substituting the trait values by their ranks, we calculate the rank residual

sum of squares, rRSS =
n
∑

i=1

(Ri − R̃i)
2, where R̃ = (X ′X)−1X ′R and

X = (1, X1, . . . , Xn)
′, with 1 = (1, . . . , 1)′. By replacing the RSS term with rRSS

in formula (2.3), we obtain

rBIC = n log(rRSS) + (p+ r) log(n) + 2p log(l − 1) + 2r log(u− 1), (4.1)

with all the parameters denoted as before.

4.2.1 Simulation design

We consider two setups with QTL and marker genotypes of backcross populations

of size 200 in case of setup 1 and 200 and 500 for setup 2. Setup 1 is identical with

Arrangement 2 described in Section 3.4.1 in order to allow a comparison of robust

and rank-based model selection, respectively.

In the second setup, we consider three chromosomes each of length 100 cM with 7,

8 and 7 markers, respectively, distributed randomly across the chromosome. The

distances between the markers range from 1 to 29 cM with a mean distance of

15.79 cM. To narrow these intervals and to enable a location of QTL at a finer

scale, we used regression interval mapping according to Haley and Knott (1992).

This method relies on imputing putative QTL between markers and to replace

their missing genotypes by expected values, calculated on the basis of neighboring

markers. Using this approach, we imputed additional marker genotypes in order to

reduce the intervals between adjacent markers to a maximum of 10 cM. The

second setup is considered under the null model of no effects and an alternative

model involving 3 main and 3 epistatic effects. The locations and the sizes of main

QTL effects are as follows: QTL1 on chromosome 1 at 20 cM with β1 = 0.8, QTL2
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on chromosome 2 at 20 cM with β2 = 0.7 and QTL3 on chromosome 3 at 1 cM

with β3 = 0.6. The epistatic effects are specified as follows: interaction 1 involving

QTL1 and QTL3 with γ1 = 1.6, interaction 2 involving QTL2 and a new QTL on

chromosome 3 at 75 cM with γ2 = 1.4 and interaction 3 involving two new QTL,

both on chromosome 1 at 27 and 60 cM, respectively, with γ3 = 1.2.

The simulations were performed using the mBIC and rBIC criterion. We apply the

standard forms of these criteria with l = Nm/2.2 and u = Ne/2.2. To solve the

problem of searching over a large class of possible models, we use forward

selection. The simulation results are based on 3000 replications.

To investigate the robustness of our proposed criterion, we consider noise

distributions 1 to 5 defined in Section 3.4.2.

In Tables 4.3 and 4.4, the average number of correctly identified terms and the

false discovery rate (FDR, see Section 3.4.1 for definition) are presented. In

Table 4.3, a main effect is assumed to be correctly identified if at least one of the

chosen markers is within 15 cM of the true QTL. Every additional marker within

this range that is selected is counted as false positive. An epistatic effect is

assumed to be correctly identified if both markers of the chosen interaction term

are within 15 cM of the respective QTL. In Table 4.4, the threshold for correct

identification is increased to 30 cM. This large detection window is particularly

suitable for n = 200 since in this case the standard deviation of the localization of

QTL with magnitudes according to our simulated effect sizes is close to 10cM. In

case of the Cauchy distribution it reaches even 15 cM. These estimates were

obtained by additional simulations.

4.2.2 Simulation results

For setup 1, The type I errors under the null model of no effects are summarized in

Table 4.1. The differences between the results for the mBIC and the rBIC depend
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on the noise distribution and are small in most cases (Cauchy noise is an

exception). According to Proposition 1, the slightly different values obtained for

different error distributions with the rBIC are due to random simulation errors.

In the context of Setup 1, we compare the power and FDRs of our proposed rank

based method to the M-estimates investigated by Baierl et al. (2007) as well as to

the classical BIC. In regression, M-estimates are obtained by minimizing more

general measures of distance instead of the residual sum of squares. In Baierl et al.

(2007), the following three contrast functions have been considered as a measure of

distance: Huber’s, Bisquare and Hampel’s contrast function. The results of their

simulations indicate that the use of the above mentioned robust contrast functions

leads to much better results than those obtained by least squares regression in

cases when the error terms come from a heavy-tailed distribution. In the normal

case, both methods work comparably.

The results for the first setup in the case of two effects are presented in Figures 4.1

(average percentage of correctly identified effects) and 4.2 (FDR). The horizontal

lines indicate the values obtained for the rank based method. In the case of

non-normal distributions, the percentage of correctly identified effects is in most

cases higher for the rank method than for the other methods. None of the

M-estimators performs significantly better for every type of noise. In Figure 4.2 on

the other hand, we observe that the rank method performs similar to M-estimators

but leads to slightly higher FDRs. Overall, it is impossible to choose a robust

method that will perform consistently better than the others for all noise

distributions. However, the rank based rBIC seems to perform well in all settings.

What’s more, the method is very simple to use and computationally less

demanding than M-estimates.

Notice that the original BIC criterion leads to a considerably higher percentage of

correct identification but also (see Figure 4.2) to extremely high false discovery
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Figure 4.1: Percentage correctly identified main and epistatic effects for robust
methods (shaded bars) and rank based method (horizontal black lines)

rates.

Next we will consider the second setup which is more realistic from a practical

point of view. Our simulations indicate that the type I error is smaller in most

cases for the rBIC than for the mBIC (see Table 4.2). The largest differences are

observed for the Cauchy and Tukey error distributions.

For the 6-effect model in setup 2 and a 15 cM identification window, the FDR for

Table 4.1: Type I errors under the null model (no QTL) for setup 1.

error distribution
criterion Normal Laplace Cauchy Tukey Chi2
mBIC 0.057 0.052 0.075 0.047 0.058
rBIC 0.055 0.055 0.054 0.057 0.062
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Figure 4.2: False discovery rates for robust (shaded bars) and rank based methods
(horizontal black lines)

the rBIC ranges from 12% to 15% for n = 200 and from 3% to 8 % for n = 500

(see Table 4.3). The relatively large FDR values for n = 200 are caused by a large

standard deviation of the estimates of QTL location. Our additional simulations

demonstrated that this standard error reaches 15 cM for our simulated QTL and

both sample sizes when the noise is Cauchy-distributed. Thus a significant

proportion of “false positives” is due to correctly identified but imprecisely

localized QTL. This is confirmed by our results provided in Table 4.4 where the

size of the identification window is chosen to be 30 cM. Applying this more liberal

identification criterion, the FDR for the rBIC is at a level of 3-8% for n = 200 and

at a level of 0.5-1.5% for n = 500. Table 4.4 also demonstrates that for the Cauchy

and Tukey error distribution the FDR for the rBIC is significantly smaller than the

FDR for the standard mBIC. For other noise distributions, the FDR of the rBIC is
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Table 4.2: Type I errors under the null model (no QTL) for setup 2.

error distribution
n criterion Normal Laplace Cauchy Tukey Chi2

200 mBIC 0.031 0.029 0.085 0.046 0.032
200 rBIC 0.030 0.031 0.022 0.030 0.030
500 mBIC 0.015 0.021 0.079 0.028 0.024
500 rBIC 0.015 0.022 0.018 0.020 0.021

comparable to the corresponding values for the mBIC.

We now compare the power of the rBIC to that of the mBIC in the context of 30

cM identification windows (see Table 4.4). The results demonstrate that the rBIC

is slightly less efficient than the mBIC if the error distribution is normal. The

corresponding loss of power is equal to 4 percentage points for n = 200 (from 45%

to 41%) and to 2 percentage points for n = 500 (from 90% to 88%). For all other

investigated error distributions, the rBIC has a larger power than the mBIC. A

particularly large difference occurs for the Tukey distribution where for n = 500

the power of the rBIC is 82% compared to 18% for the mBIC. For the Cauchy

distribution the mBIC completely fails (the power is below 1%) and the power of

the rBIC for n = 500 is equal to 55%. Note that both the Tukey and Cauchy

distribution, lead to a certain proportion of outliers. The results confirm that the

rank based method works comparably well for normal errors and much better

when outliers are present.

4.2.3 Application to Real Data

The same data set by Mähler et al. (2002) as described in Section 3.5 was used to

verify the performance of the rBIC in the case of real data.

Preliminary to applying our method to the data set, we removed 16 and 15

observations for the analysis of trait CecumPC1 and MidPC1, respectively, due to

missing trait or genotype information. Further we excluded marker D17Mit88,
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Table 4.3: Results for setup 2 (6-effect-model) and a 15cM identification
window

.

n = 200 n=500
mBIC rBIC mBIC rBIC

noise FDR %corr FDR %corr FDR %corr FDR %corr
1 N 0.117 0.408 0.123 0.369 0.033 0.876 0.034 0.858
2 L 0.131 0.185 0.142 0.237 0.070 0.625 0.055 0.721
3 C 0.091 0.006 0.148 0.135 0.077 0.004 0.082 0.511
4 T 0.101 0.054 0.136 0.292 0.111 0.161 0.043 0.790

5 χ2 − 6 0.129 0.350 0.121 0.382 0.037 0.841 0.034 0.864

Table 4.4: Results for setup 2 (6-effect model) and a 30cM identification
window

n = 200 n=500
mBIC rBIC mBIC rBIC

noise FDR %corr FDR %corr FDR %corr FDR %corr
1 N 0.029 0.452 0.035 0.409 0.004 0.902 0.005 0.883
2 L 0.041 0.211 0.042 0.269 0.013 0.663 0.008 0.756
3 C 0.081 0.010 0.046 0.162 0.072 0.007 0.015 0.549
4 T 0.054 0.064 0.034 0.329 0.036 0.182 0.009 0.818

5 χ2 − 6 0.032 0.390 0.030 0.422 0.006 0.869 0.005 0.890

which had missing genotypes for 62 individuals. Imputation of missing genotype

data was not feasible because of the low marker density.

The considered traits are summaries of discrete measures (scores). For 187

observations of the CecumPC1 there are 32 different trait values, 45% of the

observations fall within one of four most frequent values and the most numerous

group contains 13% of the observations. There are also only 19 different values for

the MidPC1. Among the 188 observations of this trait, 42% are equal to the most

frequent value and 11% to the second frequent. In order to derive ranks for

individuals with identical trait values, midranks as discussed in Section 3 were

calculated.

Since we do not have any prior information we use the standard versions of the
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mBIC and the rBIC with l = Nm/2.2 and u = Ne/2.2.

Applying both the mBIC and the rBIC to the MidPC1 data set, we find two

effects, one main and one epistatic. The main effect found by our approach is the

same as in Mähler et al. (2002). However, we also detected an epistatic effect

between markers on chromosomes 4 and 7 that considerably improves the fit of the

model to the data. The fraction of the variance explained by the model, the R2,

increases from 0.0768 for the one effect model to 0.1397 for the model which also

includes the interaction term.
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Figure 4.3: Absolute values of the t-test statistics vs. absolute values of the Wilcoxon
statistics, for the 11 markers used in the analysis of the CecumPC1.

For the second trait, CecumPC1, the mBIC does not find any effect. When using

the rBIC on the other hand, we get one main effect on chromosome 5 (D5Mit205).

This effect is different from the one that was suggested by Mähler et al. (2002). As

can be seen in Figure 4.3, the value of the rank statistic for the effect found by
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Mähler et al. (2002) labeled with number 9 is substantially smaller than the one

found by the rBIC, labeled with number 3. The respective p-values of the

Wilcoxon test are 0.0089 and 0.0026, which supports the choice of marker number

3. For the t-test, the p-values are 0.0061 for marker 9 and 0.0066 for marker

number 3. When correcting for multiple testing, none of these values is significant

and none of these effects is detected by the regular mBIC criterion. The marker

D5Mit205 was also detected by the robust version of mBIC (see Section 3.5),

which additionally detects effect number 9.



Chapter 5

Program code

The following sections contain the complete Matlab code that was used to carry

out the simulations described in Section 2.5.

77
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5.1 Main.m - main program

ss=1 %scenario ID from input file (effects can also entered

directly

% as matrix - see below)

clear(’Mefft’);

clear(’Iefft’);

clear(’MeffE1t’);

clear(’IeffE1t’);

clear(’Ieffxt’);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% PARAMETER SPECIFICATIONS

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for zz=1:2 % block of simulation runs - necessary to reduce matrix

dimension n

% zz=1:10, n=20 is faster than zz=1:2 and n=100

% the output will be assembled in one text-file irrespectively of zz

% total number of simulation runs = n*max(zz)

rand(’state’,sum(100*clock));

l=12; %number of chromosomes

k=11; %number of markers per chromosome

d=10; %distance between markers in cM

m=200; %number of individuals per simulation run

n=2; %number of simulation runs of block zz

maxeff=20 %maximum number of effects to search for

rangeA = 15; %threshold for correct identification of main effects

(in cM)

rangeI = 15; %threshold for correct identification of epistatic

effects (in cM)

mue = 0; %mean of noise distribution

sigma = 1; %standard deviation of noise distribution

MA=l*k

v=MA/1.1 %penalty parameter for additive effects

u=MA*(MA-1)/1.1 %penalty parameter for epistatic effects
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% Effect-Matrix can be entered directly or via text-file

% 1) Main effects: Mef t*4 -matrix, t gives the number of QTL

% example of input file:

% 1:scenario, 2:chromosome, 3:position in cM, 4:additive effect (1)

or dominance effect(2), 5:effect size

% 1 1 25 1 1.30

% 1 2 25 1 0.65

% 1 2 25 2 1.53

% 2 1 25 1 1.30

% 2 2 25 1 0.65

% 2) Epistatic effects: Ief u*6 - matrix, u gives the number of

epistatic effects

% example of input file:

% 1:scenario, 2:chromosome of (QTL1), 3:position in cM (QTL1),

4:chromosome of (QTL2),

% 4:position in cM (QTL2), 5:additive - additive effect (3) additive

- dominance effect (4),

% or dominance - dominance effect (5), 6:effect size

% 1 1 25 3 25 3 1.4967

% 1 4 25 5 25 4 1.0583

% 2 2 25 3 25 3 1.2220

% 2 5 25 6 25 5 1.8330

fid = fopen(’MEFF29.txt’); %MEFF29.txt: name of input file for main

effects

tmef=fscanf(fid,’%f’,[5,inf]);

tmef=tmef’;

Mef=tmef(tmef(:,1)==ss,2:5);

fid = fopen(’IEFF29.txt’); %IEFF29.txt: name of input file for

epistatic effects

tief=fscanf(fid,’%f’,[7,inf]);

tief=tief’;

Ief=tief(tief(:,1)==ss,2:7)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% SIMULATION

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Generating marker genotypes

[M1,L1,R1] = GenMarker(l,k,d,m,n);
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[M2,L2,R2] = GenMarker(l,k,d,m,n);

X M = M1+M2-1; %Cockerham parametrization - additive part

Z M = -2*(M1-1/2).*(M2-1/2); %Cockerham parametrization - dominance

part

%Genotype of QTL with main effect

G1=GenQTL(L1,R1,Mef(:,1:2));

G2=GenQTL(L2,R2,Mef(:,1:2));

X G = G1+G2-1; %Cockerham parametrization - additive part

Z G = -2*(G1-1/2).*(G2-1/2); %Cockerham parametrization - dominance

part

%Genotype of first QTL of epistatic effect

I1=GenQTL(L1,R1,Ief(:,1:2));

I2=GenQTL(L2,R2,Ief(:,1:2));

X I = I1+I2-1;%Cockerham parametrization - additive part

Z I = -2*(I1-1/2).*(I2-1/2); %Cockerham parametrization - dominance

part

%Genotype of second QTL of epistatic effect

J1=GenQTL(L1,R1,Ief(:,3:4));

J2=GenQTL(L2,R2,Ief(:,3:4));

X J = J1+J2-1;%Cockerham parametrization - additive part

Z J = -2*(J1-1/2).*(J2-1/2);%Cockerham parametrization - dominance

part

%Generate trait value

T = TraitValue(mue,sigma,Mef,Ief,X G,Z G,X I,Z I,X J,Z J);

clear(’DMx’);

%Main search step (mBIC1)

[Meff,Ieff,MeffE1,IeffE1,add,DMx]=SearchQTL(T,X M,Z M,v,u,maxeff);

%Meff1,Ieff1: results of first iteration

%Meff,Ieff: results of second iteration

%Dx: Design Matrix for SearchAssocIeff-step

%Search for associated epistatic effects (mBIC2)

[Ieffx]=SearchAssocIeff(Meff,Ieff,T,X M,Z M,DMx,maxeff);

%collecting detected effects of zz^th runs

Mefft(:,:,((zz-1)*n+1):(zz*n))=Meff;

Iefft(:,:,((zz-1)*n+1):(zz*n))=Ieff;

MeffE1t(:,:,((zz-1)*n+1):(zz*n))=MeffE1;
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IeffE1t(:,:,((zz-1)*n+1):(zz*n))=IeffE1;

Ieffxt(:,:,((zz-1)*n+1):(zz*n))=Ieffx;

end %from zz-loop

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% OUTPUT

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

nn=n*zz;

%number of effects found

nMeff=max(sum(Mefft(:,1,:)>0));
nIeff=max(sum(Iefft(:,1,:)>0));
nMeffE1=max(sum(MeffE1t(:,1,:)>0));
nIeffE1=max(sum(IeffE1t(:,1,:)>0));
nIeffx=max(sum(Ieffxt(:,1,:)>0));

%write file listing all effects found

fid=fopen(’effects.txt’,’w’);

fprintf(fid,’Mefft\n’);
for j=1:nn

for i=1:nMeff

fprintf(fid,’%10.4f’,Mefft(i,:,j));

fprintf(fid,’\n’);
end

fprintf(fid,’\n’);
end

fprintf(fid,’Iefft\n’);
for j=1:nn

for i=1:nIeff

fprintf(fid,’%10.4f’,Iefft(i,:,j));

fprintf(fid,’\n’);
end

fprintf(fid,’\n’);
end

fclose(fid);

%find correctly identified effects

[Res Add,FP Add,Res Epi,FP Epi,I2eff,Res Add1,FP Add1]=

Output(Mefft,Iefft,Mef,Ief,d,rangeA,rangeI,l);

[Res AddE1,FP AddE1,Res EpiE1,FP EpiE1,I2effE1,Res Add1E1,FP Add1E1]=

Output(MeffE1t,IeffE1t,Mef,Ief,d,rangeA,rangeI,l);

[Res Addx,FP Addx,Res Epix,FP Epix,I2effx,Res Add1x,FP Add1x]=
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Output(Mefft,Ieffxt,Mef,Ief,d,rangeA,rangeI,l);

%write file (scenario99 scenarionumber .txt) correctly identified

effects

sss=num2str(ss);

sss=strcat(’scenario’,sss,’.txt’);

fid=fopen(sss,’w’);

fprintf(fid,’SIMULATION SETUP :\n’);
fprintf(fid,’\n’);
fprintf(fid,’Mef :’);

fprintf(fid,’\n’);
s1=size(Mef);

for i=1:s1(1);

fprintf(fid,’%7.2f’,Mef(i,:));

fprintf(fid,’\n’);
end

fprintf(fid,’Ief :’);

fprintf(fid,’\n’);
s1=size(Ief);

for i=1:s1(1);

fprintf(fid,’%7.2f’,Ief(i,:));

fprintf(fid,’\n’);
end

fprintf(fid,’\n’);

fprintf(fid,’ nn m chr mrk \n’);
fprintf(fid,’%7.2f’,nn,m,l,k);

fprintf(fid,’\n’);
fprintf(fid,’\n’);
fprintf(fid,’\n’);
fprintf(fid,’ rangeA rangeI sigma v u \n’);
fprintf(fid,’%7.0f’,rangeA, rangeI, sigma,v,u);

fprintf(fid,’\n’);
fprintf(fid,’\n’);
fprintf(fid,’DETECTED EFFECTS\n’);
fprintf(fid,’\n’);

fprintf(fid,’MAIN EFFECTS (final)\n’);
if Res Add==0;RA=0;

else RA=size(Res Add);

end

for i=1:RA(1);

fprintf(fid,’%1.3f’,sum(Res Add(i,:)>0)/nn);
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fprintf(fid,’%2.0f’,Res Add(i,:));

fprintf(fid,’\n’);
end

if sum(Mef(:,4))>0
fprintf(fid,’corr.id.add : ’);

fprintf(fid,’%4.3f’,sum((Res Add>0),2)’*(Mef(:,3)==1)/nn);

fprintf(fid,’%8.3f’,sum((Res Add>0),2)’*(Mef(:,3)==1)/nn/sum(Mef(:,3)==1));
fprintf(fid,’\n’);
fprintf(fid,’corr.id.dom : ’);

fprintf(fid,’%4.3f’,sum((Res Add>0),2)’*(Mef(:,3)==2)/nn);

fprintf(fid,’%8.3f’,sum((Res Add>0),2)’*(Mef(:,3)==2)/nn/sum(Mef(:,3)==2));
fprintf(fid,’\n’);fprintf(fid,’extr. linked (corr. chromosome) :

’);

fprintf(fid,’%3.2f’,sum(FP Add(:,1)>0)/nn-sum(FP Add1(:,1)>0)/nn);
fprintf(fid,’\n’);
end

fprintf(fid,’extr. unlinked: ’);

fprintf(fid,’%3.2f’,sum(FP Add1(:,1)>0)/nn);
fprintf(fid,’\n’);

fprintf(fid,’False positive main effects:\n’);
for i=1:sum(FP Add(:,1)>0);
fprintf(fid,’%4.0f’,FP Add(i,:));

fprintf(fid,’\n’);
end

fprintf(fid,’\n’);

fprintf(fid,’EPISTATIC EFFECTS (final)\n’);
if Res Epi==0;RE=0;

else RE=size(Res Epi);end

for i=1:RE(1);

fprintf(fid,’%1.3f’,sum(Res Epi(i,:)>0)/nn);
fprintf(fid,’%2.0f’,Res Epi(i,:));

fprintf(fid,’\n’);
end

if sum(Ief(:,6))>0
fprintf(fid,’corr.id. : ’);

fprintf(fid,’%3.2f’,sum(sum(Res Epi>0))/nn);
fprintf(fid,’\n’);
end

fprintf(fid,’extr. unlinked: ’);

fprintf(fid,’%3.2f’,sum(FP Epi(:,1)>0)/nn);
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fprintf(fid,’\n’);

fprintf(fid,’False positive epistatic effects:\n’);
for i=1:sum(FP Epi(:,1)>0);
fprintf(fid,’%4.0f’,FP Epi(i,:));

fprintf(fid,’\n’);
end

fprintf(fid,’\n’);

%write output MEFFE1 IEFFE1 (first iteration)

fprintf(fid,’MAIN EFFECTS (first iteration)\n’);
if Res AddE1==0;RA=0;

else RA=size(Res AddE1);

end

for i=1:RA(1);

fprintf(fid,’%1.3f’,sum(Res AddE1(i,:)>0)/nn);
fprintf(fid,’%2.0f’,Res AddE1(i,:));

fprintf(fid,’\n’);
end

if sum(Mef(:,4))>0
fprintf(fid,’corr.id.add : ’);

fprintf(fid,’%4.3f’,sum((Res AddE1>0),2)’*(Mef(:,3)==1)/nn);

fprintf(fid,’%8.3f’,sum((Res AddE1>0),2)’*(Mef(:,3)==1)/nn/sum(Mef(:,3)==1));
fprintf(fid,’\n’);
fprintf(fid,’corr.id.dom : ’);

fprintf(fid,’%4.3f’,sum((Res AddE1>0),2)’*(Mef(:,3)==2)/nn);

fprintf(fid,’%8.3f’,sum((Res AddE1>0),2)’*(Mef(:,3)==2)/nn/sum(Mef(:,3)==2));
fprintf(fid,’\n’);fprintf(fid,’extr. linked (corr. chromosome) :

’);

fprintf(fid,’%3.2f’,sum(FP AddE1(:,1)>0)/nn-sum(FP Add1E1(:,1)>0)/nn);
fprintf(fid,’\n’);
end

fprintf(fid,’extr. unlinked: ’);

fprintf(fid,’%3.2f’,sum(FP Add1E1(:,1)>0)/nn);
fprintf(fid,’\n’);

fprintf(fid,’False positive main effects (first iteration):\n’);
for i=1:sum(FP AddE1(:,1)>0);



85

fprintf(fid,’%4.0f’,FP AddE1(i,:));

fprintf(fid,’\n’);
end

fprintf(fid,’\n’);

fprintf(fid,’EPISTATIC EFFECTS (first iteration)\n’);
if Res EpiE1==0;RE=0;

else RE=size(Res EpiE1);end

for i=1:RE(1);

fprintf(fid,’%1.3f’,sum(Res EpiE1(i,:)>0)/nn);
fprintf(fid,’%2.0f’,Res EpiE1(i,:));

fprintf(fid,’\n’);
end

if sum(Ief(:,6))>0
fprintf(fid,’corr.id. : ’);

fprintf(fid,’%3.2f’,sum(sum(Res EpiE1>0))/nn);
fprintf(fid,’\n’);
end

fprintf(fid,’extr. unlinked: ’);

fprintf(fid,’%3.2f’,sum(FP EpiE1(:,1)>0)/nn);
fprintf(fid,’\n’);

fprintf(fid,’False positive epistatic effects (first

iteration):\n’);
for i=1:sum(FP EpiE1(:,1)>0);
fprintf(fid,’%4.0f’,FP EpiE1(i,:));

fprintf(fid,’\n’);
end

fprintf(fid,’\n’);

% Write Output for Associated epistatic effects (mBIC2)

fprintf(fid,’\n’);

fprintf(fid,’ASSOCIATED EPISTATIC EFFECTS\n’);
if Res Epix==0;RE=0;

else RE=size(Res Epix);end

for i=1:RE(1);

fprintf(fid,’%1.3f’,sum(Res Epix(i,:)>0)/nn);
fprintf(fid,’%2.0f’,Res Epix(i,:));

fprintf(fid,’\n’);
end
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if sum(Ief(:,6))>0
fprintf(fid,’corr.id. : ’);

fprintf(fid,’%3.2f’,sum(sum(Res Epix>0))/nn);
fprintf(fid,’\n’);
end

fprintf(fid,’extr. unlinked: ’);

fprintf(fid,’%3.2f’,sum(FP Epix(:,1)>0)/nn);
fprintf(fid,’\n’);

fprintf(fid,’False positive associated epistatic effects:\n’);
for i=1:sum(FP Epix(:,1)>0);
fprintf(fid,’%4.0f’,FP Epix(i,:));

fprintf(fid,’\n’);
end

fprintf(fid,’\n’);

fclose(fid);

5.2 GenMarker.m - generating marker genotypes

function [M,L,R]=GenMarker(chr,mrk,d,m,n);

% generating marker genotypes.

%

% M: marker genotypes (m*n*chr*mrk)

% end of the chromosome (m*n*chr)

% R: positions of recombinations (m*n*chr*s)

%

% Generation of genotype at left end of chromosome and recombination

positions

s=round(6*(mrk-1)*d/100);

for j=1:chr

R(:,:,j,1)= exprnd1(100,m,n);

L(:,:,j)= binornd1(1,0.5,m,n);

for i=2:s

R(:,:,j,i)= R(:,:,j,i-1) + exprnd1(100,m,n);

end

end
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% 2) Calculation of Marker genotypes

r=d*(0:mrk-1);

Hlp = repmat(r,[1 1 m n chr s]); %position of markers

Hlp1 = repmat(R,[1 1 1 1 1 mrk]);

Hlp1 = permute(Hlp1,[5,6,1,2,3,4]); %positions of recombinations

M1=(Hlp > Hlp1); %compare positions of markers with positions of

recombinations

MX(:,:,:,:,:) = M1(1,:,:,:,:,:);

M=sum(MX,5);

% genotype at left end of chromosomes

Hlp2 = permute(Hlp2,[4,1,2,3]);

M=M+Hlp2;

M=mod(M,2);

M=permute(M,[2,3,4,1]);

5.3 GenQTL.m - find QTL genotypes

function G=GenQTL(L,R,loc);

% Find QTL genotypes

% G: matrix (t*m*n) of QTL genotypes (0,1)

%

y = size(R);

m=y(1);

n=y(2);

s=y(4);

x=size(loc);

t=x(1);

for i=1:t

z = loc(i,:); % Position of recombinations on the corresponding

chromosome

Hlp = R(:,:,z(1),:);

Hlp = squeeze(Hlp);

Hlp1 = repmat(z(2),[m n s]); % Position of QTL on the corresponding

chromosome

G1=(Hlp > Hlp1); %Compare position of QTL with position of

recombinations

G2 = G1(:,:,1);

for j=2:s
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G2=G2 + G1(:,:,j);

end

end States of Chromosomes

G2=G2 + Hlp2;

G(i,:,:)=mod(G2,2);

end

5.4 TraitValue.m - generate trait values

function y = TraitValue(mue,s,Mef,Ief,X G,Z G,X I,Z I,X J,Z J);

% generate the trait values

% y: (m*n)- matrix of trait values

%

hlp1=size(X G);

hlp2=size(Mef);

hlp3=size(Ief);

m=hlp1(2);

n=hlp1(3);

t=hlp2(1);

u=hlp3(1);

y = normrnd1(mue,s,m,n);

% Main effects

for i=1:t

if (Mef(i,3) == 1)

z=Mef(i,4).*X G(i,:,:);

else

z=Mef(i,4).*Z G(i,:,:);

end

y=y+squeeze(z);

end

% epistatic effects

for i=1:u

if (Ief(i,5) == 3)

z=Ief(i,6).* X I(i,:,:) .* X J(i,:,:);
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elseif (Ief(i,5) == 4)

z=Ief(i,6).* X I(i,:,:) .* Z J(i,:,:);

% WARNING, this means, that always the first locus has to be

additive

% and the second locus has to be dominant

else

z=Ief(i,6).* Z I(i,:,:) .* Z J(i,:,:);

end

y=y+squeeze(z);

end

5.5 SearchQTL.m - stepwise regression

function

[Meff,Ieff,MeffE1,IeffE1,add,DMx]=Search(T,X M,Z M,v,u,maxeff);

% Stepwise Regression - adjusted penalty + 5 steps

%

% Meff: additive effects found (maxeff,4,n) - 2 iterations

% Ieff: epistatic effects found (maxeff,4,n) - 2 iterations

% Meff1: additive effects found (maxeff,4,n) - first iteration

% Ieff1: epistatic effects found (maxeff,4,n) - first iteration

hlp=size(X M);

m=hlp(1);

n=hlp(2);

l=hlp(3);

k=hlp(4);

Meff = zeros(maxeff,5,n);

Ieff = zeros(maxeff,5,n);

MeffE1 = zeros(maxeff,5,n);

IeffE1 = zeros(maxeff,5,n);

add=zeros(n,1);

HlpMeff = zeros(4,1);

HlpIeff = zeros(4,1);

DMx = zeros(m,maxeff+1,n); % Design matrix

for i=1:n

for ix=1:2

if ix==2

v=v*2.2/max(2.2,efi);

u=u*2.2/max(2.2,epi);
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MeffE1(:,:,i)=Meff(:,:,i);%save results of first iteration

IeffE1(:,:,i)=Ieff(:,:,i);%save results of first iteration

Meff(:,:,i)=zeros(maxeff,5);

Ieff(:,:,i)=zeros(maxeff,5);

end

efi = 0; %Number of main effects

epi = 0; %Number of epistatic effects

Y = T(:,i);

X = squeeze(X M(:,i,:,:));

Z = squeeze(Z M(:,i,:,:));

size(Z)

X2 = reshape(X,m,l*k);

Z2 = reshape(Z,m,l*k);

size(Z2)

DM = ones(m,1); % Design matrix

beta = DM\Y; %Model without any main effects

rss = Y’*(Y-DM*beta)

bic = ModBic(rss,m,0,0,v,u);

while (epi+efi)<=maxeff

[HlpMeff,DM A] = GetMeff(Y,DM,X,Z);

[HlpIeff,DM I] = GetIeff(Y,DM,X2,Z2);

bic A=ModBic(HlpMeff(4),m,efi+1,epi,v,u);

bic I=ModBic(HlpIeff(4),m,efi,epi+1,v,u);

if (min(bic A,bic I)>=bic)
MeffB=Meff;

IeffB=Ieff;

efiB=efi;

epiB=epi;

DMB=DM;

if (bic A < bic I)

efiB = efiB+1;

DMB = [DMB,DM A];

MeffB(efiB,[1:4],i)=HlpMeff;

MeffB(efiB,5,i)=bic A;

else

epiB = epiB+1;
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DMB = [DMB,DM I];

IeffB(epiB,[1:4],i)=HlpIeff;

IeffB(epiB,5,i)=bic I;

end

%consider an addition 5 effects

for kk=1:5

[HlpMeff,DM A] = GetMeff(Y,DMB,X,Z);

[HlpIeff,DM I] = GetIeff(Y,DMB,X2,Z2);

bic A=ModBic(HlpMeff(4),m,efiB+1,epiB,v,u);

bic I=ModBic(HlpIeff(4),m,efiB,epiB+1,v,u);

if (bic A < bic I)

efiB = efiB+1;

DMB = [DMB,DM A];

MeffB(efiB,[1:4],i)=HlpMeff;

MeffB(efiB,5,i)=bic A;

else

epiB = epiB+1;

DMB = [DMB,DM I];

IeffB(epiB,[1:4],i)=HlpIeff;

IeffB(epiB,5,i)=bic I;

end

if min(bic A,bic I)<bic
add(i)=add(i)+(epiB+efiB-epi-efi);

epi=epiB;

efi=efiB;

Meff=MeffB;

Ieff=IeffB;

DM=DMB;

bic=min(bic A,bic I);

break;

end

end

if min(bic A,bic I)>=bic
sDM=size(DM);

sDM=sDM(2)-1;

for (ii=2:sDM)

siDM=size(DM);

siDM=siDM(2);

minDM=min(abs(DM))
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maxDM=max(abs(DM))

indMeff= (maxDM==1 & minDM==0) | (maxDM==0.5 & minDM==0.5)

indIeff= (maxDM==0.25 & minDM==0.25) | (maxDM==0.5 & minDM==0)

indMeffi=cumsum(indMeff).*indMeff;

indIeffi=cumsum(indIeff).*indIeff;

[rssm,indx]=ElimEff(Y,DM) %Backward elimination

bicm = ModBic(rssm,m,efi-indMeff(indx),epi-indIeff(indx),v,u);

if bicm>=bic break;

else

DM=[DM(:,1:(indx-1)),DM(:,(indx+1):siDM)];

bic=bicm;

if indMeffi(indx)>0
Meff(indMeffi(indx),:,i)=0;

Meff(indMeffi(indx):maxeff-1,:,i)=Meff(indMeffi(indx)+1:maxeff,:,i);

Meff(maxeff,:,i)=0;

efi=efi-1;

end

if indIeffi(indx)>0
Ieff(indIeffi(indx),:,i)=0;

Ieff(indIeffi(indx):maxeff-1,:,i)=Ieff(indIeffi(indx)+1:maxeff,:,i);

Ieff(maxeff,:,i)=0;

epi=epi-1;

end

end

end

break;

end

elseif (bic A < bic I)

efi = efi+1;

DM = [DM,DM A];

bic = bic A;

Meff(efi,[1:4],i)=HlpMeff;

Meff(efi,5,i)=bic A;

else

epi = epi+1;

DM = [DM,DM I];

bic = bic I;

Ieff(epi,[1:4],i)=HlpIeff;

Ieff(epi,5,i)=bic I;

end

end
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end

DMx(:,1:(1+epi+efi),i)=DM;

end

5.5.1 GetMeff.m - find largest main effect

function [eff,DM 1] = GetMeff(Y,DM,X,Z,d);

% Get the next optimal Main effect in the stepwise selection

procedure

% eff: Strongest main effect (4*1)

% 1st entry: chromosome

% 2nd entry: marker

% 3rd entry: type: (1)additive, (2) dominant

% 4th entry: Currently rss (should be value of criterion)

% DM 1 - Has to be added to design matrix (m*1)

%

hlp=size(X);

m=hlp(1);

l=hlp(2);

k=hlp(3);

rss = zeros(l,k);

for j1=1:l

for j2=1:k

XX = [DM,X(:,j1,j2)];

beta = XX\Y;
rss(j1,j2) = Y’*(Y-XX*beta);

end

end

[hlp,l a]=min(rss); %Minimum per column

[rss a,k a]=min(hlp);

for j1=1:l

for j2=1:k

ZZ = [DM,Z(:,j1,j2)];

beta = ZZ\Y;
rss(j1,j2) = Y’*(Y-ZZ*beta);

end

end
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[hlp,l d]=min(rss);

[rss d,k d]=min(hlp);

if (rss a < rss d)

eff = [l a(k a);k a;1;rss a];

DM 1 = X(:,l a(k a),k a);

else

eff = [l d(k d);k d;2;rss d];

DM 1 = Z(:,l d(k d),k d);

end

5.5.2 GetIeff.m - find largest epistatic effect

function [eff,DM 1] = GetIeff(Y,DM,X,Z);

% Get the next epistatic effect in the stepwise selection procedure

% All epistatic effects of markers are considered, even if they have

not yet

% entered the model

%

% eff: Strongest main effect (4*1)

% 1st entry: reshaped loc1

% 2nd entry: reshaped loc2

% 3rd entry: type: (1)add-add, (2)

% add-dom (3) dom-add (4) dom-dom

% 4th entry: Currently rss

% DM 1 - Has to be added to design matrix (m*1)

%

hlp=size(X);

m=hlp(1);

lk=hlp(2);

xc = nchoosek([1:lk],2);

p = size(xc);

p1 = p(1);

rss = zeros(p1,4);

for j1=1:p1

XX = squeeze(X(:,xc(j1,1)).*X(:,xc(j1,2)));

DM1 = [DM,XX];

beta = DM1\Y;
rss(j1,1) = Y’*(Y-DM1*beta);

XZ = squeeze(X(:,xc(j1,1)).*Z(:,xc(j1,2)));
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DM2 = [DM,XZ];

beta = DM2\Y;
rss(j1,2) = Y’*(Y-DM2*beta);

ZX = squeeze(Z(:,xc(j1,1)).*X(:,xc(j1,2)));

DM3 = [DM,ZX];

beta = DM3\Y;
rss(j1,3) = Y’*(Y-DM3*beta);

ZZ = squeeze(Z(:,xc(j1,1)).*Z(:,xc(j1,2)));

DM4 = [DM,ZZ];

beta = DM4\Y;
rss(j1,4) = Y’*(Y-DM4*beta);

end

[hlp,indx]=min(rss);

[rss i,type]=min(hlp);

loc1 = xc(indx(type),1)

loc2 = xc(indx(type),2)

eff = [loc1;loc2;type;rss i];

if (type==1)

DM 1 = squeeze(X(:,loc1).*X(:,loc2));

elseif (type==2)

DM 1 = squeeze(X(:,loc1).*Z(:,loc2));

elseif (type==3)

DM 1 = squeeze(Z(:,loc1).*X(:,loc2));

elseif (type==4)

DM 1 = squeeze(Z(:,loc1).*Z(:,loc2));

end

5.5.3 ElimEff.m - find effect for backward elimination

function [rssm,indx] = ElimEff(Y,DM);

% Backward elimination

% rssm - Residual sum of squares of Model with weakest effect

removed

% Column of Design Matrix(DM) of weakest effekt

%
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sDM=size(DM);

sDM=sDM(2);

rss1=zeros(sDM,1);

rss1(1)=10000000000;

for ii=2:sDM

XX=[DM(:,1:(ii-1)),DM(:,(ii+1):sDM)];

beta1 = XX\Y;
rss1(ii) = Y’*(Y-XX*beta1);

end

[rssm,indx]=min(rss1)

5.5.4 ModBic.m - determine modified BIC

function [bic] = ModBic(rss,m,p,q,v,u);

% Calculate modified BIC criterion

bic = (m * log(rss) + (p+q)*log(m) + 2*p*log(v-1) +

2*q*log(u-1))/100;

5.6 SearchAssocIeff.m - search for associated

epistatic effects

function [Ieffx]=SearchAssocIeff(Meff,Ieff,T,X M,Z M,DMx,maxeff);

% Stepwise Regression - search for associated epistatic effects

% Ieffx: associated epistatic effects (maxeff,4,n)

%

hlp=size(X M);

m=hlp(1);

n=hlp(2);

l=hlp(3);

k=hlp(4);

Ieffx = zeros(maxeff,5,n);

add=zeros(n,1);

HlpIeff = zeros(4,1);

for i=1:n

efi = sum(Meff(:,1,i)>0); %Number of main effects
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epi = sum(Ieff(:,1,i)>0); %Number of epistatic effects

if efi==0

break;

end

epix=0

u=(l*k-1)*efi/1.1 % penalty for associated epistatic effects (mBIC2)

v=2 %any value as no additional main effects are considered

Y = T(:,i);

X = squeeze(X M(:,i,:,:));

Z = squeeze(Z M(:,i,:,:));

X2 = reshape(X,m,l*k);

Z2 = reshape(Z,m,l*k);

DM=DMx(:,1:(epi+efi+1),i);

beta = DM\Y; %Model without any main effects

rss = Y’*(Y-DM*beta)

bic = ModBic(rss,m,0,epix,v,u);

while (epi+efi+epix)<=maxeff

[HlpIeff,DM I] = GetAssocIeff(Meff,Y,DM,X2,Z2,i,l);

bic I=ModBic(HlpIeff(4),m,0,epix+1,v,u);

if (bic I>bic)
IeffB=Ieffx;

epiB=epix;

DMB=DM;

epiB = epiB+1;

DMB = [DMB,DM I];

IeffB(epiB,[1:4],i)=HlpIeff;

IeffB(epiB,5,i)=bic I;

for kk=1:5

[HlpIeff,DM I] = GetAssocIeff(Meff,Y,DMB,X2,Z2,i,l);

bic I=ModBic(HlpIeff(4),m,efi,epiB+1,v,u);

epiB = epiB+1;
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DMB = [DMB,DM I];

IeffB(epiB,[1:4],i)=HlpIeff;

IeffB(epiB,5,i)=bic I;

if bic I<bic
add(i)=add(i)+(epiB);

epix=epiB;

Ieffx=IeffB;

DM=DMB;

bic=bic I;

break;

end

end

if bic I>bic
break;

end

else

epix = epix+1;

DM = [DM,DM I];

bic = bic I;

Ieffx(epix,[1:4],i)=HlpIeff;

Ieffx(epix,5,i)=bic I;

end

end

end

5.6.1 GetAssocIeff - find largest associated epistatic effect

function [eff,DM 1] = GetAssocIeff(Meff,Y,DM,X2,Z2,i,l);

% Get associated epistatic effects

% eff: Strongest main effect (4*1)

% 1st entry: reshaped loc1

% 2nd entry: reshaped loc2

% 3rd entry: type: (1)add-add, (2)

% add-dom (3) dom-add (4) dom-dom

% 4th entry: Currently rss

%

% DM 1 - Has to be added to design matrix (m*1)

%
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hlp=size(X2);

m=hlp(1);

lk=hlp(2);

p1=(lk)*sum(Meff(:,1,i)>0);

ind=zeros(p1,2);

rss = zeros(p1,4)+100000000;

j2n=1:lk;

for j1=1:sum(Meff(:,1,i)>0)
jx=(Meff(j1,2,i)-1)*l+Meff(j1,1,i)

for j2=j2n(j2n =jx)

ind((j1-1)*lk+j2,1)=jx;

ind((j1-1)*lk+j2,2)=j2;

XX = squeeze(X2(:,jx).*X2(:,j2));

DM1 = [DM,XX];

beta = DM1\Y;
rss((j1-1)*lk+j2,1) = Y’*(Y-DM1*beta);

XZ = squeeze(X2(:,jx).*Z2(:,j2));

DM2 = [DM,XZ];

beta = DM2\Y;
rss((j1-1)*lk+j2,2) = Y’*(Y-DM2*beta);

ZX = squeeze(Z2(:,jx).*X2(:,j2));

DM3 = [DM,ZX];

beta = DM3\Y;
rss((j1-1)*lk+j2,3) = Y’*(Y-DM3*beta);

ZZ = squeeze(Z2(:,jx).*Z2(:,j2));

DM4 = [DM,ZZ];

beta = DM4\Y;
rss((j1-1)*lk+j2,4) = Y’*(Y-DM4*beta);

end

end

[hlp,indx]=min(rss);

[rss i,type]=min(hlp);
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loc1 = ind(indx(type),1)

loc2 = ind(indx(type),2)

eff = [loc1;loc2;type;rss i];

if (type==1)

DM 1 = squeeze(X2(:,loc1).*X2(:,loc2));

elseif (type==2)

DM 1 = squeeze(X2(:,loc1).*Z2(:,loc2));

elseif (type==3)

DM 1 = squeeze(Z2(:,loc1).*X2(:,loc2));

elseif (type==4)

DM 1 = squeeze(Z2(:,loc1).*Z2(:,loc2));

end

5.7 Output.m

function [Res Add,FP Add,Res Epi,FP Epi,I2eff,Res Add1,FP Add1]=

Output(Meff,Ieff,Mef,Ief,d,rangeA,range,l);

% Output

% Res Add: Number of detections for each main effect (t,n)

% 0 - QTL not detected

% 1 - QTL correctly detected

% 2 - QTL twice detected (artefact of procedure)

% FP Add: wrongly detected QTL (FPt,4)

% FPt - is the number of additive false positives

% the 4 entries are then: chromosome, location in cM, type and

number of replicate

% Res Epi: Number of detections for each epistatic effect (u,n)

% 0 - QTL not detected

% 1 - QTL correctly detected

% 2 - QTL twice detected (artefact of procedure)

% FP Epi: wrongly detected epistatic effects (FPu,6)

% FPu - is the number of additive false positives

% the entries are then: 1st QTL chromosome and location in cM,

% 2nd QTL chromosome and location in cM, type of epistatic effects

and number of replicate

%

hlp1=size(Meff);
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hlp2=size(Mef);

hlp3=size(Ief);

maxeff=hlp1(1);

n=hlp1(3);

t=hlp2(1);

u=hlp3(1);

% Obtain Results for additive effects

FP indx = (Meff(:,1,:)>0);
for i=1:t

Pos = repmat(Mef(i,1:3),[maxeff,1,n]);%True Position of QTL

D=(abs((Meff(:,2,:)-1)*d-Pos(:,2,:))<=rangeA);
Res =

(Meff(:,1,:)==Pos(:,1,:)).*(Meff(:,3,:)==Pos(:,3,:)).*(Meff(:,1,:)>0).*D;
Res Add(i,:)=sum(squeeze(Res));

FP indx = FP indx - (Res>0);
end

[FPi,FPj]=find(squeeze(FP indx>0));
if isempty(FPi)

FP Add=0;

else

for j = 1:size(FPi)

FP Add(j,:) = [Meff(FPi(j),1:3,FPj(j)),FPj(j)];

end

FP Add(:,2) = (FP Add(:,2)-1)*d;

end

% Main effects - correct chromosome only

FP indx = (Meff(:,1,:)>0);
for i=1:t

Pos = repmat(Mef(i,1:3),[maxeff,1,n]);%True Position of QTL

D=(abs((Meff(:,2,:)-1)*d-Pos(:,2,:))<100);
Res =

(Meff(:,1,:)==Pos(:,1,:)).*(Meff(:,3,:)==Pos(:,3,:)).*(Meff(:,1,:)>0).*D;
Res Add1(i,:)=sum(squeeze(Res));

FP indx = FP indx - (Res>0);
end

[FPi,FPj]=find(squeeze(FP indx>0));
if isempty(FPi)

FP Add1=0;
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else

for j = 1:size(FPi)

FP Add1(j,:) = [Meff(FPi(j),1:3,FPj(j)),FPj(j)];

end

FP Add1(:,2) = (FP Add1(:,2)-1)*d;

end

% Obtain Results for epistatic effects

FP indx = (Ieff(:,1,:)>0);

I2eff(:,1,:)=mod(Ieff(:,1,:),l)+l*(mod(Ieff(:,1,:),l)==0);

I2eff(:,2,:)=d*(Ieff(:,1,:)-I2eff(:,1,:))/l;

I2eff(:,3,:)=mod(Ieff(:,2,:),l)+l*(mod(Ieff(:,2,:),l)==0);

I2eff(:,4,:)=d*(Ieff(:,2,:)-I2eff(:,3,:))/l;

I2eff(:,5,:)=Ieff(:,3,:);

for i=1:u

if (Ief(i,5)==3)

Pos = repmat(Ief(i,1:4),[maxeff,1,n]);%True Position of interacting

QTL

% Allow for permutation of positions

D1=(I2eff(:,1,:)==Pos(:,1,:)).*(abs(I2eff(:,2,:)-Pos(:,2,:))<=range).*
(I2eff(:,3,:)==Pos(:,3,:)).*(abs(I2eff(:,4,:)-Pos(:,4,:))<=range);

D2=(I2eff(:,3,:)==Pos(:,1,:)).*(abs(I2eff(:,4,:)-Pos(:,2,:))<=range).*
(I2eff(:,1,:)==Pos(:,3,:)).*(abs(I2eff(:,2,:)-Pos(:,4,:))<=range);

Res = (I2eff(:,5,:)==1).*(D1+D2);

elseif (Ief(i,5)==4)

Pos = repmat(Ief(i,1:5),[maxeff,1,n]);%True Position of interacting

QTL

%when I2eff(:,5,:)==2

D2=(I2eff(:,5,:)==2).*(I2eff(:,1,:)==Pos(:,1,:)).*(abs(I2eff(:,2,:)-Pos(:,2,:))

<=range).*(I2eff(:,3,:)==Pos(:,3,:)).*(abs(I2eff(:,4,:)-Pos(:,4,:))<=range);
%when I2eff(:,5,:)==3 positions have to switch

D3=(I2eff(:,5,:)==3).*(I2eff(:,3,:)==Pos(:,1,:)).*(abs(I2eff(:,4,:)-Pos(:,2,:))

<=range).*(I2eff(:,1,:)==Pos(:,3,:)).*(abs(I2eff(:,2,:)-Pos(:,4,:))<=range);
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Res = (D2+D3);

elseif (Ief(i,5)==5) Pos = repmat(Ief(i,1:4),[maxeff,1,n]); %True

Position of interacting QTL

D1=(I2eff(:,1,:)==Pos(:,1,:)).*(abs(I2eff(:,2,:)-Pos(:,2,:))<=range).*
(I2eff(:,3,:)==Pos(:,3,:)).*(abs(I2eff(:,4,:)-Pos(:,4,:))<=range);

D2=(I2eff(:,3,:)==Pos(:,1,:)).*(abs(I2eff(:,4,:)-Pos(:,2,:))<=range).*
(I2eff(:,1,:)==Pos(:,3,:)).*(abs(I2eff(:,2,:)-Pos(:,4,:))<=range);

Res = (I2eff(:,5,:)==4).*(D1+D2);

end

Res Epi(i,:)=sum(squeeze(Res));

FP indx = FP indx - (Res>0);
end

[FPi,FPj]=find(squeeze(FP indx>0));
if isempty(FPi)

FP Epi=0;

else

for j = 1:size(FPi)

FP Epi(j,:) = [I2eff(FPi(j),:,FPj(j)),FPj(j)];

end

end
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Figure 5.1: Flowchart of program.
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