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This file contains corrections, updates, further developments and additional remarks to my book

The Mathematical Theory of Selection, Recombination, and Mutation

(Chichester: Wiley, 2000). Corrections are signified by bold page numbers.

Chapter I

p. 7: Between (2.4) and (2.5) every k should be replaced by an m.

p. 31: On line 2 of para 3, it should read ‘for every i and j’.

p. 42: (10.13) should read gij = 1
2pi(δij−pj) and in (10.14a) and (10.14b) the factor 1

2 should be deleted.

Chapter II

p. 50, eq. (1.19): p2p3 should be replaced by x2x3.

p. 54, top: Hastings (1981c) gave a numerical example of cycling in the discrete-time two-locus two-allele
model. A rigorous proof was given by

Hofbauer, J., and Iooss, G. 1984. A Hopf bifurcation theorem of difference equations approximating
a differential equation. Monatsh. Math. 98, 99–113.

New proofs and further results appeared in

Sacker, R.J., and von Bremen, H.F. 2003. A new approach to cycling in a 2-locus 2-allele genetic
model. J. Difference Eq. and Appl. 9, 441-448.

pp. 55-56: The derivation of (2.12) is fallacious. Beginning with (2.9) until the end, two lines below
(2.11), the demonstration should be replaced by the following.

Thus, we can write i = iI iJ , j = jIjJ , k = kIkJ , and have

R(j, k → i) = R∅(j, k → i) +
∑
I

RI(jIjJ , kIkJ → iI iJ) , (2.9)

where RI(jIjJ , kIkJ → iI iJ) is the probability that gamete i is produced by a jk individual through
the recombination event that separates I from its complement J , and R∅(j, k → i) is the probability
that i is produced without recombination. Hence, if we first consider drawing iI , and then take into
account recombination between I and J , we obtain

RI(jIjJ , kIkJ → iI iJ) = 1
2rIδiIjI δiJkJ + 1

2rIδiIkI
δiJjJ , (2.10)

where δ denotes the Kronecker delta. Clearly, (2.10) also applies if I = ∅. Then r∅ = 1−rtot. A simple
calculation shows that∑

j,k

WjkpjpkRI(jIjJ , kIkJ → iI iJ) =
∑
kI,jJ

rIWiIjJ,kI iJ piIjJ pkI iJ (2.11)

because the sum on the left is symmetric under the simultaneous interchanges jI ↔ kI and jJ ↔ kJ ,
so that the two terms in (2.10) contribute equally.

p. 80: For results about the multilocus dynamics under haploid selection refer to

Rutschman, D.H. 1994. Dynamics of the two-locus haploid model. Theor. Pop. Biol. 45, 167–176.
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Kirzhner, V., and Lyubich, Y. 1997. Multilocus dynamics under haploid selection. J. Math. Biol. 35,
391–408.

p. 80: For recent multilocus models with epistasis, see

Hermisson, J., Hansen, T.F, and Wagner, G.P. 2003. Epistasis in polygenic traits and the evolution
of genetic architecture under stabilizing selection. Amer. Natur. 161, 708–734.

Barton, N.H., and Turelli, M. 2004. Effects of genetic drift on variance components under a general
model of epistasis. Evolution 58, 2111-2138.

p. 85: For a diallelic loci, and if we write pk for the frequency of one of the alleles at locus k and express
ω̃ solely in terms of the pk, (6.19) can be written as

ṗk = 1
2pk(1− pk)

∂ ln ω̃

∂pk

(Wright, S. 1937. The distribution of gene frequencies in populations. Proc. Natl. Acad. Sci. 23,
307-320). This generalizes (10.17b).

Chapter III

p. 98: Equation (1.11) should read aij = (mi −
∑

` µi`)δij + µji and, below, a =
∑

i(Ap)i =
∑

i,j aijpj .
Equation (1.11) is correct as stated if all alleles have the same mutation rate, i.e., if

∑
` µi` is

independent of i.

pp. 105–107: For further developments and extensions, see

Hermisson, J., Redner, O., Wagner, H. and Baake, E. 2002. Mutation-selection balance: ancestry, load,
and maximum principle. Theor. Pop. Biol. 62, 9–46.

Chapter IV

pp. 127/128: For µ = 1, the random-walk mutation model, a Gaussian mutation distribution uRW with
mean zero and variance γ2, and a Gaussian fitness function W (x) = exp[−x2/(2Vs)], the equilibrium
solution of (2.8) can be determined explicitly. It is Gaussian with mean zero and variance

σ̂2 = 1
2

(
γ2 + γ

√
γ2 + 4Vs

)
≈ γ

√
Vs ,

where the approximation is valid if Vs � γ2 and agrees with Kimura’s Gaussian approximation; cf.
(1.8).

p. 133: Equation (3.12) should read∫
X\S

∫
S

W (y)

α− [1− µ(y)]W (y)
µ(y)u(y, x) dy > 0 . (3.12)

p. 136: In the first display equation in Section 4, the exponent n should be replaced by t (twice).

p. 145: For µ = 1, the equilibrium mean fitness and load can be determined explicitly, because the
equilibrium solution is Gaussian (see the comment concerning pp. 127/128). The mean fitness is given
by

W = (1 + σ̂2/Vs)
−1/2 ≈ 1− 1

2

√
γ2/Vs.

This approximation coincides with the result of Crow and Kimura given in (5.7).
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Chapter V

p. 178: For further generalizations and a valuable computer algebra package, see

Kirkpatrick, M., Johnson, T. and Barton, N. 2002. General models of multilocus evolution. Genetics
161, 1727–1750.

p. 184: Equations (4.27) and (4.28) hold only if S = L. (4.27) needs to be replaced by

m0
s = E[Xs] =

(∏
k/∈S

`k

)−1∑
x

xsθ(S)
xS

+ X
s
, (4.27)

and (4.28) needs to be replaced by

ms = E[(X −X)s] =
(∏
k/∈S

`k

)−1∑
x

xs∆(S)
xS

. (4.28)

p. 184: In equation (4.29), the x should have the exponent s.

p. 197: Two lines above 7. SUMMARY, it should read ∆sP = 0 (instead of ∆sP = 0).

Chapter VI

p. 200: In line 12 of para 2, ‘and are completely additive’ should be deleted.

p. 202: Equation (1.9b) should read

I1 ≈ 2sPO + 2s2(M3 − P 3
O − 3σ2

PPO) , (1.9b)

p. 203, 212: A comprehensive analysis of the two-locus model of Gaussian stabilizing selection, which
has a much richer equilibrium structure than the model with quadratic stabilizing selection, appeared
in

Willensdorfer, M., and Bürger, R. 2003. The two-locus model of Gaussian stabilizing selection. Theor.
Popul. Biol. 64, 101–117.

p. 206: The proof of A ≥ 0 uses that A is minimized if r = 1
2 (line -13), but this is not explicitly

mentioned.

p. 212: In the last line, it should read a = b = c = d = 1.

pp. 236: In line 5, the reference should be to Appendix D.2.

pp. 245-248: See also

Welch, J.J. and Waxman, D. 2002. Nonequivalent loci and the distribution of mutant effects. Genetics
161, 897–904.

Chapter VII

pp. 260-263: For more recent reviews, see

Mackay, T.F.C. 2001. Quantitative trait loci in Drosophila. Nature Reviews Genetics 2, 11–20.

Barton, N.H. and Keightley, P.D. 2002. Understanding quantitative genetic variation. Nature Reviews
Genetics 3, 11–21.



4

pp. 284-286: For recent developments on (multilocus) migration-selection models, see

Nagylaki, T. 2009. Evolution under the multilocus Levene model. Theor. Popul. Biol. 76, 197-213.

Bürger, R. 2009a. Multilocus selection in subdivided populations I. Convergence properties for weak
or strong migration. J. Math. Biol. 58, 939-978.

Bürger, R. 2009b. Multilocus selection in subdivided populations II. Maintenance of polymorphism
and weak or strong migration. J. Math. Biol. 58, 979-997.

Bürger, R. 2009c. Polymorphism in the two-locus Levene model with nonepistatic directional selection.
Theor. Popul. Biol. 76, 214-228.

Bürger, R. 2010. Evolution and polymorphism in the multilocus Levene model with no or weak
epistasis. Theor. Popul. Biol. 78, 123-138.

Roze, D., Rousset, F. 2008. Multilocus models in the infinite island model of population structure.
Theor. Popul. Biol. 73, 529-542.

For reviews, see

Bürger, R. 2014. A survey of migration-selection models in population genetics. Discrete Cont. Dyn.
Syst. B 19, 883 - 959.

Lenormand, T., 2002. Gene flow and the limits to natural selection. Trends Ecol. Evol. 17, 183189.

Nagylaki, T., Lou, Y. 2008. The dynamics of migration-selection models. In: Friedman, A. (ed)
Tutorials in Mathematical Biosciences IV. Lect. Notes Math. 1922, pp. 119 - 172. Berlin Heidelberg
New York: Springer.

pp. 286: A study by Bürger and Gimelfarb (2002) shows that temporal environmental variation can lead
to a strong increase in genetic variation in the presence of mutation but otherwise, in general, depletes
genetic variation. Also a more comprehensive discussion of the literature on this topic is included. See

Bürger, R. and Gimelfarb, A. 2002. Fluctuating environments and the role of mutation in maintaining
quantitative genetic variation. Genet. Res. 80, 31–46.

pp. 289/290: For further studies of frequency-dependent stabilizing selection refer to

Loeschcke, V., and Christiansen, F.B. 1984. Evolution and intraspecific exploitative competition. II.
A two-locus model for additive gene effects. Theor. Pop. Biol. 26, 228–264.

Christiansen, F.B. 1988. Frequency dependence and competition. Phil. Trans. R. Soc. Lond. B 319,
587–600.

Bürger, R. 2002. Additive genetic variation under intraspecific and stabilizing selection: A two-locus
study. Theor. Pop. Biol. 61, 197–213.

Bürger, R. 2002. On a genetic model of intraspecific competition and stabilizing selection. Amer.
Natur. 160, 661–682.

Bürger, R. 2005. A multilocus analysis of intraspecific competition and stabilizing selection on a
quantitative trait. J. Math. Biol. 50, 355-396.

Schneider, K. 2006. A multilocus-multiallele analysis of frequency-dependent selection induced by
intraspecific competition. J. Math. Biol. 52, 483-523.

pp. 308–313: For more recent advances on pleiotropic models, see

Zhang, X.-S., Wang, J. and Hill, W.G. 2002. Pleiotropic model of maintenance of quantitative variation
at mutation-selection balance. Genetics 161, 419–433.

Zhang, X.-S., and Hill, W.G. 2002. Joint effects of pleiotropic selection and stabilizing selection on the
maintenance of quantitative genetic variation at mutation-selection balance. Genetics 162, 459–471.

Arnold, S.J., et al. 2008. Understanding the evolution and stability of the G-matrix. Evolution 62,
2451-2461.

pp. 319–324, 333, 334: See also

Rattray, M. and Shapiro J.L. 2001. Cumulant dynamics of a population under multiplicative selection,
mutation, and drift. Theor. Pop. Biol. 60, 17–32.
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pp. 324–330: It can be proved that in the haploid continuum-of-alleles model with mutation and in
the stepwise mutation model a wandering stationary distribution indeed exists and is globally stable
(R.B., unpublished). In the discrete-time model, and for µ = 1, the random-walk mutation model,
a Gaussian mutation distribution uRW with mean zero and variance γ2, and the Gaussian fitness
function (7.15), this asymptotic distribution can be shown to be Gaussian, and the lag and variance
can be calculated explicitly.

Appendix

p. 357: The condition in Lemma C.2 (last line) should read: “. . . if K is a power compact operator”.
(Actually, a totally disconnected spectrum is sufficient; see Newsburgh 1951).

References

p. 369: Baake (2000) appeared in J. Math. Biol. 42, 455–488 (2001).

p. 373: Dawson (2000) appeared in Theor. Pop. Biol. 58, 1–20 (2000).

p. 375: Fry (2000) appeared under the title ‘Rapid mutational declines of viability in Drosophila’ in
Genet. Res. 77, 53–60 (2001).

p. 375: Gabriel and Bürger (2000) appeared in Evolution 54, 1116-1125 (2000).

Author Index

p. 397: All references except the last one (259) refer to George A. Price, the last one to Trevor D. Price.

Many thanks to Joel Adamson, Thomas Nagylaki, Alden Wright for bringing errors to my attention.


