
4. Populationsgenetik

Populations are never uniform, but individuals differ genetically and phenotypically.

Population genetics is concerned with the study of the genetic composition of populations

and how it evolves. This composition may be changed by segregation, selection, mutation,

recombination, mating behavior, migration, and other genetic, ecological, and evolution-

ary factors. Therefore, in population genetics these mechanisms and their interactions and

evolutionary consequences are investigated. Traditionally, population genetics has been

applied to animal and plant breeding, to human genetics, and more recently to ecology

and conservation biology. It also has important interfaces with molecular biology, system-

atics, natural history, mathematics, statistics, and computing. One of the main subjects

is the investigation of the mechanisms that generate and maintain genetic variability in

populations, and the study of how this genetic variation, shaped by environmental influ-

ences, leads to evolutionary change, adaptation, and speciation. Therefore, research in

population genetics relies on empirical observations, on experiments, and on theoretical

considerations. In particular, population genetics provides the basis for understanding

the evolutionary processes that have led to the diversity of life we encounter and admire.

Since so many factors interact and determine the evolutionary fate of a population,

a proper understanding of the relevant processes requires a good deal of abstraction in

planning experiments and in devising mathematical models. A good mathematical model,

as well as a good experiment, takes into account the relevant biological mechanisms for

studying a particular phenomenon and disregards the less relevant ones. As in other sci-

ences, good model building must rest on an adequate knowledge of the basic biological

reality and requires a clear formulation of the underlying hypotheses. The process of

abstraction that is involved entails generality which, sometimes, may appear to be unnec-

essary. However, general methods or models, devised to study a particular phenomenon,

may reveal the essence and the underlying structure more clearly and can often be applied

to questions not anticipated before.

Mathematical models and methods have a long history in population genetics, tracing

back to Gregor Mendel, who used elementary mathematics to calculate the expected

frequencies of the genes in his experiments. Francis Galton and the biometricians, notably

Karl Pearson, developed new statistical methods to describe the distribution of trait

values in populations and to predict their change between generations. The foundations
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of modern population genetics were laid by the work of Ronald A. Fisher, J.B.S. Haldane,

and Sewall Wright, who reconciled Mendelism with Darwinism during the second and

third decades of the twentieth century. They demonstrated that the theory of evolution

by natural selection, proposed by Charles Darwin (1859), can be justified on the basis

of genetics as governed by Mendel’s laws. The work of Fisher, Haldane, and Wright was

highly mathematical for the biology of that time and was properly understood by only

a small number of people. Nevertheless, their influence was enormous and they set the

standards for mathematical modeling and for rigor of theoretical investigations for the

subsequent decades.

Prior to 1900, the year when Mendel’s work was rediscovered and then rapidly ac-

cepted, the hereditary mechanisms were unknown. Darwin believed in blending inher-

itance, according to which the hereditary material itself blended. However, as already

noted by Darwin, blending inheritance produces uniformity and destroys variation that is

so ubiquitous. In modern terms, heritable variance would be halved in each generation of

random mating with blending inheritance (Fisher 1930). Therefore, one half of the heri-

table variance maintained in a population would have to arise anew in each generation.

There were controversial lines of thought about the nature of this huge amount of new

variation and its consequences for evolution. The ‘gradualists’, to which Darwin and the

biometricians adhered, considered the changes across generations as gradual and incre-

mental, whereas the ‘saltationists’ (e.g., T.H. Huxley and Galton) held that evolutionary

changes occurred in ‘jumps’ of considerable magnitude. Much of the scientific dispute

about Darwin’s theory of evolution originated from the ignorance of the true hereditary

mechanisms.

Despite the early work of Yule (1902), Hardy (1908), and Weinberg (1908), who showed

that under the particulate mode of inheritance proposed by Mendel (1866), genetic vari-

ability is preserved under random mating, it was not before 1918 that the synthesis be-

tween genetics and the theory of evolution through natural selection began to take shape

through Fisher’s (1918) work (see Provine (1971) for a detailed account of the history of

population genetics).

Today, the hereditary mechanisms have been firmly established and our knowledge

about the molecular biology of the genes is rapidly increasing. Mutations are known to be

the ultimate source of genetic variability, and many different processes at the chromosomal

and molecular level have been identified that generate mutations. On the phenotypic level,

the role of selection in shaping evolutionary change has been amply documented, whereas
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on the molecular level, a significant amount of neutral evolution appears to take place,

its extent still being disputed. Nevertheless, there remain many open problems, some of

which are qualitative in nature and some quantitative. Questions concerning the processes

involved in speciation events or in the evolution of sex belong to the first class, whereas

questions concerning the prediction of the expected evolutionary change of a population

subject to selection belong to the second class. Such predictions are highly nontrivial,

unless confined to one or a few generations, because there exist many different forms

of selection and the response to selection depends on the pattern and amount of genetic

variability in the population. This variation, however, is a function of many genetic details

(such as number of genes determining a trait, mutational properties, degree of linkage),

of the demography (population size, mating structure), and of the selective forces acting.

Therefore, the genetic variability may change from one generation to the next.

Mendel’s (1866) prime achievement was the recognition of the particulate nature of the

hereditary determinants, now called genes. A gene may have different forms, called alleles.

From his experiments with peas he concluded that genes are present in pairs, one member

of each pair having been inherited from the maternal parent, the other from the paternal.

The allelic composition is called the genotype, and the set of observable properties derived

from the genotype is called the phenotype. Thus, supposing that there are two alleles A1

and A2, there are three possible genotypes, A1A1, A1A2, and A2A2. In the first and third

case, the organism’s genotype is homozygous (for A1 or A2, respectively), in the second

case it is heterozygous. In general, the genotypes A1A2 and A2A1 cannot be distinguished.

When the phenotype of the heterozygote A1A2 is the same as one of the homozygotes,

say A1A1, allele A1 is called dominant and A2 is called recessive.

Mendel’s first law states that when pure-bred (homozygous) strains are crossed, the

hybrid progeny constituting the F1 generation (the letter F stands for filial) are uniform

(their genotype being A1A2 if the parents were A1A1 and A2A2) and usually express one

of the two phenotypes (the one controlled by the dominant allele). According to Mendel’s

second law, recessive characters, which are masked in the heterozygous F1, reappear in

the F2 in the proportion 1 : 3 of the dominant character. This leads to the Principle

of Segregation, stating that each reproductive cell (gamete) contains only one of the two

alleles and that each gamete is equally likely to contain either one. The separation of

the paired alleles from one another and their distribution to different cells, the gametes,

is called segregation and occurs during meiosis. Meiosis is the process of formation of

gametes from somatic cells. At mating, two reproductive cells fuse and form a zygote
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(fertilized egg), which contains the full (diploid) genetic information.

Mendel also performed experiments with pure-bred lines that differed in two characters,

round versus wrinkled seed shape and yellow versus green color. From previous exper-

iments he knew that ‘round’ was dominant over ‘wrinkled’ and ‘yellow’ dominant over

‘green’ because their F2 ratios were 3 : 1 each. The F1 seeds, from crosses of lines having

round and yellow seeds with lines having wrinkled and green seeds, were all round and

yellow. In F2 progeny from the dihybrid cross, all four phenotypes reappeared, approxi-

mately in the proportions 9/16 ‘round yellow’, 3/16 ‘wrinkled yellow’, 3/16 ‘round green’,

and 1/16 ‘wrinkled green’. Thus, the proportion of the four phenotypes is 9 : 3 : 3 : 1,

as expected when two pairs of alleles segregate independently, so that the 3 : 1 ratios are

combined at random. This is called Mendel’s third law or the Principle of Independent

Assortment.

Since the 1940s it has been known that the genetic material is deoxyribonucleic acid

(DNA). It consists of four bases: adenine (A), guanine (G), thymine (T), and cytosine

(C). Each base is linked to a sugar and a phosphate group, yielding a nucleotide. The

nucleotides are arranged along two chains to form a double-stranded helix in which the

pairings A–T and G–C between the strands are formed. Therefore, all the genetic infor-

mation is contained in each of the two strands. Three bases code for one amino acid,

which are the building blocks of polypeptide chains and proteins. A gene typically rep-

resents a contiguous region of DNA coding for one polypeptide chain. Its position along

the DNA is called the locus, and a particular sequence there is called an allele. Thus,

two genes at the same locus, sampled from a population, may or may not be of the same

allelic type. A double-stranded helix of DNA forms the backbones of the chromosomes,

which are contained in the nucleus of each cell. In diploid organisms (higher plants and

animals) chromosomes form homologous pairs, each one inherited from one parent. The

exceptions are the sex chromosomes, which are involved in the genetic determination of

sex. Usually, this is one pair of chromosomes which differ from each other, one called the

X-chromosome, the other the Y-chromosome.

Any heritable change in the genetic material is called a mutation. Mutations are the

ultimate source of genetic variability, and form the raw material upon which selection

can act. Although the term mutation includes changes in chromosome structure and

number, the vast majority of genetic variation is caused by gene mutations. Modern

genetics has revealed that at the molecular level (gene) mutations occur in many different

ways, for instance as base substitutions, in which one pair of nucleotides is replaced by
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another, as insertions or deletions of DNA, as inversions of sequences of nucleotides, or

as transpositions. The latter are mainly caused by transposable elements changing their

position from one site to another. For many population-genetic models, however, the

molecular origin of a mutant is not necessarily of relevance. What often counts is only

the rate at which mutations occur and a mutant’s effect on fitness or, more generally, on

the character under consideration. Typically, spontaneous mutation rates per locus per

generation are of the order of 10−4 to 10−6, and genomic mutation rates summed over

all loci may be on the order of one per generation, but can vary substantially between

species.

During meiosis, different chromosomes assort independently and crossing over between

two homologous chromosomes may occur. Consequently, the newly formed gamete con-

tains maternal alleles at one set of loci and paternal alleles at the complementary set.

This process is called recombination.

The mating pattern may have a substantial influence on the evolution of gene frequen-

cies. The simplest and most important mode is random mating. This means that matings

take place without regard to ancestry or the genotype under consideration. It seems to

occur frequently in nature. For example, among humans, matings within a population

appear to be random with respect to blood groups and allozyme phenotypes, but are non-

random with respect to height. Random mating conserves allele frequencies and, after

one generation, genotypic frequencies.

Selection occurs when individuals of different genotype leave different numbers of

progeny because they differ in their probability to survive to reproductive age (viabil-

ity), in their mating success, or in their average number of produced offspring (fertility).

Darwin (1859) recognized and documented the central importance of selection as the

driving force for adaptation and evolution. Since selection affects the entire genome, its

consequences for the genetic composition of a population may be complex. Selection is

measured in terms of fitness of individuals, i.e., by the number of progeny contributed

to the next generation. There are different measures of fitness, and it consists of several

components because selection may act on each stage of the life cycle.

4.1 The Hardy–Weinberg law

With the blending theory of inheritance variation in a population declines rapidly, and

this was one of the arguments against Darwin’s theory of evolution. With Mendelian

inheritance there is no such dilution of variation, as was shown independently by the
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famous British mathematician Hardy (1908) and the German physician Weinberg (1908,

1909).

Throughout this chapter, we consider a randomly mating population with discrete,

nonoverlapping generations such that the genotype frequencies are the same in both sexes.

We assume that the population is so large that gene and genotype frequencies may be

treated as deterministic, and relative frequency can be identified with probability.

We consider a single locus with I possible alleles Ai and write I = {1, . . . , I} for the set

of all alleles. We denote the frequency of the ordered genotype AiAj by Pij, so that the

frequency of the unordered genotype AiAj is Pij + Pji = 2Pij. Subscripts i and j always

refer to alleles. Then the frequency of allele Ai in the population is

pi =
I∑

j=1

Pij .
1 (4.1)

After one generation of random mating the zygotic proportions satisfy

P ′ij = pipj for every i and j . (4.2)

If there is random union of gametes, as in some marine organisms, (4.2) simply reflects

its definition. If diploid individuals mate, (4.2) needs to be proved (see below).

A mathematically trivial, but biologically important, consequence is that (in the ab-

sence of other forces) gene frequencies remain constant across generations, i.e.,

p′i = pi for every i . (4.3)

In other words, in a (sufficiently large) randomly mating population reproduction does

not change allele frequencies. A population is said to be in Hardy–Weinberg equilibrium

if

Pij = pipj . (4.4)

In a (sufficiently large) randomly mating population, this relation is always satisfied among

zygotes. Thus, the Hardy–Weinberg Law states that after one generation of random

mating, the genotype frequencies remain constant and can be expressed in terms of the

allele frequencies according to (4.4). In particular, the allele (gene) frequencies remain

constant and no genetic variability is lost by random mating.

Evolutionary mechanisms such as selection, migration, mutation, or random genetic

drift distort Hardy-Weinberg proportions, but reproduction restores them among zygotes

if there is random mating.

1If no summation range is indicated, it is assumed to be over all admissible values; e.g.,
∑

i =
∑

i∈I
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Table 4.1: Mating table

Mating Mating prob. Cond. prob. of progeny

A1A1 A1A2 A2A2

A1A1 ×A1A1 P 2 1 0 0

A1A1 ×A1A2 4PQ 1
2

1
2

0

A1A1 ×A2A2 2PR 0 1 0

A1A2 ×A1A2 4Q2 1
4

1
2

1
4

A1A2 ×A2A2 4QR 0 1
2

1
2

A2A2 ×A2A2 R2 0 0 1

Proof of (4.2) for a diallelic locus

In most higher organisms adult individuals mate. Then we need a more elaborate ap-

proach. We label the relative frequencies of the genotypes A1A1, A1A2, and A2A2 in the

population can by P , 2Q, and R, respectively, and P + 2Q + R = 1. The heterozygous

genotype A1A2 has been assumed to be unordered, so that 2Q is the combined frequency

of the ordered genotypes A1A2 and A2A1. We assume, furthermore, that the popula-

tion is so large that gene and genotype frequencies may be treated as deterministic, and

relative frequency can be identified with probability.

We want to derive the frequencies of the three genotypes A1A1, A1A2, and A2A2 in

the next generation. This can be achieved by calculating the frequencies of all possible

matings and their offspring produced. For example, with random mating (with respect to

the locus under consideration), the probability of the matingA1A1×A1A2 is 4PQ, because

A1A1 can be male or female (and A1A2, thus, female or male), and the probabilities of

the genotypes A1A1 and A1A2 are P and 2Q, respectively. According to Mendel’s laws,

half of the progeny of such a mating are A1A1 and half are A1A2. Table 4.1 summarizes

all possibilities.

Therefore, the frequency of A1A1 homozygotes in the next generation is2

P ′ = P 2 · 1 + 4PQ · 1
2

+ 2PR · 0 + 4Q2 · 1
4

+ 4QR · 0 +R2 · 0

= P 2 + 2PQ+Q2 = (P +Q)2 (4.5a)

2Unless stated otherwise, a prime will always signify the next generation.
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and, similarly,

2Q′ = 2PQ+ 2PR + 2Q2 + 2QR = 2(P +Q)(Q+R) (4.5b)

and

R′ = Q2 + 2QR +R2 = (Q+R)2 . (4.5c)

Here we have assumed that no mutation occurs and that no evolutionary forces, such as

viability selection, differential fertility, geographical dispersal, or separate sexes, change

the genotype frequencies. By substituting P ′, Q′, and R′ into the right-hand sides of

(4.5a) - (4.5c), and observing the fact that P + 2Q + R = 1, we obtain after another

generation of random mating

P ′′ = (P ′ +Q′)2 = (P +Q)2 = P ′ (4.6a)

and, similarly,

Q′′ = Q′ and R′′ = R′ . (4.6b)

Thus, the genotype frequencies established after one generation of random mating are

maintained under random mating in all subsequent generations.

Now let us consider the gene frequencies p and q = 1 − p of the alleles A1 and A2.

Since all the genes in A1A1 individuals, and half the genes in A1A2 individuals, are A1

genes, therefore p = 1
2
(2P + 2Q) and similarly q = Q + R. Hence, we can rewrite the

equations (4.5) as

P ′ = p2, 2Q′ = 2pq, R′ = q2 , (4.7)

which is the desired special case of (4.2).

With a bit more algebra, this proof can be generalized to multiple alleles. The Hardy-

Weinberg law can be extended to more general situations, such as separate sexes (then

it takes two generations to reach Hardy-Weinberg proportions) or X-linked loci (then

geometric convergence to HW occurs).

4.2 Selection

Selection occurs when genotypes in a population differ in their fitnesses, i.e., in their

viability, mating success, or fertility and, therefore, leave different numbers of progeny.

As already mentioned, selection is one of the major driving forces of evolution. Therefore,

it is essential to understand its consequences well. The basic models of selection were

developed and investigated in the 1920s and early 1930s by Fisher, Wright, and Haldane.
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4.2.1 The model

We shall be concerned with the evolutionary consequences of selection caused by differ-

ential viabilities (i.e., the probability that an offspring survives to reproductive age). We

suppose that at an autosomal locus the alleles A1, . . . ,AI occur. We count individuals

at the zygote stage and denote the (relative) frequency of the ordered genotype AiAj by

Pij(= Pji).

Since mating is at random, the genotype frequencies Pij are in Hardy-Weinberg pro-

portions. Let us suppose that selection acts solely through differential viabilities, and

denote the fitness (viability) of AiAj individuals by wij ≥ 0. We assume that the fit-

nesses satisfy wij = wji. Then the frequency of AiAj genotypes among adults that have

survived selection is

P ∗ij =
wijPij

w̄
=
wijpipj
w̄

,

where we have used (4.4). Here,

w̄ =
∑
i,j

wijPij =
∑
i,j

wijpipj =
∑
i

wipi (4.8)

is the mean fitness of the population and

wi =
∑
j

wijpj (4.9)

is the marginal fitness of allele Ai.

Therefore, the frequency of Ai after selection is

p∗i =
∑
j

P ∗ij = pi
wi

w̄
. (4.10)

Because of random mating, the allele frequency p′i among zygotes of the next generation

is also p∗i (4.3), so that allele frequencies evolve according to the selection equation

p′i = pi
wi

w̄
, i ∈ I . (4.11)

This recursion equation preserves the relation∑
i

pi = 1
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and describes the evolution of allele frequencies at a single autosomal locus in a diploid

population. We view the selection dynamics (4.11) as a (discrete) dynamical system on

the simplex

∆I =

{
p = (p1, . . . , pI)

T ∈ RI : pi ≥ 0 for every i ∈ I ,
∑
i

pi = 1

}
, 3 (4.12)

The selection dynamics is a replicator equation (see Hofbauer and Sigmund 1998).

Fitnesses are said to be multiplicative if constants vi exist such that

wij = vivj (4.13)

for every i, j. Then wi = viv̄, where v̄ =
∑

i vipi, and w̄ = v̄2. Therefore, (4.11) simplifies

to

p′i = pi
vi
v̄
, i ∈ I . (4.14)

This can be solved explicitly because it is equivalent to the linear system x′i = vixi. The

solution is

pi(t) =
pi(0)vti∑
j pj(0)vtj

. (4.15)

(4.14) also describes the dynamics of an asexual haploid population under selection.

Example 4.1 (Selection is very efficient). Suppose there are only two alleles, A1 and A2.

If A1 is the wild type and A2 is a new beneficial mutant, we may set (without loss of

generality!) v1 = 1 and v2 = 1 + s. Then we obtain from (4.15):

p2(t)

p1(t)
=
p2(0)

p1(0)

(
v2
v1

)t

=
p2(0)

p1(0)
(1 + s)t . (4.16)

Thus, A2 increases exponentially relative to A1.

For instance, if s = 0.5, then after 10 generations the frequency of A2 has increased

by a factor of (1 + s)t = 1.510 ≈ 57.7 relative to A1. If s = 0.05 and t = 100, this factor

is (1 + s)t = 1.05100 ≈ 131.5.

Thus, slight fitness differences may have a big long-term effect. Also note that 100

generations are short on an evolutionary time scale.

An important property of (4.11) is that mean fitness is nondecreasing along trajectories

(solutions), i.e.,

w̄′ = w̄(p′) ≥ w̄(p) = w̄ , (4.17)

3Throughout, the superscript T denotes vector or matrix transposition.
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and equality holds if and only if p is an equilibrium.4 This statement is a special case of

Fisher’s Fundamental Theorem of Natural Selection (see below). The proof of (4.17) is

not trivial and uses inequalities related to convexity (see, e.g., Chap. I.9 of Bürger 2000,

or Hofbauer and Sigmund 1988).

In mathematical terms, (4.17) shows that w̄ is a Lyapunov function. This has a

number of important consequences. For instance, complex dynamical behavior such as

limit cycles or chaos can be excluded. All trajectories approach the set of points p ∈ ∆I

that are maxima of w̄. This is a subset of the set of equilibria. From (4.11) it is obvious

that the equilibria are precisely the solutions of

pi(wi − w̄) = 0 for every i . (4.18)

We call an equilibrium internal, or fully polymorphic, if pi > 0 for every i (all alleles are

present). The I equilibria defined by pi = 1 for some i are called monomorphic (only allele

Ai is present). In general, it is difficult or even impossible to determine all equilibria.

4.2.2 Two alleles

Here, we specialize to two alleles. We write p and 1− p instead of p1 and p2. Further, we

use relative fitnesses and assume

w11 = 1 , w12 = 1− hs , w22 = 1− s , (4.19)

where s is called the selection coefficient and h describes the degree of dominance. We

assume s > 0.

The allele A1 is called dominant if h = 0, partially dominant if 0 < h < 1
2
, recessive if

h = 1, and partially recessive if 1
2
< h < 1. The terms additivity, or no dominance, refer

to h = 1
2
. If h < 0, there is overdominance or heterozygote advantage. If h > 1, there is

underdominance or heterozygote inferiority.

From (4.9), the marginal fitnesses of the two alleles are

w1 = 1− hs+ hsp and w2 = 1− s+ s(1− h)p (4.20)

and, from (4.8), the mean fitness is

w̄ = 1− s+ 2s(1− h)p− s(1− 2h)p2 . (4.21)

4p is called an equilibrium, or fixed point, of the recursion relation p′ = f(p) if f(p) = p. We use the
term equilibrium point to emphasize that we consider an equilibrium that is a single point.
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Schematic selection dynamics with two alleles

p0 1

10  ,10 ≤≤<< hs

10  ,10 ≤≤<< hs

0  ,10 <<< hs

1  ,10 ><< hs

Figure 4.1: Convergence patterns for selection with two alleles.

It is easily verified that the allele-frequency change from one generation to the next can

be written as

∆p = p′ − p =
p(1− p)

2w̄

dw̄

dp
(4.22a)

=
p(1− p)s

w̄
[1− h− (1− 2h)p] . (4.22b)

There exists an internal equilibrium if and only if h < 0 (overdominance) or if h > 1

(underdominance). It is given by

p̂ =
1− h
1− 2h

. (4.23)

Because we can write (4.22) in the form

∆p =
sp(1− p)

w̄
(1− 2h)(p̂− p) , (4.24)

and because 0 < sp(1− p)(1− 2h)/w̄ < 1 if 0 < p < 1, p̂ is globally asymptotically stable

if and only if h < 0, and convergence is monotonic. If h > 1, then the monomorphic equi-

libria p = 0 and p = 1 each are asymptotically stable and p̂ is unstable. For intermediate

dominance, 0 ≤ h ≤ 1, p = 1 is globally asymptotically stable.

The three possible convergence patterns are shown in Figure 4.1. Figure 4.2 displays

the influence of the degree of (intermediate) dominance on the rate of adaptation of an

advantageous allele.
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Figure 4.2: Selection of a dominant (h = 0, solid line), intermediate (h = 1/2, dashed),
and recessive (h = 1, dash-dotted) allele. The initial frequency is p0 = 0.005 and the
selective advantage is s = 0.05.

4.2.3 The continuous-time selection model

Most higher animal species have overlapping generations because birth and death occurs

continuously in time. This, however, may lead to substantial complications if one wishes

to derive a continuous-time model from biological principles. By contrast, discrete-time

models can frequently be derived straightforwardly from simple biological assumptions.

If evolutionary forces are weak, a continuous-time version can often be derived as an

approximation to the discrete-time model.

A rigorous derivation of the differential equations describing gene-frequency change

under selection in a diploid population with overlapping generations is a formidable task

and requires a complex model involving age structure. Here, we just state the system of

differential equations and justify it in an alternative way.

In a continuous-time model, the fitness of a genotype, AiAj, is defined as its birth rate

minus death rate. We denote it by mij. Then, the marginal fitness of allele Ai is

mi =
∑
j

mijpj ,
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the mean fitness of the population is

m̄ =
∑
i

mipi =
∑
i,j

mijpipj ,

and the dynamics of allele frequencies becomes

ṗi = pi(mi − m̄) , i ∈ I . (4.25)

This is the analogue of the discrete-time selection dynamics (4.11). Its state space is again

the simplex SI . The equilibria are obtained from the condition ṗi = 0 for every i.

Example 4.2 (Two alleles). For two alleles, (4.25) simplifies considerably because it is

sufficient to track the allele frequency p = p1. In addition, we write q = 1 − p. Scaling

the Malthusian parameters in the following way

A1A1 A1A2 A2A2

0 −hs −s ,

we obtain the simple representations

ṗ = 1
2
spq if h = 1

2
(no dominance) (4.26)

and

ṗ = spq2 if h = 0 (A1 is dominant) . (4.27)

Equation (4.26) is also obtained for a haploid population in which A2 has a selective

disadvantage of 1
2
s relative to A1.

Derivation of the continuous-time model from the discrete-time model. First, observe

that the difference equation (4.11) and the differential equation (4.25) have the same

equilibria if

wij = 1 + smij for every i, j ∈ I . (4.28)

This is obvious upon noting that (4.28) implies wi = a+ smi and w̄ = a+ sm̄.

For weak selection the discrete model (4.11) can be approximated by the continuous

model (4.25) as follows. Assume that wij is given by (4.28), rescale time according to

t = bτ/sc, where b c denotes the closest smaller integer. Then s may be interpreted

as generation length and, for pi(t) satisfying the difference equation (4.11), we define

qi = qi(τ) = pi(t). Then we have

d

dτ
qi = lim

s↓0

1

s
[qi(τ + s)− qi(τ)] = lim

s↓0

1

s
[pi(t+ 1)− pi(t)] .
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From (4.11) and (4.28), we obtain pi(t+1)−pi(t) = spi(t)(mi−m̄)/(1+sm̄) and, therefore,

q̇i = qi(mi − m̄). This proves the assertion because ∆pi ≈ sq̇i = spi(mi − m̄).

One of the advantages of models in continuous time is that they lead to differential

equations, and usually these are easier to analyze because the formalism of calculus is

available. An example for this is that, in continuous time, (4.17) simplifies to

˙̄m =
dm̄

dt
≥ 0 . (4.29)

This is much easier to prove than (4.17).

The exact continuous-time model reduces to (4.11) only if the mathematically inconsis-

tent assumption is imposed that Hardy-Weinberg proportions apply at every time which

is generally not true. Under weak selection, however, deviations from Hardy-Weinberg

decay to order O(s) after a short period of time.

4.2.4 Important general results

As already stated in (4.17), the selection dynamics (4.11) has the important property that

mean fitness is nondecreasing along trajectories. More precisely, it has been shown that

∆w̄ ≥ 0 and ∆w̄ = 0 only at equilibria , (4.30)

where ∆w̄ = w̄′ − w̄.

In his famous Fundamental Theorem of Natural Selection, Fisher (1930) not only stated

that mean fitness is nondecreasing but that its rate of change is equal to the additive

genetic variance in fitness,

σ2
A = 2

∑
i

pi(wi − w̄)2 . (4.31)

In general, σ2
A is strictly smaller than the total genetic variance

σ2
G =

∑
i,j

pipj(wij − w̄)2, (4.32)

and σ2
A = σ2

G if there is no dominance.

The classical interpretation of the Fisher’s Fundamental Theorem has been that

∆w̄ = σ2
A/w̄ , (4.33)

at least approximately. Unless there is no dominance, (4.33) does generally not hold

exactly. However, it can be shown to hold to a very close approximation if selection is

weak (s small); e.g. Nagylaki (1991).
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The following result summarizes a number of further important properties of the se-

lection dynamics. Proofs and references to the original literature may be found in Bürger

(2000).

Theorem 4.3. 1. If an isolated internal equilibrium exists, then it is uniquely determined.

2. p̂ is an equilibrium if and only if p̂ is a critical point of the restriction of mean

fitness w̄(p) to the minimal subsimplex of SI that contains the positive components of p̂.

3. If the number of equilibria is finite, then it is bounded above by 2I − 1.

4. An internal equilibrium is asymptotically stable if and only if it is an isolated local

maximum of w̄. Moreover, it is isolated if and only if it is hyperbolic (i.e., the Jacobian

has no eigenvalues of modulus 1).

5. An equilibrium point is stable if and only if it is a local, not necessarily isolated,

maximum of w̄.

6. If an asymptotically stable internal equilibrium exists, then every orbit starting in

the interior of SI converges to that equilibrium.

7. If an internal equilibrium exists, it is stable if and only if, counting multiplicities,

the fitness matrix W = (wij) has exactly one positive eigenvalue.

8. If the matrix W has i positive eigenvalues, at least (i− 1) alleles will be absent at a

stable equilibrium.

9. Every orbit converges to one of the equilibrium points (even if they are not isolated).

4.3 Mutation and selection

Natural selection and mutation are two central factors guiding biological evolution: mu-

tation generates the genetic variability upon which selection can act. This was clearly

recognized by the pioneers of population genetics, Fisher, Haldane, and Wright, who devel-

oped mathematical models quantifying the relative importance of selection and mutation

in maintaining genetic variation. To understand the patterns and amount of genetic varia-

tion within a population is essential because, as we have seen, they determine the response

to selection. In particular, in the absence of genetic variation, evolution is impossible.

In traditional models, two alleles per locus are considered, the wild type and a mutant,

and the equilibrium frequencies of the alleles can be calculated under recurrent mutation

and various assumptions on the selective values of the genotypes. Usually, however, more

than two alleles per locus may occur. For the type of model treated below, the molecular

origin of the mutants is irrelevant; only their selective properties are used.
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As above, we assume that populations are sufficiently large that random genetic drift

can be ignored, that mating is at random if they are sexual, and genotypic fitnesses are

constant.

4.3.1 Mutation only

We shall employ a simple concept of mutation, sufficient for most purposes in population

genetics theory, by designating any change from one allelic type to another a mutation.

Here, we assume that all mutations are neutral, i.e., all have the same fitness. Let us

consider I alleles, A1, . . . ,AI , at a gene locus and label their frequencies by p1, . . . , pI .

For i 6= j we denote the probability that an Ai gene has an Aj offspring by the mutation

rate µij. We shall use the convention µii = 0 for every i. Then the fraction of Ai genes

that do not mutate is 1−
∑

j µij, and Aj genes give rise to a mutant Ai with probability

µji. Therefore, the frequency p′i of Ai in the next generation is

p′i = pi

(
1−

∑
j

µij

)
+
∑
j

pjµji . (4.34)

We call (4.34) the (pure) mutation equation. Due to the convention µii = 0, the index i

may or may not be excluded in the above summations.

Linear algebra shows that there exists a unique equilibrium if all mutation rates are

positive, and that convergence to this equilibrium occurs at a geometric rate (see below).

Example 4.4. Let us illustrate this for the simple case of two alleles. Denoting the

mutation rate from A1 to A2 by µ, the reverse mutation rate by ν, and the frequency of

A1 by p, the recursion (4.34) reduces to

p′ = p(1− µ− ν) + ν .

If µ or ν is positive, there exists a unique equilibrium frequency (obtained from the

condition p′ = p). It is given by

p̂ =
ν

µ+ ν
.

The above recursion equation can be solved explicitly and, using p̂, its solution can be

expressed as

p(t)− p̂ = (p0 − p̂)(1− µ− ν)t ,

where p0 = p(0) is the initial frequency of A1. This shows that convergence to equilibrium

occurs at a geometric rate, but is very slow because µ+ ν is typically very small.
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4.3.2 The mutation-selection model

First, we set up the mutation-selection model for a diploid population and one locus with

an arbitrary number I of alleles. Then we confine attention to the diallelic case.

Let µij denote the mutation rate from Ai to Aj and µii = 0. Allele frequencies are

measured among zygotes before selection, and the life cycle begins with selection, which is

followed by the production of germ cells, during which mutation occurs, and the formation

of zygotes. We assume a population with discrete generations. Therefore, applying (4.34)

to the allele frequencies p∗i after selection, as given by (4.11), we obtain

p′i = p∗i

(
1−

∑
j

µij

)
+
∑
j

p∗jµji . (4.35)

This can be rewritten in the form

p′i = pi
wi

w̄
+

1

w̄

∑
j

(pjwjµji − piwiµij) , (4.36)

where wi is the marginal fitness of the allele Ai. (4.36) provides the diploid mutation-

selection dynamics.

For a population with overlapping generations, the differential equation

ṗi = pi(mi − m̄) +
∑
j

(pjµji − piµij) (4.37)

is used, where mi is the marginal Malthusian fitness of Ai.

Obviously, the dynamics of (4.36) remains unchanged if all fitnesses wij are multiplied

by the same positive constant, and (4.37) remains unchanged if the same constant is

added to every mij. For multiplicative fitnesses, wij = wiwj, the discrete-time recursion

(4.36) reduces to the haploid recursion (in which the wi are constants and w̄ is linear),

and for additive fitnesses, mij = mi +mj, the continuous-time equation (4.37) reduces to

the corresponding haploid equation.

4.3.3 Two alleles

For the present purpose it is convenient to parameterize the fitness values of the genotypes

A1A1, A1A2, A2A2 as w11 = 1, w12 = 1 − hs, w22 = 1 − s. Instead of p1 and p2, we

write p and q = 1 − p. Then the marginal fitnesses and the mean fitness are given by

(4.20) and (4.21), respectively. For the mutation rates we write µ = µ12 and ν = µ21
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and require µ + ν < 1. A straightforward calculation shows that the equilibria of the

mutation-selection equation (4.36) are the solutions p of

p3s(2h− 1) + p2s[2− 3h+ µh+ ν(1− h)]

+ p[−s(1− h) + µ(1− hs) + ν(1− 2s+ hs)]− ν(1− s) = 0 (4.38)

in the interval [0, 1]. As we shall see below, there may be one, two, or three such solutions,

depending on the parameters. Some elementary, but lengthy, algebra shows the following

(Norman 1974, Nagylaki 1992):

Theorem 4.5. If 0 < s < 1 and h ≤ 1
2
, or s < 0 and h ≥ 1

2
, then (4.37) has a unique

solution in [0, 1]. Because µ + ν < 1, this equilibrium is globally asymptotically stable.

Convergence is monotonic.

This result includes several important special cases, such as no dominance (h = 1
2
),

complete dominance of A1 (h = 0), and overdominance (h < 0) (in all these cases s > 0

is assumed).

The equilibrium solutions are simple only in special cases. We restrict our attention to

the case ν = 0, in which back mutations from the deleterious (and thus rare) allele A2 to

A1 are ignored. It will be convenient to give the precise formulas in terms of q = 1 − p.
Obviously, q̂(0) = 1 is always an equilibrium, because if A1 is initially not present in the

population, it will not arise by mutation. Since ν = 0, (4.37) reduces to a quadratic

equation which, if 4µ/s ≤ 1, has the following solutions in [0, 1]:

q̂(1) =
h(1 + µ)

2(2h− 1)

[
1−

√
1− 4µ(2h− 1)

(1 + µ)2h2s

]
if h 6= 0, 1

2
, (4.39a)

q̂(1) =
2µ

s(1 + µ)
if h = 1

2
, (4.39b)

and

q̂(2) =
h(1 + µ)

2(2h− 1)

[
1 +

√
1− 4µ(2h− 1)

(1 + µ)2h2s

]
if h > hc , (4.40)

where

hc =
1− µ/s
1− µ

. (4.41)

Note that the case h > hc includes underdominance, i.e., h > 1. If h < hc, then q̂(2)

is biologically not meaningful because q̂(2) > 1. If this holds, then the equilibrium q̂(1)
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Figure 4.3: Equilibria and dynamics for the diallelic mutation-selection equation with
one-way mutation. The drawing on top displays the case h ≤ hc, that on bottom is for
h > hc. Stable equilibria are indicated by •, unstable ones by ◦.

is globally asymptotically stable. If h > hc, then three equilibria coexist. They satisfy

0 < q̂(1) < q̂(2) < q̂(0) = 1, and q̂(1) and q̂(0) are asymptotically stable, whereas q̂(2) is

unstable (see Figure 4.3). Thus, for one-way mutation, a simple and explicit classification

of the stability of equilibria is available. It can be shown that this is also valid for the

case 0 < ν � µ. Then, of course, q̂(0) < 1 and q̂(0) ≈ 1. Analogous results hold for the

differential equation (4.36).

We point out that for hc ≤ h ≤ 1 the pure selection model has one globally asymp-

totically stable boundary equilibrium (q̂ = 0), but the introduction of mutation, however

weak, leads to two stable and one unstable equilibria. Thus, already with two alleles,

the diploid mutation-selection dynamics may be qualitatively different from the haploid

dynamics.

Assuming that µ is of smaller order than s, simple approximations for the equilibrium

frequencies can be derived in the following cases:

If h = 0, then

q̂(1) =

√
µ

s
. (4.42a)

If h�
√
µ/s, then

q̂(1) ≈ µ

hs
. (4.42b)

If h > hc, then the unstable interior equilibrium is admissible and satisfies

q̂(2) ≈ h

2h− 1
− µ

hs
. (4.42c)
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For multiplicative selection coefficients, w11 = 1, w12 = 1 − t, w22 = (1 − t)2, one

obtains (exactly)

q̂(1) =
µ

t
. (4.42d)

The equilibrium frequency of a recessive deleterious mutant (h = 0) is much higher

than that of an intermediate or dominant deleterious mutant (h �
√
µ/s), because it

occurs mostly in heterozygotes, against which selection is ineffective.

The case of weak mutation can also be treated by perturbation arguments. If s > 0 and

h < 1, then introduction of sufficiently weak mutation [such that h < (1− µ/s)/(1− µ);

cf. (4.41)] leads only to very small disturbances of the equilibria which, in particular,

maintain their stability properties. Then a stable equilibrium at the boundary will move

inwards, and only the situation displayed in the upper drawing of Figure 4.3 can occur.

The case h = 1 is not regular and this simple perturbation argument does not apply. It

is generally held that the case of weak mutation is biologically the most important.

Remark 4.6. 1. It is known that the majority of mutations is (slightly) deleterious.

Therefore, in general, mutations decrease the mean fitness of a population. This decrease

is called the mutation load. Interestingly, the mutation load is, to leading order, indepen-

dent of the selective coefficient of the mutations. It is twice the total mutation rate to

deleterious alleles. This is called Haldane’s principle.

2. Already the above results show that with diploidy the dynamics under mutation

and selection can be more complex than with haploidy. If at least three alleles occur at

a locus, it has been shown that stable limit cycles may occur. Essentially, this requires

that the strength of mutation and selection are of comparable magnitude and interact in

specific ways.

3. If fitnesses are multiplicative or the population is haploid, then global convergence

to a unique fully polymorphic equilibrium can be proved, provided the mutation matrix

is primitive, or ergodic. This result is a consequence of the Perron-Frobenius Theorem

for positive matrices.

4.4 Recombination

The process of crossing between two homologous chromosomes during meiosis leads to

recombination between genes on the same chromosome. Naturally, recombination also

occurs between genes on different chromosomes because chromosomes are passed indepen-

dently to daughter cells. Therefore recombination has the potential to combine favorable
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alleles of different ancestry in one gamete and to break up combinations of deleterious al-

leles. These properties may confer a substantial evolutionary advantage to sexual species

relative to asexuals. The interaction of recombination with selection and mutation also

has other important evolutionary consequences. Here, we treat only the simplest model

and study recombination in isolation.

According to the Hardy–Weinberg Law, the genotype frequencies attain an equilibrium

value after one generation of random mating if gene loci are considered separately. This is

no longer true for genotypes with respect to two or more loci considered jointly. Consider

two loci, A and B, each with two alleles, A1, A2, and B1, B2. Then there are ten possible

genotypes. If, for instance, in the initial generation only the genotypes A1B1/A1B1 and

A2B2/A2B2 are present, then in the next generation only these double homozygotes, as

well as the two double heterozygotes A1B1/A2B2 and A1B2/A2B1 will be present. After

further generations of random mating, all other genotypes will occur, but not immedi-

ately at their equilibrium frequencies. Of course, the formation of gametic types other

than A1B1 or A2B2 requires that recombination between the two loci occur. Disequilib-

rium with respect to two or more loci is called linkage disequilibrium, or gametic phase

disequilibrium. It is equivalent to statistical dependence of allele frequencies between loci.

For a rigorous treatment, we consider more generally two loci, each with an arbitrary

number of alleles. Let the frequencies of the alleles Ai at the A locus be denoted by pi

and those of the alleles Bj at the B locus by qj. Let the frequency of the gamete AiBj be

Pij, so that pi =
∑

j Pij and qj =
∑

i Pij. In general, these allele frequencies are no longer

sufficient to describe the genetic composition of the population. Linkage equilibrium is

defined as the state in which

Pij = piqj (4.43)

holds for every i and j. Otherwise the population is said to be in linkage disequilibrium.

Let the parameter r denote the recombination frequency, or recombination rate, between

the two loci. This is the probability that a recombination event (crossing over) occurs

between them. The value of r usually depends on the distance between the two loci along

the chromosome. Loci with r = 0 are called completely linked (and may be treated as

a single locus) and loci with r = 1
2

are called unlinked. The maximum value of r = 1
2

typically occurs for loci on different chromosomes, because then all four gametes are

produced with equal frequency 1
4
. Thus, the recombination rate satisfies 0 ≤ r ≤ 1

2
.

Given Pij, we want to find the gametic frequencies P ′ij in the next generation after

random mating. The derivation of the recursion equation is based on the following basic
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A2B1

A2B2

Figure 4.4: The tetrahedron represents the state space of the two-locus two-allele model.
The vertices correspond to fixation of the labeled gamete, and frequencies are measured
by the (orthogonal) distance from the opposite boundary face. At the center of the sim-
plex all gametes have frequency 1

4
. The two-dimensional surface is the linkage-equilibrium

manifold corresponding to the states in linkage equilibrium, D = 0. The states of max-
imum linkage disequilibrium, D = ±1

4
, are the centers of the edges connecting A1B2 to

A2B1 and A1B1 to A2B2.

fact of Mendelian genetics: an individual with genotype AiBj/AkBl produces gametes

of parental type if no recombination occurs (with probability 1 − r), and recombinant

gametes if recombination between the two loci occurs (with probability r). Therefore, the

fraction of gametes AiBj and AkBl is 1
2
(1 − r) each, and that of AiBl and AkBj is 1

2
r

each. From these considerations, we see that the frequency of gametes of type AiBj in

generation t + 1 produced without recombination is (1 − r)Pij, and that produced with

recombination is rpiqj because of random mating. Thus,

P ′ij = (1− r)Pij + rpiqj . (4.44)

This shows that the gene frequencies are conserved, but the gamete frequencies are not,

unless the population is in linkage equilibrium, (4.43). Commonly, linkage disequilibrium

between alleles Ai and Bj is measured by the parameter

Dij = Pij − piqj . (4.45)
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The Dij are often called simply linkage disequilibria, although no single Dij is a complete

measure of linkage disequilibrium. From (4.44) and (4.45) we infer that

D′ij = (1− r)Dij (4.46)

and, hence,

Dij(t) = (1− r)tDij(0) . (4.47)

Therefore, unless r = 0, linkage disequilibria decay at the geometric rate 1−r and linkage

equilibrium is approached gradually without oscillation. With unlinked loci, r = 1
2
, linkage

disequilibrium is halved each generation.

For two alleles at each locus, it is more convenient to label the frequencies of the

gametes A1B1, A1B2, A2B1, and A2B2 by x1, x2, x3, and x4, respectively. A simple

calculation reveals that in this case the difference of the frequency of coupling genotypes,

A1B1/A2B2, and repulsion genotypes, A1B2/A2B1,

D = x1x4 − x2x3 , (4.48)

satisfies

D = D11 = −D12 = −D21 = D22 . (4.49)

Thus, the recursion equations for the gamete frequencies, (4.44), may be rewritten as

x′1 = x1 − rD , (4.50a)

x′2 = x2 + rD , (4.50b)

x′3 = x3 + rD , (4.50c)

x′4 = x4 − rD . (4.50d)

The two-locus gametic frequencies may be represented geometrically by the points in

a tetrahedron, because x1 + x2 + x3 + x4 = 1. The set of quadruples (x1, x2, x3, x4),

xi ≥ 0, satisfying this constraint is called the three-dimensional simplex, and denoted by

S4. The subset where D = 0 forms a two-dimensional manifold and is called the linkage

equilibrium, or Wright, manifold. It is displayed in Figure 4.4.

It follows from (4.47) that, if r > 0, all solutions of (4.50) converge to the linkage-

equilibrium manifold along straight lines, because the allele frequencies, x1 + x2 and

x1 + x3, remain constant, and sets of the form x1 + x2 = const. represent planes in

this geometric picture. In the present simple model, the linkage-equilibrium manifold is
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invariant under the dynamics (4.50). With selection or mutation, this is generally not the

case.

If there are more than two loci, linkage disequilibria among any group of at least two

loci have to be considered. The model becomes much more complex then. However, it

can again be proved that under random mating all gametic combinations eventually reach

equilibrium proportions.

4.5 Random genetic drift

So far, we assumed that population sizes are large enough to equate the probability of

sampling an allele with its relative frequency. Here we shall briefly explore the conse-

quences of finite population size. In a finite population, changes in allele frequencies must

be viewed as a stochastic process, because of variation in the number of offspring pro-

duced by different individuals, and because of the stochastic nature of segregation. The

stochasticity introduced through such random effects is called random genetic drift.

In contrast to the importance attributed to stochastic models in this course, they play

a central role in population genetics. The reason is that in finite populations the fate of

alleles may be very different from that predicted by an analogous deterministic model. In

particular, advantageous alleles that occur as a single mutant (or in very low frequency)

may be lost with high probability as long as they are rare. By contrast, slightly deleterious

alleles have a non-negligible probability of becoming fixed in a small population.

The most widely used model for studying finite populations is the so-called Wright–

Fisher model. We introduce it in its simplest form by assuming that there is only one sex

and no mutation, selection, geographic dispersal, or else.

Consider a diploid, monoecious population of fixed size with two selectively neutral

alleles, A1 and A2, at a certain locus. Then there are 2N genes in the population and

we denote the number of A1 genes in generation t by X(t). In the Wright–Fisher model,

it is assumed that the 2N genes in generation t + 1 are obtained from the 2N parental

genes in generation t by sampling with replacement. This will be a good approximation if

allelic proportions are preserved under reproduction and the number of gametes produced

is sufficiently high that removing 2N gametes randomly does not change the relative

frequencies in the gamete pool. Then X(t+ 1) is a binomial random variable with index

2N and parameter X(t)/(2N). More precisely, given that X(t) = i, the probability πij
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Figure 4.5: Evolution under the Wright-Fisher in a diploid population of size 2N = 80.
Three trajectories are shown, each starting at a frequency of i = 40.

that X(t+ 1) = j is

πij =

(
2N

j

)(
i

2N

)j (
1− i

2N

)2N−j

, (4.51)

for i, j = 0, 1, 2, . . . , 2N . The πij are called the transition probabilities and the matrix

(pij) is the transition matrix of the associated Markov chain X( · ). Knowledge of the

transition matrix allows one to calculate the probability distribution of X(t) for every

generation t if the (probability distribution of the) initial state X(0) = X0 is known,

because

Pr[X(t+ 1) = j] =
2N∑
i=0

Pr[X(t) = i]πij . (4.52)

For this model let us derive some simple facts about the evolution of a finite population.

First, we obtain from (4.52) by using
∑

j jπij = i,

E[X(t+ 1)] = E[X(t)] = · · · = E[X0] , (4.53)

where E denotes the expectation. (We write E[X0] because we do not need to know the

initial state with certainty, only its distribution.) Similarly, using
∑

j j
2πij = i + (1 −

1/(2N))i2, we get

E[(X(t+ 1))2] = E[X(t)] +

(
1− 1

2N

)
E[(X(t))2] . (4.54)
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Equation (4.53) shows that, on average, allele frequencies remain constant. However, be-

cause of random fluctuations, any given population will not maintain a constant frequency

of A1. Indeed, (4.53) implies that the expected heterozygosity decreases geometrically to

zero, i.e., if p(t) = X(t)/(2N) and H(t) = 2p(t)[1− p(t)], then

E[H(t+ 1)] =

(
1− 1

2N

)
E[H(t)] . (4.55)

Thus, random genetic drift eliminates all heterozygotes from the population. Since the

population is random mating, this implies that one of the alleles becomes fixed. Once

an allelic type is lost, it cannot be reintroduced into the population because this model

ignores mutation.

It is easy to calculate the probability of fixation of, say, allele A1. Obviously, (4.55)

implies that limt→∞ Pr[X(t) = i] = 0 for i = 1, . . . , 2N − 1. Therefore,

E[X0] = lim
t→∞

E[X(t)] = lim
t→∞

2N∑
i=0

iPr[X(t) = i] (4.56)

= lim
t→∞

2N Pr[X(t) = 2N ] , (4.57)

which shows that the probability of fixation of A1 is

Pr[A1becomes fixed] =
E[X0]

2N
. (4.58)

Thus, if p0 is the initial frequency of an allele, its fixation probability is also p0. Much

of this theory can be generalized to include mutation, selection, and other evolutionary

forces.

There is also another, more intuitive approach to find the fixation probability of A1.

Note that eventually every gene in a population is descended from one unique gene in the

initial generation. The probability that such a gene is A1 is simply the initial fraction of

such genes. This must, therefore, be the fixation probability of A1.

This idea, of going backwards in time, turned out to be essential for modern popula-

tion genetics because it allows to draw inferences about evolutionary events in the history

of a population from observations of their ‘footprints’ in the genomes of extant popula-

tions. The fundamental concept on which such inference is based is the coalescent process

(Kingman 1980) which traces the genealogical relationship between genes from a sample

backward in time until the most recent common ancestor is found. This is a beautiful

mathematical theory of great importance in evolutionary genetics.
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