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2.1 Introduction



The foundations of modern population genetics

were laid by the work of

Ronald A. Fisher, J.B.S. Haldane, and Sewall Wright,

who reconciled Mendelism with Darwinism during the second and
third decades of the twentieth century.

They demonstrated that the theory of evolution by natural selection,
proposed by Charles Darwin (1859), can be justified on the basis of
genetics as governed by Mendel’s laws.



Mendel’s (1866) prime achievement

was the recognition of the particulate nature of the hereditary
determinants, now called genes.

A gene may have different forms, called alleles. In diploid organisms
each autosomal cell carries two copies of each gene. The allelic
types may be different or the same.

Mendel recognized that in diploid organisms each reproductive cell
(gamete – egg or sperm) contains only one of the two alleles, and
that each gamete is equally likely to contain one or the other.

The separation of paired alleles is called segregation and occurs
during meiosis. At mating, two reproductive cells fuse and form a
zygote.

The allelic composition is called the genotype, and the set of
observable properties derived from the genotype is called the
phenotype.



Terminology

In diploid organisms, if there are two alleles A1 and A2, then there
are three possible genotypes, A1A1, A1A2, and A2A2.

They are called homozygous if the two alleles are identical, otherwise
they are heterozygous. In general, the genotypes A1A2 and A2A1

cannot be distinguished.

When the phenotype of the heterozygote A1A2 is the same as A1A1,
allele A1 is called dominant and A2 is called recessive.

Today, it is known that the genetic material is deoxyribonucleic acid
(DNA), and the code has been deciphered.

In modern language, genes are functional units of DNA. The position
of a gene on the DNA is called its locus.



2.2 The Hardy-Weinberg Law



The Hardy-Weinberg Law

We consider a single diploid locus with I alleles Ai in an (infinitely)
large population with discrete, nonoverlapping generations.

The frequency of the ordered genotype AiAj is Pij . Then the
frequency of allele Ai is

pi =
∑

j
Pij .

The Hardy-Weinberg law states that after one generation of random
mating, the zygotic frequencies satisfy

P ′ij = pipj for every i and j . (2.1)

If gametes combine randomly, this holds by definition. If diploid
individuals mate, it is less obvious but can be proved using
elementary probability theory.



Important consequences of the HW law

The allele frequencies satisfy

p′i = pi for every i . (2.2)

In other words, in a (sufficiently large) randomly mating population
reproduction does not change allele frequencies.

Therefore, no genetic variability is lost by reproduction if mating is
random!

A population is said to be in Hardy–Weinberg equilibrium if

Pij = pipj . (2.3)

It follows that gamete frequencies are sufficient to describe such a
population!



2.3 The discrete-time selection model



The model

We shall be concerned with the evolutionary consequences of
selection caused by differential viabilities (i.e., the probability that an
offspring survives to reproductive age).

Throughout, we consider an (infinitely) large population with discrete,
nonoverlapping generations. Therefore, we can ignore random
genetic drift. Unless stated otherwise, our population is diploid and
mates at random. The sexes are indistinguishable.

We suppose that at an autosomal locus the alleles A1, . . . ,AI occur.
We count individuals at the zygote stage and denote the (relative)
frequency of the ordered genotype AiAj by Pij(= Pji).

As above, frequency of allele Ai is pi =
∑

j Pij .

Since mating is at random, the genotype frequencies Pij are in
Hardy-Weinberg proportions, i.e., Pij = pipj .



The model

We denote the fitness (viability) of AiAj individuals by wij ≥ 0. We
assume that the fitnesses satisfy wij = wji.

Then the frequency of AiAj genotypes among adults that have
survived selection is

P ∗ij =
wijPij

w
=
wijpipj
w

, (2.4)

where
w =

∑
i,j

wijPij =
∑
i,j

wijpipj =
∑
i

wipi (2.5)

is the mean fitness of the population and

wi =
∑
j

wijpj (2.6)

is the marginal fitness of allele Ai.



The selection equation

Therefore, the frequency of Ai after selection is

p∗i =
∑
j

P ∗ij = pi
wi

w
. (2.7)

Because of random mating, the allele frequency p′i among zygotes of
the next generation is also p∗i . Therefore, the allele frequencies
evolve according to the selection equation

p′i = pi
wi

w
, for every i . (2.8)



The selection equation

This recursion equation preserves the relation∑
i

pi = 1

and describes the evolution of allele frequencies at a single
autosomal locus in a diploid population.

We view the selection equation (2.8) as a dynamical system on the
simplex

∆I =

{
p = (p1, . . . , pI)T ∈ RI : pi ≥ 0 ∀i ,

∑
i

pi = 1

}
.



Multiplicative fitnesses, or the haploid case

We say fitnesses are multiplicative if there exist constants vi such that

wij = vivj (2.9)

holds for every i, j. Then wi = viv̄, where v̄ =
∑

i vipi, and w = v̄2.
Therefore, the selection dynamics simplifies to

p′i = pi
vi
v̄
, for every i , (2.10)

which also describes the dynamics of an asexual haploid population
under selection.

(2.10) has the explicit solution (prove this!)

pi(t) =
pi(0)vti∑
j pj(0)vtj

. (2.11)



In haploids, the best allele becomes fixed

Assume (2.10). If one allele, say A1 has higher fitness than all others
(v1 > vi for every i 6= 1), then (vj/v1)t → 0 for j 6= 1 as t→∞.

Therefore, (2.11) shows (prove this!) that p1(t)→ 1 as t→∞, i.e., in
the long run the best allele becomes fixed.

As we shall see, this is not necessarily so in diploids.



Selection is very efficient

Consider two alleles, A1 and A2. If A1 is the wild type and we
assume that A2 is a new beneficial allele, we may set (without loss of
generality!) v1 = 1 and v2 = 1 + s. Then we obtain from above:

p2(t)

p1(t)
=
p2(0)

p1(0)

(
v2
v1

)t

=
p2(0)

p1(0)
(1 + s)t . (2.12)

Thus, A2 increases exponentially relative to A1.

If s = 0.5, then after 10 generations the frequency of A2 has
increased by a factor of (1 + s)t = 1.510 ≈ 57.7 relative to A2.
If s = 0.05 and t = 100, this factor is (1 + s)t = 1.05100 ≈ 131.5.

Slight fitness differences may have a big long-term effect!



Mean fitness is increasing

A fundamental property of the selection dynamics (2.8) is that mean
fitness is increasing along non-constant trajectories, i.e.,

w′ = w(p′) ≥ w(p) = w , (2.13)

and equality holds if and only if p is an equilibrium (proof is not easy!).

This statement is a special case of Fisher’s Fundamental Theorem of
Natural Selection (see below). It implies that the dynamics is gradient
like and trajectories always converge to an equilibrium.

The equilibria are precisely the solutions of

pi(wi − w) = 0 for every i . (2.14)

In general, it is difficult to determine the equilibria. There can be up
2I − 1 equilibria.



Evolutionary dynamics for two alleles

Now we specialize to two alleles, A1 and A2, and write p and 1− p
instead of p1 and p2. We use relative fitnesses and assume

w11 = 1 , w12 = 1− hs , w22 = 1− s , (2.15)

where s is called the selection coefficient and h describes the degree
of dominance. We assume s > 0.

The allele A1 is called dominant if h = 0, partially dominant if
0 < h < 1

2 , recessive if h = 1, and partially recessive if 1
2 < h < 1.

If h = 1
2 , there is no dominance or additivity (of alleles).

If h < 0, there is overdominance or heterozygote advantage.
If h > 1, there is underdominance or heterozygote inferiority.



Evolutionary dynamics for two alleles

We obtain

w1 = 1− hs+ hsp and w2 = 1− s+ s(1− h)p , (2.16a)

and, from (2.5), the mean fitness is

w = 1− s+ 2s(1− h)p− s(1− 2h)p2 . (2.16b)

It is easily verified that the allele-frequency change from one
generation to the next can be written as

∆p = p′ − p =
p(1− p)

2w

dw
dp

(2.17a)

=
p(1− p)s

w
[1− h− (1− 2h)p] . (2.17b)



Evolutionary dynamics for two alleles

Therefore, there exists a polymorphic equilibrium, i.e., both alleles are
present, if and only if h < 0 or h > 1. It is given by

p̂ =
1− h
1− 2h

. (2.18)

This equilibrium is globally asymptotically stable if there is
overdominance. It is unstable if there is underdominance.

In the latter case, the evolutionary outcome depends on the initial
condition, and the allele with higher (homozygous) fitness may be
lost.

For intermediate dominance (0 ≤ h ≤ 1), p̂ = 1 is globally
asymptotically stable, i.e., the fitter allele is established by selection.



Convergence patterns for selection with two alleles

 

Schematic selection dynamics with two alleles
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Dominance and the rate of adaptation



2.4 The continuous-time selection model



Derivation from the discrete-time model

Most higher animal species have overlapping generations because
birth and death occur continuously in time. Because a rigorous
derivation from biological principles (invoking age structure etc.) is a
formidable task, we view the continuous-time model as an
approximation to the discrete dynamics if selection is weak.

To this end, we set

wij = 1 + smij for every i, j , (2.19)

where s > 0 is assumed to be small. We rescale time according to
t = bτ/sc, where b c denotes the closest smaller integer. Then s may
be interpreted as generation length and we write πi(τ) = pi(t), where
for pi(t) satisfies the difference equation (2.8).



Derivation

Then we obtain formally

dπi
dτ

(τ) = lim
s↓0

1

s
[πi(τ + s)− πi(τ)]

= lim
s↓0

1

s
[pi(t+ 1)− pi(t)]

= lim
s↓0

1

s

spi(t)(mi(t)−m(t))

1 + sm(t)
by (2.8) and (2.19)

= πi(τ)(mi(τ)−m(τ) .

where

mi =
∑
j

mijpj and m =
∑
i

mipi =
∑
i,j

mijpipj , (2.20)

are the marginal (Malthusian) fitness of allele Ai and the mean
(Malthusian) fitness of the population, respectively.



The continuous-time selection equation

Therefore, the dynamics of allele frequencies becomes

ṗi = pi(mi −m) for every i , (2.21)

and
∆pi ≈ sπ̇i = spi(mi −m) . (2.22)

Note that (2.8) is essentially the Euler scheme for (2.21).

The above defined fitness parameters mij can be interpreted as the
(Malthusian) fitness mij of genotype AiAj , i.e., as its birth rate minus
its death rate.



The continuous-time selection equation
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Note that (2.8) is essentially the Euler scheme for (2.21).

The above defined fitness parameters mij can be interpreted as the
(Malthusian) fitness mij of genotype AiAj , i.e., as its birth rate minus
its death rate.



Selection in continuous time

The equilibria of (2.21) are obtained by solving the non-linear system

pi(mi −m) = 0 for every i . (2.23)

Therefore, the discrete-time and the continuous-time selection
equation have the same equilibria. The equilibria have also the same
stability properties.

Exercise 1. Validate the above statement about stability by deriving
the Jacobian in each case.
Exercise 2. By constructing an example, prove that the selection
equation with I alleles can have up to 2I − 1 equilibria (provided
equilibria are isolated).
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Two alleles

For two alleles, (2.21) simplifies considerably because it is sufficient
to track the allele frequency p = p1. In addition, we write q = 1− p.

Scaling the Malthusian parameters in the following way

A1A1 A1A2 A2A2

0 −hs −s ,
(2.24)

we obtain the simple representations

ṗ = 1
2spq if h = 1

2 (no dominance) (2.25)

and
ṗ = spq2 if h = 0 (A1 is dominant) . (2.26)

Equation (2.25) is also obtained for a haploid population in which A2

has a selective disadvantage of 1
2s relative to A1.



The Fundamental Theorem of Natural Selection

In his Fundamental Theorem of Natural Selection, Fisher (1930)
stated that the rate of change of mean fitness is equal to the additive
genetic variance in fitness,

σ2
A = 2

∑
i

pi(wi − w)2 . (2.27)

In general, σ2
A < σ2

G =
∑

i,j pipj(wij − w)2, where σ2
G is the total

genetic variance.

The classical interpretation of Fisher’s Fundamental Theorem has
been that

∆w = σ2
A/w , (2.28)

at least approximately. Unless there is no dominance, (2.28) does
generally not hold exactly.



Mean fitness increase in continuous time

In continuous time, we have σ2
A = 2

∑
i pi(mi −m)2 and obtain easily

ṁ =
d

dt

∑
i,j

mijpipj

= 2
∑
i

miṗi

= 2
∑
i

(mi −m)ṗi (because m
∑
i

ṗi = 0)

= 2
∑
i

pi(mi −m)2 = σ2
A ≥ 0 .

Therefore, mean fitness is a Lyapunov function! It strictly increases
along solutions except at equilibria (when it remains constant).


