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Abstract. Quantitative genetics theory provides a framework that predicts the effects of selection on a phenotype
consisting of a suite of complex traits. However, the ability of existing theory to reconstruct the history of selection
or to predict the future trajectory of evolution depends upon the evolutionary dynamics of the genetic variance-
covariance matrix (G-matrix). Thus, the central focus of the emerging field of comparative quantitative genetics is
the evolution of the G-matrix. Existing analytical theory reveals little about the dynamics of G, because the problem
is too complex to be mathematically tractable. As a first step toward a predictive theory of G-matrix evolution, our
goal was to use stochastic computer models to investigate factors that might contribute to the stability of G over
evolutionary time. We were concerned with the relatively simple case of two quantitative traits in a population
experiencing stabilizing selection, pleiotropic mutation, and random genetic drift. Our results show that G-matrix
stability is enhanced by strong correlational selection and large effective population size. In addition, the nature of
mutations at pleiotropic loci can dramatically influence stability of G. In particular, when a mutation at a single locus
simultaneously changes the value of the two traits (due to pleiotropy) and these effects are correlated, mutation can
generate extreme stability of G. Thus, the central message of our study is that the empirical question regarding G-
matrix stability is not necessarily a general question of whether G is stable across various taxonomic levels. Rather,
we should expect the G-matrix to be extremely stable for some suites of characters and unstable for others over similar
spans of evolutionary time.

Key words. Genetic correlation, genetic covariance, genetic variance, pleiotropy, response to selection, quantitative
genetics.

Received October 23, 2002. Accepted March 2, 2003.

Modern quantitative genetics theory provides points of
connection between microevolution and macroevolution (Ar-
nold et al. 2001). For a phenotype comprising multiple traits,
the single-generation response to selection is given by the
multivariate version of the breeder’s equation (Lande 1979),
Dz̄ 5 Gb, where z̄ is a vector of population trait means, b
is a vector of directional selection gradients, and G is the
genetic variance-covariance matrix (the G-matrix). Hence,
the response to selection depends upon the intensity and di-
rection of selection, as well as upon the amount of genetic
variation and the nature of genetic correlations among traits.
This equation for the change in the mean phenotype can be
extrapolated over multiple generations to reconstruct the his-
tory of selection or to predict the future trajectory of the
phenotype as a consequence of selection. This potential for
extrapolation provides a connection between microevolu-
tionary processes and macroevolutionary patterns (Lande
1979; but see Zeng 1988). However, such an extrapolation
is possible only if the G-matrix remains relatively constant
over long spans of evolutionary time. An extremely unstable
G-matrix would render the goal of understanding selection
over evolutionary time unachievable within the existing
quantitative genetics theory framework.

Because of the central role of the G-matrix in quantitative
genetics and the implications of its evolution, G-matrix sta-
bility has been a major focus of recent studies. In fact, this
enterprise has grown so much in size that it is fair to say
that a new field of comparative quantitative genetics has aris-
en (Steppan et al. 2002), whose primary purview is the evo-
lution of the G-matrix itself. However, despite several de-
cades of work, how the G-matrix changes over evolutionary

time remains a major unresolved issue. Neither empirical nor
theoretical investigations have led to a consensus with respect
to the expected stability of the G-matrix over evolutionary
time.

On the empirical side, the study of G-matrix evolution has
relied upon comparisons of G-matrices across distinct pop-
ulations of organisms. Clearly, over extremely long spans of
evolutionary time the G-matrix must change appreciably,
since among very divergent taxa, dramatic changes in bau-
plans result in many structures that cannot be equated with
one another in a quantitative genetic framework. Over shorter
periods of evolutionary time, however, empirical results dem-
onstrate that the G-matrix often remains stable. For example,
numerous comparisons of G between populations within spe-
cies have revealed G-matrix equality (Billington et al. 1988;
Shaw and Billington 1991; Spitze et al. 1991; Platenkamp
and Shaw 1992; Brodie 1993; Podolsky et al. 1997; Service
2000). Other studies have shown that G-matrices may vary
somewhat between populations while still retaining evolu-
tionarily important aspects of their structure (Arnold and
Phillips 1999; Roff and Mousseau 1999). Stability or con-
servation of structure has even been demonstrated for some
comparisons between species within genera (Roff et al. 1999;
Begin and Roff 2001). However, enough studies have dem-
onstrated G-matrix inequality that we cannot tacitly assume
that the G-matrix remains constant over long spans of time.
Instability of G is particularly obvious in comparisons among
species or among genera (Kohn and Atchley 1988; Paulsen
1996; Waldmann 2000), but G has also been shown to vary
in response to genetic drift and environmental perturbations
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(Shaw et al. 1995; Guntrip et al. 1997; Begin and Roff 2001;
Phillips et al. 2001).

Existing theory on the evolution of the G-matrix produces
conclusions similar to those that can be drawn from the em-
pirical studies: some conditions are expected to produce sta-
bility, while others are not. Turelli (1988) outlined several
conditions that may promote G-matrix constancy, including:
(1) no genotype-by-environment interaction with respect to
the values of genetic variances and covariances; (2) no direct
change in the nature of environmental effects on the phe-
notype over time; (3) a constant curvature and orientation of
the adaptive landscape (even though the optimum can
change); and (4) no change in the nature of genetic covari-
ances associated with new mutations. In addition, the number
of loci, number of alleles per locus, and the distribution of
allelic effects can be important to the stability of G (Turelli
1988). Furthermore, linkage disequilibrium during periods of
strong, fluctuating selection can induce transient changes in
the G-matrix, a phenomenon referred to as the ‘‘Bulmer ef-
fect’’ (Bulmer 1980; Turelli 1988; Shaw et al. 1995). Overall,
these theoretical considerations have fostered a grim outlook
on the prospects of long-term stability of G, with some au-
thors suggesting that the G-matrix is not useful over evo-
lutionary time scales. Nevertheless, the current state of an-
alytical theory on G-matrix evolution is that existing theory
cannot guarantee stability of the G-matrix (Turelli 1988), but
also does not guarantee instability. In fact, existing theory
provides very little information with respect to how much G
will change as a result of violations of the criteria for stability
laid out by Turelli (1988). Consequently, we are left to won-
der if the changes in G-matrix structure that seem likely based
on theoretical considerations are of sufficient magnitude to
affect evolutionary inferences.

Due to the complexity of the problem, analytical theory
appears to have reached an impasse with respect to further
progress on the issue of G-matrix stability, but a hitherto
unexplored approach is to use stochastic simulations to in-
vestigate this important topic. Such a modeling approach has
led to useful insights in quantitative genetic studies involving
single traits. For example, stochastic models have been used
to address the maintenance of genetic variance for quanti-
tative traits in finite populations (Bulmer 1972; Barton 1989;
Bürger et al. 1989; Keightley and Hill 1989; Foley 1992;
Bürger and Lande 1994) and the risk of extinction due to
quantitative trait evolution in response to environmental
change (Bürger and Lynch 1995). So far, few studies have
attempted to extend these stochastic models to problems in-
volving a phenotype comprising multiple traits (Wagner
1989; Baatz and Wagner 1997; Wagner et al. 1997; Reeve
2000), and none has investigated the stability of G in detail.
Hence, our aim in the present study is to extend these sto-
chastic models to investigate the factors that influence G-
matrix stability.

As a first step in developing stochastic models of the G-
matrix, we address the situation in which a finite population
is subject to stabilizing selection and mutation. Our specific
goals are to investigate the relative roles of effective popu-
lation size, the shape of the adaptive landscape, and the nature
of mutational parameters on the G-matrix over thousands of
generations of evolution. The essential features of the G-

matrix can be illustrated by using a phenotype composed of
two quantitative traits, so we restrict our attention in this
initial study to a situation in which two traits are determined
by a suite of pleiotropic loci. The results of this analysis are
relevant to debates regarding the stability of the G-matrix,
and they pinpoint certain parameters of fundamental impor-
tance to the genetic architecture of the multivariate pheno-
type.

METHODS

The Simulation Model

The simulation model used in this study is a direct exten-
sion of that employed by Bürger et al. (1989) and Bürger
and Lande (1994). We used Monte Carlo simulations, with
an additive genetic model in which all loci in all individuals
were explicitly modeled. The extension of the univariate
model to two traits resulted in numerous additional param-
eters, so for those parameters that were investigated in the
single-trait simulations, we chose parameter values that
seemed reasonable from those earlier studies (Bürger and
Lande 1994). The two traits in our model were determined
by n unlinked loci, all of which were pleiotropic. This sit-
uation can result in a genetic correlation between the two
traits, but it need not do so, depending on the nature of
mutational effects and selection. A mutation at a locus re-
sulted in a new allele with new effects on both traits. These
effects were drawn from a bivariate Gaussian distribution
with means of zero, variances of and , and a correlation2 2a a1 2
of rm. They then were added to the existing effects of the
allele in accord with the continuum of alleles model (Crow
and Kimura 1964). We determined an individual’s phenotype
at each trait by summing across loci and adding environ-
mental variation drawn randomly from a normal distribution
with a mean of zero and a variance of one. Environmental
effects on multiple traits were uncorrelated.

We simulated a diploid, sexually reproducing population
with a constant population size of N. The life cycle consisted
of: (1) production of progeny from the previous generation
of adults (including mutation); (2) viability selection; and (3)
random choice of the new generation of adults from the sur-
vivors of selection. We used a monogamous mating system
for these simulations, and generations did not overlap. For
the parameter combinations that we investigated, selection
was relatively weak, such that at least N progeny always
survived the viability selection phase of the life cycle. The
fitness of each individual was determined by an individual
selection surface with the shape of a multivariate Gaussian
distribution, such that the fitness of phenotype z, W(z), was
given by

1 T 21W(z) 5 exp 2 (z 2 u) v (z 2 u) , (1)[ ]2

where z is a column vector of trait values, u is a column
vector of trait optima, and the superscript T denotes matrix
transposition (Lande 1979). The matrix v describes the cur-
vature and orientation of the individual selection surface. For
the two-character case, v contains the elements v11, v22, and
v12. The diagonal elements, v11 and v22, represent the
strength of stabilizing selection and are analogous to the var-
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FIG. 1. The combined influence of selectional and mutational cor-
relation on the average between-generation change of the orienta-
tion of the G-matrix (Dw). As indicated, each of the five lines
displays Dw as a function of the selectional correlation rv for a
given value of rm. The following parameters are the same for all
panels: Ne 5 342, v11 5 v22 5 49, 5 5 0.05. See text for2 2a a1 2
other parameter values used in the model.

iance of the bivariate normal distribution. Thus, larger values
of v11 and v22 result in weaker stabilizing selection. The
orientation of the selection surface is determined by v12,
which is analogous to the covariance of a bivariate normal
distribution.

Each simulation run was preceded by 10,000 generations
of stabilizing selection, during which a genetically uniform
starting population reached a mutation-selection-drift equi-
librium. The following 2000 to 4000 generations were the
experimental generations, during which population-level val-
ues were calculated every generation. Most notably, we cal-
culated the elements of the G-matrix, as well as the genetic
and phenotypic means. We also calculated the single-gen-
eration change in each population-level variable. In this anal-
ysis, we restrict attention to the absolute values of these sin-
gle-generation changes, because under a stabilizing selection
equilibrium there is no net directionality to the changes on
average.

Because the mating system was monogamous in our model,
with no variance in the number of offspring produced by
each female, our effective population size was actually some-
what larger than the census population size. Each breeding
pair in our simulation produced exactly 2B offspring, and we
held B constant at 2. Under these circumstances, the effective
population size is Ne 5 4N/(Vk 1 2), where the variance in
family size, Vk, is given by Vk 5 2(1 2 1/B)[1 2 (2B 2 1)/
(BN 2 1)] (Bürger and Lande 1994). We used census pop-
ulation sizes of 256, 512, 1028, and 2056, which correspond-
ed to effective population sizes of 342, 683, 1366, and 2731,
respectively.

Throughout this study, we used the following standard pa-
rameters (unless otherwise mentioned): the number of loci
contributing to the trait, n, is 50, the mutation rate is m 5
0.0002 per haploid locus, the variances of mutational effects
( and ) are 0.05 for both traits, and the loci are freely2 2a a1 2
recombining. Therefore, the genomic mutation rate is 2nm 5
0.02 and for each trait the input of genetic variance due to
new mutations per generation is 1023. With these parameter
combinations, Vm/ is also 1023, a value close to those ob-2se

served in empirical studies of mutational variance (Lande
1975; Lynch 1988; Lynch and Walsh 1998). Our choice of
parameters was governed mainly by the previous results of
Bürger and Lande (1994), so the parameter values that we
used in our simulations were similar to those that formed the
nucleus of this previous simulation-based analysis. Future
studies may well benefit from a greater departure from the
parameters used by Bürger and Lande (1994), but such anal-
yses are outside the scope of this initial study.

Quantifying G-matrix Stability

The most obvious way to study the degree of stability of
the size and shape of the G-matrix under a balance between
multivariate stabilizing selection, pleiotropic mutation, and
random genetic drift would be to consider the genetic vari-
ances (G11, G22) and the covariance (G12), or correlation (rg),
and how they change during evolution. Another way is to
look at the eigenvalues (l1, l2) of the G-matrix, at their ratio
(e, defined here as the smaller eigenvalue divided by the
larger) as a measure of the shape of the G-matrix (thus, e is

inversely related to the eccentricity), and at the angle (w)
between the leading eigenvector and the axis along which
the first trait is measured (i.e., the x-axis). This angle w is
measured in degrees, ranging from 2908 to 1908, thus pro-
viding a convenient measure for the orientation of the G-
matrix. Small e means high eccentricity, or as we often shall
call it, a cigar-shaped G-matrix. As a measure for the overall
size of the G-matrix we use the total genetic variance, S 5
G11 1 G22. Thus, a two-dimensional G-matrix is fully de-
scribed by S, e, and w. Both perspectives, variances and co-
variance versus size, shape, and orientation yield interesting
and complementary insights.

In our tables, we present the average values of the genetic
variances of the two traits, their genetic covariance and their
correlation. We also present average values of the eigenval-
ues (l1, l2), total size (S), shape (e), and orientation (w) of
the G-matrix. These average values were obtained by aver-
aging over 20 replicate runs, each over 2000 generations
(except in the case of Fig. 1, for which values were averaged
over 4000 generations), measuring the quantities of interest
each generation. This method is a compromise between two
alternative methods for obtaining an estimator for the mean
of a random variable distributed according to a stationary
stochastic process: namely, averaging over a very long time
series or averaging over single values from a large number
of replicate runs. Because the generation of an initial pop-
ulation in quasi-equilibrium requires much computer time,
and because of high temporal autocorrelations within single
replicate runs, the adopted method seems to be appropriate
(see also Bürger et al. 1989; Bürger and Lande 1994).

As measures for the stability of the size, the shape, and
the orientation, we use the average of the absolute values of
change between two successive generations and denote them
by DG11, DG22, DG12, Dl1, Dl2, DS, De, and Dw. We stan-
dardized DG11, DG22, Dl1, Dl2, DS, and De relative to their
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average magnitudes by dividing them by their corresponding
mean (i.e., DG11 is the average single-generation change in
the genetic variance for trait 1, divided by the mean genetic
variance for trait 1). However, the change of the angle (Dw)
does not require this kind of normalization. In addition, the
mean covariance is close to zero for some parameter com-
binations, so we did not standardize DG12. Thus, DG11, DG22,
Dl1, Dl2, DS, and De represent the average between-gen-
eration change relative to the mean, whereas Dw and DG12
are simply the average between-generation changes.

The Expected Genetic Variance

For comparison of the dynamics of the genetic variance of
our traits determined by pleiotropic loci with those expected
of a single, completely independent trait experiencing sta-
bilizing selection, genetic drift, and mutation, we also cal-
culated the stochastic house-of-cards approximation for the
expected genetic variance of a single trait (Barton 1989; Bürger
et al. 1989; Houle 1989; Keightley and Hill 1989). Under this
model, the formula for the expected genetic variance is

24nma Ne2ŝ (SHC) 5 , (2)g 21 1 (a N /V )e s

where n is the number of loci, m is the per-locus mutation
rate, a2 is the variance of the distribution of mutational ef-
fects, and Vs, the strength of stabilizing selection on breeding
values, is equal to the v corresponding to the trait (i.e., v11
for trait 1) plus the environmental variance (which we are
holding constant at one; Bürger and Lande 1994). This for-
mula gives the expected genetic variance for a single trait
evolving in complete isolation from other traits. We were
interested in comparing these expectations with the equilib-
rium levels of genetic variation in a trait experiencing sta-
bilizing selection, while genetically associated, through plei-
otropy, with a second trait also experiencing stabilizing se-
lection.

RESULTS

Stabilizing Selection and the G-matrix

Table 1 summarizes the effects of variation in the strength
of stabilizing selection on the two traits and on their co-
variance for a population of effective size Ne 5 342 in the
absence of correlation between the mutational effects (rm 5
0). Table 1 clearly shows that stronger correlational selection
(increasing rv) decreases the genetic variance of both traits
as well as both eigenvalues, hence also decreasing the overall
size S of the matrix. In parallel, it increases the genetic co-
variance and correlation between the traits. In addition, in
the absence of selectional correlation, asymmetric stabilizing
selection (v11 ± v22) has the consequence that stronger se-
lection on the second trait (v11 . v22) reduces the variance
of this trait to a greater extent than that of the first trait. The
variance of the first trait is reduced, too, despite the absence
of genetic covariance, because each single mutation has
pleiotropic effects on both traits, and only on average do they
cancel. The shape measure e decreases with increasing se-
lectional correlation, but not very much, that is, correlational
selection promotes eccentricity of the G-matrix to a moderate

extent. The average angle w does not differ significantly from
zero if mutational and selection correlations are both zero
(rm 5 rv 5 0), but it is highly variable in this case. With
increasing rv, it quickly increases to nearly 458 if the two
traits experience the same strength of stabilizing selection.
For asymmetric stabilizing selection, this angle increases to
a much smaller degree.

The average between-generation change of the genetic var-
iances and of the overall size is almost unaffected by any
change in the selection pattern, reflecting the fact that fluc-
tuations in the variances and the size of the G-matrix are
mainly determined by random genetic drift (see Table 2,
which shows that DG11, DG22, and DS decrease as Ne in-
creases). However, the between-generation change of the ma-
jor eigenvalue increases with increasing correlational selec-
tion, whereas that of the smaller eigenvalue decreases cor-
respondingly. Interestingly, the standardized between-gen-
eration change of the shape, De, is nearly independent of rv,
although e itself decreases as rv increases. In other words,
regardless of the value of rv, the per-generation change in e
is a constant fraction (about 10% for Ne 5 342) of its mean.
However, De does depend on Ne (Table 2). By contrast, the
between-generation change of the covariance (DG12), as well
as that of the orientation (Dw), decreases with increasing rv.
These patterns reflect the fact that stronger correlational se-
lection causes higher stability in the orientation of the G-
matrix, though it has virtually no effect on the stability of
the genetic variances, the total size, and the shape.

Interestingly, if one trait is under stronger stabilizing se-
lection than the other, the between-generation change of the
angle is reduced below that observed if both traits experience
the same strength of selection, weak or strong. This is true
for any value of rv. The between-generation change of the
shape parameter, De, is remarkably inert to any changes in
the strength of selection on the two characters, even to ex-
treme asymmetries. Thus, like correlational selection, asym-
metric stabilizing selection promotes orientation stability.
Overall, Table 1 shows that the stability properties of the
size and shape of a G-matrix depend in a qualitatively similar
way on the shape of the fitness landscape. Also, at least in
such small populations, the size, shape, and orientation of
the G-matrix are rather unstable in the absence of mutational
correlation: The average between-generation change of the
total size is between 5% and 6% of the mean, that of the
shape parameter is about 10% of the mean, and the average
between-generation change of the orientation, Dw, is always
at least 38 and reaches nearly 108 in the absence of any cor-
relation (see Fig. 2 for a time series showing the evolution
of w).

The Nature of Mutations and G-matrix Stability

In contrast to stabilizing selection alone, mutational cor-
relation has a much stronger influence on the shape of the
G-matrix and its orientation stability. Table 3 summarizes
the effects of increasing the mutational correlation for dif-
ferent strengths of stabilizing selection on the two traits in
the absence of correlational selection. First, increasing rm has
only a slight negative effect on the average genetic variances
(or even none for G22 in the case of unequal selection
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FIG. 2. Time series of the orientation, w, the angle between the
leading eigenvector and the x-axis. Each figure displays the angle
w from one replicate run near stochastic equilibrium for 2000 gen-
erations. As in Figure 3, from top to bottom, the following selec-
tional and mutational correlations are chosen: (a) rm 5 rv 5 0; (b)
rm 5 0, rv 5 0.75; (c) rm 5 0.5, rv 5 0; (d) rm 5 0.5, rv 5 0.75;
(e) rm 5 rv 5 0.90. This figure was produced using the same pa-
rameter values as those used for Figure 3.

strength). However, it has larger effects on the average ei-
genvalues. Increasing the mutational correlation rm always
increases the leading eigenvalue but decreases the minor one.
Accordingly, the eccentricity increases substantially, that is,
the shape parameter e gets very small and the genetic co-
variance and correlation increase strongly. In other words,
mutational correlation strongly promotes a cigar-shaped G-
matrix.

As in Table 1, the between-generation changes of the ge-
netic variances, hence of the overall size, as well as of the
shape, are virtually unaffected by varying the mutational cor-
relation. However, because De (as well as DG11 and DG22)
is measured relative to the mean and the mean e is very small
for large rm, the absolute change in shape is very small if
mutational correlation is large. The between-generation
change of the eigenvalues is affected in a very similar way
by increasing rm as by increasing rv (cf. with Table 1). How-
ever, an increasing mutational correlation leads to much high-
er stability of the orientation, that is, small Dw. The average
per-generation change in the genetic covariance (DG12) in-
creases slightly as rm increases. However, this increase is
associated with a dramatic increase in the average magnitude
of the genetic covariance. Thus, relative to its mean, DG12
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becomes very small as rm increases. Asymmetric selection
strength increases stability of the orientation slightly if the
mutational correlation is low, but not otherwise. Thus, mu-
tational correlation may be an important agent in stabilizing
the orientation of a G-matrix; it does not, however, stabilize
its size or shape.

To investigate more fully the role of the pattern of pleio-
tropic mutations in determining the shape and orientation of
the G-matrix, we also performed simulations in which the
mutational variances of the traits differed, but without any
selectional or mutational correlation. The results presented
in Table 4 clearly demonstrate that for symmetric selection
on the two traits, increasingly different mutational variances
increase the eccentricity of the G-matrix and enhance sta-
bility of the orientation. Clearly, the total size S of the G-
matrix is strongly correlated with the total mutational vari-
ance. Unequal mutational variances do not at all affect the
stability in size or shape. The same is true for asymmetric
stabilizing selection. However, instability of the orientation
is maximized under asymmetric stabilizing selection if the
mutational variance of the trait under weaker selection is
somewhat, but not much, higher than that of the other trait.

The Effect of Population Size on G-matrix Stability

Almost all the variation in the size of the G-matrix, as
measured by the genetic variances and the total variance, is
due to random genetic drift. This is clearly demonstrated by
Table 2. Also, the between-generation change of the eigen-
values and all other measures of instability decrease with
increasing population size. Increasing population size has a
slight increasing effect on the shape parameter e unless mu-
tational and selectional correlation both are strong, but almost
no effect on the orientation w. The between-generation
change De decreases with increasing population size. In-
creasing population size has only a weak effect on the sta-
bility in orientation, Dw, and increases stability most if cor-
relational selection is strong or if there is substantial muta-
tional correlation.

Mutation Rate Considerations

The per-locus mutation rate that we employed for the ma-
jority of our analyses may be unrealistically high for single
loci affecting quantitative traits (Kondrashov 2003). Justifi-
cation for our use of this high mutation rate comes from two
sources. First, if several physically linked loci affect the same
trait, then they can behave as a single locus with a higher
mutation rate (Bürger 2000). If this phenomenon is common,
it would justify the use of a mutation rate considerably higher
than the empirically estimated single-locus mutation rate.
Second, this mutation rate is necessary to maintain genetic
variation in the small populations under consideration in this
study, given the assumption that each trait is determined by
50 loci. Small population size was a necessary constraint in
this study, because the Monte Carlo simulations become very
slow as population size increases.

To test the validity of our conclusions for loci with smaller
mutation rates, we performed some simulations with mutation
rates of 1 3 1024 and 2 3 1025 per locus per generation.
The results of these simulations are presented in Table 5.
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The smaller mutation rates produce results that are very sim-
ilar to the results with higher mutation rates. The major dif-
ference is that the amount of standing genetic variance is
substantially reduced, resulting in a decrease in S. Even
though these low mutation rates eliminate most of the genetic
variance in the population, resulting in trait heritabilities less
than 0.10 in the most extreme case, the patterns of change
in the G-matrix remain remarkably similar to the simulations
with much greater genetic variance. Thus, our main conclu-
sions appear to be robust to large changes in the per locus
mutation rate.

The Influence of Alignment on G-matrix Evolution

Another issue concerns the interplay of selectional and
mutational correlations. It is to be expected that alignment
between the selection matrix, determining the shape of the
adaptive surface, and the matrix of mutational effects en-
hances stability. This is indeed borne out by our numerical
results. Figure 1 displays the change in orientation of the G-
matrix as a function of the selectional correlation rv for five
different values of rm. This figure clearly shows that for pos-
itive mutational correlation, the between-generation change
of the angle, Dw, always decreases with increasing selectional
correlation unless the mutational correlation is very weak.
Put otherwise, mutational and selectional correlations of dif-
ferent signs lead to instability of the orientation. Without
mutational correlation, any increase in selection correlation,
positive or negative, clearly increases stability of the ori-
entation. Figure 1 also demonstrates that mutational corre-
lation is much more important in producing stability than
correlational selection.

Visualizing the Evolution of the G-matrix

Figure 3 depicts the change of the size, shape, and ori-
entation of the G-matrix within one replicate run under each
of five different scenarios by displaying snapshots of graph-
ical representations of the G-matrix at intervals of 200 gen-
erations. Whereas the G-matrix apparently is fluctuating and
flipping around randomly if rm 5 rv 5 0, with no visible
difference in the case of rv 5 0.75, fluctuations of the shape
and orientation (but not size) are markedly restricted in the
two cases where rm 5 0.5. Obviously, increasing selectional
correlation substantially aids their stability. The case of rm

5 rv 5 0.90 results in a highly stable G-matrix that is ex-
tremely cigar-shaped. It still fluctuates in size, however.

Figure 2 displays the complete time series of the angle w
between the leading eigenvector and the x-axis for the five
runs shown in Figure 3. Because the angle is confined to the
interval 2908 to 1908, and, for example, 958 corresponds to
2858, flipping from near 2908 to near 1908 does not imply
a great change in the G-matrix. It is interesting to observe
the high degree of autocorrelation for the runs without mu-
tational or selectional correlation. Often, the orientation stays
around the same value for hundreds of generations before
changing substantially. Figure 2b also shows distinctively
that with strong selectional correlation but not mutational
correlation, there are prolonged periods during which the
orientation remains quite stable (e.g., between about gener-
ations 1500 to 1700), whereas during other periods (between
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FIG. 3. Time dependence of size, shape, and orientation of the G-matrix, displayed as ellipses with axis length proportional to the
corresponding eigenvalues. These are snapshots, taken every 200th generation, each from a single replicate run. From top to bottom,
the following selectional and mutational correlations are chosen: (a) rm 5 rv 5 0; (b) rm 5 0, rv 5 0.75; (c) rm 5 0.5, rv 5 0; (d) rm 5
0.5, rv 5 0.75; (e) rm 5 rv 5 0.90. The following parameters are the same for all panels: Ne 5 342, v11 5 v22 5 49, 5 5 0.05.2 2a a1 2

generations 1000 and 1300) the orientation is flipping around
wildly. Figures 2d and 2e demonstrate to what extent mod-
erate to high selectional and mutational correlations can sta-
bilize the orientation of the G-matrix provided they are of
the same sign and of similar magnitude. Despite this amazing
stability in orientation, there is still substantial variation in
the size (S) of these G-matrices (Fig. 4). Figure 5 shows the
time series for the eccentricity (e) of the G-matrix from the
same runs as those shown in Figures 2, 3, and 4. Even though
the change in eccentricity, when standardized to the mean,
does not change as a consequence of mutational or selectional
correlation, the magnitude of e becomes so small as corre-
lations stabilize the angle w that the G-matrix retains its
overall shape for extremely long spans of time.

The Reduction of Genetic Variance Due to Pleiotropy

Stabilizing selection on multiple traits determined by
pleiotropic loci is expected to reduce the genetic variance of
these traits relative to what would be expected if each trait
were determined by a completely independent set of loci.
Indeed, our simulations verify that pleiotropy does decrease
the equilibrium level of additive genetic variance, as pre-
dicted by models developed by Turelli (1985) and Wagner
(1989). This reduction of variance due to pleiotropy is ob-
vious when we consider the SHC-approximation for the ex-
pected genetic variance of a single trait. In all cases that we
investigated (see Tables 1–5), the expected genetic variance
according to the SHC model was higher than the amount of

genetic variance that we observed in our simulated popula-
tions.

DISCUSSION

Our simulations show that the G-matrix is stable under
some conditions and unstable under others. This result helps
define a central issue in evolutionary genetics. Following on
the heels of Lande’s (1979, 1980) pioneering papers, this
central issue was cast in terms of G-matrix constancy.
Lande’s models assumed G-matrix constancy. Is that prop-
osition literally true? Because the proposition of literal con-
stancy is easily refuted from first principles (Turelli 1988;
Shaw et al. 1995) and, sometimes, on empirical grounds (Ar-
nold and Phillips 1999), some workers have considered the
issue settled. Clearly the G-matrix is not constant. This char-
acterization, however, trivializes the constancy issue and so
achieves closure prematurely. The primary claim of this ar-
ticle is that the constancy issue has deeper ramifications and
can be approached by asking three questions. First, under
what conditions is the G-matrix stable and under what con-
ditions is it unstable? Second, how common are conditions
promoting stability or instability in nature? And third, how
much and what kind of stability is required to make mean-
ingful extrapolations of equations for drift or response to
selection? This article focuses on the first question. Previous
studies correctly identified several factors that contribute to
stability but were unable to assess their relative importance
(Turelli 1988). We found that stable orientation of the G-
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FIG. 4. Time series of the size of the G-matrix, S, the sum of the
genetic variances, which is equal to the sum of the eigenvalues. As
in Figure 3, from top to bottom, the following selectional and mu-
tational correlations are chosen: (a) rm 5 rv 5 0; (b) rm 5 0, rv 5
0.75; (c) rm 5 0.5, rv 5 0; (d) rm 5 0.5, rv 5 0.75; (e) rm 5 rv 5
0.90. This figure was produced using the same parameter values as
those used for Figure 3.

FIG. 5. Time series of the eccentricity of the G-matrix, e, the
smaller eigenvalue divided by the larger eigenvalue. As in Figure
3, from top to bottom, the following selectional and mutational
correlations are chosen: (a) rm 5 rv 5 0; (b) rm 5 0, rv 5 0.75; (c)
rm 5 0.5, rv 5 0; (d) rm 5 0.5, rv 5 0.75; (e) rm 5 rv 5 0.90. This
figure was produced using the same parameter values as those used
for Figure 3.

matrix is promoted by correlational selection, large popula-
tion size, and especially by pleiotropic mutation. The highest
levels of instability prevailed in small populations with no
correlational selection and no mutational correlation.

The recognition of different kinds of G-matrix stability is
an important contribution of the present study. By charac-
terizing the G-matrix in terms of its eigenvalues and eigen-
vectors, we can recognize three varieties of stability that are
related to the size, shape, and orientation of the matrix. The
importance of recognizing these three kinds of stability is
emphasized by our finding that they respond differently to
various conditions. Thus, size and shape stability are pro-
moted chiefly by large population size. In contrast, orienta-
tion stability is promoted by pleiotropic mutation, correla-
tional selection, and the alignment of these two processes (in
addition to large population size). This result of differential
sensitivity to conditions supports the view that comparative
studies of the G-matrix should focus on both eigenvalues and
eigenvectors (Phillips and Arnold 1999). This type of focus
is necessary, because a complete description of the G-matrix
requires knowledge of the eigenvectors as well as the eigen-
values. In addition, this approach is appealing because ei-

genvalues and eigenvectors provide an intuitive description
of the G-matrix that lends itself to graphical depiction.

Turning to our second question—the prevalence of stabil-
ity-promoting conditions in nature—it seems likely that some
kinds of characters are more likely than others to have stable
G-matrices. Thus, bilaterally symmetrical characters may
have highly stable G-matrices because of strong correlations
between mutational effects, as well as strong correlational
selection between right and left sides. At the opposite ex-
treme, we may expect fitness components to have unstable
G-matrices because their adaptive landscapes lack curvature
as a consequence of strong, persistent directional selection.
Hence, the G-matrix for these types of traits will not expe-
rience the restraining effects of stabilizing selection. In ad-
dition, fitness components are probably determined by a very
large number of loci, only some of which may be expected
to pleiotropically affect multiple fitness components. Most
characters probably lie between these extremes of stability
and instability. Although our results provide some expecta-
tions about stability, the characterization of G-matrix vari-
ability for different kinds of characters is fundamentally an
empirical exercise.

Our third question—how much stability is necessary for
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meaningful extrapolation—is only tangentially addressed
by the results presented here. In cases of extreme stability
(e.g., Fig. 3e), there can be little doubt that response to
selection equations could be accurately extrapolated over
many generations. At the opposite extreme, when the G-
matrix is prone to erratic fluctuation, extrapolations based
on the supposition of constancy are bound to be misleading.
The parameter space for much of the natural world may lie
between these two extremes. One interesting pattern in our
results is that the G-matrix tended to be unstable when it
was less cigar-shaped, whereas the more cigar-shaped G-
matrices tended to be very stable. Because the more cigar-
shaped G-matrices are the ones that constrain the evolu-
tionary trajectory, the observed stability of these G-matrices
may justify extrapolations over many generations. Similar-
ly, even though the less cigar-shaped G-matrices were un-
stable, they constrain the evolutionary trajectory very little
in any case, so their instability is less consequential. How-
ever, to definitively address this issue we need not only
estimates of G-matrix stability, but also analyses of how
much instability can be tolerated in extrapolations based on
matrix averages. Furthermore, Turelli (1988) has pointed
out that calculation of the net selection gradient may be
complicated not only by fluctuation in G but by covariances
induced by those fluctuations. One other important consid-
eration is that the conditions for stability under stabilizing
selection alone may differ in important ways from the con-
ditions for stability when directional selection is operating.
Simulation-based models may provide an expedient way to
evaluate these issues.

Some of the present results were anticipated by simulation
studies of between-generation change in the genetic variance
of a single trait. High autocorrelation in the mean and genetic
variance were noted in studies of stabilizing and directional
selection on a single trait (Keightley and Hill 1989; Bürger
et al. 1989; Bürger and Lande 1994). Strong autocorrelation
is a conspicuous feature of G-matrix dynamics. In simula-
tions, a particular orientation of the G-matrix can be rela-
tively stable for hundreds of generations, but can then change
to a new stable orientation or enter a period of chaotic fluc-
tuation. The complex time series for G-matrix orientation
illustrated in Figure 2 underscores the difficulty of achieving
analytical results.

The present results extend our understanding of G-matrix
evolution based on past studies by computer simulation.
Reeve’s (2000) main focus was the long-term accuracy of
Lande’s (1979) equation for the evolution of the multivar-
iate mean. He addressed the issues of G evolution and sta-
bility only in passing. Although Reeve (2000) explored three
different models for the distribution of allelic effects
(Gaussian, leptokurtic and biallelic), he did not allow cor-
relational selection and did not report effects on genetic
covariance. Hence, Reeve’s (2000) analysis did not explic-
itly address G-matrix stability at all, except to note that
small changes in the G-matrix had little effect on the ac-
curacy of predictions of the response to selection in sim-
ulated populations.

Our simulations do not explore some potentially im-
portant contributions to G-matrix stability or instability.
Most notably, we have not addressed the possible effects

on G-matrix stability of dominance, epistasis, linkage,
number of loci, and distributions of allelic effects (in-
cluding genes of major effect). Likewise, we have only
explored cases in which the position and shape of the adap-
tive landscape and the pattern of mutation are stable. It is
likely that some aspects of the dynamics of the G-matrix
would change if the adaptive landscape were changing,
either with respect to the location of its optima, its ori-
entation, or its curvature. These issues are beyond the
scope of this initial study, and additional simulation stud-
ies are needed to address them.

Our results help to inform the comparative study of G-
matrices. Under some conditions the G-matrix is capable
of pronounced, random fluctuation. Under those circum-
stances, multiple independent samples are needed to make
a convincing case for G-matrix stability. Thus, neutral or
weakly selected characters with little or no genetic cor-
relation in small populations will be especially prone to
G-matrix fluctuation. Such characters may be poor choices
for comparative work, because even considerable effort
could yield inconclusive results. In contrast, characters un-
der strong stabilizing and correlational selection with pro-
nounced genetic correlations in large populations are a
priori likely to have stable G-matrices. Under these con-
ditions, a modest number of samples would be required to
make a convincing case for matrix identity or proportion-
ality. Comparative studies should examine multiple as-
pects of stability because different aspects may be differ-
entially stable. Thus, eigenvalues (size and eccentricity)
can show different stability profiles than eigenvectors (ori-
entation). Finally, systematic sampling of matrices on a
phylogeny may provide especially revealing data on sta-
bility. Under conditions for which the G-matrix is likely
to be stable, such phylogenetically planned sampling could
reveal a pattern of long-term stability in the matrix. This
approach may also be the most practical way to obtain
convincing evidence for long-term stability in the patterns
of stabilizing selection and mutation.

Several unresolved empirical issues are highlighted by our
results. Most notably, we need estimates of pleiotropic mu-
tational covariance. Although estimates of mutational vari-
ance are available for a number of characters (Lynch 1988;
Lynch and Walsh 1998), mutational covariances have seldom
been estimated (Camara and Pigliucci 1999). Consequently,
we have some basis for choosing parameters for the main
diagonal of the mutational matrix but virtually no empirical
basis for specification of the off-diagonal elements. Our un-
derstanding of multivariate selection is plagued by a similar
limitation. Estimates of stabilizing selection are seldom cor-
rected for character correlation (Lande and Arnold 1983; En-
dler 1986; Kingsolver et al. 2001), and corrected estimates
of correlational selection are even less common. Given these
limitations, it is not surprising that key issues of alignment
are an open field of investigation. Are the matrices describing
selection and mutation commonly aligned? Our simulations
indicate that such alignment would enhance G-matrix sta-
bility. Finally, is the adaptive landscape stable on a geological
time scale, producing alignment of mutation and inheritance
with selection? These are the overarching empirical issues
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that will determine how widely quantitative genetic theory
can be applied to the natural world.

ACKNOWLEDGMENTS

We are grateful to M. E. Pfrender for comments on the
manuscript and to P. C. Phillips for helpful discussion. This
research was partially supported by grants from the National
Institutes of Health (AGJ) and the National Science Foun-
dation (SJA).

LITERATURE CITED

Arnold, S. J., and P. C. Phillips. 1999. Hierarchical comparison of
genetic variance-covariance matrices. II. Coastal-inland diver-
gence in the garter snake, Thamnophis elegans. Evolution 53:
1516–1527.

Arnold, S. J., M. E. Pfrender, and A. G. Jones. 2001. The adaptive
landscape as a conceptual bridge between micro- and macro-
evolution. Genetica 112–113:9–32.

Baatz, M., and G. P. Wagner. 1997. Adaptive inertia caused by
hidden pleiotropic effects. Theor. Popul. Biol. 51:49–66.

Barton, N. H. 1989. Divergence of a polygenic system subject to
stabilizing selection, mutation and drift. Genet. Res. 54:59–77.

Begin, M., and D. A. Roff. 2001. An analysis of G matrix variation
in two closely related cricket species, Gryllus firmus and G.
pennsylvanicus. J. Evol. Biol. 14:1–13.

Billington, H. L., A. M. Mortimer, and T. McNeilly. 1988. Diver-
gence and genetic structure in adjacent grass populations. I.
Quantitative genetics. Evolution 42:1267–1277.

Brodie, E. D., III. 1993. Homogeneity of the genetic variance-co-
variance matrix for antipredator traits in two natural populations
of the garter snake Thamnophis ordinoides. Evolution 47:
844–854.

Bulmer, M. G. 1972. The genetic variability of polygenic characters
under optimizing selection, mutation and drift. Genet. Res. 19:
17–25.

———. 1980. The mathematical theory of quantitative genetics.
Clarendon Press, Oxford, U.K.

Bürger, R. 2000. The mathematical theory of selection, recombi-
nation, and mutation. John Wiley and Sons, Chichester, U.K.

Bürger, R., and R. Lande. 1994. On the distribution of the mean
and variance of a quantitative trait under mutation-selection-drift
balance. Genetics 138:901–912.

Bürger, R., and M. Lynch. 1995. Evolution and extinction in a
changing environment: a quantitative-genetic analysis. Evolu-
tion 49:151–163.

Bürger, R., G. P. Wagner, and F. Stettinger. 1989. How much her-
itable variation can be maintained in finite populations by mu-
tation-selection balance. Evolution 43:1748–1766.

Camara, M. D., and M. Pigliucci. 1999. Mutational contributions
to genetic variance-covariance matrices: an experimental ap-
proach using induced mutations in Arabidopsis thaliana. Evo-
lution 53:1692–1703.

Crow, J. F., and M. Kimura. 1964. The theory of genetic loads. Pp.
495–505 in S. J. Geerts, ed. Proceedings of the XI international
congress of genetics. Pergamon, Oxford, U.K.

Endler, J. A. 1986. Natural selection in the wild. Princeton Univ.
Press, Princeton, NJ.

Foley, P. 1992. Small population genetic variability at loci under
stabilizing selection. Evolution 64:763–774.

Guntrip, J., R. M. Sibly, and G. J. Holloway. 1997. The effect of
novel environment and sex on the additive genetic variation and
covariation in and between emergence body weight and devel-
opment period in the cowpea weevil, Callosobruchus maculatus
(Coleoptera, Bruchidae). Heredity 78:158–165.

Houle, D. 1989. The maintenance of polygenic variation in finite
populations. Evolution 43:1767–1780.

Keightley, P. D., and W. G. Hill. 1989. Quantitative genetic vari-
ability maintained by mutation-stabilizing selection balance:

sampling variation and response to subsequent directional se-
lection. Genet. Res. 54:45–57.

Kingsolver, J. G., H. E. Hoekstra, J. M. Hoekstra, D. Berrigan, S.
N. Vignieri, C. E. Hill, A. Hoang, P. Gibert, and P. Beerli. 2001.
The strength of phenotypic selection in natural populations. Am.
Nat. 157:245–261.

Kohn, L. A. P., and W. R. Atchley. 1988. How similar are genetic
correlation structures? Data from mice and rats. Evolution 42:
467–481.

Kondrashov, A. S. 2003. Direct estimates of human per nucleotide
mutation rates at 20 loci causing Mendelian diseases. Hum. Mu-
tat. 21:12–27.

Lande, R. 1975. The maintenance of genetic variability by mutation
in a polygenic character with linked loci. Genet. Res. 26:
221–235.

———. 1979. Quantitative genetic analysis of multivariate evo-
lution, applied to brain:body size allometry. Evolution 33:
402–416.

———. 1980. Microevolution in relation to macroevolution. Pa-
leobiology 6:233–238.

Lande, R., and S. J. Arnold. 1983. The measurement of selection
on correlated characters. Evolution 37:1210–1226.

Lynch, M. 1988. The rate of polygenic mutation. Genet. Res. 51:
137–148.

Lynch, M., and B. Walsh. 1998. Genetics and analysis of quanti-
tative traits. Sinauer, Sunderland, MA.

Paulsen, S. M. 1996. Quantitative genetics of the wing color
pattern in the buckeye butterfly (Precis coenia and Precis
evarete): evidence against the constancy of G. Evolution 50:
1585–1597.

Phillips, P. C., and S. J. Arnold. 1999. Hierarchical comparison of
genetic variance-covariance matrices. I. Using the Flury hier-
archy. Evolution 53:1506–1515.

Phillips, P. C., M. C. Whitlock, and K. Fowler. 2001. Inbreeding
changes the shape of the genetic covariance matrix in Drosophila
melanogaster. Genetics 158:1137–1145.

Platenkamp, G. A. J., and R. G. Shaw. 1992. Constraints on adaptive
population differentiation in Anthoxanthum odoratum. Evolution
46:341–352.

Podolsky, R. H., R. G. Shaw, and F. H. Shaw. 1997. Population
structure of morphological traits in Clarkia dudleyana. II. Con-
stancy of within-population genetic variance. Evolution 51:
1785–1796.

Reeve, J. P. 2000. Predicting long-term response to selection. Genet.
Res. 75:83–94.

Roff, D. A., and T. A. Mousseau. 1999. Does natural selection alter
genetic architecture? An evaluation of quantitative genetic var-
iation among population of Allonemobius socius and A. fasciatus.
J. Evol. Biol. 12:361–369.

Roff, D. A., T. A. Mousseau, and D. J. Howard. 1999. Variation
in genetic architecture of calling song among populations of
Allonemobius socius, A. fasciatus, and a hybrid population: Drift
or selection? Evolution 53:216–224.

Service, P. M. 2000. The genetic structure of female life history in
D. melanogaster: comparisons among populations. Genet. Res.
75:153–166.

Shaw, F. H., R. G. Shaw, G. S. Wilkinson, and M. Turelli. 1995.
Changes in genetic variances and covariances: G whiz! Evo-
lution 45:143–151.

Shaw, R. G., and H. L. Billington. 1991. Comparison of variance
components between two populations of Holcus lanatus: a re-
analysis. Evolution 45:1287–1289.

Spitze, K., J. Burnson, and M. Lynch. 1991. The covariance struc-
ture of life-history characters in Daphnia pulex. Evolution 45:
1081–1090.

Steppan, S. J., P. C. Phillips, and D. Houle. 2002. Comparative
quantitative genetics: evolution of the G matrix. Trends Ecol.
Evol. 17:320–327.

Turelli, M. 1985. Effects of pleiotropy on predictions concerning
mutation-selection balance for polygenic traits. Genetics 111:
165–195.

———. 1988. Phenotypic evolution, constant covariances, and the



1760 ADAM G. JONES ET AL.

maintenance of additive genetic variance. Evolution 42:
1342–1347.

Wagner, G. P. 1989. Multivariate mutation-selection balance with
constrained pleiotropic effects. Genetics 122:223–234.

Wagner, G. P., G. Booth, and H. Bagheri-Chaichian. 1997. A
population genetic theory of canalization. Evolution 51:
329–347.

Waldmann, P. A. S. 2000. Comparison of genetic (co)variance ma-
trices within and between Scabiosa canescens and S. columbaria.
J. Evol. Biol. 13:826–835.

Zeng, Z.-B. 1988. Long-term correlated response, interpopula-
tion covariation, and interspecific allometry. Evolution 42:
363–374.

Corresponding Editor: D. Houle


