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The equilibrium selection approach of Matsui and Matsuyama (J. Econ. Theory
65 (1995), 415�434) which is based on rational players who maximize their dis-
counted future payoff, is analyzed for symmetric two-player games with a potential
function. It is shown that the maximizer of the potential function is the unique state
that is absorbing and globally accessible for small discount rates. Journal of
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1. INTRODUCTION

Many game theoretic models of economic and social situations suffer
from multiplicity of Nash equilibria. Equilibrium refinements and methods
of equilibrium selection are therefore important to obtain less ambiguous
predictions from these models. The most prominent and complete theory of
equilibrium selection is due to Harsanyi and Selten [6], who define the
concept of risk-dominance based on the tracing procedure. Another
notable ``classical'' approach is due to Carlsson and van Damme [4]. More
recently, evolutionary�dynamic models have been used for equilibrium
selection. The most prominent among those is a stochastic model due to
Kandori et al. [11] and Young [23], which associates to a large class of
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strategic games (including ``weakly acyclic'' games as defined in [23]) a
unique ``long run equilibrium'' or ``stochastically stable equilibrium.'' A dif-
ferent approach, based on a deterministic spatio-temporal model, can be
found in [8].

In this paper we shall be concerned with two other methods of equi-
librium selection. The first one, originally proposed by Matsui and
Matsuyama in [10] for 2_2 matrix games, uses an explicit dynamic context
(modeling a population of rational players endowed with perfect foresight)
to select those equilibria which are globally accessible and absorbing with
respect to the dynamics.1 The other method is applicable to so-called
potential games (see [14]) and selects those equilibria which maximize the
potential function. Whereas the maximization of the potential function
incorporates some form of collective rationality, the dynamic process
described in [10] is based exclusively on individual rationality.
Nevertheless, we demonstrate in the present paper that these two selection
criteria are equivalent for symmetric two-person potential games. In other
words, a (possibly mixed strategy) symmetric Nash equilibrium of a poten-
tial game is both globally accessible and absorbing for all small values of
the discount rate if and only if the strategy maximizes the potential
function.

Admittedly, potential games form a rather narrow class of strategic
games. Nevertheless they contain many classes of games which are of par-
ticular interest in economics such as pure coordination games, which have
been used as simple models for the evolution of conventions (see [23]).
Moreover, many games such as symmetric binary choice games or the
Cournot oligopoly lead to a potential game after a linear transformation of
utilities (see [14]). Potential games are also known as partnership games
([9]), games with identical interests ([15]), team games ([20]), or doubly
symmetric games ([22]).

The global maximization of the potential as a criterion for equilibrium
selection seems to have been proposed in print only recently by Monderer
and Shapley [14]. Interestingly, they point out that this selection is
supported by the experimental results in Van Huyck et al. [21]. At first
glance this way of selecting equilibria looks extremely natural because all
players have the same payoff and, hence, there is no antagonism when they
individually try to maximize their expected payoff. A maximizer of the
potential, provided it is unique, may be considered as the natural focal
point of the game. Nevertheless, the method introduced by Matsui and
Matsuyama [10] seems to be the only evolutionary dynamic method of
equilibrium selection so far which is based on individual rationality and
which generally selects the maximizer of the potential in a potential game.
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Indeed, the method of selecting the long run equilibria described in [11]
and [12] is not consistent with the maximization of the potential, if
there are more than two strict equilibria or more than two players (see
Example 2 in Section 2.3). Neither is this the case for the risk-dominance
concept of Harsanyi and Selten [6], as has been discussed in detail in [20].

The proofs of our main results rest heavily on a close relation between
perfect foresight equilibrium paths (as defined in [10]) and optimal paths
in an associated optimal control problem. More specifically, global
accessibility of a Nash equilibrium which maximizes the potential function
is shown by a turnpike theorem for the optimal control problem. The proof
that such a Nash equilibrium is absorbing is based on the Hamiltonian
structure of the equilibrium conditions. The latter is, of course, a conse-
quence of the close relation between perfect foresight equilibrium paths and
optimal solutions of a dynamic optimization problem.

The paper is organized as follows. The following section specifies the
class of games under consideration, discusses the dynamic equilibrium
selection method from [10], and states our main result. Two examples are
given to illustrate this result. Section 3 introduces the associated optimal
control problem and shows that every optimal solution of that problem
corresponds to a perfect foresight equilibrium path in the context of [10].
Section 4 studies accessibility of Nash equilibria while Section 5 discusses
absorbing states. These two sections together contain the proof of our main
result. Section 6 presents concluding remarks.

2. DEFINITIONS AND MAIN RESULTS

We denote by Rn the n-dimensional real space and by ei , i # [1, 2, ..., n],
the i th unit vector in Rn. All vectors in this paper are interpreted as column
vectors unless they are explicitly written as row vectors. If x is any vector
we denote by x$ its transpose. By 2n&1 we denote the (n&1)-dimensional
simplex in Rn, that is, 2n&1=[(x1 , x2 , ..., xn)$ # Rn | �n

i=1xi=1, x i�0 for
all i]. For x� # 2n&1 and =>0 we denote by B=(x� ) the =-neighborhood of x�
relative to 2n&1, i.e., B=(x� )=[x # 2n&1 | &x&x� &<=].

2.1. Potential Games
We consider finite symmetric two-player games in which each player has

n�2 pure strategies. The payoff matrix of such a game will be denoted by
A=(aij) # Rn_n, where aij is the payoff received by a player using the pure
strategy i against an opponent playing the pure strategy j. The pure
strategy i # [1, 2, ..., n] is identified with ei , the i th vertex of the simplex
2n&1. An arbitrary element x=(x1 , x2 , ..., xn)$ # 2n&1 corresponds to a
mixed strategy which assigns the probability xi to the pure strategy ei .
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A pure strategy ei is a symmetric ( pure strategy) Nash equilibrium of the
symmetric matrix game determined by A if and only if

aii=e$i Aei�e$jAei=aji (1)

for all j # [1, 2, ..., n]. The equilibrium is strict if the strict inequality holds
in (1) whenever j{i. In this paper we shall only consider symmetric Nash
equilibria. A state x� # 2n&1 is a symmetric (mixed strategy) Nash equi-
librium if and only if

x� $Ax� �x$Ax�

for all x # 2n&1. The support of a mixed strategy x # 2n&1 is denoted by
supp(x)=[i | xi>0]. If x� # 2n&1 is a (mixed strategy) Nash equilibrium of
the game, then each player must be indifferent between the pure strategies
in supp(x� ) and she must (weakly) prefer any pure strategy in supp(x� ) to
any pure strategy which is not contained in supp(x� ). Formally, these condi-
tions can be written as

e$i Ax� =e$jAx� for all i, j # supp(x� ) (2)

and

e$i Ax� �e$jAx� for all i # supp(x� ) and j � supp(x� ). (3)

It is easy to see that conditions (2) and (3) are not only necessary for x� to
be a symmetric Nash equilibrium, but also sufficient.

A symmetric two-player matrix game will be called a potential game if
the common payoff matrix A for both players is symmetric. In this case we
refer to the quadratic form pA(x)=(1�2) x$Ax as the potential function of
the game.2

If A is a symmetric matrix, then (2) and (3) are first order necessary con-
ditions for the potential function pA(x) to attain a local maximum over the
set 2n&1 at x=x� . Since the same conditions are necessary and sufficient for
x� to be a symmetric Nash equilibrium it follows that every local maximum
of the potential function pA is a symmetric Nash equilibrium of the corre-
sponding potential game. The converse is not true. For example, a sym-
metric Nash equilibrium may also be a local minimum of the potential
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2 More generally, a rescaled potential game is a symmetric two-player matrix game which
is linearly equivalent to a potential game. The n_n games A and B are linearly equivalent if
there exist real numbers c1 , c2 , ..., cn such that aij=bij+cj holds for all i, j # [1, 2, ..., n]. Since
the equilibrium selection method of [10], which is the topic of the present paper, is invariant
with respect to linear transformations of this form, our results can be applied to all rescaled
potential games. Rescaled potential games are characterized by the triangular integrability
condition aij+ajk+aki=aik+akj+aji for all pairwise different indices i, j, k # [1, 2, ..., n] (see
[9, p. 244]). Because this condition is trivially satisfied for all symmetric 2_2 games, our
results are applicable to all symmetric 2_2 games.



function. We call a vector x� # 2n&1 which satisfies (2) a critical point of the
potential function. Then it follows trivially that every symmetric Nash equi-
librium of a potential game is a critical point of the potential function pA .
The set of critical points of pA contains the local maxima, local minima,
and saddle points of pA .

If x� is a critical point of the potential function pA then we call pA(x� ) a
critical value of pA . If x and y are two critical points with the same support
then it is easy to see that pA(x)=(1�2) x$Ax=(1�2) x$Ay=(1�2) y$Ay=
pA( y). Critical points with the same support correspond therefore to the
same critical value. Since there are only finitely many possible supports, it
follows that the potential function can have at most finitely many different
critical values (although it can have a continuum of critical points).

For every symmetric Nash equilibrium x� the value of the potential func-
tion, pA(x� ), is half of the expected equilibrium payoff for each player.
A sensible method of equilibrium selection in potential games is therefore
to select those equilibria which maximize the potential function (see [14]).

2.2. Perfect Foresight Equilibrium Paths

We are now going to discuss the dynamic equilibrium selection method
proposed in [10]. This method is not only applicable to potential games
but to general (not necessarily symmetric) two-player matrix games. In this
subsection it is therefore not necessary to assume that A is a symmetric
matrix.

In the approach from [10] one assumes that the game described by the
matrix A is played repeatedly in a society consisting of a continuum of
identical players. Time t # [0, �) is a continuous variable. At each point in
time the players are matched randomly to form pairs, which then play the
game anonymously. Players are not able to choose their strategy at every
point in time. Instead, it is assumed that each player must make a commit-
ment to a particular pure strategy for an exogenously given (random) time
interval. Time instants at which a player can switch between strategies
follow a Poisson process with mean arrival rate p. These processes are
assumed to be independent across players. Without loss of generality we
choose the unit of time in such a way that p=1.3

Let us denote by xi (t) the fraction of players who are playing the pure
strategy i at time t. Of course, we must have

x(t)=(x1(t), x2(t), ..., xn(t))$ # 2n&1 (4)
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3 It should be noted that the story by which Matsui and Matsuyama [10] motivate their
selection dynamics involves technical problems of two kinds: the random matching process for
a continuum of agents and the assumption of a continuum of independent Poisson processes.
We refer to [1] for a discussion and partial resolution of these problems.



for all t # [0, �). The vector x(t) describes the strategy distribution in the
society at time t and will be called the state of the society at time t. Since
players are matched randomly, x(t) can also be thought of as the mixed
strategy against which each player plays at time t. It follows that the
expected payoff of playing the pure strategy i at time s is given by e$i Ax(s).
It is assumed that all players have perfect foresight so that they correctly
anticipate the future evolution of the strategy distribution in the society.
Since the time instants at which it is possible to switch between strategies
form a Poisson process with mean arrival rate p=1, the period of commit-
ment to a fixed strategy has an exponential distribution with mean 1.
Denoting the common discount rate of the players by %>0 it follows that
the expected discounted payoff of committing to strategy i at time t is given
by

Vi (t)=|
�

0
|

t+z

t
e&%(s&t)e$iAx(s) ds e&z dz,

which can be simplified as

Vi (t)=|
�

t
e&(1+%)(s&t)e$iAx(s) ds. (5)

Because of the perfect foresight assumption, a rational player who has the
opportunity to switch to a new strategy at time t will switch to a strategy
i # M(t) where

M(t)=arg max[Vi (t) | i=1, 2, ..., n]. (6)

Given the assumption that the switching times follow independent Poisson
processes with arrival rate 1 it follows that xi : [0, �) [ R is Lipschitz con-
tinuous with Lipschitz constant less than or equal to 1. This implies in par-
ticular that xi ( } ) is differentiable almost everywhere. Because of the way
how agents switch between strategies it follows that, for all t where xi ( } )
is differentiable, the conditions

x* i (t)=&xi (t)
x* i (t) # [&x i (t), 1&xi (t)]

if i � M(t),
if i # M(t)

(7)

are satisfied.4 A Lipschitz continuous function x: [0, �) [ Rn such that
Eqs. (4)�(7) hold is called a perfect foresight equilibrium path for the game
described by the payoff matrix A and the discount rate %. The following
definitions are generalizations of those presented in [10].
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Let x� # 2n&1 be a given state of the society and x0 # 2n&1 a given initial
state. The state x� is accessible from x0 if there exists a perfect foresight equi-
librium path x( } ) satisfying x(0)=x0 and limt � � x(t)=x� . The state x� is
locally accessible if there exists =>0 such that x� is accessible from every
initial state x0 # B=(x� ). The state x� is globally accessible if it is accessible
from every initial state x0 # 2n&1.

A verbal interpretation of accessibility is as follows. If x� is accessible
from x0 then there exists a belief about the future evolution of the state of
the society with the following properties: (i) the belief is feasible and coin-
cides with the true current state x0 at time 0, (ii) the state of the society is
believed to approach x� in the long run, and (iii) if all agents share this com-
mon belief and choose their strategies optimally then the believed evolution
of the society coincides with the true evolution of the society.

A state x� # 2n&1 is called absorbing if there exists =>0 such that for all
initial states x0 # B=(x� ) the following is true: if x( } ) is a perfect foresight
equilibrium path such that x(0)=x0 then it holds that limt � � x(t)=x� .
The state x� is called fragile if it is not absorbing.

Intuitively, the state x� is fragile if there exist initial states arbitrarily close
to x� together with a feasible belief about the future evolution of the society
such that the following is true: the actual strategy distribution in the
society (provided that all agents choose their actions optimally given the
belief) coincides with the believed distribution at all dates and does not
converge to the state x� . If this condition is not true then x� is absorbing. In
this case every feasible and consistent belief about the future state of the
society implies that the state approaches x� asymptotically whenever the
initial state is sufficiently close to x� .

The discount rate % can be interpreted as the degree of friction (see [10,
p. 421]). The equilibrium selection criterion developed by [10] requires
that a Nash equilibrium is globally accessible and the only absorbing state
as the friction vanishes, that is, in the limit as % approaches zero.

2.3. Main Result and Examples

In the previous two subsections we have described two selection criteria
for symmetric Nash equilibria in two-player matrix games. Whereas the
maximization of the potential function incorporates some form of collective
rationality, the dynamic process described by Eqs. (4)�(7) is based
exclusively on individual rationality. It is therefore not obvious that these
two selection criteria are equivalent. The following theorem formalizes this
equivalence (its proof is given in Sections 4 and 5 below).

Theorem 1. Consider a symmetric two-person potential game, and let A
be the associated symmetric payoff matrix. Suppose the potential function
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pA(x)=(1�2) x$Ax has the unique global maximum x� , i.e., [x� ]=
arg max[ pA(x) | x # 2n&1]. Then x� is absorbing for all %>0 and there exists
%� >0 such that x� is globally accessible for all %<%� . No point x # 2n&1 which
is different from x� satisfies any of these properties.

Hence we have a twofold characterization of the global maximum x� of
the potential function. Like any other state, the global maximizer x� may
fail to be globally accessible if the discount rate % is large. We conjecture
that every strict local maximum becomes absorbing for sufficiently large %.
This is intuitively plausible, as for % � � the dynamics given by (4)�(7)
approaches the best response dynamics (see [7] or [10, Footnote 11]).

We note that Theorem 1 is stated for symmetric games where all players
are assumed to be of the same type, i.e., there is only one population of
players. In contrast, a symmetric game A could also be interpreted as an
asymmetric game played between two types of agents which form two
separate populations. Then the resulting game is still a potential game;
the potential function is now the bilinear form p(x, y)=x$Ay, where x and
y denote the strategy distributions in the two populations. Matsui and
Matsuyama [10] consider absorbing and accessible states also in this
setting (for 2_2 games). There is no difficulty to extend Theorem 1 to
asymmetric two-person potential games with two populations: again, if
(x� , y� ) is a unique global maximizer of the potential function (in which case
it must be an equilibrium in pure strategies), then it is globally accessible
(for small %) and absorbing.

In the remainder of this section we discuss two examples which illustrate
our results.

Example 1. Consider the case of symmetric 2_2 games as discussed in
[10]. Every such game is linearly equivalent (see Footnote 2) to a poten-
tial game with the payoff matrix

A=\a
0

0
b+ .

Assume that a and b are strictly positive numbers. In this case both pure
strategies are strict Nash equilibria. The potential function is given by
pA(x1 , x2)=(ax2

1+bx2
2)�2. It attains local maxima at the pure strategies e1

and e2 and a global minimum at the mixed strategy x*=(x*1 , x*2 )$=
(b�(a+b), a�(a+b))$. It is easy to verify that x(t)=(x1(t), 1&x1(t))$ with
x1(t)=x1(0) e&t is a perfect foresight equilibrium path converging to e2

whenever 0�x1(0)�x*1 (2+%)�(1+%). An analogous argument shows that
x(t)=(1&x2(t), x2(t))$ with x2(t)=x2(0) e&t is a perfect foresight equi-
librium path converging to e1 whenever 0�x2(0)�x*2 (2+%)�(1+%). We
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show in the Appendix that, together with the constant path x(t)=x*, these
are essentially all perfect foresight equilibrium paths for the game when
a>0, b>0, and %>0.5 Note that, from all initial values in a certain
neighborhood of x*, at least two different perfect foresight equilibrium
paths emanate. On one of them there is a discrepancy between maximizing
the expected long-term payoff Vi and the expected short-term payoff
e$i Ax(t).

The above arguments show that both e1 and e2 are locally accessible.
Assume now that a>b>0 and, hence, x*1 <x*2 . Then e1 is the unique
global maximizer of the potential function. For all % # (0, (x*2 &x*1 )�x*1 ] we
have x*2 (2+%)�(1+%)�1. As has been shown before, this implies that for
all initial states there exists a perfect foresight equilibrium path emanating
from this initial state and converging to e1 . Hence e1 is globally accessible
for small values of %. Moreover, if x1(0)>x*1 (2+%)�(1+%) the path con-
verging to e1 is the only perfect foresight equilibrium path. This confirms
Theorem 1 for this example.

Example 2. Consider the 3_3 game taken from [20] in which

3 0 2

A=\0 3&= 2 + , (8)

2 2 2+=

where 0<=<1. This game has three strict equilibria: e1 , e2 , and e3 .
Furthermore, it holds that pA(e1)=3�2, pA(e2)=(3&=)�2, and pA(e3)=
(2+=)�2 so that pA(e1)>max[ pA(e2), pA(e3)]. Although e1 is the unique
maximizer of the potential function, e3 is the risk-dominant equilibrium
according to the Harsanyi�Selten theory [6]. The basic reason for this is
that e3 is the best reply against the mixed strategy (e1+e2)�2 and, hence,
e1 and e2 are eliminated even though each of them (payoff- and risk-)
dominates e3 ; see [20] for details. This effect is not unintended in the Har-
sanyi�Selten theory: one may argue that e3 is the safer option because it
guarantees the maximin payoff of 2 and avoids a potential miscoordina-
tion between e1 and e2 , which may occur for small = and which leads to a
low payoff of 0. In this sense, the concept of risk-dominance introduced in
[6] captures the uncertainty about the other player's rationality and tries
to rationally cope with it. In our opinion, there is room for argument
whether this is the right way of equilibrium selection in games for which a
potential function with a unique maximizer exists. This maximizer presents
itself as a natural focal point, like e1 in the present example.
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Using the procedure explained in [23] (and [12]) one can show that e1

is the stochastically stable equilibrium (and the long-run equilibrium in the
sense of [11]) for the game defined in (8). However, it is easy to construct
other 3_3 potential games for which the long-run equilibrium does not
maximize the potential function. This is for example the case if one replaces
a33=2+= by a33=3&2= in (8), whereby = is sufficiently small. After this
modification, the least efficient equilibrium e3 is the long-run equilibrium.
There is nothing wrong with this, as in the model proposed in [11] players
are boundedly rational and persistently make mistakes or try suboptimal
strategies with a positive probability. Therefore, they may get stuck in a
suboptimal equilibrium.6 In contrast, in the approach introduced by
Matsui and Matsuyama [10] a population of rational players endowed
with perfect knowledge about the game and perfect foresight about the
future evolution of the society��admittedly somewhat heavy assumptions��
eventually reaches a coordination upon the strategy e1 , because e1 is the
unique globally accessible and absorbing state.

3. THE ASSOCIATED OPTIMAL CONTROL PROBLEM

In the present section we explore an interesting relation between perfect
foresight equilibrium paths in potential games and optimal paths of an
infinite horizon optimal control problem. This relation will be used to
prove existence of perfect foresight equilibrium paths and, in later sections,
to derive results on accessibility or fragility of symmetric Nash equilibria.

The optimal control problem is defined as follows:

maximize |
�

0
e&%tpA(x(t)) dt (9)

subject to x* i (t)=ui (t)&xi (t) i # [1, 2, ..., n]
for almost all t (10)

xi (0)=x0
i i # [1, 2, ..., n] (11)

(u1(t), u2(t), ..., un(t))$ # 2n&1 for almost all t. (12)
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in examples like (8) it selects the same equilibrium as the approach from [10]. Nevertheless,
this coincidence is superficial. A basic difference is that the approach from [10] (as well as
those from [11] and [12]) is invariant under linear equivalence whereas that from [16] is
not.



Here x0=(x0
1 , x0

2 , ..., x0
n)$ # 2n&1 is an arbitrary initial state. The control

constraint (12) implies that every solution of (10)�(11) satisfies (4). An
absolutely continuous function x: [0, �) [ RN satisfying (10)�(12) is an
optimal solution if it achieves the maximum in (9) among all feasible solu-
tions to (10)�(12).

In the following theorem we show that optimal solutions to the above
problem exist and how they are related to perfect foresight equilibrium
paths.

Theorem 2. Consider the optimal control problem (9)�(12) and assume
that A is a symmetric matrix and % a positive discount rate.

1. There exists an optimal solution to the problem.

2. Every optimal solution of the problem is a perfect foresight equi-
librium path for the corresponding potential game with payoff matrix A.

Proof. Part 1 of the theorem is an immediate consequence of the exist-
ence theorem by Baum [3] (see also [19, Theorem 3.15]).

In order to prove part 2 we have to show that every optimal solution of
problem (9)�(12) satisfies (4)�(7). We have already mentioned before that
(10)�(12) imply (4). It is also easy to see that (10) and (12) ensure that
x* i (t)=ui (t)&x i (t) # [&x i (t), 1&xi (t)] holds for almost all t # [0, �) and
all i # [1, 2, ..., n]. To prove the theorem it is therefore sufficient to verify

x* i (t)=&xi (t) for all i � M(t) and almost all t # [0, �), (13)

where M(t) is defined by (5) and (6).
The current value Hamiltonian function for the optimal control problem

(9)�(12) is

H(x, u, *0 , *)=(*0 �2) x$Ax+ :
n

i=1

* i (ui&x i),

where *=(*1 , *2 , ..., *n)$ # Rn is the adjoint variable and *0 is a constant.
If x( } ) is an optimal solution of (9)�(12) and u( } ) the corresponding con-
trol path, then there exists a constant *0 # [0, 1] and an absolutely con-
tinuous adjoint function *: [0, �) [ Rn such that the following conditions
hold.

C1. (10)�(12) holds,

C2. (*0 , *(t)$){0 # Rn+1 for all t # [0, �),

C3. u(t) # arg max[H(x(t), u, *0 , *(t)) | u # 2n&1] for almost all
t # [0, �),
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C4. *4 i (t)=%*i (t)&Hxi
(x(t), u(t), *0 , *(t)) for i # [1, 2, ..., n] and

almost all t # [0, �),

C5. limt � � e&%t*i (t)=0 for all i # [1, 2, ..., n].

Condition C1 is the feasibility requirement, C2 the normality condition,
C3 the maximum principle, C4 the adjoint equation, and C5 is a limiting
transversality condition. For a statement and discussion of these conditions
we refer to Seierstad and Sydsaeter [19, pp. 244�245].7

Condition C3 from above implies that u(t)=(u1(t), u2(t), ..., un(t))$ maxi-
mizes the linear function u [ *(t)$ u over 2n&1. It is obvious that the
optimal solution of this linear program satisfies ui (t)=0 for all i � M*(t),
where M*(t)=arg max[*i (t) | i=1, 2, ..., n]. Because of this property and
(10), the proof of (13) is complete if one can show that M*(t)=M(t) for
all t, which is trivially the case if

*i (t)=Vi (t) for all i # [1, 2, ..., n] and all t # [0, �). (14)

To see that this condition holds, we first note that the adjoint equation C4
can be written as *4 i (t)=(1+%) *i (t)&*0e$iAx(t). The general solution of
this linear differential equation is *i (t)=Cie(1+%) t+*0 Vi (t) where Vi ( } ) is
the bounded function defined by (5) and Ci is an integration constant.
Because of the boundedness of Vi ( } ) it is clear that the limiting transver-
sality condition C5 can only hold if Ci=0. Therefore we must have
*i (t)=*0Vi (t) for all i # [1, 2, ..., n] and all t # [0, �). If *0=0 then it
follows from this equation that *i (t)=0 for all i # [1, 2, ..., n] and all
t # [0, �) which contradicts condition C2. Consequently, *0=1 and the
proof of (14) is complete. K

An immediate consequence of Theorem 2 is that there exists a perfect
foresight equilibrium path for every initial state x0 # 2n&1.

The converse of Theorem 2 does not hold: not every perfect foresight
equilibrium path is an optimal solution for problem (9)�(12). To illustrate
this point consider Example 1 from the previous section. There are two
strict Nash equilibria e1 and e2 and one mixed Nash equilibrium x*. As has
already been mentioned, the constant path x(t)=x* is a perfect foresight
equilibrium path. Since x* is the global minimum of the potential function
over 21, the path x(t)=x* is the global minimum of the optimal control
problem (9)�(12) with x0=x*. Hence, this perfect foresight equilibrium
path cannot be an optimal solution of the corresponding optimal control
problem. Alternatively, consider the case a>b in which e1 is the unique

12 HOFBAUER AND SORGER

7 For the problem under consideration one needs the generalization of Theorem 3.16 in
[19] which is mentioned in Footnote 27 on p. 244. See also [18, Theorem 7].



global maximizer of the potential function. As we have seen before, there
exist perfect foresight equilibrium paths converging to e2 . These paths are
not optimal solutions of the associated optimal control problem.

4. ACCESSIBLE STATES

In this section we derive conditions under which a Nash equilibrium is
globally accessible. Note that Theorem 2 allows us to prove global
accessibility of a Nash equilibrium by demonstrating that, for every initial
state x0 # 2n&1, there exists an optimal solution of problem (9)�(12) which
converges to the Nash equilibrium. To accomplish this we first derive a so-
called visiting lemma.8

Lemma 1. Assume [x� ]=arg max[(1�2) x$Ax | x # 2n&1], that is, the func-
tion pA(x)=(1�2) x$Ax attains its unique maximum over 2n&1 at x� . For every
=>0 there exists %� (=)>0 such that the following is true: if x( } ) is an optimal
solution of problem (9)�(12) with %�%� (=) then lim inft � �&x(t)&x� &�=.

Proof. The proof uses the following two facts which are easily estab-
lished:

Fact 1. For every =>0 there exists $(=)>0 such that for all x # 2n&1

with &x&x� &>= it holds that pA(x)<pA(x� )&$(=).

Fact 2. For every initial state x0 there exists a feasible (not necessarily
optimal) path y( } ) of problem (9)�(12) satisfying y(0)=x0 and limt � � y(t)
=x� . This path y( } ) may be chosen independently of the discount rate %.

Now assume that the lemma is not correct such that there exists an
optimal solution x( } ) of problem (9)�(12) with lim inft � � &x(t)&x� &>=.
This implies that there exists T1(=) # [0, �) such that &x(t)&x� &>= for all
t�T1(=). Because of Fact 1 it follows that for all t�T1(=)

pA(x(t))<pA(x� )&$(=). (15)

From Fact 2 and the continuity of the function pA( } ) it follows that there
exists T2(=) # [0, �) such that for all t�T2(=)

pA( y(t))�pA(x� )&$(=)�2. (16)
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e.g., [17]).



Let us define T(=)=max[T1(=), T2(=)]. Using (15) and (16) we obtain

|
�

0
e&%tpA(x(t)) dt&|

�

0
e&%tpA( y(t)) dt

=|
T(=)

0
e&%t[ pA(x(t))& pA( y(t))] dt

+|
�

T(=)
e&%tpA(x(t)) dt&|

�

T(=)
e&%tpA( y(t)) dt

<|
T(=)

0
e&%t[ pA(x(t))& pA( y(t))] dt

+|
�

T(=)
e&%t[ pA(x� )&$(=)] dt&|

�

T(=)
e&%t[ pA(x� )&$(=)�2] dt

=|
T(=)

0
e&%t[ pA(x(t))& pA( y(t))] dt&[$(=)�2] |

�

T(=)
e&%t dt

=|
T(=)

0
e&%t[ pA(x(t))& pA( y(t))] dt&[$(=)�(2%)] e&%T(=).

As % converges to 0 the first term on the last line remains bounded whereas
the second term diverges to �. Therefore, the last line is negative whenever
% is sufficiently small, say, %<%� (=). This, in turn, shows that the feasible
path y( } ) attains a higher value than the path x( } ) so that x( } ) cannot be
optimal. This contradiction proves the lemma. K

We can now state and prove our main result concerning global
accessibility of a symmetric Nash equilibrium of a potential game.

Theorem 3. Assume that the matrix A is symmetric, i.e., that the game
is a potential game. Furthermore assume that x� is the unique maximizer
of the potential function pA(x)=(1�2) x$Ax over 2n&1, i.e., [x� ]=
arg max[ pA(x) | x # 2n&1]. Then there exists %� >0 such that x� is globally
accessible whenever %�%� .

Proof. It will be shown in Theorem 4 below that x� is absorbing inde-
pendently of the discount rate %. This means that there exists =>0 such
that all perfect foresight equilibrium paths starting from an initial state in
B=(x� ) converge to x� . From the proof of Theorem 4 one can see that = can
be chosen independently of %. Let us fix this value of = for the rest of the
present proof and assume that %�%� :=%� (=) with %� (=) as in Lemma 1. Now
consider any initial state x0 # 2n&1. From Theorem 2(1) we know that
there exists an optimal solution x( } ) starting in x0, and from Theorem 2(2)
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it follows that it is a perfect foresight equilibrium path. Lemma 1 shows
that there exists T>0 such that x(T ) # B=(x� ). Since the truncated path y(t)
=x(t+T ) is obviously also a perfect foresight equilibrium path it follows
from our choice of = and Theorem 4 that limt � � x(t)=limt � � y(t)=x� .
This shows that x� is accessible from x0 and, since x0 was chosen arbitrarily,
that x� is globally accessible when %�%� . K

5. ABSORBING STATES

In this section we investigate conditions under which a symmetric Nash
equilibrium is absorbing. We first show that only a Nash equilibrium which
is a global maximizer of the potential function pA( } ) can remain absorbing
as the discount rate approaches 0. This result holds also for states of the
society which do not correspond to Nash equilibria.

Lemma 2. Assume that the matrix A is symmetric, i.e., that the game is
a potential game. Furthermore, let x~ be a given state of the society such that
x~ does not maximize the potential function pA( } ), i.e., x~ � arg max[ pA(x) |
x # 2n&1]. Then there exists %� >0 such that for all %�%� the state x~ is
fragile.

Proof. The result follows immediately from Theorem 2(2) and
Lemma 1. K

Actually, the above proof yields a stronger result than the one that is
stated in the lemma because it shows that there exists a perfect foresight
equilibrium path starting in x~ which does not converge to x~ (the definition
of fragile would only require that such a path exists from initial states
arbitrarily close to x~ ).

It remains to prove that a global maximizer of the potential function is
absorbing for all possible discount rates. This is the main result of the pre-
sent section.

Theorem 4. Assume that the matrix A is symmetric, i.e., that the game
is a potential game. Furthermore assume that x� is the unique maximizer of the
potential function pA(x)=(1�2) x$Ax over 2n&1, i.e., [x� ]=arg max[ pA(x) |
x # 2n&1]. Then it follows that x� is absorbing (independently of the discount
rate).

The remainder of this section is devoted to the proof of this result. We
need a few preliminary results. Differentiating (5) with respect to t we
obtain

V4 (t)=(1+%) V(t)&Ax(t). (17)
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Because of (4) one can write the state equation (7) also in the form

x* (t) # X(t), (18)

where

X(t)=[u&x(t) | u # 2n&1, ui=0 if i � M(t)]. (19)

Note that V( } ) is a continuously differentiable function and x( } ) is
Lipschitz continuous and therefore differentiable almost everywhere. Now
let us define the function H*: Rn_Rn [ R by

H*(x, V )= pA(x)+V� &V$x,

where V� =max[Vi | i # [1, 2, ..., n]].9 The function H* is Lipschitz con-
tinuous and its generalized gradient in the sense of [5] is

�H*(x, V )=[(Ax&V, y&x)$ | y # 2n&1, y i=0 if i � M], (20)

where M=arg max[Vi | i # [1, 2, ..., n]].10

Lemma 3. Let A be a symmetric matrix and let (x( } ), V( } ))$ be a solu-
tion of (17)�(19) where M( } ) is defined by (6). The correspondence t [ M(t)
is upper semicontinuous and the function t [ H*(x(t), V(t)) is Lipschitz con-
tinuous, non-decreasing, and satisfies

(d�dt) H*(x(t), V(t))=%[V� (t)&V(t)$ x(t)]�0 (21)

for almost all t # [0, �), where V� (t)=max[Vi (t) | i # [1, 2, ..., n]].

Proof. Upper semicontinuity of M( } ) is an immediate consequence of
the continuity of V( } ). Because x( } ), V( } ), and H*( } , } ) are Lipschitz con-
tinuous it follows that t [ H*(x(t), V(t)) is Lipschitz continuous and
therefore differentiable almost everywhere. From the chain rule (see, e.g.,
[5, Theorem 2.3.9]) and (20) we obtain

(d�dt) H*(x(t), V(t))

# [:$z+;$V4 (t) | (:, ;)$ # �H*(x(t), V(t)), z # X(t)]

=[[Ax(t)&V(t)]$ z+[ y&x(t)]$ V4 (t) | z # X(t), y # 2n&1, yi=0

if i � M(t)].

16 HOFBAUER AND SORGER

9 Using the notation introduced in the proof of Theorem 2 one can show that H*(x, V )=
max[H(x, u, 1, V ) | u # 2n&1]. Thus, the function H* is the maximized Hamiltonian function
of the optimal control problem (9)�(12).

10 It follows from Eqs. (17)�(20) that the process (x( } ), V( } ))$ satisfies the modified
Hamiltonian dynamical system (%V(t)&V4 (t), x* (t))$ # �H*(x(t), V(t)).



Substituting for V4 (t) from (17) and for z # X(t) from (19) we can rewrite
this inclusion as

(d�dt) H*(x(t), V(t))

# [%V(t)$ [ y&x(t)]&V(t)$ (u& y)+x(t)$ A(u& y) | u, y # 2n&1,

ui= yi=0 if i � M(t)]. (22)

To complete the proof of the lemma it is sufficient to show that for almost
all t # [0, �) the set on the right hand side of (22) consists of the single
(non-negative) element specified in (21). We establish this by considering
the three terms separately.

Claim 1. %V(t)$ [ y&x(t)]=%[V� (t)&V(t)$ x(t)]�0 for all t # [0, �)
and all y # 2n&1 with yi=0 if i � M(t).

Because of y # 2n&1 and yi=0 whenever i � M(t) it follows that
V(t)$ y=V� (t). Because x(t) # 2n&1 we must have V(t)$ x(t)�V� (t). The
claim follows immediately from these two observations.

Claim 2. V(t)$ (u& y)=0 for all t # [0, �) and all u, y # 2n&1 with
ui= yi=0 if i � M(t).

As in the proof of Claim 1 we obtain V(t)$ u=V(t)$ y=V� (t) for all t.
Therefore V(t)$ (u& y)=0 and the claim is proved.

Claim 3. x(t)$ A(u& y)=0 for almost all t # [0, �) and all
u, y # 2n&1 with ui= yi=0 if i � M(t).

Since M( } ) is upper semicontinuous and takes values in a finite set (the
power set of [1, 2, ..., n]) it follows that for every t # [0, �) there exists
=>0 such that M(s)�M(t) for all s # (t&=, t+=). Let us call a point t
singular if this inclusion is strict, that is, if there exists =>0 such that
M(s)/M(t) for all s # (t&=, t) _ (t, t+=). We first show that the set of
singular points is at most countable so that almost all t # [0, �) are non-
singular. To this end we define

Sk=[t # [0, �) | t is singular and |M(t)|=k].

The set of all singular points is given by S=�n
k=1 Sk . Consider a sequence

(tj)
�
j=1 of singular points such that t j # Sk for all j and such that t=

limj � � t j exists and satisfies t{tj for all j. If t were singular then this
would imply that t # Sl for some l>k. It follows that for every t # Sk there
exists =>0 such that (t&=, t+=) & Sk=[t] which shows that Sk is at most
countable. Hence, S is at most countable.
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To complete the proof of Claim 3 we show that x(t)$ A(u& y)=0 for all
t # [0, �)"S. If t is non-singular then there exists a sequence (tk)�

k=1 with
limk � � tk=t, tk {t for all k, and M(tk)=M(t) for all k. This implies that
for all i, j # M(t) and for all k it must hold that Vi (tk)=Vj (tk) and

Vi (t)=Vj (t).

Therefore we obtain

V4 i (t)= lim
k � �

Vi (tk)&V i (t)
tk&t

= lim
k � �

Vj (tk)&Vj (t)
tk&t

=V4 j (t).

Using these two equations and (17) it follows that x(t)$ Aei=x(t)$ Aej for
all t which are non-singular and for all i, j # M(t). It is easy to see that this
implies that x$(t) Au=x$(t) Ay for all t which are non-singular and for all
u, y # 2n&1 with ui= y i=0 whenever i � M(t). This completes the proof of
Claim 3.

The monotonicity of t [ H*(x(t), V(t)) follows immediately from (22)
and Claims 1�3. This completes the proof of the lemma. K

The above lemma allows us to use H*( } , } ) as a Ljapunov function for
the differential inclusion (17)�(18), which describes the dynamics of perfect
foresight equilibrium paths. We shall also use the fact that

H*(x, V )�pA(x) (23)

for all x # 2n&1 and all V # Rn. This inequality can be verified by a similar
argument as Claim 1 in the proof of Lemma 3.

Lemma 4. Let A be a symmetric matrix and let x( } ) be a perfect
foresight equilibrium path for the potential game defined by A. Furthermore,
let x* be an accumulation point of x( } ), i.e., x*=limk � � x(tk) for some
sequence of real numbers (tk)�

k=1 with limk � � tk=�.

1. pA(x*)�pA(x(0)).

2. x* is a critical point of the potential function pA on 2n&1.

Proof. Let V( } ) be given by (5). Since V( } ) is a bounded function we may
assume without loss of generality that (x*, V*)$=limk � �(x(tk), V(tk))$
exists, where (tk)�

k=1 is the sequence mentioned in the lemma. Defining the
functions x*: [0, �) [ Rn and V*: [0, �) [ Rn by (x*(t), V*(t))$=
limk � �(x(tk+t), V(tk+t))$ it follows that (x*( } ), V*( } ))$ is a solution of
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the differential inclusion (17)�(18) through the initial state (x*, V*)$.11 We
now show that H(x*(t), V*(t)) is a constant (independent of t). If this were
not the case then there would exist t, s # [0, �) such that

H*(x*(t), V*(t))<H*(x*(s), V*(s)). (24)

Because of Lemma 3 we must have t<s. Because limk � � tk=� we may
assume without loss of generality that tk+1>tk+(s&t). Using Lemma 3
again we obtain

H*(x*(t), V*(t))= lim
k � �

H*(x(tk+t), V(tk+t))

= lim
k � �

H*(x(tk+1+t), V(tk+1+t))

� lim
k � �

H*(x(tk+s), V(tk+s))

=H*(x*(s), V*(s)).

Since this is a contradiction to (24) it follows that H*(x*(t), V*(t)) is con-
stant and therefore (d�dt) H*(x*(t), V*(t))=0 for almost all t # [0, �).
Because of (21) this implies

V� *(t)=V*(t)$ x*(t) (25)

for almost all t and, consequently, H*(x*, V*)=H*(x*(t), V*(t))=
pA(x*). From this equation, (23), and Lemma 3 we get pA(x(0))�
H*(x(0), V(0))�H*(x*, V*)=pA(x*) and the proof of the first assertion
of the lemma is complete.

Now let I(t)=supp(x*(t)). Because x*( } ) is a solution to (18) we
have x* i*(t)�&xi*(t) for almost all t # [0, �) and therefore x i*(s)�
xi*(t) e&(s&t) for all s # [t, �). Obviously this implies that i # I(s) whenever
i # I(t) and s>t. The correspondence t [ I(t) is therefore non-decreasing.
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11 Actually, it is not clear whether the limits in the definitions of the functions x*( } )
and V*( } ) exist. To be more precise, we can define the function t [ (x*(t), V*(t))$ on an
increasing sequence of compact intervals as an accumulation point of the sequence of
uniformly Lipschitz continuous functions t [ (x(tk+t), V(tk+t))$ in the space of continuous
functions with the topology induced by uniform convergence on compact intervals. According
to the Arcela-Ascoli theorem, such a sequence of functions has at least one accumulation
point. Because of convexity, compactness, and upper-semicontinuity of the right hand side of
(17)�(18), any such limit functions is a solution of (17)�(18) through the initial state (x*, V*)$
(see, e.g., [2, Theorem 1.4.1]).



Since it takes values in a finite set (the power set of [1, 2, ..., n]) it must be
piecewise constant. On each of the (finitely many) intervals on which I( } )
is constant we have V i*(t)=V� *(t) for all i # I(t), since otherwise we would
obtain V*(t)$ x*(t)<V� *(t), which is a contradiction to (25). Of course,
this implies V i*(t)=V j*(t) and V4 i*(t)=V4 j*(t) for all i, j # I(t). Because of
(17) we find x*(t)$ Ae i=x*(t)$ Ae j for all i, j # I(t) and all t # [0, �). This
means that x*(t) is a critical point of pA for all t # [0, �). In particular,
x*=x*(0) is a critical point and the proof of the lemma is complete. K

Proof of Theorem 4. Since x� is the unique maximizer of the potential
function over 2n&1 it follows that x� is a critical point of pA . Moreover,
because there are only finitely many critical values (see Section 2) there
exists =>0 such that pA(xc)<pA(x) for all x # B=(x� ) and all critical points
xc{x� . Together with Lemma 4 this implies that every perfect foresight
equilibrium path x( } ) with x(0) # B=(x� ) satisfies limt � � x(t)=x� . K

6. CONCLUDING REMARKS

We have shown that in the class of symmetric two-person potential
games the evolutionary dynamic equilibrium selection method proposed by
Matsui and Matsuyama in [10] is equivalent to the static equilibrium
selection method defined by the maximization of the potential function.
This result is intuitively plausible but it is not at all obvious: just recall
Example 2 which clearly shows that this appealing property is not shared
by the long run equilibria from Kandori et al. [11] or the risk-dominance
concept from Harsanyi and Selten [6].

We believe that our result (i.e., that the global maximizer of the potential
function is globally accessible and absorbing) holds for general N-person
potential games. This would include the results in [10] for asymmetric
2_2 coordination games. An open question concerns the local maxima of
the potential function, or Maynard Smith's [13] evolutionarily stable
strategies (ESS) for more general games (without potential function).12 We
conjecture that every ESS is locally accessible (independently of the dis-
count rate) and that every ESS is absorbing if the discount rate is suf-
ficiently high. Indeed, it is not very difficult to verify these two properties
when the ESS is a strict Nash equilibrium in pure strategies. However, for
the general case of mixed strategy Nash equilibria we have not been able
to prove (or disprove) these conjectures.
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APPENDIX

For the 2_2 game from Example 1, we can rewrite Eqs. (7) and (17) as

p* (t)=I+(v(t))& p(t),
(26)

v* (t)=(1+%) v(t)+ p̂& p(t),

where p(t)=x2(t)=1&x1(t), v(t)=[V2(t)&V1(t)]�(a+b), p̂=x2*=
a�(a+b), and I+( } ) is the indicator function of the set (0, �). Figure 1
shows the phase portrait of the piecewise linear differential equation (26)
for the values a=0.6, b=0.4, and %=0.2 which is obtained by glueing
together the two families of solution curves

v=
C

(1& p)1+%+
p

2+%
&

p̂
1+%

+
1

(1+%)(2+%)
>0

and

v=
D

p1+%+
p

2+%
&

p̂
1+%

<0.

FIG. 1. Phase portrait of (26) for a=0.6, b=0.4, and %=0.2.
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Here C and D are integration constants. Note, that for most initial condi-
tions, the solution is unbounded, as v(t) � \�. There are only five boun-
ded solutions which are the perfect foresight equilibrium paths. These are
the three stationary solutions ( p, v)=(0, &p̂�(1+%)), ( p, v)=(1, (1& p̂)�
(1+%)), and ( p, v)=( p̂, 0), as well as their stable manifolds. In Fig. 1 the
stationary solutions are labeled A, B, and C, respectively. The stable
manifold of (0, &p̂�(1+%)) (point A) is a line segment extending across the
whole p-axis (indicating the global accessibility of e1), while the stable
manifold of (1, (1& p̂)�(1+%)) (point B) winds infinitely often around the
unstable steady state ( p̂, 0) (point C). Hence, starting at p= p̂, there are
infinitely many perfect foresight equilibrium paths, each of which leads to
e2 in the long run, and there is a unique path (the optimal one constructed
in Section 3), which leads to the maximizer of the potential function e1 .
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