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Abstract

We present the family of Excess Payoff Dynamics for normal-form games, where the growth of a strat-
egy depends only on its current proportion and the excess payoff, i.e., the payoff advantage of the strategy 
over the average population payoff. Requiring dependence only on the own excess payoff and a natural 
sign-preserving condition, the class essentially reduces to aggregate monotonic dynamics, a functional gen-
eralization of the Replicator Dynamics. However, Excess Payoff Dynamics also include a different subclass 
which contains the Replicator Dynamics, the Brown-von Neumann-Nash Dynamics, and other interest-
ing examples as, e.g., satisficing dynamics. We also clarify the relation to excess demand dynamics from 
microeconomics.
© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND 
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

JEL classification: C73
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1. Introduction

Sandholm (2005) proposed to study a class of well-behaved excess payoff dynamics in games, 
which are evolutionary dynamics where the success of a strategy is measured exclusively by 
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its payoff advantage against the overall average population payoff, i.e., the ‘excess payoff.’ The 
celebrated Replicator Dynamics is a prominent example fulfilling this basic property (Taylor and 
Jonker, 1978, Schuster and Sigmund, 1983; see the textbooks of Hofbauer and Sigmund, 1998 or 
Sandholm, 2010). In this dynamics, the growth rates of strategies are assumed to be identical with 
their excess payoffs, but of course many alternative functional forms would be possible. The idea 
of excess payoff is directly related to ideas of relative advantage in evolutionary biology (Garay 
and Varga, 1999), but also exhibits formal links to the concept of excess demand in economics 
(Nikaido, 1959).

The class proposed by Sandholm (2005) went beyond the basic idea of dependence on excess 
payoffs. Specifically, that contribution studied a (reasonable) micro-foundation of evolutionary 
dynamics which gives rise to excess payoff dynamics in the sense described above and also fulfill 
a number of desiderata. The latter include, e.g., that rest points should exactly coincide with the 
Nash equilibria of the game. As a result, Sandholm’s excess payoff dynamics exclude the Repli-
cator Dynamics and many other examples where growth rates are functions of the excess payoffs, 
although they do include the less-known but interesting BNN (Brown-von Neumann-Nash) dy-
namics introduced by Brown and von Neumann (1950) (see Hofbauer, 2000 or Sandholm, 2001, 
p. 94).

In this article, we consider Excess Payoff Dynamics in the more general sense, i.e., all those 
dynamics formulated only in terms of excess payoffs (and, of course, current population propor-
tions); those naturally include the Replicator Dynamics and the BNN dynamics, and encompass 
all dynamics considered by Sandholm (2005), but do not necessarily fulfill the desiderata pos-
tulated in that work. The purpose of our contribution is to explore this general family and the 
properties of some natural subclasses. Conceptually, our intention is to explore how far Excess 
Payoff Dynamics can deviate from the Replicator Dynamics, and illustrate how rich (or not) the 
class can be, under natural restrictions.

Our results are of two kinds. Initially, we consider two natural restrictions. The first is that 
the functional dependence on excess payoffs for a given strategy is restricted to the own ex-
cess payoff. The second is a natural sign-preserving condition, i.e., that the strategy grows or 
shrinks depending on the sign of the excess payoff (Ritzberger and Weibull, 1995). Under these 
conditions, and somewhat surprisingly, we show that the class essentially reduces to aggregate 
monotonic dynamics as described by Samuelson and Zhang (1992), which are a generalization 
of the Replicator Dynamics.

Those, however, exclude other interesting dynamics, a prominent example being the BNN 
(Brown-von Neumann-Nash) dynamics. Hence, we turn to the exploration of a different subclass 
of Excess Payoff Dynamics, which we call Separable, and that naturally encompass the Repli-
cator and the BNN dynamics. We also illustrate that the class is rich enough to include other 
interesting examples (e.g., a subclass of satisficing dynamics). We show that the rest points of all 
such dynamics are either those of the Replicator Dynamics or those of the BNN (which coincide 
with the set of Nash equilibria). Under an additional condition, these dynamics are evolution-
arily well-behaved, meaning that they are myopic adjustment dynamics (the latter ensures, e.g., 
selection of Nash equilibria in potential games).

The manuscript is structured as follows. Section 2 defines the class of Excess Payoff Dy-
namics and presents some prominent examples. Section 3 examines the first subclass of interest, 
Direct and Sign-Preserving dynamics, and shows their equivalence with the aggregate mono-
tonicity condition. Section 4 studies Separable dynamics and shows the examples and results for 
this class. Section 5 briefly clarifies the relation of Excess Payoff Dynamics to excess demand 
dynamics from classical microeconomics (Nikaido, 1959). A brief conclusion closes the paper.
2



C. Alós-Ferrer and J. Hofbauer Journal of Economic Theory 204 (2022) 105464
2. Excess payoff dynamics

Consider a finite, symmetric 2-person game with n strategies, numbered i = 1, . . . , n for sim-
plicity, and payoff matrix A = [aij ]i,j=1,...,n. Following the standard approach in evolutionary 
dynamics, this game is played repeatedly in continuous time within a large population through 
a random matching process. Let xi = xi(t) ∈ [0, 1] denote the population frequency of players 
adopting strategy i at time t . Population profiles x = (xi)

n
i=1 are then elements of the (n − 1)-

dimensional simplex � = {
x ∈ [0,1]n ∣∣ ∑n

i=1 xi = 1
} ⊂ Rn.

Denote by

di = (A · x)i − x · A · x (1)

the excess payoff of i-strategists, i.e., the difference between the (average) payoff of players using 
strategy i and the average population payoff, given the population profile x. This corresponds to 
the concept of relative advantage in evolutionary biology (Garay and Varga, 1999). We obviously 
abuse notation by not writing di as a function of x, but no confusion should arise. Denote also 
d = (d1, . . . , dn).

Most evolutionary dynamics are based on the idea that xi should increase whenever di is 
positive. The following is the most general functional form for a dynamics based on excess 
payoffs.

Definition 1. An Excess Payoff Dynamics is a system of differential equations on �

ẋi = fi (d, x) (2)

where

(i) fi :Rn × � �→ R are continuous functions, and
(ii) for all d ∈Rn such that d · x = 0,∑

i

fi (d, x) = 0. (3)

The crucial aspect of an Excess Payoff Dynamics is that the functions fi are not allowed to 
depend on the payoff matrix A. That is, in an Excess Payoff Dynamics, all the dependence of the 
system on the payoff matrix is channeled through excess payoffs. In other words, the dynamics 
(2) is defined independently of the game at hand.

The minimal requirement (i) is justified because, by the Cauchy-Peano theorem, continuity 
of the fi implies the existence of (local, and possibly non-unique) solution paths through any 
initial condition. If, in addition, the fi are supposed to be Lipschitz-continuous, solutions would 
be unique by the Picard-Lindelöf Theorem, and globally defined by the Extension Theorem (if 
� is forward invariant). We do not make this assumption at this point.

Requirement (ii) (Equation (3)) is necessary in order for the hyperplane 
∑

i xi = 1 to be 
invariant. Since the dynamics is defined independently of the game, the requirement must be 
fulfilled for all x and all possible values di derived from x and any payoff matrix A. Condition 
(ii), though, is not stated for every matrix A, but for every vector of excess payoffs which is 
orthogonal to x. This is an equivalent formulation. It is easy to see that, given x ∈ int�, for 
3
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every vector u ∈ Rn such that 
∑

i uixi = 0, there exists a payoff matrix A such that d = u.3

Hence, condition (ii) must be fulfilled for all d orthogonal to x, as long as x is in the interior of 
the simplex. If x is not in the interior, a continuity argument on (3) yields the same result.

To the best of our knowledge, the name “excess payoff” is due to Sandholm (2005), but we 
remark again that our concept of Excess Payoff Dynamics (Definition 1) is more general (and, 
in the sense given there, also less well-behaved). In particular, unlike the class considered in 
Sandholm (2005), our Excess Payoff Dynamics do include both the Replicator Dynamics and 
the BNN dynamics. They also encompass the class in Sandholm (2005).

Example 1. Replicator Dynamics. The best-known evolutionary dynamics is the Replicator 
Dynamics of Taylor and Jonker (1978), named by Schuster and Sigmund (1983) and widely 
studied in evolutionary biology and economics. We refer the reader to the textbooks of Weibull 
(1995), Hofbauer and Sigmund (1998), or Sandholm (2010); for more compact treatments, see 
also Hofbauer and Sigmund (2003) or Cressman and Tao (2014). This dynamics is given by

ẋi = xi · di (4)

i.e., the growth rate of any given strategy is numerically equal to its excess payoff. This corre-
sponds to a particularly-simple Excess Payoff Dynamics, with fi(d, x) = xi · di .

It is well-known (see any of the references above) that the rest points of the Replicator Dynam-
ics are the set of strategies corresponding to symmetric Nash Equilibria of “restricted” games, 
i.e., games having as strategy set any nonempty subset of the strategy set, and as payoff matrix 
the appropriate submatrix of A.

Example 2. Brown-von Neumann-Nash Dynamics. A rather different dynamics, inspired by 
the work of G. W. Brown and J. von Neumann (Brown and von Neumann, 1950) and J. Nash 
(Nash, 1951; see Weibull, 1996 and Hofbauer, 2000 for details), is the Brown–von Neumann–
Nash or BNN dynamics, given by

ẋi = [di]+ − xi ·
n∑

j=1

[dj ]+ (5)

where [u]+ = max(0, u).
This dynamics has been studied by Berger and Hofbauer (2006) and Hofbauer et al. (2009), 

among others. It is an Excess Payoff Dynamics where the functions fi are “kinked” in the sense 
that negative excess payoffs are dropped, creating a failure of differentiability at zero. The dy-
namics is particularly interesting for many reasons, both historical and formal. For instance, 
unlike the Replicator Dynamics, its rest points coincide exactly with the Nash Equilibria of the 
game.

Example 3. Sandholm’s Excess Payoff Dynamics are the mean-field approximation of a spe-
cific Markov model of evolution based on ‘moderation,’ where agents “exert moderate levels of 
effort to find strategies that perform well” instead of relying on imitation or optimization (Sand-
holm, 2005, p. 150). In our notation, those dynamics are described by the functional form

3 To see this, just define A to be the diagonal matrix where aii = ui
xi

. Then, di = (Ax)i − xAx = aiixi − ∑
j ajj x2

j
=

ui − ∑
j uj xj = ui .
4
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ẋi = σ̃i (d) − xi ·
n∑

j=1

σ̃j (d) (6)

where σ̃ = (
σ̃j

)n

j=1 is a “raw choice function” defined on the set of all possible excess payoff 
vectors, D = Rn \ intRn−, and mapping them to Rn+. This function governs revision opportunities 
in the micro-founding Markovian model, and is assumed to be Lipschitz-continuous and fulfill 
σ̃ (d) · d ≥ 0 for all excess payoff vectors d in the interior of D.4 Obviously, the BNN dynamics 
corresponds to the particular case σ̃i = [di]+, and it is in this sense that Sandholm’s Excess 
Payoff Dynamics are generalizations of the BNN dynamics.

3. Direct excess payoff dynamics and aggregate monotonicity

We start our investigation of Excess Payoff Dynamics by considering two natural properties. 
The first one concerns the fact that, as formulated, Excess Payoff Dynamics allow the shares of 
i-strategists to depend on the excess payoffs of all strategies. But, since the excess payoff (1) is 
already a comparison between the payoffs of i-strategists and the payoffs of others, it is natural 
to consider the subclass of dynamics where the evolution of a strategy i depends only on the 
excess payoff di , and not on the excess payoffs of other strategies. Formally:

Definition 2. An Excess Payoff Dynamics is Direct if fi does not depend on dj , for each j �= i

and each i = 1, . . . , n.

Abusing notation, the subclass of Direct Excess Payoff Dynamics is hence given by

ẋi = fi (di, x) (7)

Obviously, the Replicator Dynamics (Example 1) is an example of dynamics in this class. How-
ever, that the assumption of a direct dynamics is a restriction is illustrated by the BNN dynamics 
(Example 2), which is clearly not direct (and, in particular, Sandholm’s Excess Payoff Dynamics, 
Example 3, are also not direct in general).

The second condition we consider is sign preservation. Naturally, one would expect that the 
proportion of i strategists grows or shrinks depending on whether the excess payoff is negative 
or positive, respectively. Ritzberger and Weibull (1995) studied Sign-Preserving Selection (SPS) 
dynamics, satisfying ẋi < 0 if and only if di < 0. We consider a slightly stronger condition.

Definition 3. A Direct Excess Payoff Dynamics is Sign-Preserving if fi(di, x) · di > 0 whenever 
di �= 0 and x ∈ int�.

The next example shows that an entire class of well-known dynamics fulfill both of our con-
ditions.

Example 4. Aggregate Monotonic Selection Dynamics. Samuelson and Zhang (1992) studied 
Aggregate Monotonic Selection (AMS) Dynamics in the context of asymmetric games. Those 
can be seen as a direct generalization of the Replicator Dynamics. Specifically, all AMS dynam-
ics can be written as

4 Sandholm (2005) further considers multiple population models, but we restrict ourselves to the single-population 
case.
5



C. Alós-Ferrer and J. Hofbauer Journal of Economic Theory 204 (2022) 105464
ẋi = ω(x) · xi · di (8)

with ω : � �→ R++ a strictly positive function (see Ritzberger and Weibull, 1995, p. 1376).
AMS dynamics are obviously Direct Excess Payoff Dynamics, and, since ω(x) > 0 for all x, 

it is obvious that they are also sign-preserving.

Our first main result shows that every Direct and Sign-Preserving Excess Payoff Dynamics 
coincides with an AMS dynamics in the interior of the simplex, provided there are at least three 
strategies. Hence, if one restricts attention to the two (natural) conditions described above, the 
resulting subclass of Excess Payoff Dynamics essentially corresponds to the class of Aggregate 
Monotonic Selection Dynamics, i.e., a generalization of the Replicator Dynamics. The proof of 
this result is, however, relatively involved.

Theorem 1. Let n ≥ 3. Consider a Direct and Sign-Preserving Excess Payoff Dynamics as in (7). 
Then, there exists a strictly positive function ω : int� �→ R++ such that, in int�,

fi(di, x) = ω(x) · di · xi.

Proof. Fix x ∈ int�. Define the real functions given by fi(di) = fi(di, x). Condition (3) trans-
lates into∑

i

fi(di) = 0 ∀d ∈ Rn such that
∑

i

dixi = 0. (9)

Notice that fi(0) = 0 because, by the SPS condition, fi(di) > 0 for di > 0, fi(di) < 0 for 
di < 0, and fi is continuous.

The proof now proceeds in five steps.

Step 1. Let f = f1. Then, for all i �= 1, fi(z) = −f
(
− xi

x1
z
)

for any z ∈R.

Let i �= 1. To see the claim, define the vector d ∈ Rn given by d1 = − xi

x1
z, di = z, and dj = 0

for all j �= 1, i. It follows that 
∑

k dkxk = 0 and, by (9), 
∑

k fk(dk) = 0. For each j �= 1, i, dj = 0
implies fj (dj ) = 0, and hence f1(d1) + fi(di) = 0, which yields the claim.

Step 2. The function f is odd, i.e. f (z) = −f (−z) for all z ∈ R.
To see this, let z ∈ R and apply the proof of Step 1 with i = 2 in the role of i = 1 to obtain that 

f3(z) = −f2

(
− x3

x2
z
)

= f
(

x2
x1

x3
x2

z
)

= f
(

x3
x1

z
)

, where the second equality follows from Step 1 
(note that this argument requires n ≥ 3). Then,

f (z) = f

(
x3

x1

x1

x3
z

)
= f3

(
x1

x3
z

)
= −f

(
−x3

x1

x1

x3
z

)
= −f (−z).

Step 3. f is linear in R+. I.e., for every z ∈R+, f (z) = z · f (1).
To see this claim, using that n ≥ 3, we define the vector d ∈ Rn given by d1 = 2, d2 = − x1

x2
, 

d3 = − x1
x3

, and di = 0 for all i ≥ 4. By construction, 
∑

i dixi = 0 and it follows from (9) that ∑
i fi(di) = 0. For i ≥ 4, di = 0 implies fi(di) = 0. For i = 2, 3, Step 1 implies that fi

(
− x1

xi

)
=

−f (1). Thus 
∑

i fi(di) = 0 reduces to f (2) = 2f (1).
We now proceed by induction (using always only n ≥ 3). Suppose that f (m) = m · f (1) for 

some m ≥ 2. Construct the vector d ∈ Rn given by d1 = m + 1, d2 = − x1
x2

m, d3 = − x1
x3

, and 
di = 0 for all i ≥ 4. By construction, 

∑
i dixi = 0 and, by (9), 

∑
i fi(di) = 0. For i ≥ 4, di = 0

implies fi(di) = 0. For i = 3, f3

(
− x1

)
= −f (1) by Step 1. For i = 2, f3

(
− x1 m

)
= −f (m) =
x3 x2

6
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−mf (1) by Step 1 and the induction hypothesis. Thus 
∑

i fi(di) = 0 reduces to f (m) −mf (1) −
f (1) = 0, i.e. f (m + 1) = (m + 1) · f (1). We conclude that f (m) = m · f (1) for every m ∈N .

An analogous argument shows that f (p/q) = pf (1/q) for all p, q ∈N . In particular f (1) =
f (q/q) = qf (1/q) and hence f (1/q) = (1/q)f (1). Thus f (p/q) = (p/q)f (1) for any positive 
rational number p/q . For an arbitrary real number z ∈R+, taking a sequence of positive rational 
numbers approaching z and applying continuity of f shows that f (z) = z · f (1).5

Step 3’. For every z ∈R−, f (z) = −z · f (−1).
This follows from Steps 2 and 3 as, for z < 0, f (z) = −f (−z) = zf (1) = −zf (−1).
Step 4. There exists ω(x) > 0 such that f (d1) = ω(x)x1d1 for all d1 ∈R.
Suppose first that d1 > 0. Notice that the SPS condition fi(di)di > 0 implies f (1) > 0. Define 

ω(x) = f (1)/x1 > 0. Then, for d1 > 0, f (d1) = d1f (1) = ω(x)x1d1, where the second equality 
follows from Step 3 and the third from definition of ω(x).

Now suppose d1 < 0. Analogously, the SPS condition fi(di)di > 0 implies f (−1) < 0. Then, 
for d1 < 0, f (d1) = −d1f (−1) = ω(x)x1d1, where the second equality follows from Step 3’ 
and the third because, by Step 2, ω(x) = f (1)

x1
= −f (−1)

x1
. Thus the claim follows for all d1 �= 0. 

Since f (0) = 0, the claim holds for all d1 ∈ R.
Step 5. fi(di, x) = ω(x) · xi · di for all i and all di ∈R.

For i = 1, the claim follows from Step 4. For i > 1, fi(di, x) = fi(di) = −f
(
− xi

x1
di

)
=

ω(x)xidi , where the second equality follows from Step 1 and the third from Step 4.
This completes the proof. �

Remark. Samuelson and Zhang (1992) assume AMS dynamics ẋi = fi(x) to be regular, which 
in particular requires Lipschitz continuity and, further, that the limit limxi→0 fi/xi exists and 
is finite. Since we did not require analogous conditions in our formulation of Excess Payoff 
Dynamics, our result is restricted to the interior of the simplex. If the function fi (di ,x)

di ·xi
can be 

extended continuously to the whole simplex, then the function ω(x) can obviously also be ex-
tended. However, it is a priori not guaranteed that ω(x) > 0 on the boundary.

The following example shows why Theorem 1 does not apply to the case of only two strate-
gies.

Example 5. A Direct, Sign-Preserving Excess Payoff Dynamics which is not Aggregate 
Monotonic, for n = 2. Consider the Direct Excess Payoff Dynamics given by

fi(di, x) = (dixi)
3

for i = 1, 2. Then, if d1x1 + d2x2 = 0, we have that d2x2 = −d1x1 and

f1(d1, x) + f2(d2, x) = (d1x1)
3 + (−d1x1)

3 = 0,

hence the dynamics is well-defined.
Moreover, fi(di, x)di = d4

i x3
i > 0 for all di �= 0 and xi > 0, i.e., the dynamics is Sign-

Preserving. It is, however, clearly not an AMS dynamics. Notice, though, that (dixi)
3 still is 

an odd function.

5 This is analogous to the proof that any continuous real function with f (x + y) = f (x) + f (y) must be linear.
7
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The following example exhibits a Sign-Preserving Dynamics which fails to be Aggregate 
Monotonic, because the remaining assumptions in Theorem 1 do not hold.

Example 6. A piecewise dynamics. Define the dynamics given by

ẋi =
{

xidi∑{xj [dj ]+} if di �= 0

0 if di = 0

Clearly, 
∑

i ẋi = 0 and xi = 0 =⇒ ẋi = 0; hence, the simplex is forward-invariant. This piece-
wise dynamics fulfills the condition fi · di > 0 for all di �= 0 and xi > 0 and is hence Sign-
Preserving. However, it cannot be put in the form fi(di, x) = ω(x)dixi . Theorem 1 does not 
apply, because, first, fi is not continuous in di at d = 0, and, second, fi depends on all dj .

4. Separable dynamics

4.1. Definition

While the assumption of a direct dynamics is natural, it excludes some important examples as 
the BNN dynamics (Example 2). In this section, we take a different route and explore a family of 
Excess Payoff Dynamics which encompass both the BNN dynamics and the classical Replicator 
Dynamics (Example 1). We do so by postulating a general, flexible functional form as follows.

Definition 4. An Excess Payoff Dynamics is separable if it is of the form

ẋi = c(xi)h(di) −
∑
j

σji(x)c(xj )h(dj ) (10)

where

(h) h : R �→ R is a continuous function such that h(u) > 0 for all u > 0 and h(u) ≤ 0 for all 
u ≤ 0.6

(c) c : [0, 1] �→ R is a continuous function such that c(y) > 0 for all y > 0.
(σ ) for all j , σj : � �→ � is a continuous function such that σji(x) = 0 if xi = 0 and σji(x) > 0

if xi > 0.

Further, if σji(x) = xi , then the dynamics is called uniform.

4.2. Examples

While equation (10) might appear cumbersome and arbitrary at first glance, we contend that 
this is a natural generalization of ideas in the evolutionary literature. The intuition for this is best 
developed by way of examples.

Example 7. The Replicator Dynamics is a Separable Dynamics. For h(u) = u, c(y) = y, and 
σji(x) = xi , equation (10) turns into

6 Note that continuity implies that h(0) = 0, but in general it might be that h(u) = 0 for some (or all) u ≤ 0. The latter 
is the case in Example 10 below.
8
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ẋi = xidi −
∑
j

xixj dj = xi · di (11)

i.e., the Replicator Dynamics. Hence, the Replicator Dynamics is a Separable (and Uniform) 
Excess Payoff Dynamics.

Example 8. The BNN Dynamics is a Separable Dynamics. Let c(y) = 1, σji(x) = xi , and 
h(u) = f ([u]+) where f : R+ �→ R+ is a continuous function with f (0) = 0 and f (u) > 0 for 
u > 0, and [u]+ = max(u, 0) is the positive part of u. Equation (10) becomes

ẋi = f ([di]+) − xi ·
n∑

j=1

f ([dj ]+) (12)

i.e., a “Generalized” Brown-von Neumann-Nash (BNN) dynamics (see Hofbauer, 2000). This 
dynamics becomes the second example of a Separable (and Uniform) Excess Payoff Dynamics.

Of course, if we take f to be the identity on R+, we obtain the original BNN dynamics (5). 
Letting f (u) = uα for α > 0 also lets us recover the continuous time Best-Reply Dynamics in 
the limit as α → ∞.

Example 9. RD to BNN transformation. Let c(y) = yα , σji(x) = xi , and h = fα with fα(u) =
u for u ≥ 0 and fα(u) = αu for u < 0. Then equation (10) turns into

ẋi = xα
i fα(di) − xi

∑
j

xα
j fα(dj ) (13)

which is a homotopy connecting the BNN (α = 0) and the Replicator Dynamics (α = 1).

The following is a more involved but interesting example.

Example 10. Satisficing Dynamics. Suppose there is a large but finite population of N agents 
playing the game recurrently so that their (expected) payoff of playing strategy i is (A · x)i . 
Agents receive revision opportunities according to Poisson processes with rate λ(dj), which ver-
ifies that λ(·) is continuous, λ(u) = 0 if u > 0, and λ(u) ≥ 0 if u ≤ 0; the idea is that agents with 
payoff above average are satisfied and do not change, but those with less-than-average payoffs 
do. When switching, an agent previously choosing strategy j switches to strategy i with prob-
ability σji(x), so that 

∑
i σji(x) = 1, and the σj : � �→ � are required to be continuous. These 

probabilities are independent of payoffs (e.g. imitate popular choices, imitate a randomly sam-
pled agent, etc.). However, we assume explicitly that, as required by (σ ), σji(x) > 0 whenever 
xi > 0 and σji(x) = 0 whenever xi = 0. That is, unobserved strategies attract no new players, 
and any existing strategies attract some fraction of players (no matter how small).

With a standard stochastic approximation argument, we approximate the resulting Markov 
process by the mean field dynamics. The argument is analogous to the one used in Sandholm 
(2005) (although applied to a different model) and hence we only sketch it here. The expected 
number of revision opportunities received by agents playing j in an infinitesimal period dt (abus-
ing notation in the usual way) is

N · xj · λ(dj ) · dt.

Since agents playing j switch to i with probability σji(x) if given opportunity, the expected 
number of players who receive revision opportunity and change to i is
9
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∑
j

N · xjλ(dj )σji(x) · dt

and hence the expected number of agents playing i next period is⎛
⎝∑

j

N · xjλ(dj )σji(x) + (1 − λ(di))N · xi

⎞
⎠ · dt

and the expected change in the number of i players is

N

⎛
⎝

⎡
⎣∑

j

xjλ(dj )σji(x)

⎤
⎦ − λ(di) · xi

⎞
⎠ · dt

and thus the expected change in the proportion is obtained by dropping N and the dynamics is 
given by

ẋi = −xi · λ(di) +
⎛
⎝∑

j

σji(x)xjλ(dj )

⎞
⎠ . (14)

Now simply define h(u) = −λ(u) (hence satisfying condition (h)) and c(y) = y. Hence, the 
satisficing dynamics is a Separable Excess Payoff Dynamics, but it is only uniform if σji(x) = xi . 
This is the intuition behind the name “uniform,” for it corresponds to the case where switching 
agents simply copy a uniformly, randomly sampled agent from the whole population.

The Replicator Dynamics is not a member of this subfamily, since the function λ must be 
positive. However, there is a dynamics similar in spirit (pure imitation driven by dissatisfaction, 
Weibull, 1995, p. 153) where revision rates are decreasing functions of (A · x)i . If they are linear 
functions, then the result is a rescaling of the Replicator Dynamics. Neither is the BNN dynamics 
a member of this subfamily, because of the multiplicative term xj in the term in brackets in 
equation (14).

4.3. Properties

4.3.1. Forward invariance
The general functional form given by (10) does not guarantee that the simplex is forward 

invariant, although this is the case in all examples in Section 4.2. Actually, forward-invariance 
can be characterized as follows.

Proposition 1. Consider a Separable Excess Payoff Dynamics. Then, the simplex is forward-
invariant for all possible payoff matrices A if and only if the following condition holds:

(FI) Either c(0) = 0 or h(u) = 0 for all u ≤ 0, or both.

Proof. First we show that the simplex is forward-invariant under (FI). To see this, we compute:∑
i

ẋi =
∑

i

c(xi)h(di) −
∑

i

∑
j

σji(x)c(xj )h(dj ) =

=
∑

c(xi)h(di) −
∑

c(xj )h(dj )

(∑
σji(x)

)
= 0
i j i

10
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where the last equality follows because 
∑

i σji(x) = 1. To complete the proof, we need to 
show that xi = 0 implies ẋi ≥ 0. Suppose, then, xi = 0. By (σ ), σji(x) = 0 for all j , thus 
ẋi = c(0)h(di), which is nonnegative under (FI).

To see the converse, we only need to show that, if c(0) > 0, then h(u) ≥ 0 for all u. It will 
then follow from (h) that h(u) = 0 for all u ≤ 0.

Note that, since di = (Ax)i −xAx, for any u ∈R there exists a payoff matrix such that di = u

for some vector x with xi = 0. Specifically, choose some k �= i and consider the vector x = ek all 
whose entries are 0 but the k-th one. Define a payoff matrix A with aik = u and akk = 0. Then,

di =
∑
j

aij xj −
∑
�,j

a�,j x�xj = u,

proving the claim. But, if c(0) > 0, whenever xi = 0, the condition ẋi = c(0)h(di) ≥ 0 implies 
that h(di) ≥ 0, for all possible payoff matrices A and vectors x ∈ � such that xi = 0. Thus, 
h(u) ≥ 0 for all u. �

The family given in Example 9 satisfies (FI). Consequently, this assumption is also satisfied 
by the generalized BNN Dynamics (12) and the Replicator Dynamics (4). Consider again the 
satisficing dynamics in Example 10. The uniform-imitation satisficing dynamics where σji(x) =
xi is also covered by the previous Proposition; forward-invariance of the simplex for the general 
equation (14) can be easily established directly, though.

4.3.2. Rest points
That the rest points of a dynamics coincide with the set of Nash equilibria is undoubtedly an 

appealing property, which led Sandholm (2005) to postulate it as one of his desiderata. However, 
this has the unappealing consequence of excluding the Replicator Dynamics, undoubtedly the 
most prominent evolutionary dynamics. Our next main result shows that the rest points of any 
Separable Excess Payoff Dynamics are either exactly the Nash equilibria (as in the case of the 
BNN dynamics, Example 2) or coincide with the rest points of the Replicator Dynamics (Exam-
ple 1). In this sense, the BNN and the Replicator dynamics can be seen as the canonical examples 
of separable dynamics.

Theorem 2. Consider any (forward-invariant) Separable Excess Payoff Dynamics as given by 
(10). Then,

(a) Every Nash equilibrium is a rest point.
(b) Every rest point is also a rest point of the Replicator Dynamics (4).
(c) If c(0) > 0 then the rest points are precisely the Nash Equilibria.
(d) If c(0) = 0 then the rest points are precisely the rest points of the Replicator dynamics (4).

Proof. (a) A profile x is a Nash equilibrium if and only if di ≤ 0 for all i, which implies, by 
definition, that di = 0 whenever xi > 0.
Under (FI), either c(0) = 0 or h(u) = 0 for all u ≤ 0. If h(u) = 0 for all u ≤ 0, then at any 
Nash equilibrium c(xi) ·h(di) = 0 for all i, since di ≤ 0. If c(0) = 0, then c(xi) ·h(di) = 0 if 
xi = 0, but at a Nash equilibrium, if xi > 0, c(xi) · h(di) = c(xi) · h(0) = 0 since h(0) = 0.7

In both cases, we conclude that c(xi) · h(di) = 0 for all i and the result follows from (10).

7 Recall footnote 6.
11
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(b) At a rest point of (10),

c(xi)h(di) =
∑
j

σji(x)c(xj )h(dj ) (15)

Suppose there exists any i such that xi > 0 (hence c(xi) > 0 and all σji(x) > 0)) but 
di > 0 (and hence h(di) > 0 by (h)). Then, from (15) we have that 

∑
j σji(x)c(xj )h(dj ) =

c(xi)h(di) > 0. Consider now any other strategy k. Using again (15), we have that 
c(xk)h(dk) = ∑

j σji(x)c(xj )h(dj ) > 0. Hence, we have proven that h(dk) > 0 for all k
with xk > 0. By (h), this implies that dk > 0 for all k with xk > 0 and hence 

∑
k xkdk > 0, 

a contradiction. The same contradiction obtains if there is any i with xi > 0 but di < 0. In 
summary, di = 0 whenever xi > 0, implying that x is a rest point of the Replicator Dynamics 
(4).

(c) Suppose c(0) > 0. We have to show that all rest points of (10) are Nash equilibria. Any such 
rest point is a rest point of (4) by (b) and hence di = 0 whenever xi > 0. If xi = 0, then by (σ ) 
we have that σji(x) = 0 for all j . Then, from (15) and c(0) > 0 we observe that h(di) = 0, 
i.e., di ≤ 0 (by (h)). Hence, x is a Nash equilibrium. The converse follows from (a).

(d) Suppose now c(0) = 0. Let x be a rest point of (4), i.e., xjdj = 0 for all j . Then, either xj =
0, implying c(xj ) = 0, or dj = 0, implying h(dj ) = 0 by (h). In any case, c(xj )h(dj ) = 0
for all j and it follows that x is a rest point of (10). The converse follows from (b). �

Since all interior rest points of the Replicator Dynamics are Nash equilibria, we immediately 
obtain the following.

Corollary 1. All interior rest points of (forward-invariant) Separable Excess Payoff Dynamics 
are Nash equilibria.

Remark. Sandholm (2005, Section 4) made the point that, even though his Excess Payoff Dy-
namics exclude the Replicator Dynamics, one can consider continuously-perturbed families 
indexed by a parameter α such that the dynamics is a Sandholm Excess Payoff Dynamics for 
every α > 0, and coincides with the Replicator Dynamics when α = 0. Since both the Replicator 
Dynamics and all Sandholm Excess Payoff Dynamics are Excess Payoff Dynamics in the sense 
given here, one obtains a family of Excess Payoff Dynamics such that the rest points are exactly 
the Nash equilibria except in the limit, where they become the rest points of the Replicator Dy-
namics. Hence, the family exhibited by Sandholm (2005) is akin to a generalization of the BNN 
which approaches the Replicator Dynamics as α → 0.

The family given by (13), which connects the BNN and the Replicator Dynamics, makes the 
opposite point. For any α > 0, we have that c(0) = 0α = 0 and hence the rest points are exactly 
those of the Replicator Dynamics (Example 1). In the limit, for α = 0, we obtain the BNN 
dynamics (Example 2), whose rest points are exactly the Nash equilibria. Hence, the family is 
akin to a generalization of the Replicator Dynamics which approaches the BNN as α → 0.

4.3.3. The uniform case
We now turn to the particular case of Uniform Separable dynamics, i.e., assuming σji(x) = xi . 

Our next result shows that, in this case, the paths of the dynamics describe evolutionarily-
reasonable adjustments. Specifically, the dynamics becomes a myopic adjustment dynamics
(Swinkels, 1993; Hofbauer and Sigmund, 1998, Section 8.5), or has positive correlation (Sand-
holm, 2005).
12
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Theorem 3. Any Separable and Uniform Excess Payoff Dynamics is a myopic adjustment dy-
namics, meaning that ẋ · Ax ≥ 0 for all x.

Proof. By direct computation:

ẋ · Ax =
∑

i

ẋi (Ax)i =
∑

i

c(xi)h(di)(Ax)i −
∑

i

xi

⎛
⎝∑

j

c(xj )h(dj )

⎞
⎠ (Ax)i =

∑
i

c(xi)h(di)(Ax)i −
⎛
⎝∑

j

c(xj )h(dj )

⎞
⎠xAx =

∑
i

c(xi)h(di)((Ax)i − xAx) =

=
∑

i

c(xi)h(di)di ≥ 0

The last inequality follows from c(x) ≥ 0 for all x (by property (c)) and h(di)di ≥ 0 for all di

(by property (h)). �
The following corollary is a direct implication of the last theorem.

Corollary 2. Consider any Separable and Uniform Excess Payoff Dynamics. For potential games 
(A = AT ), mean payoff increases over time. Every orbit hence converges to the set of equilibria.

Proof. If A = AT , the time derivative of the mean payoff xAx is 2ẋAx ≥ 0. �
5. Nikaido and the BNN

The concept of Excess Payoff is conceptually related to the concept of excess demand in 
microeconomics. In the latter field, Nikaido (1959) studied excess demand dynamics, and it is 
natural to examine how they are related to Excess Payoff Dynamics.

This can be done as follows. Consider arbitrary vectors y ∈ Rn+ in the positive orthant, and 
define the simple dynamics

ẏi = [di(y)]+ (16)

This dynamics is not confined to the simplex, but the positive orthant is forward invariant. 
Nikaido (1959) studies a price-adjustment dynamics which amounts to (16), replacing the excess 
payoff di by excess demand functions Ei(y), where the yi are prices. Unlike excess payoffs, it 
is proven that excess demand functions are pretty arbitrary and in particular need not be linear. 
They must, however, satisfy Walras Law, which amounts to 

∑
i yi · Ei(y) = 0 everywhere, and 

must be homogeneous of degree zero, which is not fulfilled by the excess payoffs.
Suppose that we normalize prices: xi = yi/(

∑
i yi). Then, we can ask what the induced dy-

namics on xi would be. Nikaido (1959) shows that the normalized-price adjustment dynamics 
can be rewritten (through an appropriate time transformation) as the analogue of the BNN equa-
tion. Since the Ei are arbitrary (it is not possible to build arguments on the Ėi , as they need not 
exist), the analysis is quite cumbersome, but Nikaido (1959) established global convergence (to 
Walrasian equilibria) through a direct, lengthy analysis of the function 

∑
i[Ei(p)]2+.

Following Nikaido (1959), hence, equation (16) can be turned into (12) (with f as the iden-
tity). The essence of the argument is as follows. Let y(t) be a solution of (16). Consider the 
auxiliary differential equation
13
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α̇ =
n∑

i=1

yi(α) (17)

with initial condition α(0) = 0. Nikaido (1959) uses homogeneity of the Ei to argue that 
a solution α of (17) exists and is strictly increasing. Suppose it does. Define now xi(t) =
yi(α(t))/ 

∑
i (yj (α(t))). Differentiating xi

∑
i yi(α) = yi(α) and using ẏi (α(t)) =

[Ei(yi(α(t))]+ = [Ei(xi(α(t))]+ shows that x(t) is a solution of the BNN equation. The lat-
ter equality, though, uses the zero-homogeneity of the Ei .

More generally, the argument of Nikaido (1959) can be used to derive Separable and Uniform 
Excess Payoff Dynamics from a less cumbersome functional form. Here we follow this argument 
only for the BNN.

Let yi ∈ R+ denote the size of the subpopulation playing strategy i. For all y �= (0, . . . , 0), 
we can consider the population proportions zi = yi/(

∑
j yj ). The usual random matching model 

gives rise to excess payoffs di(z), based on population proportions and not on population sizes. 
A natural dynamics in Rn+ \ {0} would be given by

ẏi = [di(z)]+ (18)

Let y(t) be a forward orbit of (18). Consider the auxiliary Cauchy problem

α̇ =
∑
j

yj (α) and α(0) = 0 (19)

From (19), α̇ = ∑
j yj (α) ≥ ∑

j yj (0) = K > 0 for α ≥ 0. That is, α is a transformation of time. 
Define

xi(t) = zi(α(t))

Then, we claim that x(t) is a forward orbit for the BNN dynamics. To see this, differentiate 
xi

∑
j yj (α) = yi(α) to get

ẋi

∑
j

yj (α) + xiα̇
∑
j

ẏj (α) = α̇ẏi (α)

which, simplifying α̇ = ∑
j yj (α) > 0, turns into

ẋi + xi

∑
j

ẏj (α) = ẏi (α)

Replacing (18) now yields

ẋi + xi

∑
j

[dj ]+ = [di]+

i.e., the BNN equation.

6. Conclusion

Prominent evolutionary dynamics as the Replicator Dynamics and the Brown-von Neumann-
Nash (BNN) Dynamics are based on the concept of excess payoffs, which capture the evolu-
tionary advantage of the subpopulation adopting a given strategy. It is hence natural to study 
14
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evolutionary dynamics where the dependence of population growth on payoffs is channeled ex-
clusively through excess payoffs. This has caught the attention of previous researchers, including 
Sandholm (2005), and is conceptually related to excess demand dynamics from microeconomics 
(Nikaido, 1959)

This is, naturally, a large class of dynamics, and many research questions can be asked. This 
paper is an exploration of the class. We have identified several results of interest.

First, it would be natural to restrict attention to dynamics where the growth of a subpopulation 
using a given strategy depends only on the excess payoff of that strategy, and where the dynamics 
points in the right direction, meaning that the sign of the excess payoff determines whether 
the subpopulation grows or shrinks. It turns out that, essentially, such dynamics are one-to-one 
with the subclass fulfilling the key condition of the Aggregate Monotonic Selection dynamics if 
Samuelson and Zhang (1992). They can be seen as a functional generalization of the Replicator 
Dynamics, but, crucially, exclude the BNN.

Second, a general functional form describes a family of Separable Excess Payoff Dynamics 
which become a simultaneous generalization of the Replicator and the BNN Dynamics, such that 
the set of rest points is always that of the Replicator Dynamics or the set of all Nash Equilibria (as 
in the BNN). This family includes other interesting examples, e.g. satisficing dynamics. Under 
an additional condition (uniformity), these dynamics are myopic adjustment dynamics and hence 
will, e.g., converge to the set of Nash equilibria in potential games.

Quite clearly, we have but scratched the surface of this class of dynamics, and we hope that 
future research will deliver further results and insights on this interesting class of dynamics.
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