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1. Introduction

Whenever a strategic game has more than one equilibrium, the players face a prob-

lem: which equilibrium should they play? Departing from Nash’s solution of the

bargaining problem, Harsanyi and Selten (1988) invented a sophisticated method

to select a unique equilibrium for each finite strategic game. Since this pioneering

work, many other alternative methods of equilibrium selection were developed, but

usually only for certain subclasses of games, see for example Güth and Kalkofen

(1989), Selten (1995), or Carlsson and van Damme (1993a). The latter, particularly

interesting approach was only recently further developed by Morris and Shin (2000)

and Ui (2001).

Parallel to these classical approaches, ideas from evolutionary game theory

turned out to be useful for this problem. The very powerful and popular variants of

stochastic stability are excellently surveyed in Young (1998). Other models include

∗The results in this paper were presented by Josef Hofbauer at the 7th Viennese Workshop on
Optimal Control, Dynamic Games and Nonlinear Dynamics, Vienna, May 2000, and — together
with the results in Hofbauer (1999) and Hofbauer and Sorger (1999) — as invited lecture at the
1st World Congress of the Game Theory Society in Bilbao, July 2000.
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a spatial structure, such as Ellison (2000) or Hofbauer (1999). In the present paper,

we investigate a dynamic model due to Matsui and Matsuyama (1995). A related

stochastic model is due to Blume (1995). Each player is represented by a large

population of rational agents which are endowed with perfect foresight. Every now

and then these agents revise their strategy in order to maximise their discounted

future payoff. The Nash equilibria of the game correspond to stationary states of

this dynamic model. Certain dynamic stability properties allow to select a unique

equilibrium for many interesting classes of games.

This dynamic model is explained in Sec. 2. In Sec. 3, two basic results about this

model are proven. First, we provide a characterisation of perfect foresight paths as

the open loop Nash equilibria of a certain differential game, which is determined by

the discounted payoff functions of the original strategic game. Using this character-

isation, we then obtain a simple proof for the existence of such paths. Section 4 is

devoted to equilibrium selection results. First, we consider games with a 1
2 -dominant

equilibrium. Then, we consider games with a potential function. We extend our ear-

lier result from Hofbauer and Sorger (1999) to N -person games, showing that the

global maximisier of the potential function of the game is selected by this method.

This general result is applied to three classes of binary choice games with two

strict equilibria. For two-person games, we show that the global maximiser coin-

cides with the risk dominant equilibrium; we thus recover the result of Matsui and

Matsuyama (1995). For symmetric games (such as the N -person stag hunt game)

we re-derive a selection result of Kim (1996). For games with linear incentives,

a class considered earlier by Selten (1995), we obtain a different selection crite-

rion. We conclude with a selection result for symmetric 3× 3 supermodular games.

Furthermore, we compare our results with those obtained via different equilibrium

selection methods.

2. Definitions

2.1. N-person games

An N -person strategic game is given by its payoff function π : S1×S2×· · ·×SN →
RN . Here, πi(s1, s2, . . . , sN ) denotes the payoff to player i, if player k uses pure

strategy sk ∈ Sk (i, k = 1, . . . , N). We assume that each Si is a finite set, and

denote also the N -linear extension to mixed strategy profiles x = (xi)Ni=1, with

xi in

∆(Si) =

{
(xis)s∈Si : xis ≥ 0 ∀s ∈ Si,

∑
s∈Si

xis = 1

}
,

by π : ∆(S1)× · · · ×∆(SN )→ RN . As usual, the vector of mixed strategy profiles

x = (xi)Ni=1 will sometimes be written in the form x = (xi;x−i), with x−i = (xj)j 6=i
collecting the mixed strategies of all opponents of player i.
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2.2. Perfect foresight equilibrium paths

We will now describe the model of rational players with perfect foresight as pro-

posed by Matsui and Matsuyama (1995) in the general framework of N -person

games. There are N distinct large populations of players. Time t ∈ [0,∞) is a

continuous variable. At each point in time, the players are matched randomly (one

from each population) to formN -tuples, which then play the N -person game anony-

mously. Players are not able to choose their strategy at every point in time. Instead,

each player has to commit to a particular pure strategy for an exogenously given

(random) time interval. Time instants at which a player can switch between strate-

gies follow a Poisson process with mean arrival rate p. These processes are assumed

to be independent across players. Without loss of generality, we choose the unit of

time in such a way that p = 1.

Let us denote by xis(t) the fraction of players in population i who are playing

the pure strategy s ∈ Si at time t. Of course, we must have xi(t) ∈ ∆(Si) for all

t ∈ [0,∞). The vector xi(t) describes the strategy distribution in the ith population

at time t. Since players are matched randomly, x(t) can also be thought of as the

mixed strategy against which each player plays at time t. It follows that the expected

payoff of playing the pure strategy s ∈ Si at time τ is given by πi(s, x−i(τ)). It

is assumed that all players have perfect foresight so that they correctly anticipate

the future evolution of the strategy distribution in the N − 1 other populations.

Since the time instants at which it is possible to switch between strategies form

a Poisson process with mean arrival rate p = 1, the period of commitment to a

fixed strategy has an exponential distribution with mean 1. Denoting the common

discount rate of the players by θ > 0, it follows that the expected discounted payoff

of committing to strategy s ∈ Si at time t is given by

V is (t) =

∫ ∞
0

∫ t+z

t

e−θ(τ−t)πi(s, x−i(τ))dτe
−zdz

which can be simplified to

V is (t) =

∫ ∞
t

e−(1+θ)(τ−t)πi(s, x−i(τ)) dτ . (2.1)

Because of the perfect foresight assumption, a rational player in population i

who has the opportunity to switch to a new strategy at time t will switch to a

strategy s ∈M i(t) where

M i(t) = argmax{V is (t) | s ∈ Si} . (2.2)

Given the assumption that the switching times follow independent Poisson processes

with arrival rate 1, it follows that xis : [0,∞) 7→ R is Lipschitz continuous with

Lipschitz constant 1. This implies in particular that xis(·) is differentiable almost

everywhere. Because of the way how agents switch between strategies it follows



April 25, 2002 13:43 WSPC/151-IGTR 00052

20 J. Hofbauer & G. Sorger

that, for all t where xis(·) is differentiable, the conditions

ẋis(t) = −xis(t) if s 6∈M i(t) ,

ẋis(t) ∈ [−xis(t), 1− xis(t)] if s ∈M i(t)
(2.3)

are satisfied. We call a Lipschitz continuous function x : [0,∞) 7→ ∆(S1) × · · · ×
∆(SN ) such that Eqs. (2.1)–(2.3) hold a perfect foresight equilibrium path for the

game described by the payoff function π and the discount rate θ.

We note that perfect foresight equilibrium paths are precisely those Lipschitz

solutions of the following system of differential inclusions which are defined for all

t ≥ 0 and for which V (t) stays bounded:

ẋis(t) ∈ mi
s(V (t))− xis(t)

V̇ is (t) = (θ + 1)V is (t)− πi(s, x−i(t)) .
(2.4)

Here, mi(V ) denotes the set of all mixed strategies for player i giving him his

maximum discounted expected payoff, i.e.

mi(V ) = {u ∈ ∆(Si) : us = 0 if V is < V imax} , (2.5)

where

V imax = max
σ∈Si

V iσ . (2.6)

2.3. Equilibrium paths for the discounted game

Let

πiθ(x(·)) =

∫ ∞
0

e−θsπi(x(s))ds (2.7)

be the θ-discounted expected payoff for player population i along the path x(·). We

fix an initial point x0 ∈ ∆(S1) × · · · ×∆(SN ) and consider only admissible paths

x(·) = (xi(·))Ni=1 such that the motion xi(·) of population i is from the set

Xi = {xi : [0,∞)→ ∆(Si), Lipschitz, xi(0) = xi0,

ẋi(t) + xi(t) ∈ ∆(Si) for a.a. t ≥ 0} . (2.8)

This means that each population distribution may move arbitrarily in its simplex,

only its speed of adjustment is limited: xis(t) cannot decrease too quickly or, more

precisely, etxis(t) never decreases with increasing t. Let X = X1 × · · · × XN . We

call x̄(·) = (x̄i(·))Ni=1 ∈ X a θ-equilibrium path (or open loop Nash equilibrium) if

πiθ(x̄
i(·); x̄−i(·)) ≥ πiθ(xi(·); x̄−i(·)) (2.9)

holds for all admissible functions xi(·) ∈ Xi and all i.
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3. Basic Results

Theorem 3.1 (Existence of equilibrium paths). For each initial value x0 ∈
∆(S1)× · · · ×∆(SN ), there exists an open loop Nash equilibrium.

Proof. Let the initial value x0 ∈ ∆(S1) × · · · × ∆(SN ) be given. The set Xi is

convex and compact in the topology of uniform convergence on compact intervals.

(By the Ascoli-Arzela theorem, each sequence in Xi has a convergent subsequence,

and its limit is again Lipschitz with etxis(t) non-decreasing in t.) With this topology,

the discounted payoff function πθ : X → RN defined in (2.7) is easily seen to be

continuous. Furthermore, πiθ is (affine) linear in xi(·). Thus, for each x ∈ X and i,

βi(x−i) := argmax
xi(·)∈Xi

πiθ(x
i(·);x−i(·)) (3.1)

is a compact and convex subset of Xi and depends upper semi-continuously on

x−i. Hence, Ky Fan’s and Glicksberg’s extension of Schauder’s and Kakutani’s

fixed point theorem [see e.g. Aliprantis and Border (1999) or Border (1985)] implies

the existence of equilibrium paths x ∈ β(x) = (βi(x−i))Ni=1 ⊆ X for each initial

value x0.

Remark. If, more generally than the mixed extension of a finite strategic game, πi

is a concave function of xi ∈ ∆(Si), then πiθ is concave in xi(·) ∈ Xi and existence

follows in the same way.

Theorem 3.2. Each open loop Nash equilibrium path is a perfect foresight equilib-

rium path, and conversely.

Proof. If x̄(.) is an open loop Nash equilibrium path of the differential game defined

by (2.7) and (2.9) then, for each i and given x̄−i(.), x̄
i(.) is an optimal trajectory

of the optimisation problem

ẋi(t) = ui(t)− xi(t), ui(t) ∈ ∆(Si) (3.2)∫ ∞
0

e−θtπi(xi(t), x̄−i(t))dt→ max . (3.3)

Since πi is anN -linear function, the result follows from the following lemma, applied

to ak(t) = πi(sk, x̄−i(t)), n = |Si|, noting that V is (t) and ψs(t) differ from each other

only by the factor eθt.

Lemma 3.1. Let a : [0,∞) → Rn be a bounded Lipschitz function. A path u(·) is

an optimal control for∫ ∞
0

e−θtx(t)a(t)dt→ max, ẋ(t) = u(t)− x(t), u(t) ∈ ∆n−1 , (3.4)

if and only if it satisfies suppu(t) ⊆ argmaxkψk(t) for ψk(t) =

et
∫∞
t
e−(θ+1)τak(τ)dτ.
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Proof. To show necessity, we apply the Pontryagin maximum principle, see Seier-

stad and Sydsæter (1987). The current value Hamiltonian function for the optimal

control problem (3.4) is

H(t, ψ, x, u) = ψ0e
−θtx · a(t) +

n∑
k=1

ψk(uk − xk) (3.5)

where ψ0 ∈ {0, 1} and ψ = (ψ1, ψ2, . . . , ψn) ∈ Rn is the adjoint variable. H is

maximal if and only if ui = 0 for all i for which ψi < ψmax = maxk ψk. The adjoint

equation is given by

ψ̇k(t) = − ∂H
∂xk

(t, ψ(t), x(t), u(t)) = ψk(t)− ψ0e
−θtak(t) . (3.6)

The limiting transversality condition is

lim
t→∞

ψk(t) = 0 for all k ∈ {1, 2, . . . , n} . (3.7)

Suppose that ψ0 = 0. This would lead to ψ̇k(t) = ψk(t) and, hence by (3.7), to

ψk(t) = 0 for all k and all t. Since this is a contradiction, we must have ψ0 = 1.

The general solution of the linear differential equation (3.6) is given by

ψk(t) = Cke
t + et

∫ ∞
t

e−(θ+1)τak(τ)dτ .

The second term goes to zero like e−θt as t→∞. Hence (3.7) implies Ck = 0.

Since the Hamiltonian function (3.5) is jointly concave (actually linear) in x and

u, the above conditions are also sufficient for optimality of u.

Remark. The equivalence between perfect foresight equilibrium paths (2.4) and

open loop Nash equilibria has not been noted before. It is interesting because in

the differential game in Sec. 2.3, each population acts as a single player, whereas in

the perfect foresight model of Sec. 2.2, each population consists of infinitely many

independent agents endowed with perfect foresight. Theorems 3.1 and 3.2 together

show the existence of perfect foresight equilibrium paths for general strategic games.

This is a new result as Matsui and Matsuyama (1995) gave only an elementary ad

hoc construction for 2× 2 games, and Hofbauer and Sorger (1999) considered only

the special class of potential games.a

4. Equilibrium Selection

The state x̄ ∈ ∆ := ∆(S1)×· · ·×∆(SN ) is globally accessible if, for every initial point

x0 ∈ ∆, there exists a perfect foresight equilibrium path x(·) satisfying x(0) = x0

and limt→∞ x(t) = x̄.

aWe are grateful to Professor Akihiko Matsui for pointing us (at the Bilbao meeting) to the paper
by his student Oyama (2000) who proved a similar existence result for the class of symmetric
two-person games.



April 25, 2002 13:43 WSPC/151-IGTR 00052

A Differential Game Approach to Evolutionary Equilibrium Selection 23

A state x̄ ∈ ∆ is called absorbing if there exists a neighbourhood U of x̄ such

that, for all initial states x0 ∈ U , every perfect foresight equilibrium path x(·) with

x(0) = x0 satisfies limt→∞ x(t) = x̄.

The selection criterion developed by Matsui and Matsuyama (1995) requires that

a Nash equilibrium is globally accessible and the only absorbing state whenever the

discount rate θ is small enough. In the following, we present three classes of games

for which a unique equilibrium is selected in this way. On the other hand, Oyama

(2000) presents an open set of games for which no equilibrium has the required

properties.

4.1. 1
2
-dominance

A pure strategy profile ŝ = (ŝi) ∈ S1 × S2 × · · · × SN is called 1
2 -dominant, if it is

the unique best reply against any mixed profile x ∈ ∆ which puts weight at least 1
2

on ŝi, i.e. xiŝi ≥
1
2 for all i. In particular, ŝ is then a strict Nash equilibrium of the

N -person game. A game can have at most one 1
2 -dominant equilibrium, and such

an equilibrium usually has very strong equilibrium selection properties, see Maruta

(1997) and Ellison (2000).

The game π is said to have linear incentives [see Selten (1995)] if, for each i and

each pair of strategies s, s′ ∈ Si, the payoff difference πi(s, x−i)−πi(s′, x−i), which

we will also denote by πi(s − s′, x−i) in the following, can be written as a linear

function of x−i. Every two-person strategic game (N = 2) has linear incentives.

For N ≥ 3 this is a severe restriction. Such games have also been called polymatrix

games and they can be viewed as the additive superposition of two-person games.

Theorem 4.1. In a game with linear incentives, a 1
2 -dominant strategy ŝ is globally

accessible for small θ > 0 and absorbing for all θ > 0.

Proof. (1) For an arbitrary initial condition x0, we will show that the path

x(t) = x0e
−t + (1− e−t)ŝ (4.1)

leading straight to ŝ is a perfect foresight equilibrium path. First, note that for

an arbitrary path x(t), the definition (2.1) and the assumption of linear incentives

leads to

V iŝi (0)− V isi(0) =

∫ ∞
0

e−(1+θ)tπi(ŝi − si, x−i(t))dt =
1

1 + θ
πi(ŝi − si, x̄−i) (4.2)

with

x̄ = (1 + θ)

∫ ∞
0

e−(1+θ)tx(t)dt ∈ ∆ . (4.3)

For the path (4.1), this gives

x̄ = (1 + θ)

[
x0

2 + θ
+ ŝ

(
1

1 + θ
− 1

2 + θ

)]
(4.4)
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so that

x̄iŝi ≥
1

2 + θ
∀ i . (4.5)

The 1
2 -dominance assumption and compactness gives a δ > 0 such that

πi(ŝi − si, x−i)>0 for all i, all si 6=ŝi, and all x∈∆ with xjŝj≥
1

2
− δ ∀ j . (4.6)

If we choose θ < 4δ, then (4.2)–(4.6) show V iŝi > V isi for all si 6= ŝi along the path

(4.1). Hence, (4.1) is a perfect foresight equilibrium path.

(2) For the second assertion, we show that for an initial value x0 close to ŝ the

straight path (4.1) is the only perfect foresight equilibrium path. Let x(t) be any

path with x(0) = x0 and ẋis(t) ≥ −xis(t), hence xiŝi (t) ≥ e−txiŝi(0). Then (4.3)

implies

x̄iŝi ≥ (1 + θ)

∫ ∞
0

e−(1+θ)te−txiŝi(0)dt =
1 + θ

2 + θ
xiŝi(0) ≥ 1

2
xiŝi(0) . (4.7)

Hence, for xiŝi(0) ≥ 1− 2δ [with δ as in (4.6)], the expression in (4.2) is positive so

that perfect foresight implies (4.1).

As will be discussed in Sec. 4.2.2 after (4.20), the assumption of linear incen-

tives is indispensable in Theorem 4.1. This is in contrast to many other equilibrium

selection methods. An analogous result for symmetric two-person games was inde-

pendently shown by Oyama (2000).

4.2. Potential games

A partnership game (or game with identical interests) is a game where every player

has the same payoff function: πi(x) = π(x). Two games with payoff functions π, π̃

are linearly equivalent if there exist constants wi > 0 such that

wi[π
i(s, x−i)− πi(s′, x−i)] = π̃i(s, x−i)− π̃i(s′, x−i) (4.8)

holds for all i and s, s′ ∈ Si. (This means that the incentive functions of the two

games are proportional.) A game that is linearly equivalent to a partnership game

has been called a re-scaled partnership game in Hofbauer and Sigmund (1988) and a

weighted potential game by Monderer and Shapley (1996). It is easy to see that both

concepts of perfect foresight equilibrium paths and open loop Nash equilibria are

invariant under linear equivalence. Therefore, every result for games with identical

interests holds automatically for weighted potential games.

For such a game, we can consider the optimal paths of the discounted game:

πθ(x(·))→ max for x(·) ∈ X . (4.9)

In analogy to Theorem 2 in Hofbauer and Sorger (1999) (hereafter referred to

as HS), we obtain the following lemma.
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Lemma 4.1. (1) Optimal paths exist.

(2) Every optimal path is an open loop Nash equilibrium (2.9).

Proof. (1) Follows either from the proof of Theorem 3.1 — the continuous function

πθ attains its maximum on the compact set X, or from general existence results,

as in Seierstad and Sydsæter (1987, Theorem 3.15). (2) follows from comparing the

definitions (4.9) and (2.9).

In analogy to Theorem 1 of HS, we obtain the following theorem.

Theorem 4.2. Suppose the common payoff function has a unique global maximiser

x̄, i.e. π(x̄) > π(x) for all x ∈ ∆(S1)×· · ·×∆(SN ) with x 6= x̄. Then x̄ is absorbing

for all θ > 0, and x̄ is globally accessible for all small enough θ > 0.

Proof. The proof follows that of Theorem 1 in HS and we describe only the key

steps and give details only when a different argument is required.

We first consider the function

H(x, V ) = π(x) + V̄ − V · x (4.10)

with V̄ =
∑N
i=1 V

i
max and V · x =

∑
i

∑
s∈Si V

i
s x

i
s. Note that H(x, V ) ≥ π(x).

The following two lemmata correspond to Lemmas 3 and 4 in HS and have very

similar proofs.

Lemma 4.2. Let (x(·), V (·)) be a solution of (2.4). Then the function t 7→
H(x(t), V (t)) is Lipschitz continuous, satisfies

(d/dt)H(x(t), V (t)) = θ[V̄ (t) − V (t) · x(t)] ≥ 0 (4.11)

for almost all t ∈ [0,∞), and is therefore non-decreasing.

Lemma 4.3. Let x(·) be a perfect foresight equilibrium path for the common interest

game with payoff function π. If x∗ is an accumulation point of x(·) as t→∞, then

(1) π(x∗) ≥ π(x(0)).

(2) x∗ is a critical point of the potential function π on ∆(S1)× · · · ×∆(SN ).

Here, x∗ is a critical point of π if, for all i and all s, s′ ∈ Si with xis > 0 and

xis′ > 0, it holds that πi(s, x∗−i) = πi(s′, x∗−i). The critical points are precisely the

Nash equilibria of all subgames (where each player restricts his pure strategy set to

a subset S̃i ⊂ Si). They are precisely the rest points of the replicator dynamics, see

Hofbauer and Sigmund (1988). In particular, every pure strategy is a critical point

of π.

Now we can conclude the proof. Due to N -linearity of π, the unique global max-

imiser x̄ is a strict equilibrium of the game, and hence of each subgame. Therefore

x̄ is isolated from all other critical points. Hence, if x(0) is close enough to x̄, then
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π(x(0)) > π(x∗) holds for all critical points x∗ 6= x̄. By Lemma 4.3, the only pos-

sible accumulation point of any perfect foresight path x(t) starting at x(0) is x̄.

Hence limt→∞ x(t) = x̄, and x̄ is absorbing.

The proof of global accessibility of x̄ follows then via a “visiting lemma” analo-

gous to Lemma 1 in HS and the local absorption property of x̄. The former shows

the existence of an optimal path (which is a perfect foresight equilibrium path by

Lemma 4.1) that gets arbitrarily close to x̄.

We now apply this general result to three classes of binary choice games for

which potential functions exist.

4.2.1. 2× 2 coordination games

As shown in Hofbauer and Sigmund (1988), every 2× 2 bimatrix game with three

equilibria (two strict, one mixed) is linearly equivalent to a partnership game with

payoff bimatrix

1 2

1 a, a b, b

2 c, c d, d

. (4.12)

If

a, d > b, c (4.13)

then (1, 1) and (2, 2) are the two strict equilibria. The potential function π(x1, x2) =

ax1
1x

2
1 + bx1

1x
2
2 + cx1

2x
2
1 + dx1

2x
2
2 attains local maxima a at (1, 1) and d at (2, 2). If

a > d then (1, 1) is the unique (global) maximiser of the potential.

On the other hand, (1, 1) is the risk-dominant equilibrium of (4.12) [and of the

original game, since the risk-dominance concept is invariant under linear equiva-

lence, see Harsanyi and Selten (1988)] iff

(a− c)(a− b) > (d− b)(d− c) , (4.14)

which is equivalent to

(a− d)(a + d− b− c) > 0 .

Since by (4.13) the second factor is positive, (4.14) is equivalent to a > d. Hence for

2 × 2 games, the risk-dominance selection criterion is equivalent to maximisation

of the potential. Together with Theorem 4.2, this yields the main result of Matsui

and Matsuyama (1995).

4.2.2. Symmetric 2N games

Consider N -person symmetric binary choice games with the two options called A

and B. The corresponding pure strategy profiles “all A” and “all B” are denoted by

A and B. An important example is the N -person stag hunt game, see Carlsson and
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van Damme (1993b). Denote by ak (resp. bk) the payoff for an A player (resp. B

player), if k of the N players use A (k = 0, 1, . . . , N , but a0 and bN are meaningless).

Such games have a potential function P . More precisely, there is a linearly

equivalent game which is both symmetric and a partnership game, with common

payoff function P : [0, 1]N → R. Let ck be the common payoff if k of the N players

use A, so that P (A) = cN and P (B) = c0. This partnership game is linearly

equivalent to the given game (according to (4.8), with weights wi = 1) iff

ck − ck+1 = bk − ak+1 k = 0, 1, . . . , N − 1 . (4.15)

From this we can recursively determine the numbers ck, up to an additive constant.

Adding all equations in (4.15) yields

P (B)− P (A) = c0 − cN =
N−1∑
k=0

(bk − ak+1) . (4.16)

We assume now that both A and B are strict equilibria and that there is a

unique symmetric mixed equilibrium. This is the case if the sequence

ai+1 − bi increases with i (4.17)

and a1 − b0 < 0 as well as aN − bN−1 > 0. The property (4.17) is equivalent to the

strict monotonicity (supermodularity) of the game on [0, 1]N , i.e. ∂di/∂pj > 0 for

all i 6= j, where di(p) = πi(B; p−i) − πi(A; p−i) denotes the incentive function for

player i, and pj = xjB ∈ [0, 1]. It holds naturally in the stag hunt game: If A means

“join the stag hunting group” and B means “hunt a hare by yourself”, then ai
increases with i, the number of stag hunters, whereas bi does not depend on i. The

property (4.17) implies also that A and B are the only possible local maximisers

of the potential P . Hence, by (4.16), A is the global maximiser if∑
ai >

∑
bi , (4.18)

or equivalently,
∫ 1

0
d(p)dp < 0, where d(·) denotes the restriction of any di to the

diagonal p = p1 = p2 = · · · = pN .

Theorem 4.2 implies that in this case A is globally accessible and absorbing,

while, if the inequality in (4.18) is reversed, then B has this property. This result

was proved earlier in Matsui and Matsuyama (1995) and Kim (1996).b

Kim (1996) [see also Carlsson and van Damme (1993b)] shows that also the

“global games” method of Carlsson and van Damme (1993a) results in the same

selection criterion for this class of games. Making use of the above potential, this

follows now also from Ui (2001).

bThis holds in two senses: In the setting of this paper with N separate populations, or — maybe
more realistically for a symmetric game such as stag hunt — in the framework of one population
of players. One simply has to restrict the dynamics to the diagonal in [0, 1]n. The results in Matsui
and Matsuyama (1995) and Kim (1996) deal with the one-population version.



April 25, 2002 13:43 WSPC/151-IGTR 00052

28 J. Hofbauer & G. Sorger

The selection criterion (4.18) is not the only reasonable one for this class of

games. Another one is to choose A if

d(p) < 0 for 0 ≤ p ≤ 1

2
, (4.19)

i.e. if A is 1
2 -dominant on the diagonal. It is easy to see that under the monotonic-

ity assumption (4.17) this is equivalent to 1
2 -dominance on the full hypercube or,

compare Kim (1996), to ∑
i

(bi − ai+1)

(
N − 1

i

)
< 0 . (4.20)

Whereas this condition is equivalent to (4.18) whenever the incentive function

d is linear, it leads to a different criterion for nonlinear d, i.e. for generic N -player

games with N ≥ 3. This shows also that the extra assumption of linear incentives

was needed in Theorem 4.1. Criterion (4.19) agrees with the stochastically stable

equilibrium [see Kim (1996)], Selten’s (1995) method based on generalized Nash

products (the present games are a special case of his “equistable biforms”), the

ESBORA criterion of Güth and Kalkofen (1989), and the spatial dominance concept

of Hofbauer (1999).

The selection criterion based on the general risk-dominance concept of Harsanyi

and Selten (1988), on the other hand, leads to even another condition which is

different from both (4.18) and (4.19) and considerably more complicated (being

nonlinear in the payoffs ai and bi), see again Carlsson and van Damme (1993b) and

Kim (1996).

4.2.3. 2N games with a quadratic potential

Following Selten (1995), we consider now N -person binary choice games (with pure

strategy sets Si = {Ai, Bi}) with linear incentives. The incentive functions then

take the form (with pi = xiBi)

di(p) =
N∑
j=1

αijpj − si (4.21)

with αii = 0. We assume further that for all i 6= j

αij = αji > 0 . (4.22)

This class of games is important because it covers two person unanimity games

with incomplete information, if the N players in (4.21) are interpreted as the types

of the two players in the incomplete information game, see Selten (1995) for details.

The positivity of the coefficients in (4.22) implies the monotonicity (supermod-

ularity) of the game. The symmetry of the “interaction matrix” αij implies that

the game is a potential game. The potential function V : [0, 1]N → R satisfies
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∂V (p)
∂pi

= di(p) and is given (up to a constant) by the quadratic function

V (p) =
1

2

∑
i,j

αijpipj −
∑
i

sipi .

Note that V (A) = 0 and V (B) = 1
2

∑
i,j αij −

∑
i si. If A and B are (strict)

equilibria, then they are (strict) local maximisers of V . Hence, B is selected over

A by the potential method if

V (B) > V (A), i.e. iff
1

2

∑
i,j

αij >
∑
i

si , (4.23)

and A is selected over B if the inequalities in (4.23) are reversed. If there are no

other pure Nash equilibria besides A and B, then (4.23) together with Theorem 4.2

implies that B is globally accessible and absorbing. Ui’s (2001) result implies that

in this case B is “robust to incomplete information”, i.e. the equilibrium selected

by the global games method. Hofbauer (1999) showed that in this case B is the

spatially dominant equilibrium. Hence, (4.23) is the selection criterion emerging

from four completely different equilibrium selection methods! On the other hand,

Selten (1995) suggested a different selection criterion, in terms of generalised Nash

products.

4.3. Supermodular games

While the paper dealt up to now with (asymmetric) N -person games, we conclude

it with a class of 3× 3 symmetric games played within one population, strategy set

S1 = S2 = {1, 2, 3} and payoff function given by the matrix A = (aij)i,j=1,2,3. This

is the setting of Hofbauer and Sorger (1999) and Oyama (2000).

We assume that this game has three strict equilibria, i.e. aii > aji holds for all

j 6= i. Such a game is supermodular if additionally the two inequalities

a22 + a13 < a12 + a23, a22 + a31 < a32 + a21 (4.24)

hold.

Let us write i� j if strategy i pairwise risk-dominates j, i.e. aii−aji > ajj−aij .
Denote furthermore

q1 =
a11 + a12 − a21 − a22

a21 + a23 − a11 − a13
, q3 =

a33 + a32 − a23 − a22

a21 + a23 − a31 − a33
. (4.25)

Theorem 4.3. For a symmetric 3× 3 game with three strict equilibria and (4.24)

the following holds.

(a) If 2� 1 and 2� 3, then 2 is globally reachable for small θ > 0 and absorbing

for all θ > 0.

(b) If either 1� 2� 3 or 1� 2, 3� 2, and q1 > q3, then 1 is globally reachable

for small θ > 0.
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(c) If either 3� 2� 1 or 1� 2, 3� 2, and q3 > q1, then 3 is globally reachable

for small θ > 0.

The proof of this theorem is too long to be reproduced here. We only note

that case (a) follows from Theorem 4.1, since the strict equilibrium 2 is actually
1
2 -dominant. We believe that in cases (b) and (c) the respective equilibrium is also

absorbing.

The selection criterion in Theorem 4.3 may look strange, in particular because

in cases (b) and (c) it is not pairwise risk-dominance which decides between the two

candidates 1 and 3 but the more complicated expressions q1 and q3. Amazingly, the

very same selection criterion arises for the spatial dominance concept of Hofbauer

(1999) and for the global games approach [see Morris (1999)].

5. Conclusion

We studied the equilibrium selection method introduced by Matsui and Matsuyama

(1995). Relating the perfect foresight paths to the open loop Nash equilibria of a

simple differential game, i.e. the discounted game associated to the original finite

N -person strategic game, we obtain a simple proof of their existence in general.

Turning to equilibrium selection, we show that this method selects the 1
2 -

dominant equilibrium in games with linear incentives. Then we prove an analog

of our previous result from Hofbauer and Sorger (1999) for potential games, and

present several important special cases. We conclude with a result for supermodular

games.

The selection criteria obtained so far agree with those of the “global games”

method of Carlsson and van Damme (1993a). The recent breakthrough via “higher

order beliefs” to extend this intriguing method from 2×2 games to games with more

players and strategies is impressively surveyed in Morris and Shin (2000). Further-

more, for games with linear incentives, the criteria agree so far with those arising

from the spatial dominance concept of Hofbauer (1999). This agreement of com-

pletely different approaches to equilibrium selection is unexpected and surprising,

and should encourage further exploration.
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