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Introduction
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In the first part of this talk I want to give some overview about the Hankel determinants 

1

, 0

2 2
( ) det

n

r
i j

i j r
d n

i j

−

=

 + +  
=   +  

  and  ( ) 1( )

, 0
( ) det

nr
r i j i j

D n C
−

+ =
=   for 0.r ≥   

Many of these determinants are easy to guess and show an interesting modular pattern, but 
strangely enough I found almost nothing about them in the literature except for 0r =  and 

1.r =  Only after I posted a question in MathOverflow I learned that at least Egecioglu, 
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It seems that
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The other values are not so nice.  

For example  
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Some background material
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If we define a linear functional L  on the polynomials by ( )n
nL x a=   then 
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For arbitrary ns  and nt  define numbers ( )na j  by 

0

0 1 0 1

1 1 1

( ) [ 0],
(0) (0) (1),
( ) ( 1) ( ) ( 1).

n n n

n n j n j n

a j j
a s a t a
a j a j s a j t a j

− −

− − −

= =
= +
= − + + +

  

Then we get 
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If we start with the sequence ( ) 0n n
a
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 and guess ns  and nt  and if we also can guess ( )na j  and 

show that (0)n na a=  then all our guesses are correct and the Hankel determinant is given by 
the above formula. 
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There is a well-known equivalence with continued fractions, so-called J-fractions: 
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For some sequences this gives a simpler approach to Hankel determinants. 

The generating function of the Catalan numbers satisfies 2( ) 1 ( ) .C x xC x= +   
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This again implies that the Hankel determinants of the aerated sequence of Catalan numbers 
are 1 and also that 1( ) 1.D n =   



Some other examples of J-fractions
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It is easy to guess that 2 4,ks =  2 1 0ks + =  and 1.kt =   
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A proof with J-fractions

By induction we get  
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For 3r ≥  the situation becomes more complicated. Since no Hankel determinant vanishes the 
above method should in principle be applicable. It seems that it is possible for each fixed r  to 
guess ns  and .nt  But for 5r ≥  I could not guess ( ).na j   
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I have only found the following curious regularities: 
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These determinants show a similar pattern. But some of them vanish. For example for 3r =  it 
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For 3r >  apparently no results appear in the literature. But we will show that for odd r  there 
are always vanishing determinants. Therefore the method of orthogonal polynomials is not 
directly applicable. I have studied the case 3r =  in more detail and looked for other tricks to 
compute these determinants.  

Guo-Niu Han, arXiv:1406.1593, has shown that each formal power series has a unique 
expansion as a so-called H-fraction 
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and proved a formula for the non-vanishing Hankel determinants. 



The case r=3 as H-fraction

The powers of the generating function of the Catalan numbers satisfy 
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are Lucas polynomials. This gives rise to continued fractions.  
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A valuable Lemma

Another helpful trick is the following Lemma (Szegö 1939): 
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The Lemma also gives another proof of the Theorem  

(Cvetkovic, Rajkovic and Ivkovic) 
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Narayana polynomials

Another trick is to introduce another parameter such that no determinant vanishes. 

The Narayana polynomials  
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Another proof by the Lindström-Gessel-Viennot theorem has been given by C. Krattenthaler. 



For 1t =  we can again get 3( ).D n   
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For odd r some Hankel determinants vanish

We can prove that  
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Christian Krattenthaler has provided a proof using hypergeometric identities.  

It can also be proved with Peter Paule’s implementation of Zeilberger’s algorithm.  

I want to congratulate Peter Paule und his team for the very valuable Mathematica packages 
which were indispensible for my work since my interest turned to experimental mathematics. 
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Some more conjectures
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Catalan numbers modulo 2
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In this case the determinant is reduced to a single term 
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Similar determinants have previously been considered by R. Bacher (2004)  
from another point of view. I have posted some questions about 
such determinants on MO and received some proofs from Darij Grinberg. 
More generally let 
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The corresponding determinants are 
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where ( )a n  is the total number of 1’s in the binary expansions of the numbers 1, 2, , 1.n −   

In the above example we get (5) 5a =  because the number of 1’s in 1, 10, 11, 100 is 5. 
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0 0 0

0

1

10
1

0

i j i ji j i j
A a+ + += =

 
 
 = =
 
 
 

  

In this case too the determinant is reduced to a single permutation.  

We get   

( ) 1

, 0
det ( 1) ,n

n

n i j i j
D A δ−

+ =
= = −   

where nδ  is the number of pairs 1 10i iε ε+ =  for 1i ≥  or 1 0 11ε ε =  in the binary expansion of .n   

For example 4 1δ =  because 4 100=  or 75 3δ =  because 75 1001011.=   

The determinants satisfy 2
2 ( 1)

n

n nD D
 
 
 = −   and 

1
2

2 1 ( 1) .
n

n nD D
+ 

 
 

+ = −   



An approach via orthogonal polynomials

These determinants have also been studied by R.Bacher who found the interesting formula 

1

0

( ),
n

n
j

D S j
−

=

=∏   

where ( ) ( )0
( ) 1,1, 1,1,1, 1, 1,1,1,1,

n
S n

≥
= − − −   is the so-called paperfolding sequence 

which satisfies 

(2 ) ( 1) ,nS n = −   (2 1) (2 )S n S n+ =   and (0) 1.S =   

The method of orthogonal polynomials gives 0ns =  and ( ) ( 1).nT S n S n= +  

The numbers nT   are uniquely determined by the recursion 

2 2 1 1

2 1 2

0 1

,
,

1, 1.

n n n

n n

T T T
T T
T T

− −

+

=
= −

= = −

  



Golay-Rudin-Shapiro sequence

Let (1) 1g =   and ( )2 1 ( 1)k kg − = −   for 1k >  and ( ) 0g n =  else. 

Then 

( ) 1

, 0
det ( 1) ( ),n

i j
g i j r n−

=
+ + =  

where ( )r n  is the Golay-Rudin-Shapiro sequence defined by 

(2 ) ( ),
(2 1) ( 1) ( ),
(0) 1.

n

r n r n
r n r n
r

=

+ = −
=

  

Equivalently ( )( ) ( 1) ,R nr n = −  where ( )R n  denotes the number of pairs 11 in the binary 
expansion of .n   



Associated continued fractions

Let me finally state two associated continued fractions: 

2 1

0

1
(0) (1)1 (1) (2)1

1

k

k
x S S x

S S x

−

≥

=
−

−
−

∑



  

and 

2 1

0

1( 1) .(0) (2)1 (1) (3)1
1

kk

k
x r r x

r r x

−

≥

− =
+

+
+

∑
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