Some Hankel determinants with nice evaluations

Johann Cigler
Talk at the occasion of Peter Paule's $60^{\text {th }}$ birthday

Introduction

For each n we consider the Hankel determinant

$$
H_{n}=\operatorname{det}\left(a_{i+j}\right)_{i, j=0}^{n-1} .
$$

We are interested in the sequence $\left(H_{n}\right)_{n \geq 0}$ with $H_{0}=1$.
It is well known that the sequence of Catalan numbers $C_{n}=\frac{1}{n+1}\binom{2 n}{n}$
can be characterized by the fact that all Hankel determinants
of the sequences $\left(C_{n}\right)_{n \geq 0}$ and $\left(C_{n+1}\right)_{n \geq 0}$ are 1 .
The generating function of the Catalan numbers $C(x)=\sum_{n \geq 0} C_{n} x^{n}=\frac{1-\sqrt{1-4 x}}{2 x}$
satisfies $C(x)=1+x C(x)^{2}$.
Let $C(x)^{r}=\sum_{n \geq 0} C_{n}^{(r)} x^{n}$. Then we get $C_{n}^{(2)}=C_{n+1}$ and $C_{n}^{(r)}=\frac{r}{2 n+r}\binom{2 n+r}{n}$.

In the first part of this talk I want to give some overview about the Hankel determinants

$$
d_{r}(n)=\operatorname{det}\left(\binom{2 i+2 j+r}{i+j}\right)_{i, j=0}^{n-1} \text { and } D_{r}(n)=\operatorname{det}\left(C_{i+j}^{(r)}\right)_{i, j=0}^{n-1} \quad \text { for } r \geq 0
$$

Many of these determinants are easy to guess and show an interesting modular pattern, but strangely enough I found almost nothing about them in the literature except for $r=0$ and $r=1$. Only after I posted a question in MathOverflow I learned that at least Egecioglu, Redmond and Ryavec (arXiv:0804.0440) had considered $d_{r}(n)$. Proofs seem only to be known for $r \leq 3$.

$$
\begin{aligned}
& \left(d_{0}(n)\right)_{n \geq 0}=\left(1,1,2,2^{2}, 2^{3}, \cdots\right), \\
& \left(d_{1}(n)\right)_{n \geq 0}=(1,1,1,1,1, \cdots), \\
& \left(d_{2}(n)\right)_{n \geq 0}=(1,1,-1,-1,1,1,-1,-1, \cdots), \\
& \left(d_{3}(n)\right)_{n \geq 0}=(1,1,-4,3,3,-8,5,5,-12,7,7,-16, \cdots), \\
& \left(d_{4}(n)\right)_{n \geq 0}=(1,1,-8,8,1,1,-16,-16,1,1,-24,-24, \cdots), \\
& \left(d_{5}(n)\right)_{n \geq 0}=(1,1,-13,-16,61,9,9,-178,-64,370,25,25,-695,-144,1127, \cdots)
\end{aligned}
$$

It seems that

$$
\begin{aligned}
& d_{2 k+1}((2 k+1) n)=d_{2 k+1}((2 k+1) n+1)=(2 n+1)^{k}, \\
& d_{2 k+1}((2 k+1) n+k+1)=(-1)^{\binom{k+1}{2}} 4^{k}(n+1)^{k}, \\
& d_{2 k}(2 k n)=d_{2 k}(2 k n+1)=(-1)^{k n}, \\
& d_{2 k}(2 k n+k)=-d_{2 k}(2 k n+k+1)=(-1)^{k n+\binom{k}{2}} 4^{k-1}(n+1)^{k-1} .
\end{aligned}
$$

The other values are not so nice.
For example
$d_{5}(5 n+2)=-\frac{(n+1)(2 n+1)(50 n+39)}{3}, \quad d_{5}(5 n+4)=-\frac{(n+1)(2 n+3)(50 n+61)}{3}$.
But

$$
\begin{aligned}
& d_{2 k}(2 k n-1)+d_{2 k}(2 k n+2)=(-1)^{k n}\left(\binom{2 k+1}{2}-2\right), \\
& d_{2 k+1}((2 k+1) n-1)+d_{2 k+1}((2 k+1) n+2)=\left(2-\binom{2 k+2}{2}\right)(2 n+1)^{k} .
\end{aligned}
$$

Some background material

If $d_{n}=\operatorname{det}\left(a_{i+j}\right)_{i, j=0}^{n-1} \neq 0$ for each n we can define the polynomials

$$
p_{n}(x)=\frac{1}{d_{n}}\left(\begin{array}{ccccc}
a_{0} & a_{1} & \cdots & a_{n-1} & 1 \\
a_{1} & a_{2} & \cdots & a_{n} & x \\
a_{2} & a_{3} & \cdots & a_{n+1} & x^{2} \\
\vdots & & & & \vdots \\
a_{n} & a_{n+1} & \cdots & a_{2 n-1} & x^{n}
\end{array}\right) .
$$

If we define a linear functional L on the polynomials by $L\left(x^{n}\right)=a_{n}$ then
$L\left(p_{n} p_{m}\right)=0$ for $n \neq m$ and $L\left(p_{n}^{2}\right) \neq 0$ (Orthogonality).
There exist s_{n} and t_{n} such that

$$
p_{n}(x)=\left(x-s_{n-1}\right) p_{n-1}(x)-t_{n-2} p_{n-2}(x) .
$$

The numbers t_{n} are given by $t_{n}=\frac{d_{n} d_{n+2}}{d_{n+1}^{2}}$.

For arbitrary s_{n} and t_{n} define numbers $a_{n}(j)$ by

$$
\begin{aligned}
& a_{0}(j)=[j=0], \\
& a_{n}(0)=s_{0} a_{n-1}(0)+t_{0} a_{n-1}(1), \\
& a_{n}(j)=a_{n-1}(j-1)+s_{j} a_{n-1}(j)+t_{j} a_{n-1}(j+1) .
\end{aligned}
$$

Then we get

$$
\operatorname{det}\left(a_{i+j}(0)\right)_{i, j=0}^{n-1}=\prod_{i=1}^{n-1} \prod_{j=0}^{i-1} t_{j} .
$$

If we start with the sequence $\left(a_{n}\right)_{n \geq 0}$ and guess s_{n} and t_{n} and if we also can guess $a_{n}(j)$ and show that $a_{n}(0)=a_{n}$ then all our guesses are correct and the Hankel determinant is given by the above formula.

For the aerated sequence $(1,0,1,0,2,0,5,0,14,0, \cdots)$ of Catalan numbers it is easy to guess that $s_{n}=0$ and $t_{n}=1$ and that $a_{2 n+k}(k)=C_{n}^{(k+1)}$ and all other $a_{n}(j)=0$. Thus $a_{2 n}(0)=C_{n}$ and $a_{2 n+1}(0)=0$. Therefore all Hankel determinants are 1.

There is a well-known equivalence with continued fractions, so-called J-fractions:

$$
\sum_{n \geq 0} a_{n} x^{n}=\frac{1}{1-s_{0} x-\frac{t_{0} x^{2}}{1-s_{1} x-\frac{t_{1} x^{2}}{1-\ddots}}} .
$$

For some sequences this gives a simpler approach to Hankel determinants.
The generating function of the Catalan numbers satisfies $C(x)=1+x C(x)^{2}$.
Therefore

$$
C(x)=\frac{1}{1-x C(x)} \text { and } C\left(x^{2}\right)=\frac{1}{1-x^{2} C\left(x^{2}\right)}=\frac{1}{1-\frac{x^{2}}{1-\frac{x^{2}}{1-\ddots}}} .
$$

This again implies that the Hankel determinants of the aerated sequence of Catalan numbers are 1 and also that $D_{1}(n)=1$.

Some other examples of J-fractions

$$
C(x)^{2}=\frac{1}{1-2 x-x^{2} C(x)^{2}}
$$

implies $D_{2}(n)=1$.

$$
\frac{1}{\sqrt{1-4 x}}=\frac{1}{1-2 x C(x)}=\frac{1}{1-2 x-2 x^{2} C(x)^{2}}
$$

implies $d_{0}(n)=2^{n-1}$.

$$
\sum_{n \geq 0}\binom{2 n+1}{n} x^{n}=\frac{1}{2} \sum_{n \geq 0}\binom{2 n+2}{n+1} x^{n}=\frac{1}{2 x}\left(\frac{1}{\sqrt{1-4 x}}-1\right)=\frac{C(x)}{\sqrt{1-4 x}}
$$

and $C(x)\left(1-3 x-x^{2} C(x)^{2}\right)=\sqrt{1-4 x}$ give

$$
\frac{C(x)}{\sqrt{1-4 x}}=\frac{1}{1-3 x-x^{2} C(x)^{2}}
$$

and thus $d_{1}(n)=1$.

$$
d_{2}(n)=\operatorname{det}\left(\binom{2 i+2 j+2}{i+j}\right)_{i, j=0}^{n-1}
$$

It is easy to guess that $s_{2 k}=4, s_{2 k+1}=0$ and $t_{k}=1$.
We also guess that $a_{n}(2 k)=\binom{2 n+2}{n-2 k}$.
This implies $a_{n}(2 k+1)=\binom{2 n}{n-2 k-1}-\binom{2 n}{n-2 k-3}$.
It remains to verify the trivial identity

$$
\binom{2 n+2}{n-2 k}=\binom{2 n-2}{n-2 k}-\binom{2 n}{n-2 k-2}+4\binom{2 n}{n-1-2 k}-\binom{2 n-2}{n-2 k-2}+\binom{2 n-2}{n-2 k-4}
$$

Therefore we get $\left(d_{2}(n)\right)_{n \geq 0}=(1,1,-1,-1,1,1,-1,-1, \cdots)$.

A proof with J-fractions

By induction we get

$$
B_{r}(x)=\sum_{n \geq 0}\binom{2 n+r}{n} x^{n}=\frac{C(x)^{r}}{\sqrt{1-4 x}} .
$$

This implies

$$
B_{2}(x)+x^{2} B_{2}(x)^{2}=\frac{1}{1-4 x} .
$$

For $C(x) \sqrt{1-4 x}=2-C(x)$ and $x C(x)^{2}=C(x)-1$ and therefore

$$
\begin{aligned}
& (1-4 x)\left(\frac{C(x)^{2}}{\sqrt{1-4 x}}+x^{2} \frac{C(x)^{4}}{1-4 x}\right)=C(x)(C(x) \sqrt{1-4 x})+\left(x C(x)^{2}\right)^{2} \\
& =C(x)(2-C(x))+(C(x)-1)^{2}=1 .
\end{aligned}
$$

This implies

$$
B_{2}(x)=\frac{1}{1-4 x} \frac{1}{1+x^{2} B_{2}(x)}=\frac{1}{1-4 x+x^{2}(1-4 x) B_{2}(x)}=\frac{1}{1-4 x+\frac{x^{2}}{1+x^{2} B_{2}(x)}} .
$$

For $r \geq 3$ the situation becomes more complicated. Since no Hankel determinant vanishes the above method should in principle be applicable. It seems that it is possible for each fixed r to guess s_{n} and t_{n}. But for $r \geq 5$ I could not guess $a_{n}(j)$.

Let me sketch the case $r=3$: Here we get $d_{3}(3 n)=d_{3}(3 n+1)=2 n+1$ and $d_{3}(3 n+2)=-4(n+1)$.
$s_{3 n}=5, s_{3 n+1}=\frac{2 n+1}{4(n+1)}, s_{3 n+2}=\frac{2 n+3}{4(n+1)}$,
$t_{3 n}=-\frac{4(n+1)}{2 n+1}, t_{3 n+1}=\frac{(2 n+1)(2 n+3)}{4^{2}(n+1)^{2}}, t_{3 n+2}=-\frac{4(n+1)}{2 n+3}$.
$a_{n}(3 k)=\binom{2 n+3}{n-3 k}$,
$a_{n}(3 k+1)=\binom{2 n+1}{n-3 k-1}+\frac{2 k+1}{4(k+1)}\binom{2 n+1}{n-3 k-2}-\frac{2 k+1}{4(k+1)}\binom{2 n+1}{n-3 k-3}$,
$a_{n}(3 k+2)=\binom{2 n+1}{n-3 k-2}+\binom{2 n+1}{n-3 k-3}-\frac{4(k+1)}{2 k+3}\binom{2 n+1}{n-3 k-4}$.

I have only found the following curious regularities:
Let $r \geq 2$.
Then

$$
\begin{aligned}
& s_{r n}=r+2, \\
& s_{r n}+s_{r n+1}+\cdots+s_{r n+r-1}=2 r, \\
& t_{r n} t_{r n+1} \cdots t_{r n+r-1}=1 .
\end{aligned}
$$

Furthermore it seems that
$a_{n}(r k)=\binom{2 n+r}{n-r k}$.

$$
D_{r}(n)=\operatorname{det}\left(C_{i+j}^{(r)}\right)_{i, j=0}^{n-1}
$$

These determinants show a similar pattern. But some of them vanish. For example for $r=3$ it is known (C. Krattenthaler and J.C. 2011) that $D_{3}(n)=\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor}(-1)^{k}\binom{n-k}{k}$ or $\left(D_{3}(n)\right)_{n \geq 0}=(1,1,0,-1-1,0, \cdots)$, which is periodic with period 6.

For $r>3$ apparently no results appear in the literature. But we will show that for odd r there are always vanishing determinants. Therefore the method of orthogonal polynomials is not directly applicable. I have studied the case $r=3$ in more detail and looked for other tricks to compute these determinants.

Guo-Niu Han, arXiv:1406.1593, has shown that each formal power series has a unique expansion as a so-called H -fraction

$$
\sum_{n \geq 0} a_{n} x^{n}=\frac{x^{k_{0}}}{1-s_{0}(x) x-\frac{t_{0} x^{2+k_{0}+k_{1}}}{1-s_{1}(x) x-\frac{t_{1} x^{2+k_{1}+k_{2}}}{1-\ddots}}}
$$

and proved a formula for the non-vanishing Hankel determinants.

The case $\mathrm{r}=3$ as H -fraction

The powers of the generating function of the Catalan numbers satisfy

$$
C(x)^{r} L_{r}(-x)=1+x^{r} C(x)^{2 r},
$$

where
$\left(L_{r}(x)\right)_{r \geq 0}=\left(2,1,1+2 x, 1+3 x, 1+4 x+2 x^{2}, 1+5 x+5 x^{2}, \cdots\right)$
are Lucas polynomials. This gives rise to continued fractions.
For $r=3$ we get the H -fraction

$$
C(x)^{3}=\frac{1}{1-3 x-\frac{x^{3}}{1-3 x-\frac{x^{3}}{1-3 x-\ddots}}}
$$

from which we get again $\left(D_{3}(n)\right)_{n \geq 0}=(1,1,0,-1,-1,0, \cdots)$.
Analogously $x^{k-1} C(x)^{2 k}$ and $x^{k-1} C(x)^{2 k+1}$ give H-fractions.

A valuable Lemma

Another helpful trick is the following Lemma (Szegö 1939):
Let $p_{n}(x)$ be monic polynomials which are orthogonal
with respect to the linear functional L with moment $L\left(x^{n}\right)=a_{n}$
and let $r_{n}(x)=a_{n} x-a_{n+1}$. Then

$$
\operatorname{det}\left(r_{i+j}(x)\right)_{i, j=0}^{n-1}=\operatorname{det}\left(a_{i+j}\right)_{i, j=0}^{n-1} p_{n}(x) .
$$

For the proof let $p_{n}(x)=b_{n, 0}+b_{n, 1} x+\cdots+b_{n, n-1} x^{n-1}+x^{n}$ and

$$
B_{n}=\left(\begin{array}{ccccc}
x & -1 & 0 & \cdots & 0 \\
0 & x & -1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ddots & -1 \\
b_{n, 0} & b_{n, 1} & b_{n, 2} & \cdots & x+b_{n, n-1}
\end{array}\right) .
$$

Then we get

$$
\left(r_{i+j}(x)\right)_{i, j=0}^{n-1}=B_{n}\left(a_{i+j}\right)_{i, j=0}^{n-1} .
$$

For $a_{n}=C_{n+1}$ we get $s_{n}=2, t_{n}=1$ and

$$
p_{n}(x)=\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor}(-1)^{k}\binom{n-k}{k}(x-2)^{n-2 k}
$$

Since $C_{n}^{(3)}=C_{n+2}-C_{n+1}$ the Lemma implies

$$
D_{3}(n)=\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor}(-1)^{k}\binom{n-k}{k}
$$

The Lemma also gives another proof of the Theorem
(Cvetkovic, Rajkovic and Ivkovic)

$$
\operatorname{det}\left(C_{i+j}+C_{i+j+1}\right)_{i, j=0}^{n-1}=F_{2 n+1}
$$

Narayana polynomials

Another trick is to introduce another parameter such that no determinant vanishes.
The Narayana polynomials

$$
C_{n}(t)=\sum_{k=0}^{n}\binom{n}{k}\binom{n-1}{k} \frac{1}{k+1} t^{k}
$$

for $n>0$ and $C_{0}(t)=1$ satisfy $C_{n}(1)=C_{n}$. The first terms are
$1,1,1+t, 1+3 t+t^{2}, 1+6 t+6 t^{2}+t^{3}, \cdots$.
For the sequence $\left(C_{n+1}(t)\right)_{n \geq 0}$ we get $s_{n}=1+t$ and $t_{n}=t$.
The orthogonal polynomials are

$$
p_{n}(x, t)=\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor}(-1)^{k}\binom{n-k}{k} t^{k}(x-1-t)^{n-2 k}
$$

By the Lemma we get

Another proof by the Lindström-Gessel-Viennot theorem has been given by C. Krattenthaler.

For $t=1$ we can again get $D_{3}(n)$.
More interesting is the case $t=-1$. Here we get

$$
\left(C_{n+1}(-1)+C_{n+2}(-1)\right)_{n \geq 0}=(1,-1,-1,2,2,-5,-5,14,14,-42,-42, \cdots) .
$$

The corresponding Hankel determinants are Fibonacci numbers
$\left(d_{n}\right)_{n \geq 0}=(1,1,-2,-3,5,8,-13,-21, \cdots)$.
For $(1,1,1,2,2,5,5,14,14, \cdots)$ we get the Hankel determinants
$\left(d_{n}\right)_{n \geq 0}=(1,1,0,-1,-1,0,1,1,0,-1,-1,0, \cdots)$.
These results can also be obtained directly with the method of orthogonal polynomials.

For odd r some Hankel determinants vanish

We can prove that

$$
D_{2 k+1}(k+1)=0 .
$$

A search for a linear relation led to

$$
R(k, n)=\sum_{j=0}^{k}(-1)^{k-j}\left(\binom{k+j}{2 j+1}+\binom{k+j+1}{2 j+1}\right) C_{n+j}^{(2 k+1)}=0
$$

for $0 \leq n \leq k$ if $k>0$.
More generally we get

$$
\sum_{n \geq 0} R(k, n) x^{n}=x^{k+1} C(x)^{4 k+2} .
$$

Christian Krattenthaler has provided a proof using hypergeometric identities.
It can also be proved with Peter Paule's implementation of Zeilberger's algorithm.
I want to congratulate Peter Paule und his team for the very valuable Mathematica packages which were indispensible for my work since my interest turned to experimental mathematics.

$$
D_{2 k+1}(n)
$$

For $r>3$ I have only conjectures:

$$
\begin{aligned}
& \left(D_{5}(n)\right)_{n \geq 0}=(1,1,-5,0,5,1,1,-10,0,10,1,1,-15,0,15, \cdots) \\
& \left(D_{7}(n)\right)_{n \geq 0}=\left(1,1,-14,-7^{2}, 0,7^{2}, 329,-1,-1,-315,(2 \cdot 7)^{2}, 0,-(2 \cdot 7)^{2},-1687, \cdots\right)
\end{aligned}
$$

More generally

$$
\begin{aligned}
& D_{2 k+1}((2 k+1) n)=D_{2 k+1}((2 k+1) n+1)=(-1)^{k n}, \\
& D_{2 k+1}((2 k+1) n+k+1)=0, \\
& D_{2 k+1}((2 k+1) n+k+2)=-D_{2 k+1}((2 k+1) n+k)=(-1)^{n k+\binom{k}{2}^{2}}((2 k+1)(n+1))^{k-1}, \\
& D_{2 k+1}((2 k+1) n-1)+D_{2 k+1}((2 k+1) n+2)=(-1)^{k n+1}(k-1)(2 k+1) .
\end{aligned}
$$

$$
D_{4}(n)
$$

For $\left(C_{n}^{(4)}\right)_{n \geq 0}=(1,4,14,48,165,572,2002, \cdots)$ we get

$$
\left(D_{4}(n)\right)_{n \geq 0}=(1,1,-2,-2,3,3,-4,-4, \cdots) .
$$

Here we have $s_{2 k}=4, s_{2 k+1}=0, t_{2 k}=-\frac{k+2}{k+1}$ and $t_{2 k+1}=-\frac{k+1}{k+2}$.
The corresponding $a_{n}(j)$ satisfy

$$
\sum_{n \geq 0} a_{n}(2 k) x^{n}=x^{2 k} C(x)^{4 k+4}
$$

$$
\sum_{n \geq 0} a_{n}(2 k+1) x^{n}=x^{2 k+1} C(x)^{4 k+4}-\frac{k+1}{k+2} x^{2 k+3} C(x)^{4 k+8}
$$

$$
D_{2 k}(n, t)
$$

Define $C_{n}^{(2 k)}(t)$ by

$$
\sum_{n \geq 0} C_{n}^{(2 k)}(t) x^{n}=\left(\sum_{n \geq 0} C_{n+1}(t) x^{n}\right)^{k}:
$$

This implies that $C_{n}^{(2 k)}(1)=C_{n}^{(2 k)}$.
Let

$$
D_{2 k}(n, t)=\operatorname{det}\left(C_{i+j}^{(2 k)}(t)\right)_{i, j=0}^{n-1} .
$$

If we use the q-notation $[n]_{q}=1+q+\cdots+q^{n-1}$ then we get

$$
\begin{aligned}
& D_{4}(2 n, t)=(-1)^{n} t^{2\left(n^{2}-n\right)}[n+1]_{t^{2}}, \\
& D_{4}(2 n+1, t)=(-1)^{n} t^{2 n^{2}}[n+1]_{t^{2}} .
\end{aligned}
$$

$$
D_{6}(n, t)
$$

The first terms of $D_{6}(n)$ are
$1^{2}, 1^{2},-3^{2},-2^{2},-2^{2}, 3^{2}\left(1^{2}+2^{2}\right), 3^{2}, 3^{2},-3^{2}\left(1^{2}+2^{2}+3^{2}\right), \cdots$.

Conjecture:

$$
\begin{aligned}
& D_{6}(3 n)=D_{6}(3 n+1)=(-1)^{n}(n+1)^{2}, \\
& D_{6}(3 n+2)=3^{2}(-1)^{n+1} \sum_{j=1}^{n+1} j^{2} . \\
& \left.D_{6}(3 n, t)=(-1)^{n} t^{9} 9^{n} 2\right)[n+1]_{t^{3}}^{2}, \\
& D_{6}(3 n+1, t)=(-1)^{n} t^{\frac{3 n(3 n-1)}{2}}[n+1]_{t^{2}}^{2}, \\
& D_{6}(3 n+2, t)=(-1)^{n+1} 3[3] t^{\frac{3 n}{3(3 n+1)}} r_{n}(t)
\end{aligned}
$$

with
$\left(r_{n}(t)\right)_{n \geq 0}=\left(1,1+3 t^{3}+t^{6}, 1+3 t^{3}+6 t^{6}+3 t^{9}+t^{12}, \cdots\right)$.

Some more conjectures

$$
\begin{aligned}
& D_{2 k}(k n)=D_{2 k}(k n+1)=(-1)^{n}\binom{k}{2}(n+1)^{k-1} \\
& D_{2 k}(2 k n-1)+D_{2 k}(2 k n+2)=-k(2 k-3)(2 n+1)^{k-1} .
\end{aligned}
$$

$$
D_{2 k}(k n, t)=(-1)^{\binom{k}{2}^{n} k^{k^{2}} t^{n}\binom{n}{2}}[n+1]_{t^{k}}^{k-1}
$$

$$
\left.D_{2 k}(k n+1, t)=(-1)^{\binom{k}{2}^{n}} t^{k^{2}} \begin{array}{l}
n \\
2
\end{array}\right)^{+k n}[n+1]_{t^{k}}^{k-1} .
$$

Catalan numbers modulo 2

It is well known that $C_{n} \equiv 1 \bmod 2$ iff $n=2^{k}-1$ for some k : Let $f(x)=C(x) \bmod 2$.
Then $f(x)=1+x f\left(x^{2}\right)$ which implies $f(x)=\sum_{k \geq 0} x^{2^{k}-1}$.
Let now $a_{2^{k}-1}=1$ and $a_{n}=0$ else. Then

$$
d_{n}=\operatorname{det}\left(a_{i+j}\right)_{i, j=0}^{n-1}=(-1)^{\binom{n}{2}} .
$$

In this case the determinant is reduced to a single term

$$
d_{n}=\operatorname{sgn} \pi_{n} a_{0+\pi_{n}(0)} \cdots a_{n-1+\pi_{n}(n-1)} \neq 0
$$

for a uniquely determined permutation π_{n}.
For example $\pi_{5}=02143$ and

$$
d_{5}=\operatorname{det}\left(\begin{array}{lllll}
1 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0
\end{array}\right)=1 .
$$

Similar determinants have previously been considered by R. Bacher (2004) from another point of view. I have posted some questions about such determinants on MO and received some proofs from Darij Grinberg. More generally let $b_{2^{k}-1}=x^{k}$ and $b_{n}=0$ else. For example

$$
B_{5}=\left(\begin{array}{ccccc}
1 & x & 0 & x^{2} & 0 \\
x & 0 & x^{2} & 0 & 0 \\
0 & x^{2} & 0 & 0 & 0 \\
x^{2} & 0 & 0 & 0 & x^{3} \\
0 & 0 & 0 & x^{3} & 0
\end{array}\right) .
$$

The corresponding determinants are

$$
\operatorname{det} B_{n}=(-1)^{\binom{n}{2}} x^{2 a(n)}
$$

where $a(n)$ is the total number of 1 's in the binary expansions of the numbers $1,2, \cdots, n-1$.
In the above example we get $a(5)=5$ because the number of 1 's in $1,10,11,100$ is 5 .

The aerated sequence $\left(a_{0}, 0, a_{1}, 0, a_{2}, 0, \cdots\right)$.
Let $a_{2^{k}-1}=1$ and $a_{n}=0$ else and let $A_{2 n}=a_{n}$ and $A_{2 n+1}=0$ be the aerated sequence.
It is easy to see that $A_{n}=a_{n+1}$.
For example

$$
\left(A_{i+j}\right)_{i, j=0}^{3}=\left(a_{i+j+1}\right)_{i, j=0}^{3}=\left(\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) .
$$

In this case too the determinant is reduced to a single permutation.
We get

$$
D_{n}=\operatorname{det}\left(A_{i+j}\right)_{i, j=0}^{n-1}=(-1)^{\delta_{n}},
$$

where δ_{n} is the number of pairs $\varepsilon_{i+1} \varepsilon_{i}=10$ for $i \geq 1$ or $\varepsilon_{1} \varepsilon_{0}=11$ in the binary expansion of n.
For example $\delta_{4}=1$ because $4=100$ or $\delta_{75}=3$ because $75=1001011$.
The determinants satisfy $D_{2 n}=(-1)^{\binom{n}{2}} D_{n}$ and $D_{2 n+1}=(-1)^{\binom{n+1}{2}} D_{n}$.

An approach via orthogonal polynomials

These determinants have also been studied by R.Bacher who found the interesting formula

$$
D_{n}=\prod_{j=0}^{n-1} S(j)
$$

where $(S(n))_{n \geq 0}=(1,1,-1,1,1,-1,-1,1,1,1, \cdots)$ is the so-called paperfolding sequence
which satisfies
$S(2 n)=(-1)^{n}, \quad S(2 n+1)=S(2 n)$ and $S(0)=1$.
The method of orthogonal polynomials gives $s_{n}=0$ and $T_{n}=S(n) S(n+1)$.
The numbers T_{n} are uniquely determined by the recursion
$T_{2 n}=T_{2 n-1} T_{n-1}$,
$T_{2 n+1}=-T_{2 n}$,
$T_{0}=1, T_{1}=-1$.

Golay-Rudin-Shapiro sequence

Let $g(1)=1$ and $g\left(2^{k}-1\right)=(-1)^{k}$ for $k>1$ and $g(n)=0$ else.
Then

$$
\operatorname{det}(g(i+j+1))_{i, j=0}^{n-1}=r(n),
$$

where $r(n)$ is the Golay-Rudin-Shapiro sequence defined by

$$
\begin{aligned}
& r(2 n)=r(n), \\
& r(2 n+1)=(-1)^{n} r(n) \\
& r(0)=1
\end{aligned}
$$

Equivalently $r(n)=(-1)^{R(n)}$, where $R(n)$ denotes the number of pairs 11 in the binary expansion of n.

Let me finally state two associated continued fractions:

$$
\sum_{k \geq 0} x^{2^{k}-1}=\frac{1}{1-\frac{S(0) S(1) x}{1-\frac{S(1) S(2) x}{1-\ddots}}}
$$

and

$$
\sum_{k \geq 0}(-1)^{k} x^{2^{k}-1}=\frac{1}{1+\frac{r(0) r(2) x}{1+\frac{r(1) r(3) x}{1+\ddots}}}
$$

