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Introduction

For each n we consider the Hankel determinant

H, = det(aM )H

i,j=0"

We are interested in the sequence (H,)  with H, =1.

n=0

2
It is well known that the sequence of Catalan numbers C, = Ll( nj
n+1{ n

can be characterized by the fact that all Hankel determinants

n n+l

of the sequences (C,) ~and (C,,,)  are l.

The generating function of the Catalan numbers C(x) =Y C,x" = 1—2ﬂ
n=0 X

satisfies C(x) =1+ xC(x)’.

Let C(x)" =) C”x". Thenwe get C.” =C,,,

and Cir) :L(2n+rj
=0 2n+r

n



In the first part of this talk I want to give some overview about the Hankel determinants

2i+2j+r\)" \il
d (n) = det g and D,(n)=det(C))  for r=0.
1+ - hJ=
i,7=0

Many of these determinants are easy to guess and show an interesting modular pattern, but
strangely enough I found almost nothing about them in the literature except for » =0 and
r =1. Only after I posted a question in MathOverflow I learned that at least Egecioglu,

Redmond and Ryavec (arXiv:0804.0440) had considered d.(n). Proofs seem only to be

known for » <3.

( o =(11,2,22,2700),

( (LLLLL,-),

(dy(m) . =(1,1,~1,-1,1,1,-1,~1,---),

(dy(n)) . =(11,-4,3,3,-8,5,5,-12,7,7,~16,+-),
(d,(m)),. =
(ds(m) . = (

1,1,-8,8,1,1,—-16,-16,1,1,-24, —24,---),
1,1,-13,-16,61,9,9,-178,-64,370,25,25,-695,-144,1127,-- )



It seems that

Ay (Qk+Dn)=d,,,, (Ck+Dn+1)=2n+1),

Ayt (Qk+Dn+k+1)= (_1)[ 2 J4k (n +1)k ,
dy (2kn)=d,, (2kn+1)=(-1)",

k

d%(Zbr+k)=—dM(2br+k+l):(—Dm{J4k%n+lyl.

The other values are not so nice.

For example

_(4D@n+1)(50n+39) (St d)—— (n+1)(2n+3)(50n+61)

d.(5n+2)=
s(5n+2) 3 3

But

o | (2K +1
dﬁ(zkn——b-kdﬂ(zkn4-2):(—1)”[[ ) j——zJ,

2k+2
dy o (Qk+Dn-1)+d,,,, (Qk+Dn+2)= [2 —( ) D(zn +1)~,



Some background material

Ifd = det(al.+ ; )n_l # 0 for each n we can define the polynomials

i,j=0
a, q a,, 1
a, a, a x
1 >
p,(x)= d_ a, a; -~ 4, X
n . .
n
an an+1 et a2n—l X

If we define a linear functional L on the polynomials by L (x” ) =a, then

L(p,p,)=0 for n#m and L(pf) # 0 (Orthogonality).
There exist s, and ¢, such that

p,(x)=(x=s,)p,,(x)—t,,p, ,(x).
dd

n_" n+2
dZ

n+l

The numbers ¢, are given by ¢, =



For arbitrary s, and ¢ define numbers a, () by

a,(j)=[j =01,
a,(0)=sya,.,(0)+1a,_, (1),
a,(j)=a,,(j-D+s,a,,(j)+t,a,,(j+1).

Then we get

If we start with the sequence (an) and guess s, and ¢, and if we also can guess a () and

n>0

show that a (0)=a, then all our guesses are correct and the Hankel determinant is given by
the above formula.

For the aerated sequence (1, 0,1,0,2,0,5,0,14,0,-- ) of Catalan numbers it is easy to guess that
s, =0 and ¢, =1 and that a,, (k)=C%" and all other a,(;j)=0. Thus a,,(0)=C, and

a,,.,(0) =0. Therefore all Hankel determinants are 1.



There is a well-known equivalence with continued fractions, so-called J-fractions:

For some sequences this gives a simpler approach to Hankel determinants.
The generating function of the Catalan numbers satisfies C(x) =1+ xC(x)".

Therefore

C(x)=; and C(x°) = 21 = : >
1-xC(x) 1-x"C(x7) o X

1— xz,

1--.

This again implies that the Hankel determinants of the aerated sequence of Catalan numbers
are 1 and also that D,(n)=1.



Some other examples of J-fractions

1

ey = 1-2x—xC(x)*

implies D,(n)=1.

1 1 1
1—4x 1-2xC(x) 1-2x-2xC(x)’

implies d,(n)=2"".

Z2n+1 n_lz2n+2 .1 1 1o
—~ n _2,120 n+l C2x 1—4x

and C(x)(1—3x—x2C(x)2) =+/1-4x give

C(x) _ 1

JI—4x 1-3x—xC(x)?

and thus d,(n) =1.




2i+27+2\)"
d(ny=det|| "
i+ ] o

It 1s easy to guess that s,, =4, s5,,,, =0 and ¢, =1.

2n+2
We also guess that a, (2k) = [ )

n—2k

C 2n 2n
This implies a (2k+1) = — :
n—2k—1 n—2k-3

It remains to verify the trivial identity

2n+2 B 2n—2 2n L4 2n 2n—2 N 2n—2
n—2k) \n=2k) \n-2k-2 n—-1-2k) \n=2k-2) \n-2k—-4)

Therefore we get (d2(n)) = (1,1,—1,—1,1,1,—1,—1,---).

n>0



A proof with J-fractions

By induction we get

B,(X)ZZ(zn-l_r}(n: C(x) |

n 1-4x

This implies

1
B,(x)+x’B,(x)’ =——.
1-4x

For C(x)V1-4x =2-C(x) and xC(x)* = C(x)—1 and therefore

C(x)’  LCw* 2\2
(1_4x)[\/1—xﬁ+x 1_Z}J=C(x)(C(x)\/l—4x)+(xC(x))

= C(x)(2-C(x))+(C(x)-1) =1.
This implies

1 1 1 !
—ax1+xB,(0) 1-4v+2*(1-4x)B,(0) |, *
1+x°B,(x)

B,(x)=




For » >3 the situation becomes more complicated. Since no Hankel determinant vanishes the
above method should in principle be applicable. It seems that it is possible for each fixed r to
guess s, and ¢ . But for » > 5 I could not guess a, ().

Let me sketch the case » =3: Here we get d,(3n)=d,(3n+1)=2n+1 and
d,(3n+2)=-4(n+1).

5 _ 2n+1 R 2n+3
3n > “3n+l 4(71 + 1) > “3n+2 4(n ¢ 1) D
_4n+l) _ (2n+1)(2n+3) _ A+l
" 2n+1 " " 2m+1)* 7" 2n+3
(36) 2n+3
a = ,
" n—3k
2n+1 2n+1 2n+1
o Gk+ny=| T | foened g 2kl fosnsd
n-3k—1) 4(k+)\n-3k-2) 4(k+)\n-3k-3

2n+1 2n+1 2n+1
a,Gk+2)=| M Qe[ Ar Ak b St
n-3k-2)" \n=3k=3)" 2k+3 \n-3k—4



I have only found the following curious regularities:

Let » > 2.

Then

s, =r+2,

S +s . tets o =2r,
tt t =1.

rn”rn+l rn+r—1

Furthermore it seems that

2n+r
a (rk)= (n —rk}



D, (n)=det(CY) )”/‘ .

ij=

These determinants show a similar pattern. But some of them vanish. For example for » =3 it

:l L
is known (C. Krattenthaler and J.C. 2011) that D, (n) = Z(—l)k (n i j or
k=0

(D, (n))n20 =(1,1,0,-1—1,0,---), which is periodic with period 6.

For » >3 apparently no results appear in the literature. But we will show that for odd r there
are always vanishing determinants. Therefore the method of orthogonal polynomials is not

directly applicable. I have studied the case » =3 in more detail and looked for other tricks to
compute these determinants.

Guo-Niu Han, arXiv:1406.1593, has shown that each formal power series has a unique
expansion as a so-called H-fraction

xO
n_
> a,x =

n=0

and proved a formula for the non-vanishing Hankel determinants.



The case r=3 as H-fraction

The powers of the generating function of the Catalan numbers satisty
C(x) L (—x)=1+x"C(x)”,
where

(L), =(2. 1, 1+2x, 1+3x, 1+4x+2x", 1+5x+5x7,---)

=0
are Lucas polynomials. This gives rise to continued fractions.
For » =3 we get the H-fraction
1

C(x)’ = 3
[-3x—

3
X

1-3x-— -
1-3x— .

from which we get again (D3 (n))n20 = (1,1,0,—1, —1,0,---).

Analogously x*'C(x)** and x"~'C(x)***' give H-fractions.



A valuable Lemma

Another helpful trick is the following Lemma (Szego 1939):

Let p,(x) be monic polynomials which are orthogonal

with respect to the linear functional L with moment L (x” ) =a

n

and let » (x)=a,x—a, ., Then

n+l*
det(r,,,(x) =det(a,,)" p, ().

i’j

For the prooflet p, (x)=b,,+b, x+---+b,, x"" +x" and

x -1 0 0
0 x -1 0
B = :
0O 0 0 -1
b,y b, b,, x+b,,,

Then we get



For a =C

n+l1

weget s =2, ¢t =1 and

SR
P =3 (- 1)[ j(x 2y,

Since C¥' =C _,-C

n+1

the Lemma implies

S s
D;(n) = Z( D' ( j
The Lemma also gives another proof of the Theorem

(Cvetkovic, Rajkovic and Ivkovic)

det(C..,+C, ., ) JI_O =F, .



Narayana polynomials

Another trick is to introduce another parameter such that no determinant vanishes.

The Narayana polynomials

n -1
c,,m:;(gj("k jﬁ

for n>0 and C,(¢) =1 satisfy C, (1)=C,. The first terms are
L1 142, 143642, 1461 +617+1,+-.

For the sequence (C,.,(r))  weget s, =1+¢ and 1, =t.

nx

The orthogonal polynomials are

2l

k n—k k n—2k
p,(x,1) = (—1)( i }(x—l—t) :

k

By the Lemma we get

alE )
det (Ci+j+1 )+ C,'+j+2 (0)710 = t(zjz (- l)k (n . kJ (t+ 2)n—2k.

k=0

Another proof by the Lindstrom-Gessel-Viennot theorem has been given by C. Krattenthaler.



For ¢t =1 we can again get D, (n).

More interesting 1s the case ¢ =—1. Here we get
(Con(=D+C,,(-D)  =(1,-1,-1,2,2,-5,-5,14,14,-42,-42,---).
The corresponding Hankel determinants are Fibonacci numbers
(d,) ., =(1,1,-2,-3,5,8,—13,-21,---).

For (1,1,1,2,2,5,5,14,14,---) we get the Hankel determinants

(d,) ., =(1,1,0,-1,-1,0,1,1,0,-1,-1,0,---) .

These results can also be obtained directly with the method of orthogonal polynomials.



For odd r some Hankel determinants vanish

We can prove that

Dy, (k+1)=0.

A search for a linear relation led to

R(k.n) = Zk:(_l)k_j ([ k+jj+(k+j+1jjcﬁi+l) 0

2j+1 2j+1

for 0<n<k if £>0.

More generally we get

ZR(k, n)xn _ xk+1C(X)4k+2.

n=0
Christian Krattenthaler has provided a proof using hypergeometric identities.
It can also be proved with Peter Paule’s implementation of Zeilberger’s algorithm.

I want to congratulate Peter Paule und his team for the very valuable Mathematica packages
which were indispensible for my work since my interest turned to experimental mathematics.



Dy 1 (n)

For » >3 I have only conjectures:

(Dy(m) . =(1,1,-5,0,5,1,1,10,0,10,1,1,=15,0,15,-)
(D (1) o= (L1, -14,-72,0,7%,329,~1,~1,-315,(2-7)%,0,~(2-7)*,~ 1687, ).

More generally

D, (2k+Dn)=D,, (2k+Dn+1)= (_l)kn )
D, (k+Dn+k+1)=0,

k

D, (Qk+Dn+k+2)=-D, . ((2k+Dn+k)= (—1)”“(2j+1 (2k+1)(n+1)",
Dy, (k+Dn—1)+ D, (2k+1)n+2) = (1) (k - 1)(2k +1).



Dy(n)

For (C\*) _ =(1,4,14,48,165,572,2002, ) we get

(D,(m), ., =(1,1,-2,-2,3,3,~4,~4,---).

Here we have s,, =4, s,,,,=0, ¢, :—% and ¢, , = —%.
The corresponding a () satisty

Z a,(2k)x" = x**C(x)*"**,

n=0

3 a, 2k +)x" = ¥ C(x) " - ]’(‘ : Lot oy

n=0



DZk (Tl, t)

Define C**(¢) by

pCIONE PR §

This implies that C*® (1) = C**.

Let

n—1
D,, (n,t) = det (C.(Zk)(t))l_’j:o .

i+
If we use the g —notation [n], =1+g+--+ g"" then we get

D,(2n,t)=(=1)""" " [n+1],,
D,2n+Lt)=(-1y"t" [n+1],.



D¢(n, t)
The first terms of D (n) are
IP,17,-3%,-27,-27, 3 (1’ +2°),3°,3°,-3° (P + 2° + 3°) -~
Conjecture:

D,(3n)=D,(Bn+1)=(-1)"(n+1),

n+l

D, (3n+2)=3(-1)" > %
Jj=1

Ll e
D(3n,t)=(-1)"t Y [n+1];,
n(3n-1) 5
2 [n + l]ﬁ ,

D.Gn+1,0)=(=1)"t

3n(3n+1)

Dy(Bn+2,0)=(-1)""3[3] ¢t 2 1)

with

(7,(0),, = (L 14367 +2°, 14365+ 61°+ 387 +17 ).



Some more conjectures

k

o iy
D,, (2kn — 1) +D,, (2kn + 2) =—k(2k-3)2n+ l)k—l.

D, (kn,t) = (—1)@"tk2@ [n+1]5",

D, (kn+1,1) = (—1)@"tkz@+kn [n+1], .



Catalan numbers modulo 2

It is well known that C, =1mod?2 iff n=2* —1 for some k: Let f(x)=C(x)mod2.

Then f(x)=1+x/(x") which implies f(x)=> x"".

k>0
Letnow a, =1 and a, =0 else. Then
d, =det(a,,) " = (—1)@.

In this case the determinant is reduced to a single term

d, =sgn 0 Qoir 0) " Anotin, (n-1) = 0
for a uniquely determined permutation 7.
For example 7, =02143 and
1 1 01 O
1 01 0 O
dy=det|]0 1 0 0 0]=1
1 0 0 0 1
O 0 01 O




Similar determinants have previously been considered by R. Bacher (2004)
from another point of view. I have posted some questions about
such determinants on MO and received some proofs from Darij Grinberg.

More generally let b, =x" and b, =0 else. For example

1 x 0 x> 0

x 0 x 0 0
B,={0 x> 0 0 0
x> 0 0 0 X

0O 0 0 x 0

The corresponding determinants are

n

det B, = (—1)@)8“"),
where a(n) is the total number of 1’s in the binary expansions of the numbers 1,2,---,n—1.

In the above example we get a(5) =5 because the number of 1’sin 1, 10, 11, 100 1s 5.



The aerated sequence (ag, 0,a4,0,a,,0, ).
Leta, =1and a, =0 eclscandlet 4,, =a, and 4,,,, =0 be the acrated sequence.

It is easy to see that 4 =a, ;.

For example

T =(a.) =
i+J i,j=0 i+j+1 i,j=0

S = O =
oS O = O
o O O =
— o O O

In this case too the determinant is reduced to a single permutation.

We get

n—1

D, = det(Al.ﬂ.) = (-1,

i,j=
where O, is the number of pairs ¢, ¢, =10 for i =1 or ¢, =11 in the binary expansion of n.

For example 0, =1 because 4 =100 or J,, =3 because 75=1001011.

n+l

The determinants satisfy D, = (—1)(Zj D, and D, = (—1)( ? ]Dn.



An approach via orthogonal polynomials

These determinants have also been studied by R.Bacher who found the interesting formula
n—1
j=0

where (S(n)) _ =(11,-11,1,-1,—1,1,11,.---) is the so-called paperfolding sequence

n=>0

which satisfies
S2n)=(-1)", S2n+1)=S52n) and S(0)=1.
The method of orthogonal polynomials gives s, =0 and 7, = S(n)S(n+1).

The numbers T, are uniquely determined by the recursion

TYZn - TYZn—IT;z—l >
Ty2n+l - _]"2” b

T, =1,T =-1.



Golay-Rudin-Shapiro sequence
Let g(1)=1 and g(2k —1):(—1)" for k>1 and g(n)=0 else.
Then

det(g(i+j+1)), _, =r(n),

where r(n) is the Golay-Rudin-Shapiro sequence defined by

r(2n) = r(n),
r(2n+1)=(-1)"r(n),
r(0)=1.

R(n)

Equivalently »(n)=(-1)""", where R(n) denotes the number of pairs 11 in the binary

expansion of .



Associated continued fractions

Let me finally state two associated continued fractions:

and

261 1
25 = S)s0e
B |_SMSQ2)x
1-"-.

k 2F-1 1
2 = e
1+7"(1)1”(3)x
1+ -.
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