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Abstract 

We consider Hankel determinants of the sequence of Catalan numbers modulo 2 (interpreted 
as integers 0 and 1) and more generally Hankel determinants where the sum over all 
permutations reduces to a single signed permutation.  

0.  Introduction 

Let 
21

1n

n
C

nn

 
    

 be a Catalan number. It is well known that   1

, 0
det 1

n

i j i j
C



 
  for all 

.n  Of course this remains true if we consider all terms modulo 2.  It is also well known 

that 1mod 2nC   if and only if 2 1kn    for some .k    

But what happens if we consider the sequence mod 2nC  as a sequence of integers from 

 0,1 ?  The attempt to answer this question gave rise to the present paper. After completion of 

a first version I discovered the paper [1] by Roland Bacher, where similar questions are 
considered from a different point of view. There is some overlap between these approaches 
which I will be mention at the appropriate places. 

Let   0n n
a


 satisfy 1na   if 1n  is a power of 2  and 0na   else. 

Computer experiments led me to guess that 

   1 2

, 0
( ) det ( 1)

n
n

i j i j
d n a

 
 
 

 
     (0.1) 

and that the determinant 

   1

0 (0) 1 (1) 1 ( 1), 0
det sgn( )

n

i j n ni j
a a a a  






     
     (0.2) 

which in general is a sum  over all permutations   of  0,1, , 1n  is reduced to a single 

term  

   0 (0) 1 (1) 1 ( 1)sgn 0
n n nn n na a a           (0.3) 

for a uniquely determined permutation .n   

For example  
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  4

, 0

1 0 1 0

1 0 0 0

(5) det det 10 0 0 0

1 0 0 0

0 0

1

1

1

0

1

0 1

i j i j
d a  

 
 
 
   
 
 
 
 

  (0.4) 

reduces to the term  2 2
1 3 7a a a   corresponding to  5 02143.    

The Hankel determinants   1

1 , 0
( ) det

n

i j i j
D n a



  
  also reduce to single permutations and thus 

satisfy ( ) 1.D n   In this case the sequence    0
( ) 1,1,1, 1, 1, 1,1, 1, 1, 1, 1,1,

n
D n


          

is rather interesting. For example  [1], Theorem 10.1 implies that 
1

0

( ) ( )
n

j

D n S j




  where 

   0
( ) 1,1, 1,1,1, 1, 1,1,1,1,

n
S n


      is the famous paperfolding sequence defined by 

(2 ) ( 1) , (2 1) ( )nS n S n S n     and (0) 1.S   We shall also show that ( )( ) ( 1) ,nD n    where 

( )n  is the number of pairs 1i i   in the binary expansion of n  with 1 10i i    if 1i   and 

1 0 11.     Thus  1( ) i i
i

n      for  1 0 2kn      with  1 1i i     if  1 10i i    for 

some 1i  or if 0i   and 01 11    and  1 0i i     else.  

Thus   2
0 0,     2

01 ,     2
010 ,     2

111 ,     2
1100 ,     2

101 1,   

  2
110 0,     2

.111 1,     

Consider for example  

  4 (5)
1 , 0

1

1

1

0 1 0 0

0 0 0 0

(5) det det 1 1.1 0 0 0

0 0 0 01

10 0 0 0

i j i j
D a 

  

 
 
 
      
 
 
 
 

  (0.5) 

The determinant reduces to 3
1 3 7 .a a a   

 

More generally we study Hankel determinants for sequences   0n n
a


 such that n na x  if  

1n  is a power of 2  and 0na   else, where nx  are arbitrary numbers. For some choices of 

nx  we get curious results. 

For example for 
2 1k

kx x

  we get  2 2 ( )( ) ( 1) ,

n

a nd n x
 
 
    where ( )a n  is the total number of 1' s 

in the binary expansions of the numbers 1.n    

For example 
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2

2

3

3

2 (5) 10

0 1 0

0 0 0

det .0 0 0 0

1 0 0 0

1

0 0 0 0

a

x

x

xx x

x

x

x

 
 
 
   
 
 
 
 

  (0.6) 

The total number of 1’s in the binary expansions of  

2 2 2 2 20 [0] ,1 [1] ,2 [10] ,3 [11] , 4 [100]      is (5) 5.a    

If we choose 1 1x   and 
2 1

( 1)k

kx

   for 1k   we get the Golay-Rudin-Shapiro sequence 

( ) ( )D n r n which satisfies ( )( ) ( 1) nr n    where ( )n  denotes the number of pairs 11 in the 

binary expansion of .n   

For example 

 (6)

0 1 0 0 0

0 1 0 0 0

1 0 0 0 0
det ( 1) 1.

0 0 0

1

1

1

1

1

1

0 0

0 0 0 0 0

0 0 0 0 0











 
 
 
 

    
 
 
  
 

  (0.7) 

Here  2
6 110  gives (6) 1.    

 

This choice of nx   also leads to the continued fraction 

  

 2 1

0

1 1
( 1) .

(0) (2)
1 1

(1) (3)
1 1

(2) (4)
1 1

1 1

kk

k

z
r r z z

r r z z
r r z z





  
 

 
 

 



 

  (0.8) 

 

1.  Hankel determinants of Catalan numbers modulo 2 

Let  {0,1}na   satisfy mod 2n na C  or with other words let 1na   if 1n  is a power of 2  

and 0na   else. 

Then  

   1 2

, 0
( ) det ( 1) .

n
n

i j i j
d n a

 
 
 

 
     (1.1) 
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The following proof uses an idea due to Darij Grinberg [5] who called a permutation   
nimble if  for each i  in its domain  the number ( ) 1i i  is a power of 2.  Thus a permutation 

  is nimble if and only if 0 (0) 1 (1) 1 ( 1) 0.n na a a          

Theorem 1.1 

For each n  there exists a unique nimble permutation n  of   0,1, , 1n such that 

   1 2
0 (0) 1 (1) 1 ( 1), 0

( ) det ( ) ( 1) .
n n n

n
n

i j n n ni j
d n a sgn a a a  

 
 
 

     
      (1.2) 

Proof 

For 0n   we set (0) 1d    by convention.  

Let  1k   and 12 2 .k kn    Let us try to  construct a nimble permutation .    

By definition we must have 1 ( 1) 2 1n n      for some .  Since 11 2kn    we get 
12 1 2k   and therefore  k  which implies ( 1) 2 1 ( 1) 2 .k kn n n         (Since 

12( 1) 2 1kn     we have k  ). 

If we define  ( 1 ) 2 1 1kn j n j         for all j  for which 2 1,k j n n     i.e. for 

1 2 , 1 ,kn j n n        we get a nimble order reversing permutation of the interval 

2 , 1 .k n n     

Let us show that each nimble permutation    on [0, 1]n   reduces to this permutation on 

2 , 1 .k n n     

If 11 2kn j      the same argument as above gives that ( 1 )n j    must be

 ( 1 ) 2 1 1 2 .k kn j n j j n             

If  12 1 2 1k kn n j        then   1 12 1 1 2 1 2 1 2 .k k k kn j            

Choose i  such that  ( ) 2 1 1 .ki n j       Then  ( ) 2 1 1 2 1ki i i n j          for 

some   and  12 1 2 .k    

This implies that k  and thus 1i n j     and ( 1 ) ( 1 ).n j n j        

Since    is order reversing on [2 , 1]k n n    its sign  is 

 
 1 2 1 2 2

2 2sgn ( 1) ( 1) ( 1) .

k kn n n

n

            
           

Thus we have seen that for 11 2 2k kn    there exists a uniquely determined nimble 

permutation   on the interval 2 , 1 .k n n      
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Since  12 1 2k kn     we can suppose by induction that there is a unique nimble permutation 

of the interval 0,2 1 .k n     This gives us the desired nimble permutation .n   

It remains to show that    2sgn ( 1) .
n

n
 
 
     

This follows by induction because   12 2 2
2 2 2

22 2

k k
k knn n

n n      
         

    
 is even. 

 

If we write a permutation   in the notation (0) (1) ( 1)n      the first nimble 

permutations are 1 0,   2 10,   3 021,   4 3210,   5 02143.    

 For example choose  3.n   Since 1 22 3 2   we have 2.k    

 2

, 0

1 0

1 0 .

0 0

1

1

1
i j i j

a  

 
   
 
 

  

The above construction gives the permutation 21   on  1,2    with 2( ) 3 2 1.i i     

There remains     0

, 0
1i j i j

a  
  with (0) 0   and 0( ) 2 1 0.i i      Thus 3 021   with 

 
3

2
3sgn( ) 1 1 .

 
 
       

   

2. Hankel determinants of the sequence  1nC    modulo 2 

Let as above 1na   if 2 1kn    for some k  and 0na   else. 

Note that 2 0na   and 2 1 1na    if and only if 12 1 2 1kn     for some k  or equivalently 

2 1.kn    Thus 2 1 .n na a   Therefore we get    1 2 3, 0 1 2, , ,0, ,0, ,0, .a a a a a a  This means that 

in this case the shifted sequence  1 0n n
a  

 coincides with the aerated sequence 

   0 1 20
, 0, ,0, ,0, .n n

A a a a

    

Here we have 1nA   if   12 2 1 2 2k kn      and 0nA   else. 

If 2 1( )
kn

n
n k

f x a x x     is the generating function of the sequence   0n n
a


 then the 

generating function of the aerated sequence   0n n
A


 is  2 .f x  Since 1n nA a   we even have

 2( ) 1 .f x xf x     
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All Hankel determinants of the sequence  1 0n n
C  

 are 1.  Therefore we know in advance that 

no Hankel determinant    1

, 0
( ) det

n

i j i j
D n A



 
   vanishes. 

The first Hankel determinants of the sequence    0n n
A


  are 

   0
( ) 1,1,1, 1, 1, 1,1, 1, 1, 1, 1,1, .

n
D n


           

Theorem 2.1 

Let 12 2
1kA  

  for each k  and 0nA   else and let   1

, 0
( ) det .

n

i j i j
D n A



 
    

 If  12 2k kn     then  

  ( ) ( 1) 2 1 .n kD n D n      (2.1) 

Proof 

Let us call  a permutation   m  nimble if ( ) 2 1i i m    for some    for each i  in its 

domain. Then 0 (0) 1 (1) 1 ( 1) 0n nA A A         if  and only if     is 1 nimble.  

Since 12 2k kn    we have 
1 12 1 ( 1) 1 2 1 ( 1) 2 2 1 2 1k k k kn n n n                  and therefore k  which 

implies ( 1) 2 1kn n     or ( 1) 2 1 .kn n        

We can now define a 1 nimble permutation   of the interval [2 1 , 1]k n n    by 

( 1 ) 2 1kn j n j        for 0 2 2 .kj n     

Then   is an order reversing permutation of the interval [2 1 , 1].k n n     

Let   be any 1 nimble permutation on [0, 1].n   Then    on [2 1 , 1].k n n     

If 11 2 1kn j      we get   12 1 1 2 2 1kn j n j           which implies .k   

If 11 2 1kn j      then 12 1 2 1.k kn j       Let   be a 1 nimble permutation. Then 

( ) 2 1ki n j      for some i  and 2 1 2 2ki n j        for some .  This implies k  

and 1 .i n j     

Thus we get a uniquely determined 1 nimble permutation of the interval [2 1 , 1].k n n    

The sign of this permutation is 
2 1 2

2( 1) ( 1) .

kn

n

  
  
      

By induction we get (2.1). 
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For example for 4n   we have 3k   and 

   3 3

1, 0 , 0

11 0 0

0 0 0
.

0 0 0

0

1

10

1

0

i j i ji j i j
A a   

 
 
  
 
 
 

  

The corresponding permutation is 2103    with 33 (3) 6 2 2     and 
2( ) 2 2 2i i     on {0,1,2}.   

Let us now try to find some regularities of the sequence of determinants ( ).D n   

Corollary 2.2  

For 0k   the sequence ( )D n  satisfies 

    2 ( 1) 2 1k n kD n D n       (2.2) 

for 0 2kn   with initial values (0) (1) 1.D D    

For example for 3k   we get  

 
 
7 1 1 1 1 1 1 1 1

8 1 1 1 1 1 1 1 1

D n

D n

    
      

  

 

Corollary 2.3 

Let 0.k    

For 0 2kn   we get 

  12 ( ).kD n D n      (2.3) 

For 12 2k kn    we get 

  12 ( ).kD n D n     (2.4) 

Proof 

By (2.2) with 1k   instead of k  we get 

        1 1 2 12 ( 1) 2 1 ( 1) 2 2 1 ( 1) ( 1) 2 1 2 1
kk n k n k k n n k kD n D n D n D n                   

which gives (2.3). 

Again by (2.2) we have 

        1 2 12 2 ( 1) 2 1 2 ( 1) 2 1 ( 1) ( 1) 2
kk k i k k i k i i kD i D i D i D i                   

which gives (2.4). 
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 For example for 2k   we get for 0 8n    

  
( ) 1 1 1 1 1 1 1 1

8 1 1 1 1 1 1 1 1

D n

D n

   
      

  

Corollary 2.4 

Let  ( )n  be the number of pairs 1i i   in the binary expansion of n  such that 1 10i i    for 

1i   and 1 0 11.    Then 

 ( )( ) ( 1) .nD n     (2.5) 

Proof 

This is true for 4.n    

If it is true for 10 2kn    then by (2.3) it is true for 12k n    with  2kn    because  for 

 2
n v   we get  1

2
2 10k n v    and  12 ( ) 1.k n n       

By (2.4) it is also true for 22 [1 ]k n v   because  12 2 ( )k kD n D n     and 

   2 2[11 ] [1 ] .v v    

 

Examples 

For 9n   we have  29 [1001]   and thus (9) 1.    

For 15n   we get (15) 1   because  2
15 1111 .  There is no pair 10 for 1i   but 1 pair 11 

for 0.i    

 

Theorem 2.5 

The Hankel determinants   1

, 0
( ) det

n

i j i j
D n A



 
  satisfy 

 

2

1

2

(2 ) ( 1) ( ),

(2 1) ( 1) ( ),

(0) 1

n

n

D n D n

D n D n

D

 
 
 

 
 
 

 

  


  (2.6) 

 

Proof 

Let us give two different proofs. 
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1)  Let   1

, , 0

n

i j i j
M




 be a matrix for which , 0i jM   whenever i j  is odd. Then (cf. e.g.[4]) 

      
1 2

1
2 2

, 2 ,2 2 1,2 1, 0 , 0 , 0
det det det .

n n
n

i j i j i ji j i j i j
M M M

           
   

   (2.7) 

Choose , .i j i jM A   Then 

 
     

     

1 1 1

2 2 2
2 ,2 2 2, 0 , 0 , 0

2 2 2

2 2 2
2 1,2 1 2 2 2, 0 , 0 , 0

,
n n n

i j i j i ji j i j i j

n n n

i j i j i ji j i j i j

M A a

M A A

       
          

   

       
          

      

 

 

 

because 12 2 2 2ki j     implies 2 1ki j    and  12 2 2 2 2ki j      implies 

2 2.ki j     

Thus (2.7) gives 
1

( )
2 2

n n
D n d D

                    
 which gives (2.6), because 2( ) ( 1) .

n

d n
 
 
     

 

2) Another proof uses Corollary 2.4. 

Let us first give another formulation of (2.6): 

 

 

(2 ) ( ) if  0,1mod 4,  (2 ) ( ) if  2,3mod 4,

(2 1) ( )  if  0,3mod 4,  (2 1) ( )  if  1, 2 mod 4,  

(0) 1

D n D n n D n D n n

D n D n n D n D n n

D

    
      


  (2.8) 

 

Let now 1 0 2[ ] .n v   Then  1 0 22 [ 0]n v   and  1 0 22 1 [ 1] .n v     

The assertion for 2n  follows from 

   0 2 0 2[ 0 ] [ 0 0] ,v v        2 2[ 10] 1 [ 100]v v    and    2 2[ 11] 1 [ 110] .v v     

The assertion for 2 1n  follows from 

   2 2[ 00] [ 001] ,v v      2 2[ 01] 1 [ 011] ,v v       2 2[ 10] 1 [ 101] ,v v    and 

   2 2[ 11] [ 111] .v v    

Remark 

As already mentioned  a result by R. Bacher [1] implies that 
1

0

( ) ( )
n

j

D n S j




  where 

   0
( ) 1,1, 1,1,1, 1, 1,1,1,1,

n
S n


      is the paperfolding sequence defined by 
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(2 ) ( 1) ,

(2 1) ( ),

(0) 1.

nS n

S n S n

S

 
 


  (2.9) 

This can easily be verified since ( ) 1D n   implies ( ) ( ) ( 1).S n D n D n   By (2.6) we get 

2(2 ) (2 ) (2 1) ( 1) ( ) ( 1) ,

(2 1) (2 1) (2 2) ( ) ( 1) ( ).

n nS n D n D n D n

S n D n D n D n D n S n

     
      

  

To obtain further information let us compare the above approach to Hankel determinants with 
the approach via orthogonal polynomials and continued fractions (cf. e.g. [3], [7]). 

Let me sketch the relevant results: Let   0n n
u


 be a given sequence. Define a linear functional 

L   on the polynomials by  
0

.n nu
L x

u
  If    1

, 0
det 0

n

n i j i j
H u



 
   for each ,n  then there exists 

a (uniquely determined) sequence of monic polynomials   0
( )n n

p x


 with deg np n  such that 

  0n mL p p   for m n  and  2 0.nL p   We call these polynomials np  orthogonal with 

respect to .L  By Favard’s theorem there exist (uniquely determined) numbers ns  and nt  such 

that  1 1 2 2( ) ( ) ( )n n n n np x x s p x t p x       for all .n  The numbers nt  are given by 

2
2

1

.n n
n

n

H H
t

H




  These give rise to the continued fraction  

 0
2

0 0
0 2

1
1

.

1
1

1

n
n

n

u
u z

t z
s z

t z
s z




 

 






  (2.10) 

Let us suppose that 0 1.u   Then the matrix   1

, 0

n

n i j i j
H u



 
   has a unique canonical 

decomposition  

 ( ) t
n n n nH A D t A   (2.11) 

where   1

, 0
( , )

n

n i j
A a i j




  is a lower triangular matrix with diagonal ( , ) 1a i i   and ( )nD t  is the 

diagonal matrix with entries 
1

,
0

( ) .
i

i i k
k

d t t




   

The entries ( , )a i j  satisfy 

 ( , ) ( 1, 1) ( 1, ) ( 1, 1)j ja i j a i j s a i j t a i j          (2.12) 

with (0, ) [ 0]a j j   and ( , 1) 0.a n     

See e.g. [7], (2.30). 
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Let us consider the decomposition (2.11) of the matrix   1

, 0
.

n

n i j i j
H a



 
   

Let    0
( ) 1,1, 1,1, 1, 1, 1,1,

n
s n


       satisfy (2 ) ( 1) ( )ns n s n   and (2 1) ( )s n s n   with 

(0) 1s   and let ( )nD s  be the diagonal matrix   1

, 0
( ) ( )[ ] .

n

n i j
D s s i i j




   Let 

  1

, 0
( ) ( 1) [ ] .

ni
n i j

D t i j



     Let   0,1x   be the residue modulo 2   of the number x and  

define  
1

1

, 0

, 0

2 1
( , ) ( ) .

n

n

n i j

i j

i
B b i j s i

i j








  
       

  

In [1], Theorem 1.2 it is shown that ( ) ( ) ( ).t
n n n n n nH D s B D t B D s   

Note that ( , ) ( ).b i i s i  Therefore we get the canonical decomposition 

 ( ) t
n n n nH A D t A   (2.13) 

with 

   1

, 0
( , ) ( ) ( ),

n

n n n ni j
A a i j D s B D s




    (2.14) 

i.e. 
2 1

( , ) ( ) ( ) .
i

a i j s i s j
i j

 
   

  

For example we have for 4H   

1 0 0 0 1 0 0 0 1 1 0 1 1 1 0 1

1 1 0 0 0 1 0 0 0 1 1 1 1 0 1 0
.

0 1 1 0 0 0 1 0 0 0 1 1 0 1 0 0

1 1 1 1 0 0 0 1 0 0 0 1 1 0 0 0

     
           
      
     

      

  

It is clear that (2.13) implies (0.1). 

For the aerated sequence  0 1 2,0, ,0, ,0,u u u   we get 0ns    for all .n   In this case we write 

nT   instead of .nt   

Since ( ) 0D n   for all n   and moreover ( ) 1D n    we write in this case 

 ( ) ( 2)( 1) ( ) ( 2) ( 1)n n n
nT D n D n           (2.15) 

for  0,1 .n   We also have 

( ) ( 2) ( ) ( 1) ( 1) ( 2) ( ) ( 1).nT D n D n D n D n D n D n S n S n          

The first terms are    0
1, 1, 1,1, 1,1, 1,1,1, 1,1, 1, 1,1, 1,1, .n n

T
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[1] Theorem 10.1 implies that if we define a sequence    ( ) 1,1,1,1, 1,1,1,1, 1, 1,v n       

satisfying (2 1) ( ),  (4 ) ( 1) (2 ),   (4 2) (2 )nv n v n v n v n v n v n       and (0) 1v   then 

    1 1

1, 0 , 0
( )

n n t
i j i j n n ni j i j

A a C D t C
 

   
    (2.16) 

Here ( )nD t  is the diagonal matrix with entries ( )S i  and    1

, 0
( , )

n

n i j
C c i j




  with 

2 2
( , ) ( ) ( ).

i
c i j v i v j

i j

 
   

  

By (2.10) and z  in place of 2z  we get the continued fraction (cf. [1]) 

 2 1

0

1

1
.

1
1

1

k

k

z
T z

T z

 









  (2.17) 

Remark 

The corresponding orthogonal polynomials ( )np x  are 1,  ,x  2 1,x   3,x  4 2 1,x x   5 ,x x  
6 4 1,x x   7 , .x   They satisfy 1 2 2( ) ( ) ( )n n n np x xp x T p x     and   .n

nL x A   

Theorem 2.6 

The numbers nT   satisfy 

 
2 2 1 1

2 1 2

0 1

,

,

1, 1.

n n n

n n

T T T

T T

T T

 




 

  
  (2.18) 

Proof 

By (2.6) we get 

1

2 2
2

1

2 2
2 1

(2 ) (2 2) ( 1) ( ) ( 1)

(2 1) (2 1) ( 1) ( 1) ( )

n n

n

n n

n

T D n D n D n D n

T D n D n D n D n

   
   

   

   
   

   


    

     

 

implies 2 2 1 1( 1) ( 1) .n n nT T D n D n T       

The second assertion follows from 

1 1 2 2

2 2 2 2 2 2
2 2 1 ( 1) ( ) ( 1)( 1) ( ) ( 1) ( 1) 1.

n n n n n n

n nT T D n D n D n D n
              

             
           

           

Remark 

OEIS A104977 states that the numbers nT  which occur in the continued fraction (2.17) satisfy 
( 2) 1,( 1) ,b n

nT     if ( )b n  denotes the number of “non-squashing partitions of n  into distinct 
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parts”.  As has been shown in [9]  the numbers ( )b n  of non-squashing partitions of n  into 

distinct parts satisfy 

(2 ) (2 1) ( ) 1,

(2 1) (2 ) 1.

b m b m b m

b m b m

   
  

  

Since (2) 1b   and (3) 2b   we get ( 2) 1( 1)b n
nT      by comparing with (2.18). 

Let us now obtain some further properties of the sequence   0
.n n

T


  

 

For 12 2 2k kn      we have by (2.1) 

 

 
 
 

1

1 1

1

( ) ( 1) 2 1 ,

( 1) ( 1) 2 2 ,

( 2) ( 1) 2 3 .

n k

n k

n k

D n D n

D n D n

D n D n



 



   

    

    

 

This implies 

   
 

1 1

22 1

2 1 2 3( ) ( 2)
.

( 1) 2 2

k k

k

D n D nD n D n

D n D n

 



   


  
  

Therefore we have  

 12 3kn n
T T   

   (2.19) 

for   12 2 3.k kn      

By 2 1 2n nT T    we only need to consider 0mod 2n   or 0,2mod 4.n    

For 0mod 4n   we get 

 4 ( 1) ,n
nT      (2.20) 

because
2 1 2 1 1

2 2 2
4

1

2 2

(4 ) (4 2) ( 1) (2 )( 1) (2 1) ( 1) (2 )( 1) ( 1) ( )

( 1) ( 1) .

n n n

n n
n

n n

n n n

T D n D n D n D n D n D n
       

     
     

   
   

    

         

   

  

Then we get 

 1
4 2 2( 1) .n

n nT T
     (2.21) 

 for 1
4 2 4 1 2 2( 1) .n

n n n nT T T T
      

To compute 4 2nT   we look at 8 2nT   and 8 6.nT     

 1
8 2 ( 1) .n

nT 
     (2.22) 
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because by (2.20)   1
8 2 8 1 4 8 4 ( 1) .n

n n n n nT T T T T 
        

Now we claim that for 2k    

 1

1

2 2 2
( 1) .k k

n

n
T 


 

    (2.23) 

By induction, (2.18) and  (2.20) we get 

   1 1 1 1 1 1 2

1

2 2 2 2 2 3 2 2 2 2 2 4 2 2 2 4 2 2 1
( 1) ( 1) .k k k k k k k k k k k k

n n

n n n n n n
T T T T T T      


           

           

As special case we get 
2 2

1kT

   for 2.k    

This gives 

Theorem 2.7 

The numbers nT  satisfy 

 1

1

2 3
  for 2 2 3,   2,k

k k
n n

T T n k


 
       (2.24) 

and 

 
1

4

1

2 2 2

( 1) ,

( 1)   for 2.k k

n
n

n

n

T

T k


 

 

  
  (2.25) 

 

Together with 0 1T   and 1 1T    this gives another view on the structure of the sequence 

 .nT   

The sequence begins with 0 1 1 0 0 1 1 0, , , , , ,1, , ,11 1 ,,1 1,11, , , , .T T T T T T T T     

4 ( 1)n
nT    and 4 1 4n nT T    gives a part 

0 1 1 0 0 1 1 0, , , , , , , , , , , , , , , , .T T T T T T T T         with period 8.   

1
8 2 ( 1)n

nT 
    gives 

, , , , , , , , ,1 ., , 1,1 1           with period 16, 

1
16 8 2 ( 1)n

nT 
     gives a periodic part with period 32, etc. 

Let more generally 0 2 3
, , kkM T T


   be a beginning block and  02 3

, ,kkM T T


   this block in 

reverse order then we get  

1,1 1,1 1,1, , , , ,1, 1, , , .k k k kM M M M     

R. Bacher [1] gives a simpler formulation of (2.23) which (in our notation) can be 
summarized as 
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2 1 2

4

1
8 2

8 6 4 2

,

( 1) ,

( 1) ,

.

n n

n
n

n
n

n n

T T

T

T

T T






 

 

 

 


  (2.26) 

To show that this is equivalent it suffices to show that this implies 1

1

2 2 2
( 1)k k

n

n
T 


 

   for 

3.k    

This follows by induction from 

   1 13 2 3 2 2 32 2 2 2 2 22 2 2 1 6 2 2 2 1 2
.k k k kk k k kn nn n

T T T T            
     

Let us recall (cf. [3]) that there is a simple relation between nt  and .nT   

 
2 2 1

0 0

2 1 2

,

,

.

n n n

n n n

t T T

s T

s T T







 

  (2.27) 

This gives 1nt    and 0 1.s    

The first terms of the sequence   ns  are    0
1, 2,0,0,2,0, 2,0,2, 2,0, .n n

s

       

In terms of the paperfolding sequence ( )S n  we get for 0n   

 
(2 1) (2 1) (2 ) (2 2) (2 1) (2 ) (2 ) (2 1)

(2 ) (2 1) (2 1) .
ns D n D n D n D n S n S n S n S n

S n S n S n

        

   
  

By (2.10)  this gives another continued fraction for 2 1

0

k

k

z 


  (cf. [1], Theorem1.4): 

 2 1
2

0
2

2

1
.

1
1 2

1

k

k

z
z

z
z

z
z






 

 






  (2.28) 

3. Hankel determinants of shifted Catalan numbers modulo 2 

 

Let 2.m   Consider the Hankel determinants  

   1

, 0
( , ) det

n

i j m i j
d n m a



  
   (3.1) 

of  the sequence   0
.n m n

a  
  

Let us give some examples: 
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0

0

( , 2) 1,0, 1,0,1,0, 1,0, ,

( ,3) 1,1,0,0, 1,1,0,0, 1, 1,0,0 .
n

n

d n

d n




  

   


  

Theorem 3.1. 

Let 11 2 2 .K Km     Then    1

, 0
( , ) det 1

n

i j m i j
d n m a



  
    if 10mod 2Kn  or 

1mod 2Kn m       and ( , ) 0d n m   else. 

 

Remark 

It is well known  that   
11

,, 0
1 1

2
det .

jmn

i j m n mi j
j i

n i j
C H

i j



  
 

 
 

   

Therefore we get  

Corollary 3.2  

Let 12 2 .K Km    Then 
1

1 1

2
1mod 2

jm

j i

n i j

i j



 

 


  if and only if 10mod 2Kn   or 

1mod 2 .Kn m     

It would be nice to find a direct proof of this Corollary. 

 

For the proof of Theorem 3.1 we need some more information. 

 

Lemma 3.3. 

Let 0 2 2k km n     for some .k  Then 

 ( , ) 0.d n m    (3.2) 

Proof. 

The matrix   1

, 0

n

i j m i j
a



  
 contains the vanishing row  2 2 1 2 1

, , ,k k k n
a a a

  
  

because  2km   and  12 1 2 1.k kn       

 

Let for example 3m   and 7.n   Then 
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  6

3 , 0

1 0 0 0 1 0 0

0 0 0 1 0 0 0

0 0 1 0 0 0 0

.0 1 0 0 0 0 0

1 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 1

i j i j
a   

 
 
 
 
 

  
 
 
 
 
 

  (3.3) 

Recall that a permutation   is m  nimble if for all i  in its domain ( ) 2 1ki i m     for 

some .k  An m  nimble permutation can only exist if the last row of  i j ma    contains an 

element of the form 2 1 .k m   For fixed ,m n  there can be at most one of the numbers 

1m n i    with 0 1i n    such that 1 2 1km n i      because the extreme case would 

be 11 2km n     and 12 2 2 1km n      which is impossible. But it is possible that all 

elements of the last row are 0.  For example in  5

3 , 0i j i j
a   

 the last row is 

   5 6 7 8 9, , , , 0,0,0,0,0a a a a a   because  none of the numbers 4i   for 5 9i   is a power of 

2.   

 

Let us first consider the case 1mod 2.m    

3.1. 1mod 2.m    

Let 2 1 3.m r     

For 12kn r   an m  nimble permutation gives 1( 1) 1 2 1kn n r        and 

for 12kn r j    it implies 1( 1) 2 1 1 2 .kn r j n j           

Thus we get an m  nimble  permutation   on the interval  1 2 , 1n j n    which satisfies 

   1 1n i n i        for 0 2 .i j    

As above   is uniquely determined and therefore we get 

Lemma 3.4. 

Let 2 1m r   and k  be given. Then for 10 2 1kj r      

      
2 1

1 122 , 1 2 1, .
j

k kd r j m d r j m
 

  
          (3.4) 

In example (3.3) we have 3m   and 3 37 2 1 2 .n r      Thus   is the identity on the 

element  6 .  In this case (7,3) 0d   because (6,3) 0d   since this matrix has a row of 

zeroes. 

Lemma 3.5. 
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Let 2 1.m r   If 2ka m   for some k  we have 

   
2 2 1

22 , ( 1) 2 , .
a r

k kd a m d a m m
  

 
        

Proof 

     

 

2 2 1

2

2 2 1

2

2 , 2 , ( 1) 2 1,

( 1) 2 , .

a r

k k k

a r

k

d a m d r a r m d r a r m

d a m m

  
 
 

  
 
 

          

   

 

Corollary 3.6. 

Let 2 1.m r   Then ( , ) 0d n m   if and only if 10, mod 2 ,Kn m    where 11 2 2 .K Km      

 

Proof 

By Lemma 3.3 and Lemma 3.4 the determinants ( , )d n m  for 12 2 1k kr n r      can be 

reduced those for 12 2 1.k kr n r        

By induction we need only consider the case 1.k K    

If 11 2Kn m    then the first row of   1

, 0

n

i j m i j
a



  
 is  1 1, , ,m m m na a a    and since 

11 2 1Km n     all terms vanish. 

If 12 1Km    then this is trivially true because there is no such .n   

If 1 12 2K Km n     then the row  1 1 12 2 1 2 1
, , ,K K K n

a a a    
  vanishes because 

1 1 1 22 1 2 2 1 2 1.K K K Kn             

For 12Kn m   we have by Lemma 3.4 

   
12

212 , 2 2 1, ( 1) .

K m

K K Kd m m d r r m

 
              

For 12Kn   we get 

       2 212 , 2 , ( 1) 2 1, ( 1) 2 , .
m m

K K K Kd m d r r m d r r m d m m
   
   

                 

 

3.2. 0mod 2.m    

Consider now the case 2 2.m r      

If 12kn r j    for some k  with 11 2kj r     we get 1( 1) 2 2kn r j n j        

because ( ) 2 (2 ) 1.ki i r      
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Now define   on the interval  2 , 1n j n   by    1 1n i n i        for 0 2 1.i j     

This implies that  

      
2

1 122 , 1 2 ,
j

k kd r j m d r j m
 
  
         (3.5) 

for 11 2 .kj r       

Therefore the determinants ( , )d n m  for 12 1 2k kr n r      can be reduced to those for 
12 1 2 .k kr n r        

Therefore it suffices to consider the case .k K   

For 2m   we have  1K   and  (0, 2) 1d   and (1,2) 0.d    

If 0mod 2n   then ( , 2)d n  can be reduced by (3.5) to (0, 2) 1d    and if 1mod 2n   to 

(1,2) 0.d    

For 2m r  with 1r   we get 

   
12

212 , 2 2 , ( 1) ( 1) .

K m

K K K rd m m d r r m

 
               

For 12Kn   we get 

       2 21 1 1 12 , 2 , ( 1) 2 , ( 1) 2 , 1.
m m

K K K Kd m d r r m d r r m d m m
   
   

                   

This gives 

Lemma 3.7. 

Let 11 2 2 2 .K Km r      Then    1

, 0
( , ) det 1

n

i j m i j
d n m a



  
    if 10mod 2Kn  or 

1mod 2 ,Kn m    and ( , ) 0d n m   else. 

 Theorem 3.7 and Corollary 3.6  imply Theorem 3.1. 

Remark 

With the condensation method (cf. [7], (2.16)) we get more precisely 

    ( , 2) 1,0, 1,0,1,0, 1, .d n       (3.6) 

This method gives 

2( ,0) ( 2,2) ( 1,2) ( 1,0) ( 1,1) .d n d n d n d n d n        

Since 2( ,0) ( 1)
n

d n
 
 
    and 2( 1,1) 1d n    we get 

2( , 2) ( 1) ( 1,2) ( 1)
n

nd n d n
 
 
       with initial value (0,2) 1.d    
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This gives (2 ,2) ( 1)nd n    and (2 1,2) 0.d n    

In the general case computer experiments lead to 

Conjecture 3.8 

Let 11 2 2 .K Km      For 2 2m r   we have  

 
 
 

1

1

2 , 1,

2 , ( 1) .

K

K r

d n m

d n m m







  
  (3.7) 

For 2 1 3m r    we have 

 
   
   

1 1

1 ( ) 1

2 , 2 ,1 ,

2 , ( 1) 2 ,1 ,

K K

K n m K

d n m d n

d n m m d n m

 

  



   
  (3.8) 

where  ( ) 0,1 .m    

4. A slightly more general case 

Let   0k k
x


 be an arbitrary sequence of numbers or indeterminates and define a sequence 

  0n n
a


 by n na x  if 2 1kn    and 0na   else. 

Theorem 4.1. 

Let n na x  if 2 1kn    and 0na   else. 

Let   1

, 0
( ) det ,

n

i j i j
d n a



 
   2log ( )( ) 2 1nn      and ( ) 2 1 ( ).n n n      

Then  

 
( )

2 ( )
( )( ) ( 1) ( ( )).

n

n
nd n x d n n



 

 
 
      (4.1) 

Proof 

By convention (0) 1.d   For 1n   we have (1) 0,    (1) 1   and 

 
1

2 (1)
0 (1)(1) ( 1) 1 (1) .d x x d

 
 
 
       Therefore (4.1) is true. 

For 1n   choose k  such that 12 2 .k kn    Then 21 log ( )k n k    and ( ) 2 1.kn    As in 

the proof of Theorem 1 we find a permutation   of the interval 

 2 , 1 ( ) 1 , 1k n n n n n         such that ( ) ( ),i i n    which implies that ( ) ( ).i i na x    

Since there are ( ) 2 1 ( )n n n     elements in the interval  ( ) 1 , 1n n n     we get (4.1). 

Let us consider an example. The Hankel matrix  4

, 0i j i j
a  

 is 
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0 1 3

1 3

3

3 7

7

0 0

0 0 0

0 0 0 0 .

0 0 0

0 0 0 0

x x x

x x

x

x x

x

 
 
 
 
 
 
 
 

  

We have (5) 7    because 2 32 5 2   and (5) 10 1 7 2.      We get the permutation 

43   with  sgn 1    and 2
7(4) (3).d x d    

For 3n    we get (3) 3   and (3) 6 1 3 2.      This gives 2
3(3) (1).d x d   

Thus we finally get 2 2
0 3 7(5) .d x x x    

The sign is 
5

2( 1) 1.
 
 
    This can also be obtained from 2 2

0 3 7x x x   as 
1 2 2

2 2 2 2( 1) ( 1) 1.
     

      
           

The first terms of the sequence   0
( )

n
d n


 are 

1,  0 ,x  2
1 ,x  2

0 3 ,x x  4
3 ,x  2 2

0 3 7 ,x x x  2 4
1 7 ,x x  6

0 7 ,x x  8
7 , .x    

By (4.1) see that  0(1) ,d x  2
1(2)d x   and   2

2 1
2

k

k

kd x


  for 1.k     

Lemma 4.2 

For 1k   we get 

   1

2

2 1
2 ( 1) (2 )k

k n n kd n x d n 
      (4.2) 

for 0 2 .kn    

Proof 

By assumption we have 12 2 2 .k k kn     Therefore   12 2 1k kn     and  2 2 .k n n     

By (4.1) we get  (4.2). 

Lemma 4.3 

For 1k   we have 

  2 2

2 1
(2 ) ( 1)

k

k

k n nd n x d n


     (4.3) 

for  0,1,2, , 2 .kn    

Proof 

If  12kn   then 12 2 2k k kn     and we see that (2 ) 2 2k kn n     and 

 
2 2

2 2 2

2 1
(2 ) ( 1) .

k

k

k

n

k nd n x d n
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If  12kn   then (4.3) is trivially true. 

If 12kn   then 12 2k ki n     and therefore  
2 2

2 2 2

2 1
(2 ) ( 1)

k

k

k

i

k id i x d i

 
    


    or equivalently  

 
2 2

2 2 2

2 1
( ) ( 1) 2

k

k

k

n

n kd n x d n

 
    


     which equals (4.3).  

Let e.g. 3.k    

 

8 6 2 4 2 2 4 2 2
7 0 7 1 7 0 3 7 3 0 3 1 0

2 2 4 2 2 2 4 6 8
0 1 0 3 3 0 3 7 1 7 0 7 7

8 6 4 2 2 4 6 8
7 7 7 7 7 7 7 7

(8 ) 1

( ) 1

(8 ) / ( ) 1

d n x x x x x x x x x x x x x

d n x x x x x x x x x x x x x

d n d n x x x x x x x x   

    
   

    
 

Let us write ( )d n  in the form 0

( )

2 ( )

2 1
0

( ) ( 1)
i

i i
i

n

n

i

d n x





 
 
 





    for some integers ( ).i n   

Then we get   

Theorem 4.4  

 

1

1 1

1

1 1

( ) 0   for  0 2 ,

(2 ) 2   for 0 2 ,

(2 ) 2 2   for  0 2 ,

( ) 0   for  2 2 2 .

k
k

k k
k

k k k
k

k k k
k

n n

i i i

i i i

n i











 



 

  

   

    

   

  (4.4) 

and for 12kn     

 1( ) ( mod 2 ).k
k kn n     (4.5) 

For example we get 

   
   
   

0 0

1 0

2 0

( ) 0,1, ,

( ) 0,0,2,0 ,

( ) 0,0,0,2,4,2,0,0, .

n

n

n

n

n

n

























  

 

Proof 

Formula (4.4) is obvious from the above considerations. For example (2 ) 2 2k k
k i i     

follows from Lemma 4.2 and Lemma 4.3 because (2 ) (2 ) 2 2k k k
k ki i i       and ( ) 0k i   

for 12 .ki    

Again from Lemma 4.2 and Lemma 4.3 we get      2 2R R
k k kn n n       for 2 .Rn   By 

applying this several times we get (4.5). 
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Consider for example 11.n    

011 1 2 mod 2   implies 0 (11) 1,    

1 211 3 2 1mod 2    implies  1
1(11) max 2 2,0 0,      

2 311 3 2 1mod 2    implies  2
2 (11) max 2 2,0 2,      

3 411 11 2 3mod 2    implies  3
3 (11) max 2 6,0 2,      

4 511 11 2 5mod 2    implies  4
4 (11) max 2 10,0 6.      

For 5k   we have  11 2 2 11k k    and thus (11) 0.k    

Therefore we get 2 2 6
0 3 7 15(11) .d x x x x    

 

We know already that the sign is 
11

2( 1) 1,
 
 
     but now we can also derive this from the k   

because  

1 2 2 6

2 2 2 2 0 1 1 15( 1) ( 1) 1.
       

         
                

An immediate Corollary of Lemma 4.2 is 

Theorem 4.5 

The sequence  ( )d n  satisfies the recurrence 

  2 2

2 1
( ) ( 1) 2

k

k

n n kd n x d n


     (4.6) 

for 11 2 2k kn    with initial values (0) 1,d   0(1)d x  and 2
1(2) .d x     

 

Corollary 4.6 

Let 
2

( ) ( 2)
.

( 1)n

d n d n
t

d n





 Then we have 

 

1

1

2
1

2 2
0

2 2
0 2 1

42 2 1
2 1

,

  for  1.
k

k k

k

n

n

x
t

x

x x
t k

x





 



 

  

  (4.7) 

This can be proved in an analogous way as Theorem 5.7 
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As special case of Theorem 4.5 let us choose 
2 1

.k

kx x

  Then we get 

Corollary 4.7 

Let 
2 1k

kb x

  and 0nb   else. Then 

   1 2 2 ( )

, 0
det ( 1) ,

n
n a n

n i j i j
d b x

 
 
 

 
     (4.8) 

where ( )a n  is the total number of 1’s in the binary expansions of the numbers 1.n    

Proof 

A search in OEIS led to the conjecture that 2 2 ( )( 1) ,
n

a n
nd x

 
 
    where ( )a n  is the total number 

of 1’s in the binary expansions of the numbers 0,  1, , 1.n ( OEIS A000788).  The 

following proof  follows Darij Grinberg [6].  

By (4.6) we have  12 2

2
( 1)

k

k

k nn
n n

d x d



   for 11 2 2 .k kn     

Therefore it suffices to show that    12 ( ) 2 ,k kk n a n a n      the total number of 1’s in 

the binary expansions of the numbers 2 ,k n 2 1,k n     ,  1.n   

Let the binary expansion of n  be  1 0 .kn     Let us write all binary expansions with k  

digits 0,1.i    

The total number of  1’s in the binary expansions of  , , 2 1kn   is the total number of 0’s in 

the binary expansions of  2 1 , ,1,0k n    of length k  which is  2 (2 ).k kn k a n      

Thus    2 ( ) 2 (2 ).k k ka a n n k a n      Now   12 2k ka k   since each i  occurs 12k  

times.  

Therefore we have    1 1( ) (2 ) 2 2 2 .k k k ka n a n k k n k n          

This proves  (4.8) by induction since the initial values (0) (1) 0a a   and (2) 1a   give 

0 1,d   1 1,d  and 2
2 .d x    

For example (3)a  is the number of  1’s in 1,10,  i.e. (3) 2.a   Thus 

4 02

2

4
3

01

det 0 .

0 0

x

x

x

d x x x
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Example 4.8 

Let 2 1(2 1)
kkc x    and ( ) 0c n   else. Then 

  
2

1 2 2

, 0
det ( ) ( 1) .

n n
n

n i j
c i j x

   
       


   d   (4.9) 

For example 

 

3

43 2
212

4 3

3

1 0

0 0
det .

0 0 0

0 0 0

x x

x x
x x

x

x

 
 
 

 
 
   
 
  
 

d   

For the proof observe that    2 1 2 2

2
( 1)

k k

k

nn
n n

x
 


 d d   for 11 2 2 .k kn     

It suffices to verify that    2
2 2 1 2 2 2 .

22

k
k k nn

n
   

      
  

  

5. The matrices   1

1 , 0
.

n

i j i j
a



  
  

Theorem 5.1 

Let   1

1 , 0
( ) det ,

n

i j i j
D n a



  
 2log ( )( ) 2 1nn      and ( ) 2 ( ).n n n     

Then  

  ( )
( )( ) ( 1) ( ) .n n
nD n x D n n

      (5.1) 

Proof 

For given 0n   choose k  such that 12 1 2 .k kn     Then 21 log ( 1)k n k     and 

( ) 2 1.kn     

Let   be a 1-nimble permutation. Then as above we see that   induces an order reversing 

permutation on the interval [2 1 , 1].k n n    Here we have ( ) 2 2.ki i     

Since there are ( ) 2 ( )n n n    elements in the interval [2 1 , 1]k n n    we get (5.1) by 

induction. 

Corollary 5.2 

The sequence ( )D n  satisfies 

    1

2 1

2 1
2 ( 1) 2 1k

k n n kD n x D n



       (5.2) 

for 0 2 .kn    
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Let us compute the first values with this recursion: 

1
3
3 1 3

(0) 1 (1)

(3) (2)

D D x

D x D x x

 
  

  

3
1 1 3 3

7 5 3 3
7 1 7 1 3 7 3 7

(0) 1 (1) (2) (3)

(7) (6) (5) (4)

D D x D x x D x

D x D x x D x x x D x x

    
      

  

For example for 12 1kn    we have ( )n n   and ( ) .n n    

This implies for 1k    

   2 1

2 1
2 1 .

k

k

kD x 


     (5.3) 

Lemma 5.3 

For 10 2kn    we get 

   1

2 1 2 1 2

2 1 2 1
2 ( ).

k

k k

k n nD n x x D n
  
 

     (5.4) 

Proof 

By (5.2) we get 

     1 1

2 1 2 1 1 1

2 1 2 1
2 ( 1) 2 1 ( 1) 2 2 1k k

k n n k n n k kD n x D n x D n 
   
 

            

Again by (5.2) we have    1 1 1 2 1 2

2 1
2 2 1 ( 1) .

k

k

k k n nD n x D n    


       

Thus   1

2 1 2 1 2

2 1 2 1
2 ( ).

k

k k

k n nD n x x D n
  
 

     

Lemma 5.4 

For 12 2k kn    we get 

   1

2 1 2 1 2

2 1 2 1
2 ( ).

k

k k

k n nD n x x D n
  
 

    (5.5) 

Proof 

     
 
1 1

1

1 2 2 1 1 2 2 1 1

2 1 2 1

2 2 1 2 1 1

2 1 2 1

2 2 ( 1) 2 1 2 ( 1) 2 1

( 1) ( 1) 2

k k

k k

k

k k

k k i i k k i i k

i i i i k

D i x D i x D i

x x D i

 



      
 

    
 

          

   
  

which is equivalent with (5.5). 

Let us write  

 

( )

2 ( )

2 1
1

( ) ( 1) .
i

i i
i

n

n

i

D n x




 
 
 





     (5.6) 

Then ( )k n  only depends on the residue class modulo 22 .k   
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Theorem 5.5 

Let 10 2 1.ki     Then 

 
1

1

( ) 0,

(2 ) 2 1,

(2 ) 2 2 1,

(2 2 ) 0.

k

k
k

k k
k

k k
k

i

i i

i i

i















  

   

  

  (5.7) 

For 12kn   we have 1( ) ( mod 2 ).k
k kn n     

Proof 

Formula (5.7) follows from (5.1). 

By (5.4) we have    2R
k kn n    for 1R k    which implies 1( ) ( mod 2 ).k

k kn n    

Thus for 2kn   we have ( )k i    

Let us for example compute (11).D   

211 3 2 1mod 2    implies  1(11) max 2 1 2,0 0,       

311 3 2 1mod 2    implies  2 (11) max 2 1,0 3,      

3 411 11 2 3mod 2    implies  3
3(11) max 2 1 6,0 1,       

511 11 8 3mod 2    implies 4 (11) max(6 1,0) 7.      

Therefore we get  
3 1 7

2 2 2 3 7 3 7
3 7 15 3 7 15(11) ( 1) .D x x x x x x

     
      

          

 

Let us now determine the numbers  

 
2

( ) ( 2)
.

( 1)n

D n D n
T

D n





  (5.8) 

From 

   
   
   
   

1

1

1

1

1 2 3 3 1

2 1 2 1

1 2 1 1 1

2 1 2 1

1 2 1 1 1

2 1 2 1

1 2 3 3

2 1 2 1

2 2 2 2 2 ,

2 2 1 2 1 ,

2 2 2 ,

2 2 1 2 1

k

k k

k

k k

k

k k

k

k k

k k k

k k k

k k k

k k k

D x x D

D x x D

D x x D

D x x D









  
 

  
 

   
 

  
 

    

    

 

   

  

we get 

1 12 2 2 2 2k k kT T   
   and 1 12 2 1 2 1

.k k kT T   
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For 0m   and 0 3j   we get by (5.4) 

   1
1 2 3 2 2 3 2 2 1

2 1 2 1
2 2 2 2 2

k k m k

k m k m
k m k j j kD j x x D j



  
       

 
         

which implies 1 12 2 2 2 2k m k kT T    
  and 1 12 2 1 2 1

.k m k kT T    
   

The same argument using (5.4) gives 1 1 12 2 2 2 2 2 2 2 2k m k k k k kj j j
T T T           

     for 1m   and 

0,1.j    

There remains 2 12 2 2 2
.k k k j

T     
 By (5.5) we get 2 1 12 2 2 2 2 2 2 2 2

.k k k k k kj j j
T T T          

     

This gives 

Theorem 5.6 

The numbers 12 2 2k kn j
T    

 satisfy  

 12 2 2 2 2
( 1)k k k

n

n j j
T T     

    (5.9) 

for 0,1.j    

The first terms of the sequence   0n n
T


 are 

3

1

,
x

x
  3

1

,
x

x
   1 7

2
3

,
x x

x
  1 7

2
3

,
x x

x
 3

1

,
x

x
   3

1

,
x

x
 1 15

2
7

,
x x

x
  1 15

2
7

, .
x x

x
   

 

Theorem 5.7 

The numbers ,nT  0,n   satisfy 

 

 

1

1

2 1 2

3
4

1

1 2 1
22 2 1
2 1

,

( 1)

( 1)   for 2.
k

k k

k

n n

n
n

n

n

T T

x
T

x

x x
T k

x








 



 

 

  

  (5.10) 

Proof 

For 12 2 2k kn      we have 

 

 
 
 

2 1 2

2 1

1 2 3 2

2 1

2 5 2

2 1

( ) ( 1) 2 1 ,

( 1) ( 1) 2 2 ,

( 2) ( 1) 2 3 .

k

k

k

k

k

k

n n k

n n k

n n k

D n x D n

D n x D n

D n x D n
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This implies 

   
   

   
 

2 1 2 2 5 2

2 1 2 1
22 2 3 2 2 3 2

2 1 2 1

2 1 2 3 2 1 2 3( ) ( 2)
.

( 1) 2 2 2 2 2 2

k k

k k

k k

k k

n k n k k k

n k n k k

x D n x D n D n D nD n D n

D n x D n x D n D n

   
 

   
 

       
 

      
  

Therefore we have  

 
2 3kn n

T T
 

   (5.11) 

for   12 2 3.k kn      

It remains to prove  

 

1

1

1 2 1
22 2
2 1

1 2 1
22 1
2 1

,
k

k

k

k

k

k

x x
T

x

x x
T

x















 



  (5.12) 

for 2.k    

 

By (5.4) we have 

 
 

1

1

3 2 3
1 2 1 2 1

2 1

2 1 2 1

2 1 ,

2 .

k

k k

k

k k

k

k

D x x x

D x x






 


 

  

 
  

By (5.3)   2 1

2 1
2 1

k

k

kD x 


     and by (5.2)    2 3
1 2 1

2 2 .
k

k

kD x x 


    

This gives (5.12). 

Let us prove that 3
4

1

( 1)n
n

x
T

x
   and 1 3

4 1
1

( 1) .n
n

x
T

x


      

By induction we get using (5.11) 

      3

2 3

4 2 2 3 4 2 4 2 1 1
1

( 1) .
k

k k k k

j

j j j

x
T T T

x




      
      

     3

2 1 3

4 2 1 2 3 4 2 1 4 2 1
1

( 1) .
k

k k k k

j

j j j

x
T T T

x


 

       
      

Remarks 

Let us derive some connections between ( )D n  and ( ).d n   

Lemma 5.8 

 02

( ) ( 1)
( 1) .

( )
nd n d n
x

D n


    (5.13) 
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Proof 

For 0 2kn   we have by (4.2) 

 
   
   

1

1

2

2 1

1 2 2

2 1

2 ( 1) 2 ,

2 1 ( 1) 2 1

k

k

k n n k

k n n k

d n x d n

d n x d n







 


   

     
  

and therefore  

       1

4 2

2 1
2 2 1 2 2 1 .k

k k n k kd n d n x d n d n



          

By (5.2) we have  

   1

2 24 2

2 1
2 2 1 .k

k n kD n x D n



      

This implies 

      
 

   
 

 2 2

2 2 1 2 2 1
2 2 1

2 2 1

k k k k

k k

k k

d n d n d n d n
h n h n

D n D n

      
      

  
 

for  0 2 .kn   Further we have 

     
 

   
 

 1

1

2

2 1
2 22

2 1

2 2 1 2 ( 1) 2 1
2 2 1 .

2 2 1

k

k

k k k k

k k

k k

d d d x d
h h

D x D









  
    


  

Therefore we get  

   2 2 1k kh n h n       

for 0 2kn    and 1.k   This gives by induction  

  2 2
0 0(2 ) 2 1 ( 1) ( 1) .

k kk k n nh n h n x x            

Example 5.9 

Let 
2 1k

kb x

  and 0nb   else. Then 

    1 ( ) ( ) ( 1)
1 , 0

det 1 ,
n n a n a n

n i j i j
D b x

  
  

     (5.14) 

where ( )a n  denotes the total number of 1’s in the binary expansions of the first 1n  positive 

integers. 

This follow immediately from  (4.8) and (5.13). 

For the numbers nT  we get  

 2 2( 2) ( )( 1) ,n s n s n
nT x      (5.15) 

where 2 ( )s n  denotes the sum of digits of the binary expansion of .n   
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For 

 

2 2

( ) ( 1) ( 2) ( 3)
( 3) ( 2) ( 1) ( )

2 2 ( 1) 2 ( 2)

( 2) ( )

( ) ( 2)
( 1) ( 1)

( 1)

( 1) .

n n

n

a n a n a n a n
a n a n a n a n

n a n a n

s n s n

D n D n x x
T x

D n x

x

 



    
     

  

 


    



 

  

The first terms of   0n n
T


 are 

2 2

1 1 1 1
, , 1,1, , , , , , ,1, 1, , , , , , , .x x x x x x x x x x

x x x x
            

 

By (5.10) we have 

1

2 1 2

4

2
2

22 2 1

,

( 1)

( 1) ( 1)   for 2.k k

n n

n
n

k
n n k

kn

T T

T x

x
T x k

x







 

 

 

    

 

This is in accord with  

   1 1 1 2
2 22 2 1 2 2 2 1 2 .k k k k ks n s n k              

Example 5.10 

Let   2 12 1
kkc x    and ( ) 0c n   else. Then 

     21

, 0
det ( 1) 1 .nn n

n i j
c i j x




    D   (5.16) 

Proof 

We know that 
2

2 2( 1) .
n n

n x
   
   
    d   Since 21

2 2

n n
n

   
    

   
 we get (5.16). 

In this case we get 2( 1) .n
nT x    

 

Theorem  5.11 

If we choose (1) 1,g   and  2 1 ( 1)k kg     for 1k   and ( ) 0g n   else then 

   1

, 0
det ( 1) ( )

n

i j
g i j r n




     (5.17) 

where ( )r n  denotes the Golay-Rudin-Shapiro sequence , which is defined by  

 

(2 ) ( ),

(2 1) ( 1) ( ),

(0) 1.

n

r n r n

r n r n

r



  


  (5.18) 
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Proof 

Some information about the Golay-Rudin-Shapiro sequence can be found in  OEIS [8] 
A020985. As has been observed in [2] the Golay-Rudin-Shapiro sequence counts the number 
of pairs 11 in the binary expansion of n  modulo 2: 

  0 1 1
1 0 2

( ) ( 1)   if  .k k
k kr n n       

      (5.19) 

Thus 0(0) ( 1) 1.r      

If   1 0 2k kn      then  1 0 2
2 0k kn      and  1 0 2

2 11 k kn        

which implies  (2 ) ( )r n r n   and (2 1) ( )( 1)nr n r n    because 01 11   if  n  is odd. 

The Golay-Rudin-Shapiro sequence can also be characterized by the recursion 

 

 
 

1

1

2 ( ) for 0 2 ,

2 ( ) for 2 2

for 2 and  (0) (1) 1.

k k

k k k

r n r n n

r n r n n

k r r





   

    

  

  (5.20) 

If 12kn   then  2
2 10k n    and thus  2 ( ).kr n r n    

If 12 2k kn     then  2
2 11k n    and thus  2 ( ).kr n r n     

The proof  of (5.17)  now follows from (5.4) and (5.5). 

From (2.10) we get 

Corollary 5.12 

 2 1

0

1
( 1) .

(0) (2)
1

(1) (3)
1

(2) (4)
1

1

kk

k

z
r r z

r r z
r r z





 











  (5.21) 

 

6. Hankel determinants of shifted sequences   0
.n m n

a  
  

All results are very similar to the case 1.nx   Therefore we only need to make slight 

alterations. 

Let us state the first terms of    1

, 0
( , ) det

n

i j m i j
d n m a



  
   for 3m   and 5:m    

   3 5 5 3 3 5 11
3 3 7 7 7 15 3 7 15 3 15( ,3) 1, ,0,0, , ,0,0, , ,0,0, , ,d n x x x x x x x x x x x        

   3 3 5 11
7 7 15 15( ,5) 1,0,0, ,0,0,0,0, ,0,0, , .d n x x x x       
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As in Lemma 3.3 we see that  

   1

, 0
( , ) det 0

n

i j m i j
d n m a



  
    (6.1) 

if 2 2k km n    for some .k   

 

Lemma 6.1 

Let 2 1m r   and k  be given. Then for 10 2 1kj r      

    
2 1

21 2 1 1

2 1
2 , ( 1) 2 1, .k

j

k j kd r j m x d r j m
 

 
   


         (6.2) 

For example  10 5 5
15 15(9,3) (8 1 2,3) ( 1) 8 1 2 1,3 (4,3).d d x d x d           

 

Lemma 6.2 

Let 2 1.m r   Then for 2Ra m   for some R  we have 

    1

2 2 1

2 2

2 1
2 , ( 1) 2 , .R

a r

R a m Rd a m x d a m m

  
 

 


       (6.3) 

if 2 .Ra m    

 

Lemma 6.3 

Let 2m r  and k  be given. Then for 10 2kj r     

    
2

21 2 1

2 1
2 , ( 1) 2 , .k

j

k j kd r j m x d r j m
 
 

  


        (6.4) 

 

Lemma 6.4 

Let 2 .m r  Then for 2Ra m   for some R  we have 

    1

2

2 2

2 1
2 , ( 1) 2 , .R

a m

R a m Rd a m x d a m m

 
 

 


       (6.5) 

 

Theorem 6.5 

( , ) 0d n m   if and only if 10, mod 2Kn m    if 12 2 .K Km     
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