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Abstract

We introduce a new q-analogue of the Fibonacci polynomials and derive some of
its properties. Extra attention is paid to a special case which has some interesting
connections with Euler’s pentagonal number theorem.

1 Introduction

The Fibonacci polynomials fn(x, s) are defined by the recursion fn(x, s) = xfn−1(x, s) +
sfn−2(x, s) with initial values f0(x, s) = 0, f1(x, s) = 1. They are given by the explicit

formula fn(x, s) =
bn−1

2
c∑

k=0

(
n−k−1

k

)
xn−1−2ksk. L. Carlitz [3] has defined a q-analogue, which

has been extensively studied (cf. e.g. [6], [2], [8]).

In [7] I found that Fn(x, s) =
bn−1

2
c∑

k=0

[
n−k−1

k

]
q(

k+1
2 )xn−1−2ksk is another natural q-

analogue which satisfies the simple but rather unusual recursion (2.8 ). This recursion
does not lend itself to the computation of special values. Therefore I was surprised as I

learned that it has been shown in [9] and [13] that Fn(1,−1
q
) =

bn−1
2

c∑
k=0

(−1)kq(
k
2)

[
n−1−k

k

]
has

the simple evaluation (3.2 ). This fact led me to a thorough study of this q-analogue via a
combinatorial approach based on Morse code sequences. We show that these q-Fibonacci
polynomials satisfy some other recurrences too, generalize some well-known facts for or-
dinary Fibonacci polynomials to this case, derive their generating function and study
the special values Fn(1,−1

q
) and Fn(1,−1) which turn out to be intimately connected

with Euler’s pentagonal number series. Finally we show that the Hankel determinants

det
(
Fi+j+k(1,−1

q
)
)n−1

i,j=0
can be explicitly evaluated.
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I want to thank H. Prodinger for pointing out to me identity (4.7 ) in [1] and the
paper [4], S.O. Warnaar for some helpful remarks and drawing my attention to [9], and
R. Chapman and C. Krattenthaler for providing another simple proof of (3.2 ).

Morse code sequences are finite sequences of dots (•) and dashes (−). We assume that
a dot has length 1 and a dash has length 2. The number of all such sequences of total
length n − 1 is the Fibonacci number Fn, which is defined as the sequence of numbers
satisfying the recursion Fn = Fn−1 + Fn−2 with initial conditions F0 = 0 and F1 = 1.
Let MC be the set of all Morse code sequences. We interpret MC as a monoid with
respect to concatenation whose unit element is the empty sequence ε. If we write a for
a dot and b for a dash then MC consists of all words in a and b. Let P be the corre-
sponding monoid algebra over C , i.e. the algebra of all finite sums

∑
v∈MC

λvv with complex

coefficients.

An important element of P is the binomial

(a+ b)n =

n∑
k=0

Cn
k (a, b). (1.1 )

Here Cn
k (a, b) is the sum of all words with k dashes and n− k dots. It is characterized

by the boundary values C0
k(a, b) = δk,0 and Cn

0 (a, b) = an and each of the two recursions

Cn+1
k (a, b) = bCn

k−1(a, b) + aCn
k (a, b) (1.2 )

or
Cn+1

k (a, b) = Cn
k−1(a, b)b+ Cn

k (a, b)a. (1.3 )

It is clear that the image of Cn
k (a, b) under the homomorphism ϕ : P → C , defined by

ϕ(a) = ϕ(b) = 1, is the binomial coefficient
(

n
k

)
.

Let R be the ring of linear operators on the vector space of polynomials C [x, s]. We are
interested in multiplication operators with polynomials and the operator ε in R defined
by εf(s) = f(qs). Let now

ϕ(a) = xε, ϕ(b) = qsε. (1.4 )

Then ϕ(a)ϕ(b) = qϕ(b)ϕ(a).
The q-binomial theorem (see e.g.[5]) states that for n ∈ N

(A+B)n =
∑ [

n
k

]
BkAn−k if AB = qBA.

Here
[

n
k

]
= (qn−1)···(qn−k+1−1)

(qk−1)···(q−1)
denotes the q-binomial coefficient or Gaussian polynomial

(cf. e.g. [1] or [5]).
Therefore we get the well-known result

(x+ qs)(x+ q2s) · · · (x+ qns)εn = (xε+ qsε)n =
n∑

k=0

[n
k

]
q(

k+1
2 )skxn−kεn (1.5 )

and as special case
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ϕ(Cn
k (a, b)) =

[n
k

]
(qsε)k(xε)n−k =

[n
k

]
q(

k+1
2 )skxn−kεn. (1.6 )

2 A new class of q-Fibonacci polynomials

a) To each Morse code sequence of n letters c1c2 . . . cn we associate the weight qi1+···+ikskxn−k

if the ij are those indices for which cj = b. This means that the weight wi at i is wi(a) =
x, wi(b) = qis and the total weight satisfies w(c1c2 · · · cn) = w1(c1)w2(c2) · · ·wn(cn). Then
it is easy to see that w(c1c2 · · · cn) = ϕ(c1c2 · · · cn)1.
If the word c1c2 · · · cn has k elements b then

ϕ(c1c2 · · · cn) = qi1+···ikskxn−kεn (2.1 )

In [6] we have defined polynomials Fn(a, b) as the sum of all monomials u ∈ MC
of length l(u) = n − 1. There we have called them abstract Fibonacci polynomials.
As the referee pointed out, it would be better to call them noncommutative Fibonacci
polynomials. By classifying with respect to the first or last letter respectively we see that
Fn(a, b) = aFn−1(a, b) + bFn−2(a, b)
and also Fn(a, b) = Fn−1(a, b)a + Fn−2(a, b)b
with initial values F0(a, b) = 0, F1(a, b) = 1.
If we apply the homomorphism ϕ we get ϕ(Fn(a, b))1 = Fn(x, s) with polynomials Fn(x, s).
These polynomials are the q-Fibonacci polynomials which we will study in this paper.

Theorem 2.1
The q-Fibonacci polynomials satisfy each of the recurrences

Fn(x, s) = xFn−1(x, qs) + qsFn−2(x, qs), (2.2 )

Fn(x, s) = xFn−1(x, s) + qn−2sFn−2(x,
s

q
), (2.3 )

and

Fn(x, s) = xFn−1(x, s) + qn−2sxFn−3(x, s) + qn−2s2Fn−4(x, s) (2.4 )

and are given by the explicit formula

Fn(x, s) =

bn−1
2

c∑
k=0

[
n− k − 1

k

]
q(

k+1
2 )xn−1−2ksk. (2.5 )

Proof.
The first equation follows by considering the first letter of the Fibonacci word. To prove
(2.3 ) we get the first term if the last letter of the Fibonacci word is a. If the last letter
is b we need the following result of [6]:
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Lemma. The noncommutative Fibonacci polynomials are given by

Fn(a, b) =

n−1∑
k=0

Cn−k−1
k (a, b) (2.6 )

This implies ϕ(Fn(a, b)) =
n−1∑
k=0

ϕ(Cn−k−1
k (a, b)).

If ub is a word with n− k − 1 letters (2.1 ) gives

ϕ(u)s = qi1+···+ikskxn−2k−3εn−k−3s = qi1···+ik

(
s
q

)k

xn−2k−3qn−3s.

Therefore
ϕ(Fn−2(a, b)qsε) = qn−2sFn−2(x,

s
q
) and (2.3 ) follows.

Combining (2.2 ) and (2.3 ) we get recursion (2.4 ).

From (2.6 ) and (1.6 ) we get the explicit formula.

We can extend Fn(x, s) to negative n by assuming (2.2 ) for all n ∈ Z. This gives

F−n(x, s) = (−1)n−1Fn(x, s)

sn
. (2.7 )

In order to verify this we must show that
Fn(x,s)

sn = −xFn+1(x,qs)
(qs)n+1 + qsFn+2(x,qs)

(qs)n+2

or
qn+1sFn(x, s) = −xFn+1(x, qs) + Fn+2(x, qs),
which is (2.3 ).

There is also another recursion of a different kind (cf.[7]). LetD be the q-differentiation

operator defined by Df(x) = f(qx)−f(x)
qx−x

. Then we get

Fn(x, s) = xFn−1(x, s) + (q − 1)sDFn−1(x, s) + sFn−2(x, s). (2.8 )

For the proof it suffices to compare coefficients. This leads to the identity

q(
k+1
2 ) [

n−k
k

]
= q(

k+1
2 ) [

n−k−1
k

]
+(q−1)q(

k
2 )

[
n−k
k−1

]
[n−2k+1]+q(

k
2)

[
n−k−1

k−1

]
which is easily

verified. Here [n] denotes [n] = qn−1
q−1

.

From this we may deduce a formula for the q-derivative:

(q − 1)DFn(x, s) = qn−1Fn−1(x,
s
q
) − Fn−1(x, s).

We have also a precise q-analogue of the Lucas polynomials (cf. [7]).
It satisfies the same recurrence
Lucn(x, s) = (x+(q−1)sD)Lucn−1(x, s)+sLucn−2(x, s) but with initial values Luc0(x, 2) =
2, Luc1(x, 2) = x and is given by the explicit formula
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Lucn(x, s) =
bn

2
c∑

j=0

[n]
[n−j]

[n−j
j

]q(
j
2)xn−2jsj .

These polynomials are related to the q-Fibonacci polynomials by the formulas Lucn(x, s) =
Fn+1(x, s) + sFn−1(x, s)
and
DLucn(x, s) = [n]Fn(x, s

q
).

They also satisfy the rather ugly recursion
Lucn+4(x, s) = xLucn+3(x, s) − qn+1 [2]

[n+1]
sLucn+2(x, s)+

+qn+1 [n+3]
[n+1]

sxLucn+1(x, s) + qn+1 [n+3]
[n+1]

s2Lucn(x, s).

b) For the usual q-Fibonacci numbers G. Andrews [2] has obtained a ”bizarre” gener-

alization of the well known formula for Fibonacci numbers Fn = 1
2n−1

bn−1
2

c∑
k=0

(
n

2k+1

)
5k. For

our q-Fibonacci numbers a somewhat less bizarre generalization exists.
Let A be the operator x+ (q − 1)sD on C [x, s]. Since A and the multiplication operator
s commute it is obvious that the same formulas hold as in the case q = 1 of ordinary
Fibonacci polynomials.

E.g. Fn(x, s) =
bn−1

2
c∑

k=0

(
n−k−1

k

)
skAn−2k−11

or the Binet formula
Fn(x, s) = 1√

A2+4s

((
A+

√
A2+4s
2

)n

−
(

A−√
A2+4s
2

)n)
1,

which is equivalent with

Fn(x, s) = 1
2n−1

n∑
k=0

(
n

2k+1

)
An−2k−1(A2 + 4s)k1.

Let r(n, k, x, s) be the polynomial r(n, k, x, s) = An−2k−1(A2 + 4s)k1.
It satisfies the recurrence
r(n, k + 1, x, s) = r(n, k, x, s) + 4sr(n− 2, k, x, s), since
An−2(k+1)−1(A2 + 4s)k+1 = An−2k−3(A2 + 4s)(A2 + 4s)k =
= An−2k−1(A2 + 4s)k + 4sA(n−2)−2k−1(A2 + 4s)k.

For the q-Fibonacci numbers Fn(q) =
bn−1

2
c∑

k=0

[
n−k−1

k

]
q(

k+1
2 ) this implies

Fn(q) = 1
2n−1

bn−1
2

c∑
k=0

(
n

2k+1

)
r(n, k, 1, 1), where r(n, k, 1, 1) is a polynomial in q with integer

coefficients. Of course for q = 1 we get r(n, k, 1, 1) = 5k, which does not depend on n.
From (2.4) it is easy to derive that the degree degFn(q) as polynomial in q is given by

deg F3n(q) = n(3n−1)
2

, degF3n+1(q) = n(3n+1)
2

, degF3n+2(q) = 3n(n+1)
2

.
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c) The Fibonacci numbers satisfy F2n =
n∑

k=0

(
n
k

)
Fn−k. This property has two nice

generalizations

F2n(x, s) =
n∑

k=0

[n
k

]
q(

k+1
2 )skxn−kFn−k(x, q

ns) (2.9 )

and

F2n(x, s) =
n∑

k=0

[n
k

]
qnk−(k+1

2 )skxn−kFn−k(x,
s

qk
). (2.10 )

The first one follows immediately from the formula

F2n(a, b) =
n∑

k=0

Cn
k (a, b)Fn−k(a, b)

for noncommutative Fibonacci polynomials proved in [8].

The second one follows from the companion formula

F2n(a, b) =
n∑

k=0

Fn−k(a, b)C
n
k (a, b).

For the proof observe that ϕ(Fn−k(a, b)) =
n−k−1∑

l=0

ϕ(Cn−k−l−1
k (a, b)).

Each word u ∈ ϕ(Cn−k−l−1
l (a, b)) has the form

qi1+···+ilslxn−k−2l−1εn−k−l−1. Therefore

usk1 = qi1+···+ilslxn−k−2l−1q(n−k−l−1)ksk = qi1+···+il( s
qk )lqnk−2(k+1

2 )skxn−2l−k−1.

This implies (2.10 ).

d) The formula Fn+k =
k∑

j=0

(
k
j

)
Fn−j can be generalized to

Fn

(
x,

s

qk

)
=

k∑
j=0

xk−j

[
k

j

] (
s

qk

)j

q(
j+1
2 )Fn−k−j(x, s). (2.11 )

Observe that some Fl(x, s) will have negative subscripts l. This formula can be proved
by induction starting from

Fn(x, s
q
) = xFn−1(x, s) + sFn−2(x, s).

For we have

Fn(x, s
qk+1 ) =

k∑
j=0

xk−j
[

k
j

]
( s

qk+1 )
jq(

j+1
2 )Fn−k−j(x,

s
q
) =

k∑
j=0

xk−j
[

k
j

]
( s

qk+1 )
jq(

j+1
2 )(xFn−k−j−1(x, s) + sFn−k−j−2(x, s)) =
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k∑
j=0

xk−j+1
[

k
j

]
( s

qk+1 )
jq(

j+1
2 )Fn−k−j−1(x, s)+

+
k+1∑
j=1

xk−j+1
[

k
j−1

]
( s

qk+1 )
jq(

j+1
2 )+k−j+1Fn−k−j−1(x, s) =

=
k+1∑
j=0

xk−j+1
[

k+1
j

]
( s

qk+1 )
jq(

j+1
2 )Fn−k−j−1(x, s).

Together with (2.10 ) this implies

F2n(x, s) =
∑
k

[
n
k

]
qnk−(k+1

2 )skxn−k
k∑

j=0

xk−j
[

k
j

]
( s

qk )jq(
j+1
2 )Fn−2k−j(x, s) =

=
∑
k,j

[
n
k

] [
k
j

]
qnk−jk−(k+1

2 )+(j+1
2 )sk+jxn−jFn−2k−j(x, s).

If in (2.11 ) we replace n by 2n, s by qns and k by n we get again (2.9 ).
In the other direction we have

Fn(x, qs) =
n−1∑
j=0

(−1)j(qs)jx−1−jFn+1−j(x, s). (2.12 )

This follows from the recursion (2.2 ) by induction. It is true for n = 1 because
xF1(x, qs) = F2(x, s). If it is true for n− 1 we get

x
n−1∑
j=0

(−1)j(qs)jx−1−jFn+1−j(x, s) =

= Fn+1(x, s) − qs
n−2∑
j=0

(−1)j(qs)jx−1−jFn−j(x, s) =

= Fn+1(x, s) − qsFn−1(x, qs) = xFn(x, qs).

e) Another interesting formula is

xkFn(x, qks) =
k∑

j=0

(−1)j

[
k

j

]
qj2

sjFn+k−2j(x, q
js). (2.13 )

We prove it by induction. The formula holds for k = 1 and all n. If it is true for k
then we get

xk+1Fn(x, qk+1s) =
k∑

j=0

(−1)j
[

k
j

]
qj2

(qs)jxFn+k−2j(x, q
j+1s) =

=
k∑

j=0

(−1)j
[

k
j

]
qj2

(qs)j(Fn+k+1−2j(x, q
js) − qj+1sFn+k−1−2j(x, q

j+1s)) =

=
∑
j≥0

(−1)j
([

k
j

]
qj +

[
k

j−1

])
qj2
sjFn+k+1−2j(x, q

js) =

=
∑
j≥0

(−1)j
[

k+1
j

]
qj2
sjFn+k+1−2j(x, q

js).

For n = 1 we get xk =
k∑

j=0

(−1)j
[

k
j

]
qj2
sjFk+1−2j(x, q

js).
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This may be rewritten in the form

xk =
bk+1

2
c∑

j=0

(−1)j
[

k
j

]
qj2
sjFk+1−2j(x, q

js)+

+
bk−1

2
c∑

j=0

(−1)j
[

k
j

]
qk+kj−j2−jsj+1Fk−2j−1(x, q

k−js).

For n = 0 this reduces to
bk−1

2
c∑

j=0

(−1)j
[

k
j

]
sj

(
qj2
Fk−2j(x, q

js) − qjk−j2
Fk−2j(x, q

k−js)
)

= 0.

For q 6= 1 this is nontrivial identity.

f) Define bn,k by b0,k = [k = 0], b1,k = [k = 0], the recursion
bn+1,k = qkbn,k + bn,k−1 for k ≤ bn

2
c, and b2n+1,n+1 = 0.

Then we get

xn =
∑
2k≤n

(−1)k(qs)kq2(k
2)bn,kFn+1−2k(q

ks). (2.14 )

Obviously (2.14) holds for n = 1. So we may assume that it holds for n. Since bn,k

does not depend on s the same formula holds for qs in place of s. From (2.2 ) we therefore
get

x
∑

2k≤n

(−1)k(q2s)kq2(k
2)bn,kFn+1−2k(q

kqs) =

=
bn

2
c∑

k=0

(−1)k(q2s)kq2(k
2)bn,kFn+2−2k(q

ks)−

−
bn

2
c∑

k=0

(−1)k(q2s)kq2(k
2)bn,kq

k+1sFn−2k(q
k+1s) =

=
bn

2
c∑

k=0

(−1)k(q2s)kq2(k
2)bn,kFn+2−2k(q

ks)+

+
bn

2
c+1∑

k=1

(−1)k(qs)kq2(k
2)bn,kFn−2k+2(q

ks) =

=
∑

2k≤n+1

(−1)k(qs)kq2(k
2)bn+1,kFn+2−2k(q

ks).

There is no explicit formula for bn,k. By comparing coefficients we get from (2.14 ) the
following characterization
k∑

j=0

(−1)j
[

n−k−j
k−j

]
q(

j
2)bn,j = [k = 0].

Let now an,n−2k = bn,k or an,k = bn, n−k
2

. Then we get an,k = q
n−k

2 an−1,k−1 + an−1,k+1

with an,−1 = 0 for all n and initial values a0,k = [k = 0] and a1,k = [k = 1].
For q = 1 it is well known that a2n,0 = 1

n+1

(
2n
n

)
is a Catalan number. Therefore a2n,0 is

a q-analogue of the Catalan numbers (cf. e.g. [6]).

the electronic journal of combinatorics 10 (2003), #R19 8



3 Special values

It turns out that for x = 1, s = −1 or x = 1, s = −1
q

we get very simple results.

Theorem 3.1 Let r(k) = k(3k−1)
2

denote a pentagonal number. Then

F3n(1,−1) =

n∑
k=−n+1

(−1)kqr(k), F3n+1(1,−1) = F3n+2(1,−1) =

n∑
k=−n

(−1)kqr(k). (3.1 )

Remark. This is a curious result. It means that the values Fn(1,−1) are just the
partial sums of Euler’s pentagonal number series∏
n≥1

(1 − qn) = 1 − q − q2 + q5 + q7 −− + + . . . =

=
∞∑

k=−∞
(−1)kq

k(3k−1)
2 =

∑
k∈Z

(−1)kqr(k).

Theorem 3.2 For x = 1, s = −1
q

we get

F3n(1,−1

q
) = 0, F3n+1(1,−1

q
) = (−1)nqr(n), F3n+2(1,−1

q
) = (−1)nqr(−n). (3.2 )

Remark. Formula (3.2 ) has been proved by Shalosh B. Ekhad and D. Zeilberger [14]
with a computer proof and by S. O. Warnaar [13] as a special case of a cubic summation
formula in the form
bn

2
c∑

k=0

(−1)kq(
k
2)

[
n−k

k

]
=

{
(−1)b

n
3 cq

n(n−1)
6 ,n 6≡2 (mod 3)

0,n≡2 (mod 3).

I learned from C. Krattenthaler that the cubic summation formula referred to by S. O.
Warnaar is formula (5.22) of [10], and that from the hypergeometric view this seems to
be the most natural approach to (3.2 ). Since I am not familiar with bibasic series I want
to give some elementary proofs which do not need much theory. From (2.11 ) and (2.12 )
we see that Theorem 3.1 and Theorem 3.2 are equivalent. So it suffices to prove one of
them.

a) We first give a direct proof of (3.2 ). For x = 1, s = −1
q

formula (2.4 ) reduces to

Fn(1,−1
q
) = Fn−1(1,−1

q
) − qn−3Fn−3(1,−1

q
) + qn−4Fn−4(1,−1

q
).

From this we get

Fn+3(1,−1

q
) = (1 − qn)Fn(1,−1

q
) + qn−3Fn−3(1,−1

q
). (3.3 )

Since F4(1,−1
q
) = −qF1(1,−1

q
), F5(1,−1

q
) = −q2F2(1,−1

q
) we even get

Fn+3(1,−1

q
) = −qnFn(1,−1

q
). (3.4 )
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This implies immediately
F3n(1,−1

q
) = 0,

F3n+1(1,−1
q
) = (−1)nq

nP

i=1
3i−2

= (−1)nqr(n),

F3n+2(1,−1
q
) = (−1)nq

nP

i=1
3i−1

= (−1)nqr(−n).

b) But there is a more illuminating combinatorial proof of (3.1 ), which is an adapta-
tion of Franklin’s proof of the pentagonal number theorem to this case (cf. [1] or [4]).
Let u be a word of length n− 1, u 6= an−1. Then we can write it in the form u = ai−1zblaj

where i, l ≥ 1 are chosen to be maximal. In case i ≤ l we call the first b from the left b1
and the i-th b from the right b2. If b1 6= b2 we call u good of type b and define ψ(u) by
changing b1 to a and b2 to ab. Then ψ(u) has the same length and the same weight as u
but the number of b’s is one less. If b1 = b2 we call u bad of type b. It is easy to see that
u is bad of type b if and only if u = ai−1biaj , i ≥ 1.
Then ψ(u) has the form u = ai−1zblaj with i > l ≥ 1. If u has this form let a1 be the l-th
element a from the left and a2 the a immediately in front of bl. If a1 6= a2 we call u good
of type a and define ψ(u) as follows. We change a1 to b and drop a2. Then it is clear that
ψ maps the set of good words of type a bijectively onto the set of good words of type b in
such a way that words with an even number of b′s are mapped onto words with an odd
number of b′s and vice versa. If a1 = a2 we call u bad of type a. Then u is bad of type a
if and ony if u = alblaj for some l ≥ 1.

Let for example n = 10 and u = ababba, then u = ababba = ab1ab2ba and therefore
ψ(u) = aaaabba. The weight of these words is 11. If u = ababaa then u is good of type a
with length 8 and weight 6, u = a1ba2ba. Here we get ψ(u) = ψ(a1ba2ba) = bbba.
The weights of the bad words are
w(ai−1biaj) = i(3i−1)

2
and w(alblaj) = l(3l+1)

2
.

For a Morse code sequence of length 3n− 1 the bad word with maximal weight is an−1bn,
for the length 3n and 3n + 1 the corresponding words are anbn and anbna. The weights
of these words are r(n) and r(−n) respectively.
Therefore we get the desired result

F3n(1,−1) =
n∑

k=−n+1

(−1)kqr(k), F3n+1(1,−1) = F3n+2(1,−1) =
n∑

k=−n

(−1)kqr(k).

c) Another proof of (3.2) has been communicated to me independently both by R.
Chapman and C. Krattenthaler, which I reproduce in my notation.

From (1 + s)(1 + qs) · · · (1 + qn−1s) =
n∑

k=0

[
n
k

]
q(

k
2)sk (cf.(1.5)) follows

[
n−k−1

k

]
q(

k
2) =

∑
0≤i1<i2<···<ik<n−k−1

qi1+···+ik .

In the sum
∑

(−1)k
[

n−k−1
k

]
q(

k
2) all terms qi1+···ik with i1 = 0 cancel, because (−1)kqi1+···ik+

(−1)k−1qi2+···ik = 0. The only terms remaining are those with i1 > 0 and ik + k = n− 2.
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The above proof or the original proof of Franklin lets ik + k invariant and gives im-
mediately
F3n(1,−1

q
) = 0, F3n+1(1,−1

q
) = w(an−1bn) = (−1)nqr(n),

F3n+2(1,−1
q
) = w(an−1bna) = (−1)nqr(−n).

4 A generating function

Now we want to calculate the generating function
F (x, s, z) =

∑
n≥0

Fn+1(x, s)z
n of the q-Fibonacci polynomials. We have

F (x, s, z) =
∑
n≥0

Fn+1(x, s)z
n = 1 +

∑
n≥1

xFn(x, qs)zn +
∑
n≥1

qsFn−1(x, qs)z
n =

= 1 + xzF (x, qs, z) + qsz2F (x, qs, z) = 1 + xzεF (x, s, z) + qsz2εF (x, s, z)
i.e.

F (x, s, z) = 1 + (xz + qsz2)F (x, qs, z) (4.1 )

or
(1 − xzε − qz2sε)F (x, s, z) = 1
and therefore

F (x, s, z) =
∑
n≥0

(xzε + z2sε)n1. (4.2 )

Now we have zε · sz2ε = qsz2ε · zε. Therefore the q-binomial theorem gives

(xzε + z2qsε)n1 =
n∑

k=0

[
n
k

]
(qz2sε)k(xz)n−k1 =

n∑
k=0

[
n
k

]
q(

k+1
2 )skxn−kzn+k.

Using the well known formula
1

(1−z)(1−qz)···(1−qkz)
=

∑ [
n+k

k

]
zn this implies

F (x, s, z) =
∑
n

n∑
k=0

[
n
k

]
xn−kq(

k+1
2 )zn+ksk =

=
∑
k≥0

q(
k+1
2 )skz2k

∑
n≥0

[
n+k

k

]
xnzn =

∑
k≥0

q(
k+1
2 )sk z2k

(1−xz)(1−qxz)···(1−qkxz)
,

i.e.

F (x, s, z) =
∑
n≥0

Fn+1(x, s)z
n =

∑
k≥0

q(
k+1
2 )sk z2k

(1 − xz)(1 − qxz) · · · (1 − qkxz)
. (4.3 )

On the other hand we have

(xzε + qz2sε)n1 = zn(x+ qsz)(x+ q2sz) · · · (x+ qnsz). (4.4 )

From (4.3 ) and (4.2 ) we get

∑
k≥0

q(
k+1
2 )sk z2k

(1 − xz)(1 − qxz) · · · (1 − qkxz)
=

∑
n≥0

zn(x+ qsz)(x+ q2sz) · · · (x+ qnsz)

(4.5 )
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If we set x = 1, a = −qsz this reduces to

∑
k≥0

(−1)kq(
k
2)

(az)k

(1 − z)(1 − qz) · (1 − qkz)
=

∑
k≥0

zn(1 − a)(1 − qa) · · · (1 − qn−1a). (4.6 )

From (4.6 ) and (4.3 ) we also get∑
k≥0

zk(1 − z)(1 − qz) · · · (1 − qk−1z) =
∑
k≥0

Fk+1(1,−1
q
)zk.

Letting a = z this gives

∑
k≥0

zk(1 − z)(1 − qz) · · · (1 − qk−1z) =
∑
k≥0

(−1)k(qr(k)z3k + qr(−k)z3k+1). (4.7 )

Remark. This identity which is equivalent with (3.2 ) is well known (c.f. [1], p. 29,
Example 10, [14], p. 951 or [4]).
In our notation the usual proof may be formulated in a very convincing way:
The recursion (2.2 ) implies identity (4.1 ) for the generating function. In the same way
the other recursion (2.3 ) gives

(1 − xz)F (x, s, z) = 1 + qsz2F (x,
s

q
, qz). (4.8 )

From (4.8 ) for x = 1, s = −1 we get

(1 − z)F (1,−1, z) = 1 − qz2F
(
1,−1

q
, qz

)
and from (4.1 ) for x = 1, s = −1

q
we get in the same way

F
(
1,−1

q
, z

)
= 1 + z(1 − z)F (1,−1, z).

This implies

F (1,−1
q
, z) = 1 + z − qz3F

(
1,−1

q
, qz

)
,

which is equivalent with

Fn+3

(
1,

−1

q

)
= −qnFn

(
1,

−1

q

)
(4.9 )

and therefore with (3.2 ).
Formulae (3.2 ) and (3.1 ) are generalizations of the trivial fact that the recursion

fn = fn−1 − fn−2, f0 = 0, f1 = 1 has the periodic solution 0, 1, 1, 0,−1,−1, 0, 1, 1, 0, · · ·
with period 6.
For q = 1 formulas (4.6 ) and (4.7 ) reduce to

1
1−z+z2 =

∑
(−1)k z2k

(1−z)k+1 =
∑
zk(1 − z)k = 1+z

1+z3 =

= 1 + z − z3 − z4 + z6 + z7 −− + + · · ·
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5 A Hankel determinant

Theorem 5.1
Let β(n, k) = n(n+k−2)(n+k−3)

6
and α(n, k) = β(n, k) if (n− 2k) 6≡ 1 (mod 3), α(n, k) = 0

if n− 2k ≡ 1 (mod 6) and α(n, k) = β(n, k) + n
6

if n− 2k ≡ 4 (mod 6).

Then the Hankel determinant dn,k = det
(
Fi+j+k(1,−1/q)

)n−1

i,j=0

satisfies

dn,k = (−1)kε(n− 2k)qα(n,k)

bn
2
c∏

i=1

(qi − 1)n−2i (5.1 )

where the sign ε(n) is given by
ε(2n) = (−1)n, ε(6n+ 1) = 0, ε(6n+ 3) = 1, ε(6n+ 5) = −1.

Proof. We use the condensation method as outlined in Krattenthaler [11] or Zeilberger
[15]. In a similar context this method has been used in [12], which inspired our proof.
Equation [11] (2.16) gives in this case equation [12] (2.3 ), which states that

dn,k+1dn.k−1 − dn−1,k+1dn+1,k−1 = (dn,k)
2 (5.2 )

holds for all n, k.
This identity lends itself to prove (5.1 ) by induction with respect to n for all k.

From Fn+3

(
1,−1

q

)
= −qnFn

(
1,−1

q

)
it is trivial that

dn,k+3 = (−1)nq2(n
2)+kndn,k. So it would suffice to prove (5.2) only for k = 0, 1, 2. But the

general case is not harder to prove.

From F3n

(
1,−1

q

)
= 0 and

Fn

(
1,−1

q

)
= (−1)b

n−1
3

cq
(n−1)(n−2)

6 for n 6≡ 0 (mod 3) we conclude that

d1,k = Fk

(
1,−1

q

)
= (−1)kε(1 − 2k)qα(1,k).

In the same way we see by direct calculation that
d2,k = (−1)kε(2 − 2k)qα(2,k).
Now from (5.2) we immediately see that dn,k for all n ≥ 3 and all k is uniquely determined.
Thus all that remains is to verify formula (5.2) if we set

dn,k = (−1)kε(n− 2k)qα(n,k)
bn

2
c∏

i=1

(qi − 1)n−2i.

This reduces to
ε(n− 2k − 2)ε(n− 2k + 2)qα(n,k+1)+α(n,k−1) =

= ε(n− 2k − 3)ε(n− 2k + 3)qα(n−1,k+1)+α(n+1,k−1) + q2α(n,k)ε(n− 2k)2 (5.3 )

for n ≡ 1 (mod 2)
and to
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ε(n− 2k − 2)ε(n− 2k + 2)qα(n,k+1)+α(n,k−1) =

= ε(n− 2k − 3)ε(n− 2k + 3)qα(n−1,k+1)+α(n+1,k−1)
(
q

n
2 − 1

)
+ q2α(n,k)ε(n− 2k)2 (5.4 )

for n ≡ 0 (mod 2).

We consider several cases, where the resulting identity can easily be verified:
1) n ≡ 2k + 1 (mod 6):
This implies dn,k = 0 and
(n− 1) − 2(k + 1) ≡ (n+ 1) − 2(k − 1) ≡ 4 (mod 6).
Thus (5.3 ) reduces to

−qβ(n,k+1)+β(n,k−1) + qβ(n−1,k+1)+β(n+1,k−1)+ n−1
6

+ n+1
6 = 0.

2)n ≡ 2k + 3 (mod 6) :
Here (5.3 ) reduces to
qβ(n−1,k+1)+β(n+1,k−1) = q2β(n,k).
3) The same is true for n ≡ 2k + 5 (mod 6).
4)n ≡ 2k + 4 (mod 6):
Here (5.4 ) reduces to
qβ(n,k+1)+β(n,k−1) = q2β(n,k)+ n

3 .
5) For n ≡ 2k (mod 6) we have n− 2(k + 1) ≡ 4 (mod 6) and (5.4) reduces to
q(β(n,k+1)+ n

6
)+β(n,k−1) − (q

n
2 − 1)q(β(n+1,k−1)+β(n−1,k+1) = q2β(n,k).

6) For n ≡ 2k + 2 (mod 6) we have n− 2(k − 1) ≡ 4 (mod 6) and (5.4) reduces to
qβ(n,k+1)+(β(n,k−1)+ n

6
) − (q

n
2 − 1)qβ(n+1,k−1)+β(n−1,k+1) = q2β(n,k).
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