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Abstract

We derive some formulas for the Carlitz q–Fibonacci polynomials Fn(t)
which reduce to the finite version of the Rogers–Ramanujan identities ob-
tained by I. Schur for t = 1. Our starting point is a representation of the q–
Fibonacci polynomials as the weight of certain lattice paths in R2 contained
in a strip along the x–axis. We give an elementary combinatorial proof by
using only the principle of inclusion-exclusion and some standard facts from
q–analysis.
Keywords: Rogers-Ramanujan identities, q–analogue, q–Fibonacci polyno-
mial, lattice path, inclusion-exclusion

1 Background

The Rogers–Ramanujan identities play an important role in the theory of
partitions (cf. [3]). They have an unusual history. They were first found
by L.J. Rogers in 1894 but remained unnoticed for some time. About 1913
Srinivasa Ramanujan rediscovered the formulas but he had no proof. In 1917
Ramanujan came accidentally across Rogers’ paper. He and Rogers then
found simpler proofs. At about the same time, I. Schur [18] independently
rediscovered the identities and gave two proofs which differed radically from
these other proofs. Some new ideas emerged as these identities occurred
in mathematical physics in the course of the solution of the so called hard
hexagon model by R.J. Baxter in 1981. Today there are plenty of different
proofs of these identities and their generalizations. I only want to mention
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some papers which in some way have inspired me in writing this paper: [1],
[4], [5], [6], [12], [13], [14], [15], [16], [17], and [18]. It appears that the
Rogers–Ramanujan identities have connexions with various different parts
of mathematics. An especially interesting aspect is their relation with the
Fibonacci numbers. This has first occurred in the paper [18] by I. Schur and
emerged again unexpectedly in the solution of the hard hexagon model (cf.
[12]). It turned out that the Rogers-Ramanujan identities are q-analogues
of identities for the Fibonacci numbers. The common mathematical root
of these identities is their interpretation as numbers, respectively weights,
of certain sets of lattice paths in R2 contained in a strip along the x–axis,
which immediately suggests using the principle of inclusion–exclusion. In
this paper we give an elementary exposition using only standard facts from
q–analysis of this aspect of the Rogers–Ramanujan identities together with
a slight generalization for q–Fibonacci polynomials, which also in the special
case q = 1 seems to be new.

2 q–Fibonacci polynomials

We define the (Carlitz-) q–Fibonacci polynomials ([8]) by the recursion

Fn(t) = Fn−1(t) + qn−3tFn−2(t) (2.1)

with initial values

F0(t) = 0, F1(t) = 1. (2.2)

There are two combinatorial models consisting of certain lattice paths in R2

where these polynomials appear in a natural way. First we consider lattice
paths of finite length, where at each step only three moves are allowed, a
northeast move (i, j) → (i+1, j +1), a southeast move (i, j) → (i+1, j−1),
and a horizontal move (i, 0) → (i + 1, 0) (cf. [1], [6]). Define a peak as a
vertex preceded by a northeast step and followed by a southeast step, and a
valley as a vertex preceded by a southeast step and followed by a northeast
step. The height of a vertex is its y–coordinate. The weight of a vertex is
qmt where m is its x–coordinate. The weight of a path is the product of the
weight of its peaks.
Consider now the set of all non-negative lattice paths starting at (0, 0) and
ending in (n, 0) with maximal height 1. They consist only of horizontal steps
and northeast steps followed by a southeast step. Let wn(t) be their weight.
If we consider the initial points of the path we get the recursion

wn(t) = wn−1(qt) + qtwn−2(q2t), (2.3)
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if we consider the end points of the path we get

wn(t) = wn−1(t) + qn−1twn−2(t). (2.4)

The initial values are in either case

w0(t) = w1(t) = 1. (2.5)

This implies that

wn(t) = Fn+1(qt). (2.6)

If we identify a horizontal step with a dot · and a peak with a dash – then
we get the Morse code representation studied in [9].
It is well known (cf. e.g. [8], [9]) that

Fn+1(qt) =
∑

k<n

qk2

[
n− k

k

]
tk, (2.7)

where
[

n
k

]
denotes the q–binomial coefficient. In order to write formulas

such as (2.7) as a sum over all integers we assume in this paper that[
n
k

]
= 0 if n < 0.

Formula (2.7) can also be shown in the following way (cf. Bressoud [6]):

The factor
[

n− k
k

]
is the generating function for partitions into at most k

parts or equivalently into exactly k parts where zeroes are permitted, each
of which is ≤ n−2k (cf. [3]). Denote these parts by a1 ≥ a2 ≥ · · · ≥ ak ≥ 0.
Consider now the unique path of length 2k with k peaks. Its weight is
qk2

= q1+3+···+(2k−1). We insert now ak horizontal steps in front of the
northeast step of the first peak of this path and aj − aj+1 horizontal steps
in front of the northeast step of the (k − j + 1)–th peak. In order to get a
path of length n we insert after the last southeast step n−2k−a1 horizontal
steps. The weight of this path is then qak+1+ak−1+3+···+a1+(2k−1).

Our aim is to show that Fn+1(qt) can also be written in the form

Fn+1(qt) =
∑

i∈Z
(−1)ifi(n, t), (2.8)

where

fi(n, t) = q
i(5i−1)

2

∑

s≥|i|
q(s−i)(s+i)

[ bn+i
2 c

s− i

] [ bn−i+1
2 c

s + i

]
ts. (2.9)
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We will show this by using an inclusion-exclusion argument. To this end we
introduce another lattice path model (cf. [12]):
To each non-negative lattice path u with maximal height 1 starting at (0, 0)
and ending in (n, 0) we associate a lattice path Tu in the strip −2 ≤ y ≤ 1
without horizontal steps starting at (0, 0) and ending in (n, 0) or (n,−1)
such that each horizontal step is transformed into a step whose vertices lie
on the lines y = 0 and y = −1 and where the peaks are either unaffected or
are changed to valleys of height −2. This transformation can be defined by
induction on the length of the path. If u has length 1, then it consists of one
horizontal step. In this case Tu is the path (0, 0) → (1,−1). If u has length
2, the path (0, 0) → (1, 0) → (2, 0) is transformed into (0, 0) → (1,−1) →
(2, 0), and the path (0, 0) → (1, 1) → (2, 0) remains fixed. Let now v have
length n + 1 and let Tu be already defined for all paths of length ≤ n. If v
is a path u with a horizontal step added, there are two possibilities: If Tu
ends in (n, 0), then Tv is obtained by adding the step (n, 0) → (n + 1,−1)
to Tu. If Tu ends in (n,−1), then Tv is obtained by adding the step
(n,−1) → (n+1, 0) to Tu. If on the other hand v is a path u augmented by
(n− 1, 0) → (n, 1) → (n + 1, 0), there are again two possibilities: If Tu ends
in (n − 1, 0), then Tv is obtained by adding the original peak (n − 1, 0) →
(n, 1) → (n + 1, 0) to Tu. If Tu ends in (n− 1,−1), then Tv is obtained by
adding the valley (of height −2) (n− 1,−1) → (n,−2) → (n+1,−1) to Tu.
It is clear that T is a bijection onto the set An(2,−3) of all lattice paths in
the strip −3 < y < 2 without horizontal steps, starting at (0, 0) and ending
in (n, 0) or (n,−1). It is easily seen, that such a path has precisely k = bn

2 c
northeast steps and ` = bn+1

2 c southeast steps.

If v is such a lattice path its induced weight is given by

wt(v) = qi1+···+ists (2.10)

where the points with x–coordinates ij are either the peaks of height 1 or
the valleys of height −2 of v. With this weight we have

wt(An(2,−3)) = Fn+1(qt). (2.11)

Let now A0
n denote the set of all lattice paths with k = bn

2 c northeast
steps and ` = bn+1

2 c southeast steps. Let further Am
n (2,−3)(respectively

Am
n (−3, 2)) be the set of all paths in A0

n where at least m points are outside
the strip such that the height of the first (from left to right) such point is
≥ 2(respectively≤ −3), the height of the second point is ≤ −3(respectively≥
2), the height of the next point is again ≥ 2(respectively≤ −3), and so on.
Thus each path in Am

n (2,−3) and Am
n (−3, 2) leaves the strip −3 < y < 2 at

least m times and oscillates between points above the strip and below the
strip. By a simple inclusion-exclusion argument (cf. e.g. [7]) it is clear that
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wt(An(2,−3)) = wt(A0
n) +

∑
m≥1

(−1)mwt(Am
n (2,−3))+

+
∑

m≥1
(−1)mwt(Am

n (−3, 2)),
(2.12)

if we extend the weight in a suitable manner to paths which are not contained
in the strip. This will be done in (3.1). In the next paragraph we shall
determine the weights of the sets Am

n . Since the reflection principle (cf.
[11]) does not work with these weights we adapt some ideas from [7] and
[10] to this case.

3 The main lemma

Let S(k, `) be the set of all lattice paths v in R2 with k northeast steps
and ` southeast steps starting at (0, 0). The peaks with height at least 1
and the valleys with height at most −2 are called extremal points. Let
D(v) be the set of the x–coordinates of the extremal points of the path. Let
d(v) = |D(v)| and ι(v) =

∑
i∈D(v) i. For a path v ∈ S(k, `) we define the

weight by
wt(v) = qι(v)td(v). (3.1)

For lattice paths in the strip −3 < y < 2 this coincides with the former
definition.

A lattice path v ∈ S(k, `) is uniquely determined by its extremal points.

It suffices to show that the path from an extremal point (a, b) to the next
extremal point (x, y) is uniquely determined. Consider first the case that
(a, b) and (x, y) are peaks. Then (x− 1, y− 1) satisfies y− 1 ≥ 0. Let k1 be
the number of northeast steps and `1 the number of southeast steps of the
path up to the point (x− 1, y − 1). Then we have x− 1− a = k1 + `1 and
y − b− 1 = k1 − `1. It suffices to show that there is precisely one path with
k1 northeast steps and `1 southeast steps which contains no extremal point.
In such a path each peak must have height ≤ 0 and each valley height ≥ −1.
If `1 ≤ b this path begins with `1 southeast steps followed by k1 northeast
steps. If `1 > b the path must begin with b southeast steps followed by
m = `1 − b zig–zag steps, i.e. pairs consisting of one southeast step and
one northeast step. The path ends with k1 −m = k1 − `1 + b = y − 1 ≥ 0
northeast steps. If (a, b) is a valley the path begins with |b| + 1 northeast
steps followed by `1 zig–zag steps and the rest are northeast steps. The case
that (x, y) is a valley can be treated in an analogous way.
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A lattice path is thus uniquely determined by the sequence

{(k1, l1), (k2, `2), · · · , (ks, `s)}, (3.2)

where ki(respectively`i) is the number of northeast (respectively southeast)
steps up to the point before the i′th extremal point. These numbers satisfy

0 ≤ k1 < k2 < . . . < ks < k, 0 ≤ `1 < `2 < . . . < `s < `. (3.3)

On the other hand each pair of such sequences defines a unique lattice path
in S(k, `) with s extremal points.

Let u be the lattice path defined by (ki) and (`i). Its weight is

wt(u) = qs+
P

(ki+`i)ts. (3.4)

The total weight of the set of all lattice paths in S(k, `) with s extremal
points is therefore

qs2

[
k
s

] [
`
s

]
ts. (3.5)

This is an immediate consequence of the q–binomial theorem

(1 + x)(1 + qx) · · · (1 + qn−1x) =
∑
k∈Z

q(
k
2)

[
n
k

]
xk.

The left hand side may be written in the form
∑
s≥0

∑
0≤i1<···<is<n

qi1+···+isxs.

Comparing coefficients gives

∑

0≤i1<···<is<n

qi1+···+is = q(
s
2)

[
n
s

]
. (3.6)

Therefore we have

wt(S(k, `)) =
∑

qs2

[
k
s

] [
l
s

]
ts. (3.7)

For t = 1 the q–Vandermonde formula gives

w1(S(k, `)) =
∑

qs2

[
k
s

] [
`
s

]

=
∑

qs2

[
k

k − s

] [
`
s

]
=

[
k + `

k

]
.

(3.8)

Let fs(k, `, t, r1,−r2, r3, · · · , (−1)n−1rn) be the weight of all lattice paths
from (0, 0) to (k + `, k − `) for which the sequence of extremal points has s
elements P1, · · · , Ps and there exists a subsequence of n elements i1 < i2 <
· · · < in such that the height h(Pij ) of Pij satisfies h(Pij ) ≥ rj ≥ 1 if j is
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odd and h(Pij ) ≤ −rj ≤ −2 for j even, where rj are positive integers. In
the same way fs(k, `, t,−r1, r2, r3, · · · , (−1)nrn) denotes the weight of those
lattice paths where h(Pij ) ≥ rj ≥ 1 if j is even and h(Pij ) ≤ −rj ≤ −2 for
j odd.
Let xn := r1+· · ·+rn, yn : rn+3rn−1+5rn−2+· · · , such that xn = xn−1+rn

and yn = yn−1 + 2xn−1 + rn.

We show the following

Lemma 3.1
For k − ` < rn we have

f(k, `, t, r1, · · · ,−rn−1, rn)

= qyn
∑
s≥n

q(s−n)(s+n)

[
k − xn + 2n

s + n

] [
` + xn − 2n

s− n

]
ts

(3.9)

and

f(k, `, t,−r1, · · · ,−rn−1, rn)

= qyn
∑
s≥n

q(s−n)(s+n)

[
k − xn + 2n

s + n

] [
` + xn − 2n

s− n

]
ts.

(3.10)

For k − ` > −rn we have

f(k, `, t, r1, · · · , rn−1,−rn)

= qyn
∑
s≥n

q(s−n)(s+n)

[
`− xn + 2n

s + n

] [
k + xn − 2n

s− n

]
ts

(3.11)

and

f(k, `, t,−r1, · · · , rn−1,−rn)

= qyn
∑

s≥n q(s−n)(s+n)

[
`− xn + 2n

s + n

] [
k + xn − 2n

s− n

]
ts.

(3.12)

Proof Let I0 = 0, I1 be the smallest index i such that ki−`i > r1−2, I2 the
smallest i > I1 such that ki − `i < −r2 + 2, I3 the smallest i > I2 such that
ki − `i > r3 − 2, and so on. Moreover let In+1 = s. This defines a splitting
of (ki)s

i=1 and (`i)s
i=1 into n + 1 segments:

k1, · · · , kI1−1, kI1 , | kI1+1, · · · , kI2 , | · · · | kIn+1, · · · , ks (3.13)

and

`1, · · · , `I1−1, `I1 , | `I1+1, · · · , `I2 , | · · · | `In+1, · · · , `s. (3.14)

Let Kj = (kIj−1+1, · · · , kIj ) be the j′th segment (j ≥ 1) of the first sequence
and Lj = (`Ij−1+1, · · · , `Ij ) the j′th segment of the second sequence. For
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odd j we have ki − `i ≤ rj − 2 for Ij−1 ≤ i < Ij and kIj − `Ij > rj − 2. If j
is even we have ki − `i ≥ −rj + 2 for Ij−1 ≤ i < Ij and kIj − `Ij < −rj + 2.
Now we associate with (ki)s

i=1 and (`i)s
i=1 two new sequences (kn

i )s−n
i=1 and

(`n
i )s+n

i=1 in the following way: Let (kn
i )s−n

i=1 be the sequence

(kn
i )s−n

i=1 = k1, · · · , kI1−1, | `I1+1 + x1 − 2, · · · ,
`I2−1 + x1 − 2 | kI2+1 + x2 − 4, · · · , kI3−1 + x2 − 4, | · · · .

(3.15)

Let Kn
j be the j′th segment of this sequence. For odd j it is given by

kIj−1+1 + xj−1 − 2(j − 1), · · · , kIj−1 + xj−1 − 2(j − 1) and for even j by
`Ij−1+1 + xj−1 − 2(j − 1), · · · , `Ij−1 + xj−1 − 2(j − 1). If Ij+1 = Ij + 1 then
the corresponding segment is empty.
The sequence (kn

i )s−n
i=1 is again strictly increasing. We have to show that

the last element of each segment is less than the first element of the next
segment which is not empty. If j is even it suffices to show that `Ij−1 +
xj−1 − 2(j − 1) < kIj+1 + xj − 2j. This follows from kIj−1 − `Ij−1 ≥
−rj + 2 = xj−1 − 2(j − 1)− xj + 2j and kIj+1 > kIj−1. For odd j we have
to show that kIj−1 + xj−1 − 2(j − 1) < lIj+1 + xj − 2j. This follows from
kIj−1 − `Ij−1 ≤ rj − 2 = −xj−1 + 2(j − 1) + xj − 2j and `Ij−1 < `Ij+1.

In an analogous way (`n
i )s+n

i=1 is defined by

(`n
i )s+n

i=1 = `1, · · · , `I1 , | kI1 − x1 + 2, · · · , kI2 − x1 + 2,
| `I2 − x2 + 4, · · · , `I3 − x2 + 4, | · · · .

(3.16)

Let Ln
j denote the j′th segment of this sequence. For even j it is given

by kIj−1 − xj−1 + 2(j − 1), · · · , kIj − xj−1 + 2(j − 1) and for odd j by
`Ij−1 − xj−1 + 2(j − 1), · · · , `Ij − xj−1 + 2(j − 1).
The sequence (`n

i )s+n
i=1 is strictly increasing too. Here we have to show that

for even j we have kIj −xj−1 +2(j−1) < `Ij −xj +2j or kIj − `Ij < −rj +2
which holds by definition. For odd j we must show that `Ij−xj−1+2(j−1) <
kIj − xj + 2j which is also satisfied.

From the sequences (kn
i )s−n

i=1 and (`n
i )s+n

i=1 the original sequences can be re-
constructed. It suffices to show that the values I1, I2, · · · can be determined.
To this end we add 2n elements ∞, the latter denoting an element greater
than any integer, at the end of (kn

i )s−n
i=1 . Then consider the difference of the

first element of Kn
j+1 and the last element of Ln

j . For even j this is
kIj+1 + xj − 2j − (kIj − xj−1 + 2(j − 1)) > xj + xj−1 − 4j + 2,
and for odd j we have `Ij+1+xj−2j−(`Ij−xj−1+2(j−1)) > xj+xj−1−4j+2.
(If Kn

j+1 is empty we choose instead the first element of the next segment).
Consider first the sequence (kn

i − `n
i ). Here I1 is the smallest number i

such that kn
i − `n

i > x1 − 2 = r1 − 2. Therefore we know `I1 = `n
I1

and
kI1 = `n

I1+1 + x1 − 2 and therefore also the first segments of the original se-
quences. Then we cancel all elements from (kn

i )s−n
i=1 and (`n

i )s+n
i=1 containing
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some ki, `i with i ≤ I1, i.e. we consider the sequences
| `I1+1 + x1− 2, · · · , `I2−1 + x1− 2, | kI2+1 + x2− 4, · · · , kI3−1 + x2− 4, | · · ·
and
| kI1+1 − x1 + 2, · · · , kI2 − x1 + 2, | `I2 − x2 + 4, · · · , lI3 − x2 + 4, | · · · .
For i < I2 we have
(`i + x1 − 2)− (ki − x1 + 2) = (`i − ki) + 2x1 − 4 < (r2 + x1) + x1 − 4− 2.

Therefore I2 is the smallest i of this sequence, where the difference is >
x2 +x1−4−2. This gives the elements kI2 and `I2 and therefore the second
segment of the original sequence, and so on.

The same procedure can be applied for arbitrary strictly increasing se-
quences (kn

i )s−n
i=1 and (`n

i )s+n
i=1 . It results in two sequences (ki)s

i=1 and (`i)s
i=1.

It remains to show that these sequences are again strictly increasing. As
above we determine I1 and define `i = `n

i , 1 ≤ i ≤ I1, and ki = kn
i for i < I1

and kI1 = `n
I1+1 +x1−2. We have to show that kI1−1 < kI1 = `n

I1+1 +x1−2.
But this follows from kn

I1−1 − `n
I1−1 < r1 − 2 and so on.

Thus we get a bijection from the set of all pairs of strictly increasing se-
quences (ki)s

i=1 with ks < k and (`i)s
i=1 with `s < ` and all pairs of strictly

increasing sequences (kn
i )s−n

i=1 with kn
s−n < Kn and (`n

i )s+n
i=1 with `n

s+n < Ln.
Here we have Kn = k + xn− 2n for even n and Kn = ` + xn− 2n for odd n
and Ln = k − xn + 2n for odd n and Ln = `− xn + 2n for even n.

By comparing these sequences we see that
∑

i ki +
∑

j `j = 2
∑n−1

k=1(xk − 2k) + xn − 2n +
∑

i k
n
i +

∑
j `n

j

= yn − 2n2 +
∑

i k
n
i +

∑
j `n

j .
(3.17)

If n is even we have
∑

q

P
i

kn
i

= q(
s−n

2 )
[

k + xn − 2n
s− n

]
and

∑
q
P

i `n
i = q(

s+n
2 )

[
`− xn + 2n

s + n

]
.

This implies

fs(k, `, t, r1,−r2, r3, · · · ,−rn) =

= qs+yn+(s+n
2 )+(s−n

2 )−2n2

[
k + xn − 2n

s− n

] [
`− xn + 2n

s + n

]
ts =

= qyn+(s−n)(s+n)

[
k + xn − 2n

s− n

] [
`− xn + 2n

s + n

]
ts.

(3.18)

If n is odd k and ` change their roles. If the first height is −r1 exchange the
sequences (ki) and (`i). If Kn ≤ 0 or Ln ≤ 0 then there are no such lattice
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paths and the corresponding formula (3.18) also reduces to 0, because of our
general assumption about q–binomial coefficients.

In order to clarify the situation let us give a simple example. Let k = 3, ` =
2, s = 2. There are

(
3
2

)(
2
2

)
= 3 lattice paths in S(3, 2) with 2 extremal points.

They correspond to the following pairs of increasing sequences:

a) (ki) = (0, 1), (`i) = (0, 1),

b) (ki) = (0, 2), (`i) = (0, 1),

c) (ki) = (1, 2), (`i) = (0, 1).

The weight of this set ist (q2+2 + q2+3 + q2+4)t2 = q4

[
3
2

] [
2
2

]
t2. Choose

now n = 1 and r1 = 2 and a corresponding i with ki − `i ≥ 1. For the
path a) there is no such point, for b) there is one such point and for c) both
points satisfy this inequality.
The splitting into segments and the corresponding sequences (k1

i ) and (`1
i )

are

(ki) = 02 | Ø, (`i) = 01|Ø
(k1

i )
1
i=1 = (0), (`1

i )
3
i=1 = (0, 1, 2),

and

(ki) = 1 | 2, (`i) = 0|1
(k1

i )
1
i=1 = (1), (`1

i )
3
i=1 = (0, 1, 2).

The weight of this set is

f2(3, 2, t, 2) = (q2+3+q2+4)t2 = qy1q(2−1)(2+1)

[
3− 2 + 2

2 + 1

] [
2 + 2− 2

2− 1

]
t2.

Now consider the lattice paths in S(3, 2) with s = n = 1, r1 = 2.
They correspond to the following pairs of sequences:

a) (ki) = (1), (`i) = (0)

b) (ki) = (2), (`i) = (0)

c) (ki) = (2), (`i) = (1)

The corresponding sequences (k1
i ) and (`1

i ) are

ad a) (k1
i )

0
i=1 = Ø, (`1

i )
2
i=1 = (0, 1),

ad b) (k1
i )

0
i=1 = Ø, (`1

i )
2
i=1 = (0, 2),

ad c) (k1
i )

0
i=1 = Ø, (`1

i )
2
i=1 = (1, 2).
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Corollary 3.1
For k − ` < rn we get

f(k, `, 1, r1, · · · ,−rn−1, rn) = qyn

[
k + `

k − xn

]
= qyn

[
k + `
` + xn

]
, (3.19)

f(k, `, 1,−r1, · · · ,−rn−1, rn) = qyn

[
k + `

k − xn

]
= qyn

[
k + `
` + xn

]
(3.20)

and for k − ` > −rn

f(k, `, 1, r1, · · · , rn−1,−rn) = qyn

[
k + `

k + xn

]
= qyn

[
k + `
`− xn

]
, (3.21)

f(k, `, 1,−r1, · · · , rn−1,−rn) = qyn

[
k + `

k + xn

]
= qyn

[
k + `
`− xn

]
. (3.22)

This is a consequence of the q–Vandermonde formula, which gives

∑

s≥n

q(s−n)(s+n)

[
k − a + 2n

s + n

] [
` + a− 2n

s− n

]
=

∑

s≥n

q(s−n)(s+n)

[
k − a + 2n

k − a + n− s

] [
` + a− 2n

s− n

]
=

[
k + `
k − a

]
.

If we choose a = 0 and let k →∞, ` →∞ we get the well–known formula

∑

s≥n

q(s−n)(s+n) 1
(q)s−n(q)s+n

=
1

(q)∞
, (3.23)

if we set as usual (q)n = (1−q) · · · (1−qn) and (q)∞ = (1−q)(1−q2) · · · . (In
order to make sense of the limit we can either choose |q| < 1 or we regard q
as an indeterminate and interpret both sides as formal power series. In the
latter case convergence of

∑
an,kq

k → ∑
akq

k means that for each k there
exists N(k) such that an,k = ak for all n ≥ N(k)).
Such limit relations give us some interesting formulas. Let S(k,−) be the
set of all lattice paths with k northeast steps and an arbitrary finite number
of southeast steps then from (3.8) we get
w1(S(k,−)) = 1

(q)k

and from (3.7)

wt(S(k,−)) =
∑
s≥0

[
k
s

]
qs2

(q)s
ts.

For the set S(−,−) of all lattice paths with an arbitrary finite number of

11



northeast and southeast steps we get

w1(S(−,−)) = 1
(q)∞ and wt(S(−,−)) =

∑
s≥0

qs2

(q)2s
ts.

From Lemma 3.1 we deduce in the same way
f(−,−, t, r1, · · · ,±rn) = qyn

∑
s≥n q(s−n)(s+n) ts

(q)s−n(q)s+n

and f(−,−, 1, r1, · · · ,±rn) = qyn

(q)∞ .

4 The Rogers–Ramanujan identities

Let now k = bn
2 c and ` = bn+1

2 c and choose r2k+1 = 2, r2k = 3. Then we have
x2i = 5i, x2i+1 = 5i+2, yi = i(5i−1)

2 . In order to avoid misunderstandings we

mention again that we assume that the q–binomial coefficients
[

n
k

]
= 0 if

n < 0. Therefore we get

wt(A2i+1
n (2,−3)) = f(k, `, t, r1, · · · , r2i+1) =

= qy2i+1
∑

s≥2i+1 q(s+2i+1)(s−2i−1)

[ bn
2 c − x2i+1 + 2(2i + 1)

s + 2i + 1

] [ bn+1
2 c+ x2i+1 − 2(2i + 1)

s− 2i− 1

]
ts =

= qy2i+1
∑

s≥2i+1 q(s+2i+1)(s−2i−1)

[ bn
2 c − i

s + 2i + 1

] [ bn+1
2 c+ i

s− 2i− 1

]
ts =

= qy2i+1
∑

s≥2i+1 q(s+2i+1)(s−2i−1)

[
bn−(2i+1)+1

2 c
s + 2i + 1

] [ bn+2i+1
2 c

s− 2i− 1

]
ts.

In the same way we get

wt(A2i
n (2,−3)) = f(k, `, t, r1,−r2, · · · ,−r2i) =

qy2i
∑

s≥2i q
(s−2i)(s+2i)

[ bn+2i
2 c

s− 2i

] [ bn−2i+1
2 c

s + 2i

]
ts.

Therefore in either case we have

wt(Ai
n(2,−3)) = f(k, `, t, r1, · · · , (−1)i−1ri) =

q
i(5i−1)

2
∑

s≥i q
(s−i)(s+i)

[ bn+i
2 c

s− i

] [ bn−i+1
2 c

s + i

]
ts.

Analogously we find
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wt(Ai
n(−3, 2)) = f(k, `, t,−r2, · · · , (−1)iri+1) =

q
i(5i+1)

2
∑
s≥i

q(s−i)(s+i)

[ bn−i
2 c

s + i

] [ bn+i+1
2 c

s− i

]
ts.

If we set

fi(n, t) = q
i(5i−1)

2

∑

s≥i

q(s−i)(s+i)

[ bn+i
2 c

s− i

] [ bn−i+1
2 c

s + i

]
ts (4.1)

for i ∈ Z, then for i > 0

wt(Ai
n(2,−3)) = fi(n, t)

and

wt(Ai
n(−3, 2)) = f−i(n, t).

Therefore we get from (2.12)

Theorem 4.1

Let

fi(n, t) = q
i(5i−1)

2
∑

s≥|i|
q(s−i)(s+i)

[ bn+i
2 c

s− i

] [ bn−i+1
2 c

s + i

]
ts.

Then we have

Fn+1(qt) = wt(An(2,−3)) =
∑
i∈Z

(−1)ifi(n, t) =
n+1∑
i=−n

(−1)ifi(n, t). (4.2)

Comparing coefficients we get the identity

∑
i∈Z

(−1)iq
i(3i−1)

2

[ bn+i
2 c

s− i

] [ bn−i+1
2 c

s + i

]
=

n+1∑
i=−n

(−1)iq
i(3i−1)

2

[ bn+i
2 c

s− i

] [ bn−i+1
2 c

s + i

]
=

[
n− s

s

]
.

(4.3)

The identity (4.3) reduces for n →∞ to

s∑

i=−s

(−1)iq
i(3i−1)

2

[
2s

s− i

]
= (1− qs+1) · · · (1− q2s). (4.4)
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This is a well–known finite version of Euler’s pentagonal number theorem

1
(q)∞

∑

i∈Z
(−1)iq

i(3i−1)
2 = 1, (4.5)

which is obtained by letting s →∞.

Corollary 4.1 (Finite version of the first Rogers–Ramanujan iden-
tity, see [18], [2])

bn
2
c∑

k=0

qk2

[
n− k

k

]
= Fn+1(q) =

∑

i∈Z
(−1)iq

i(5i−1)
2

[
n

bn+5i
2 c

]
. (4.6)

This result follows immediately by setting t = 1 in (4.2) and using the
q–Vandermonde formula.

If we let n →∞ we get the first Rogers–Ramanujan identity

∑

k≥0

qk2

(1− q) · · · (1− qk)
=

1
(q)∞

∑

i∈Z
(−1)iq

i(5i−1)
2 . (4.7)

In order to obtain the second Rogers-Ramanujan identity we consider the set
Bn(−3, 2) of all lattice paths without horizontal steps which start in (0, 1),
remain in the strip −2 ≤ y ≤ 1 and end in (n,−1) or (n, 0). Their weight is
of course Fn(q2t). Now we shift each such lattice path one unit downward,
such that the new path starts in (0, 0). In order that the new path has the
same weight as the old path we have to exchange in the new path the peaks
of height 0 and the valleys of height −2. For under this map all extremal
points are again mapped onto extremal points, except the peaks of height 1
which are mapped onto peaks of height 0. If we replace the latter peaks with
the corresponding valleys of height −2, we get again an extremal point. On
the other hand the image of a valley of height −1, which is not an extremal
point, is mapped onto a valley of height −2, which is an extremal point. So
we replace it with the corresponding peak of height 0, such that the weights
are preserved. In this way we obtain the set An(−4, 1) of all lattice paths
starting at (0, 0) which remain in the strip −3 ≤ y ≤ 0.

In this case we can apply the reasoning above with r2i+1 = 1, r2i = 4. This
gives x2i = 5i, x2i+1 = 5i+1 and yi = (5i−3)i

2 . There are k = bn−1
2 c northeast

steps and l = bn+2
2 c southeast steps.

We therefore get
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Theorem 4.2 Let

gi(n, t) = q3(i
2)

∑

s≥|i|
qs2

[ bn+i−1
2 c

s− i

] [ bn−i+2
2 c

s + i

]
ts. (4.8)

Then we have

Fn(q2t) =
∑

i∈Z
(−1)igi(n, t) =

n+2∑

i=−n+1

(−1)igi(n, t). (4.9)

Comparing coefficients we get

∑
i∈Z

(−1)iq3(i
2)

[ bn+i
2 c

s− i

] [ bn−i+3
2 c

s + i

]
=

n+2∑
i=−n+1

(−1)iq3(i
2)

[ bn+i
2 c

s− i

] [ bn−i+3
2 c

s + i

]
= qs

[
n− s

s

]
.

(4.10)

For n →∞ this reduces to the identity
s∑

i=−s

(−1)iq3(i
2)

[
2s

s− i

]
= qs(1− qs+1) · · · (1− q2s). (4.11)

Corollary 4.2 (Finite version of the second identity of Rogers–
Ramanujan, see [18], [2])

bn−1
2
c∑

k=0

qk2+k

[
n− k − 1

k

]
= Fn(q2) =

∑
i∈Z

(−1)iq
i(5i−3)

2

[
n

bn−5i+2
2 c

]
.

(4.12)

By letting n →∞ we get the second Rogers–Ramanujan identity

∑

k≥0

qk2+k

(1− q) · · · (1− qk)
=

1
(q)∞

∑

i∈Z
(−1)iq

i(5i−3)
2 . (4.13)

With the same method we get a slight generalization of another result by I.
Schur [18]:
Let k = bn

2 c, ` = bn+1
2 c and r2k+1 = 1, r2k = 2. Then there is only one

lattice path starting at (0, 0) and remaining in the strip −1 ≤ y ≤ 0. It has
weight 1. In this case we have x2i = 3i, x2i+1 = 3i + 1, yi = i(3i−1)

2 .

Here we get

f(k, `, t, r1,−r2, · · · , (−1)i−1ri) = q
i(3i−1)

2
∑
s≥i

q(s−i)(s+i)

[ bn+i+1
2 c

s + i

] [ bn−i
2 c

s− i

]
ts.

(4.14)
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This gives

Theorem 4.3

For each n we have

∑

i∈Z
(−1)iq

i(3i−1)
2

[
n

bn+3i
2 c

]
= 1. (4.15)

Setting

hi(n, t) = q
i(3i−1)

2

∑

s≥|i|
q(s−i)(s+i)

[ bn+i+1
2 c

s + i

] [ bn−i
2 c

s− i

]
ts, (4.16)

we have ∑

i∈Z
(−1)ihi(n, t) =

n∑

i=−n−1

(−1)ihi(n, t) = 1. (4.17)

By comparing coefficients we obtain the identity

∑
i∈Z

(−1)iq(
i
2)

[ bn+i+1
2 c

s + i

] [ bn−i
2 c

s− i

]
=

n∑
i=−n−1

(−1)iq(
i
2)

[ bn+i+1
2 c

s + i

] [ bn−i
2 c

s− i

]
= [s = 0].

(4.18)

The last identity reduces to

s∑

i=−s

(−1)iq(
i
2)

[
2s

s− i

]
= [s = 0]. (4.19)

for n →∞.

Remarks

1) In order to obtain the first Rogers–Ramanujan identity (4.7) it suffices
(cf. [2]) to prove the finite version only for even numbers n and then letting
n → ∞. For the second identity we need only choose n odd. P. Paule [14]
has given a computer proof of these finite versions showing that both sides
of the identities satisfy the same recursion, which in some sense trivializes
the verification of the Rogers–Ramanujan identities.
2) Starting from (4.19) identity (4.4) can easily be derived by using Bailey’s
lemma (cf. [13]). By iterating this procedure one gets another finite version
of the Rogers-Ramanujan identities. This approach is in some sense the
opposite of our approach.
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3) Intimately connected with this Bailey chain approach is the following
proof (cf. e.g. [16]):

Starting from(4.4), i.e.
∑
|i|≤s

(−1)i q
i(3i−1)

2

(q)s−i(q)s+i
= 1

(q)s
, and using (3.23) we get

∑
s≥0

qs2

(q)s
=

∑
s≥0

qs2 ∑
|i|≤s

(−1)i q
i(3i−1)

2

(q)s−i(q)s+i
=

=
∑
i∈Z

(−1)iq
i(5i−1)

2
∑
|i|≤s

qs2−i2

(q)s−i(q)s+i
= 1

(q)∞

∑
i∈Z

(−1)iq
i(5i−1)

2 .

Using (4.11) we get in the same way the second Rogers–Ramanujan identity.
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