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Abstract. 
We give an elementary account of generalized Fibonacci and Lucas polynomials whose 
moments are Narayany polynomials of type A and type B.  

 

Introduction 
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  and let L  be the linear functional defined by 

 ( ) [ 0]nL F x n   and M  be the linear functional defined by  ( ) [ 0].nM L x n   Then the 

moments  2n
nL x C  are Catalan numbers and the moments  2 2n

n

n
M x M

n

 
   

 
  are 

central binomial coefficients. An analogous situation holds by replacing  the  Catalan numbers 

nC  by the Narayana polynomials 
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   and the central binomial 

coefficients  nM  by the polynomials  
2

0

( ) ,
n

j
n

j

n
M t t

j

 
  

 
  which are sometimes called 

Narayana polynomials of type B.    

In this survey article I give an elementary and self-contained  account of the corresponding 
polynomials and the associated Catalan-Stieltjes matrices. I want to thank Dennis Stanton and 
Jiang Zeng for helpful remarks and  references to the literature. 

 

1. 1. Background material on Fibonacci polynomials and Catalan numbers 

The basic facts about Fibonacci and Lucas polynomials are very old and well known (cf. e.g. 
[5]). 

The Fibonacci polynomials 
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 satisfy the recursion 
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1 2( , ) ( , ) ( , )n n nf x s xf x s sf x s    with initial values 0 ( , ) 0f x s   and 1( , ) 1.f x s     

We will consider the special Fibonacci polynomials 1( ) ( , 1).n nF x f x   If ( )nU x  denotes a 

Chebyshev polynomial of the second kind then we can equivalently write ( ) .
2n n

x
F x U    

 
 

The first terms of the sequence   0
( )n n

F x


 are 

 

 

Remark  

Let me recall some well-known facts about orthogonal polynomials (cf. [4], [13],[17]). These 

are polynomials   1
( )n n

p x


 satisfying a recursion of the form

1 1 2 2( ) ( ) ( ) ( )n n n n np x x s p x t p x       with initial values 1( ) 0p x   and 0 ( ) 1.p x   The 

corresponding  Catalan-Stieltjes matrix  ( , )a n k  (cf. [13]) consists of  the uniquely 

determined numbers  ( , )a n k  which satisfy 
0
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It satisfies  

 ( , ) ( 1, 1) ( 1, ) ( 1, 1)k ka n k a n k s a n k t a n k          (1.1) 

with (0, ) [ 0]a k k   and ( , 1) 0a n     because

 1
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The numbers ks  and kt  uniquely determine both the polynomials ( )np x   and the 

corresponding Catalan-Stieltjes matrix.   

Let L  be the linear functional  defined by   [ 0].nL p n   Here we use Iverson’s convention 

[ ] 1P   if property P  is true and [ ] 0P   else.  The polynomials satisfy moreover 

( ) 0n mL p p   for ,m n  i.e. they are orthogonal with respect to .L  But we shall not use this 

property. 

The numbers  nL x  are called moments of the sequence  ( ) .np x    

If  all 0ks    then  2( )n nP x p x  satisfies  

1 0( )P x x t   and  2 1 2 1 2 2 1 2( ) ( ) ( )n n n n n n nP x x t t P x t t P x         

and 
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   satisfies  2 2 1 1 2 1 2 2 2( ) ( ) ( ).n n n n n n nQ x x t t Q x t t Q x          
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This splitting is equivalent with the odd-even trick in [6].  

For the Fibonacci polynomials ( )nF x  the numbers ( , )a n k  satisfy     

 ( , ) ( 1, 1) ( 1, 1)a n k a n k a n k        (1.2) 

with (0, ) [ 0].a k k    

Thus ( , )a n k  can be interpreted as the number of elements of the set of  n  letter words 

1 2 nw w w  in the alphabet { 1,1}  that add up to ,k  and all whose partial sums are non-

negative because for 1nw   the word 1 2 1nw w w   adds up to 1k   and for 1nw    to 1.k    

These so-called ballot numbers are well known and satisfy 
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   (1.4) 

Let L  be the linear functional  defined by   [ 0].nL F n   Here [ ] 1P   if property P  is true 

and [ ] 0P   else.  Then (1.4) implies 

  2 2 2 2 1
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is a Catalan number and  2 1 0.nL x     

The first terms of the sequence   0n n
C


 are 

 

Let us compute the generating functions 
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   Then (1.2) translates into 

  1 1( ) ( ) ( )k k kf z z f z f z     (1.6) 

and  

 0 1( ) 1 ( ).f z zf z    (1.7) 

The uniquely determined solution of these equations is 1( ) ( )k k
kf z z f z   if we set 

0( ) ( ).f z f z   

This can easily be verified by comparing coefficients. 
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By (1.7) ( )f z  satisfies 2 2( ) 1 ( )f z z f z   which implies  the well-known result 
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Let us also consider the polynomials  
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By (1.4) we get 
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Let 0L  denote the linear functional defined by  0 [ 0].nL P n    

Then we get for the moments 

  0 .n
nL x C   (1.12) 

Analogously we get 
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Let 1L  denote the linear functional defined by  1 [ 0].nL Q n    

Then we get for the moments 
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1.2.  Narayana polynomials as moments 

The Catalan numbers are special cases for 1t    of the Narayana polynomials  
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 for 0n   and 0 ( ) 1.C t   (cf. [14]). 
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The first terms of   0
( )n n

C t


 are 

 

For 2t   they reduce to the little Schroeder numbers    0
(2) 1,1,3,11, 45,197, ,n n

C

   OEIS 

[12], A001003. 

Let  2 1n t   and  2 1 .n t t    Define polynomials  ( , )nF x t  by the recursion 

 1 2 2( , ) ( , ) ( ) ( , )n n n nF x t xF x t t F x t      (1.16) 

with initial values 0 ( , ) 1F x t   and 1( , ) .F x t x    

The first terms of the sequence   0
( , )n n

F x t


 are  

 

 

Their generating function is 
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Then we get 

Theorem 1 ([1],[3], [11], [13], [16],[17]) 

Let L  be the linear functional defined  by  ( , ) [ 0].nL F x t n   Then the moments satisfy 
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Remark 

By starting with ( )nC t it is easy to guess (1.16)  in the same manner as I have done in [4].  

In order to guess explicit formulae for ( , )nF x t  it is convenient to consider the polynomials 

with odd and even degrees separately. To this end we consider the polynomials 
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Then (1.32) and (1.21) can be summarized to give the formula 
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1.2.1. The polynomials ( , ).nQ x t   

The polynomials ( , )nQ x t  satisfy the recurrence 

 1 2( , ) ( 1 ) ( , ) ( , )n n nQ x t x t Q x t tQ x t       (1.20) 

with initial values 0 ( , ) 1Q x t   and 1( , ) 1 .Q x t x t     

Thus 1( , ) ( 1 , ).n nQ x t f x t t     Binet’s formula gives 
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A more general class of polynomials has been considered in [1]. 
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From (1.10) we see that ,
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The first terms of , ( )n kq t  are  

 

Note that the polynomials , ( )n kq t  are palindromic.  

Let  , ( )n kB t  be the uniquely determined polynomials  such that 
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The recursion of ( , )nQ x t  implies that 

 , 1, 1 1, 1, 1( ) ( ) (1 ) ( ) ( )n k n k n k n kB t B t t B t tB t          (1.23) 

with 0, ( ) [ 0]kB t k   and , 1( ) 0.nB t    

 

 

The first terms of the sequence  ,0 ,1 , 0
( ), ( ), , ( )n n n n n

B t B t B t


  are 
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By induction we can verify that 

 ,
0

1 1 1 11
( ) .

1 1 11

n
j j

n k
j j

n n n n n nk
B t t t

k j j j k j j k jn

             
                         
   

 (1.24) 

For 0k   we get 

 ,0 1( ) ( ).n nB t C t   (1.25) 

 

From (1.13) we see that ,

2 1 2 1 2 12 2
(1) .

1 2n k

n n nk
B
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This gives the Catalan triangle  OEIS[12], A039598                                                                                            

          

For the little Schroeder numbers the corresponding triangle is OEIS [12], A110440,   
            

 

There is a nice interpretation in terms of weighted NSEW-paths. A NSEW-path is a path 
consisting of North, South, East and West steps of  length 1.  (Cf. [9] and [10]). We consider 
only NSEW- paths  which start at (0,0) and end on height 0k   and never cross the x  axis.  

, ( )n kB t  is the weight of all those NSEW-paths with n  steps which end on height ,k  if  the 

weight is defined by ( ) ( ) 1w N w E   and ( ) ( ) .w S w W t   This follows immediately from 

(1.23) because there are 4  possibilities to reach a point of height .k  For 0k   this reduces to  

,0 1,0 1,1( ) (1 ) ( ) ( ).n n nB t t B t tB t      

 

For example for 2n   and 0k   we get     21, 3 , ( ) .w EE w NS EW WE t w WW t       



8 
 

For 1k   we get ( ) ( ) 2w NE w EN   and ( ) ( ) 2 .w NW w WN t    

Let 0y   and let ( , )nw x y  be the number of NSEW-paths from (0,0)  to ( , )x y  which do not 

cross the x  axis. It has been shown in [9] that 
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A purely combinatorial proof has been given in [10] and can be considered as another proof 
of (1.24). 

 

All these polynomials are palindromic and gamma-nonnegative, i.e. they have a 

representation of the form 2
, (1 )j n j

n jt t   where ,n j  are non-negative integers. (Cf. [14] 

for  this notion). 
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which for  0k    reduces to   
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In order to prove this we modify a method developed in [15]. Let 
( ) 1, ( ) 1, ( ) ( ) 0.f N f S f E f W       

To each non-negative NSEW- path 1 nu u  with  , , ,iu N S E W  whose endpoint is on 

height k  we associate the  n  letter word 1 2( ) ( ) ( )nf u f u f u   in the alphabet { 1,1,0}  that 

adds up to ,k  and all whose partial sums are non-negative. 

For each such sequence there are i  terms ( ) 1jf u    and i k  terms ( ) 1jf u   for some .i   

On the other hand we can choose 2i k  places where ju N  or ,ju S  i.e. ( ) 1jf u    in 
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 ways.  By (1.3) we can order the signs in such a way that the corresponding path is 

non-negative in 
2 2 2 1
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 ways. In the remaining 2n i k   

places we can arbitrarily put W  or .E  The weight of all such paths is therefore

  22 1
1 .
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t t
i k i i k
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If we define the linear functional 1L  by  1 ( , ) [ 0]nL Q x t n   we get  from (1.27) that  

  1 1( ).n
nL x C t   (1.28) 

 

Let us compute the generating functions   ,
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 1 1( , ) ( , ) (1 ) ( , ) ( , )k k k kf z t z f z t t f z t tf z t      with 0 0 1( , ) 1 (1 ) ( , ) ( , ).f z t t zf z t tzf z t       

The unique solution is  

1( , ) ( , )k k
kf z t z f z t   where ( , )f z t  satisfies 2 21 (1 (1 ) ) ( , ) ( , ) 0.t z f z t tz f z t       

This implies 
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Since 2 21 (1 (1 ) ) ( , ) ( , ) 0t z f z t tz f z t       we get 
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A combinatorial proof  of (1.30)  has been given in [2], proof of identity 1,  in a somewhat 
different context which we will translate into our terminology. 

The right-hand side of (1.30) is the weight of all NSWE-paths of length .n   

Let ,n kB  be the set of all non-negative NSWE-paths of length n  which end on height .k   

For ,n kpB  we define 1k   different paths ( ),  0 ,i p i k    of length n  such that 

 ( ) ( ).i
iw p t w p    

To this end define the last ascent to height i  of p to be the last step N  from height 1i   to .i  

Let ( )i p   denote the path obtained by changing each of the last ascents to heights 1, 2, , i  

to downsteps .S  For 0i   let 0 ( ) .p p   Then all ( )i p  are different and for 0i   not non-

negative. The height of ( )i p  is 2k i  and the weight is  ( ) ( ).i
iw p t w p    
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Let on the other hand q  be a path with height ,j  which crosses the x  axis. Then it has a set 

of  premier descents below the x  axis, i.e. the first (from left to right)  down steps S  from 
height m  to 1m  for 0, 1, .m     Suppose q  has i  premier descents below the x   axis. 

Then changing each of these S  to upsteps N  gives a new path p  which is non-negative and 

ends on height 2 .j i  It is clear that ( )i p q   and   ( ) ( ).i
iw p t w p    

For example 

 (2,0) , , , , ,EE EW WE NS WWB   

     1(2,1) , , , ,  (2,1) , , , ,NE NW EN WN SE SW ES WS B B  

         1 2(2, 2) ,  (2, 2) ,  (2, 2) .NN SN SS   B B B   

 

1.2.2. The polynomials ( , ).nP x t   

The polynomials ( , )nP x t  satisfy the recurrence  

1 1 2( , ) ( ( )) ( , ) ( , )n n n nP x t x t P x t tP x t        

with initial values 0 ( , ) 1P x t   and 1( , ) 1,P x t x    

where 0 ( ) 1t   and ( ) 1n t t    for 0.n    

We have for 0n    

 1( , ) ( , ) ( , ).n n nP x t Q x t tQ x t     (1.31) 

For (1.31) holds for 1n   and 2n   and for 3n   both sides satisfy the same recursion. 
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The first terms of the sequence 

 ,0 ,0 1,0 ,1 ,1 1,1 , , 1, 0
( ) ( ) ( ), ( ) ( ) ( ), , ( ) ( ) ( )n n n n n n n n n n n n n

p t q t q t p t q t q t p t q t q t   
       are 
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Let  , ( )n kA t  be the uniquely determined polynomials satisfying 
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Then 

 , 1, 1 1, 1, 1( ) ( ) ( ) ( ) ( )n k n k k n k n kA t A t t A t tA t         (1.34) 

with 0, ( ) [ 0]kA t k   and , 1( ) 0.nA t    

This means that , ( )n kA t  can be interpreted as the weight of all NSEW - paths of length n  

which end on height k  and which have no W-step on height 0.   

For example let 3.n   For 0k    we have   1,w EEE     3w NSE ENS NES t    and 

  2.w NWS t  For 2k   we have ( ) 3w NNE ENN NEN    and ( ) 2 .w NNW NWN t    

The first terms of the sequence  ,0 ,1 , 0
( ), ( ), , ( )n n n n n

A t A t A t


  are 

  

From (1.31) we get , , 1 , .n k n k n kA tA B     

In general we get for 0n    

 

,
0

0

1
( )

( )( 1 )

1 1
.

1 1

n k
j

n k
j

n k
j

j

n n kn n j
A t t

j k j n j k j

n n n n
t

j k j j k j









    
        

        
                




  (1.35) 

For 0k   this reduces to  

 ,0 ( ) ( ).n nA t C t   (1.36) 

 

 

 

For 1t   we get the triangle OEIS [12], A039599,  
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For 2t   we get OEIS [12], 172094, 

     

From (1.33) we get 

 2
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A t F x t x


   (1.37) 

Applying the linear functional L  gives  

  2
,0 ( ) ( ).n

n nL x A t C t    (1.38) 

By (1.22) we get 2 1
, 2 1

0

( ) ( , )
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   which implies   2 1 0nL x    and thus proves 

Theorem 1.  

If we define the linear functional 0L  by  0 ( , ) [ 0]nL P x t n   then we get  

  0 ( ).n
nL x C t   (1.39) 

 

Let us also compute the generating functions ,
0

( , ) ( ) .n
k n k

n

f z t A t z


    They satisfy 
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Let ( , )f z t  satisfy 2 2( , ) 1 (1 ) ( , ) ( , ) .f z t t zf z t tz f z t     Then 0( , ) ( , ) ( , )k k
kf z t z f z t f z t  

satisfies the first equation in  (1.40). From the second equation and  (1.29) we get the well-
known formula (cf. e.g. [14]) 
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Remarks 

In terms of ( , )C t z  we get  
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For 1t   it is well known that    (1,1) 1,1,0, 1, 1,0,1,1,0, 1, 1,0,nF        is periodic with 

period 6  because 
1 3
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2
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(1,1)
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  satisfy 3 3(1,1) (1,1) 1.     

For 2t   and 3t   an analogous situation obtains: (1, 2) 1 i     and (1, 2) 1 i     satisfy 

8 8 4(1,2) (1,2) 2    and  
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2.1.  Background material on Lucas polynomials and central binomial coefficients 

The Lucas polynomials 
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  satisfy the recurrence relation 

1 2( , ) ( ) ( )n n nl x s xl x sl x    with initial values 0 ( , ) 2l x s   and 1( , ) .l x s x   
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Let us consider the special Lucas polynomials ( )nL x  defined by ( ) ( , 1)n nL x l x   for 0n   

and 0 ( ) 1.L x    

Then ( )nL x  satisfies the recursion  

 1 2 2( ) ( ) ( )n n n nL x xL x L x      (2.1) 

with 0 2   and 1n   for 0.n     

 

The first terms of   0
( )n n

L x


 are 

  

Note that ( ) 2
2n n

x
L x T    

 
 for 0n   if ( )nT x  is a Chebyshev polynomial of the first kind. 

Let  ( , )a n k  be the corresponding Catalan-Stieltjes matrix. 

Then we get  

( , ) ( 1, 1) ( 1, 1)a n k a n k a n k       for 0k   and ( ,0) 2 ( 1,1).a n a n    

Thus ( , )a n k  is the weight of all non-negative NSEW-paths  of length n   whose endpoints are 

on height k  where all weights ( ) ( ) ( ) ( ) 1w E w N w W w S    except that ( ) 2w S   if the  

endpoint of S  is on the x  axis.  

 

The first terms are  OEIS [12], A 108044,       
   

                                  

This gives 
2

(2 , 2 )
n

a n k
n k

 
   

  and 
2 1

(2 1,2 1)
n

a n k
n k

 
     

 and all other terms vanish. 

With other words we get the identities 
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2
2

0

2 1
2 1

0

2
( ) ,

2 1
( ) .

n
n

k
k

n
n

k
k

n
L x x

n k

n
L x x

n k








 
  

 
  




  (2.2) 

Let M  be the linear functional  defined by   [ 0].nM L n    Then  

  2 2n n
M x

n

 
  
 

  (2.3) 

 is a central binomial coefficient and  2 1 0.nM x     

 Let now 
0

( ) ( , ) .n
k

n

f z a n k z


   Then we have 1 1( ) ( ) ( )k k kf z f z f z    for 0k   and 

0 1( ) 1 2 ( ).f z zf z    Then we get 0( ) ( ) ( )k k
kf z z f z f z   with  

0

1 1 4
( )

2
n

n
n

z
f z C z

z

 
    

by (1.8).  This gives 0 0( ) 1 2 ( ) ( )f z zf z f z   or  

 0
0

2 1
( ) ( ) .

1 4
n

n

n
f z M z z

n z

 
     

   (2.4) 

 

Let us also consider the polynomials  

  2
0

2
( ) ( 1)

2

n
n k k

n n
k

n kn
R x L x x

kn k




 
      

   (2.5) 

and  

 
 2 1

0

12 1
( ) ( 1) .

2 11

n
n n k k

n
k

L x n kn
S x x

kn kx

 



  
       

   (2.6) 

 

Let 0M  be the linear functional defined by  0 [ 0].nM R n   Then (2.2) gives  

  0

2
.n

n

n
M x M

n

 
  
 

  (2.7) 

If 1M  is the linear functional defined by  1 [ 0]nM S n   then we get 

   1
1

2 1 2 21
.

12 2
n n

n n M
M x

n n
    

        
  (2.8) 
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2.2. The Narayana polynomials of type B  as moments 

The central binomial coefficients are the special case for 1t   of the Narayana polynomials  
2

0

( )
n

k
n

k

n
M t t

k

 
  

 
  of type B. 

For 2t   we get the central Delannoy numbers    0
(2) 1,3,13,63,321,1683, .n n

M

   Here 

0 0

2
(2) .

2

n n

n n
k k

k n k n n k
M d

k k k k 

      
       

     
    

Let  

 

 

0

1

2

2 1 1

( ) 1 ,

1
( )  

1

1
( ) .

1

  0,
n

n n

n

n n

fo

t t

t
t

t

t t
t

r

t

n









 

 










   (2.9) 

Thus the sequence ( )n t  satisfies 2 2 1( ) 1 ( )n nt t t      and 2 1
2

( )
( )n

n

t
t

t


    with initial 

values 0 ( ) 1t t    and 1

2
( ) .

1

t
t

t
 


  

Define polynomials ( , )nL x t  by the recurrence  

 1 2 2( , ) ( , ) ( ) ( , )n n n nL x t xL x t t L x t      (2.10) 

with initial values 0 ( , ) 1L x t   and 1( , ) .L x t x   

 

The first terms of the sequence   0
( , )n n

L x t


 are 

  

It is clear that ( ,1) ( ).n nL x L x   

Let now  

  2( , ) , .n nR x t L x t   (2.11) 

 These polynomials satisfy 

   1 2 2( , ) 1 ( , ) ( ) ( , )n n n nR x t x t R x t T t R x t        (2.12) 

with  
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0

( )  

( ) 2 .

 0,n for nT t t

T t t






  (2.13) 

Then we get 

 2( , ) ( , ) ( , )n n nR x t Q x t tQ x t    (2.14) 

for 2n    and 0 ( , ) 1R x t   and 1( , ) 1 .R x t x t     

For 0n   we get 

  
1 0

1

( , ) ( 1) 1 ( 1) .
1

n n
n n n j

n
j

j

n n j
R x t t x t

nj

j




 

  
                   
 
 

 


 







  (2.15) 

We also have ( , ) n n
nR x t      for 0.n   This means that ( , )nR x t  are the Lucas 

polynomials corresponding to ( , ).nQ x t   

If we set 0 ( , ) 2R x t   then the sequence    0
(1,1) 2, 1, 1,n n

R

     is periodic with period 3,  

the sequence 

 
 

4 8

0

(1, 2)
2, 2,0, 4, 8,8,0, 16,

2

n
n

n

R
 
  



 
 

    
 
 

  is periodic with period 8,  and the 

sequence 

 
 

6 12

0

(1,3)
2, 3,3,0, 9, 27, 54,81, 81,0, 243, 729,

3

n
n

n

R
 
  



 
 

      
 
 

  is periodic with 

period 12.   

 

Let , ( )n kD t  be the uniquely determined polynomials such that 

 ,
0

( ) ( , ).
n

n
n k k

k

x D t R x t


    (2.16) 

They satisfy 

 , 1, 1 1, 1, 1( ) ( ) (1 ) ( ) ( ) ( )n k n k n k k n kD t D t t D t T t D t          (2.17) 

with 0, ( ) [ 0]kD t k   and , 1( ) 0.nD t    

This implies that 

  2
, ( ) 1 (1 ) .

nn k
n kD t x t x tx        (2.18) 
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Let  2( , ) 1 (1 ) .
nn ka n k x t x tx        Since 21

1
n

t
x x

t

   
 

 is palindromic we have 

   2 2 21 (1 ) 1 (1 )
n nn j n j jx t x tx t x t x tx                and thus 

   1 12 2 21 (1 ) 1 (1 ) .
n nn nx t x tx t x t x tx
                

For 1k   we have 

    
     

12 2 2

1 1 11 ( 1) 2 1 2 1 ( 1) 2

( , ) 1 (1 ) 1 (1 ) 1 (1 )

1 (1 ) (1 ) 1 (1 ) 1 (1 )

( 1, 1) (1 ) ( 1, ) ( 1, 1).

n nn k n k

n n nn k n k n k

a n k x t x tx x t x tx t x tx

x t x tx t x t x tx t x t x tx

a n k t a n k ta n k

 

         

                

                      
        

  

For 0k   we get 

 
     

2

1 1 12 1 0 2 1 (1) 2

( ,0) 1 (1 )

1 (1 ) (1 ) 1 (1 ) 2 1 (1 )

( 1, 1) (1 ) ( 1,0) ( 1,1) (1 ) ( 1,0) 2 ( 1,1).

nn

n n nn n n

a n x t x tx

x t x tx t x t x tx t x t x tx

ta n k t a n ta n t a n ta n

     

     

                      
            

  

Another formula for 0n   is 

 ,
0

( ) .
n

j
n k

j

n n
D t t

j k j

  
     
   (2.19) 

This follows from  
0

1 (1 ) (1 )
n

n j j n j

j

n
x tx x t x x

j




 
     

 
  by considering the coefficient of 

.n kx    

By (2.17) the polynomials , ( )n kD t  can also been interpreted as the weight of all NSEW-paths  

of length n  and  whose endpoint is on height k  with weights ( ) ( ) 1,w E w N   ( ) ,w W t   

( ) 2w S t  if the endpoint of S  is on the x  axis and ( )w S t  else. 

Let for example 2n   and 0.k    Then we have ( ) 1,w EE   2( ) ,w WW t    2 ,w NS t  

( ) ( ) .w EW w WE t   For 2n   and 1k   we get ( ) ( ) 1w NE w EN   and 

( ) ( ) .w WN w NW t    

The first terms of the sequence  ,0 ,1 , 0
( ), ( ), , ( )n n n n n

D t D t D t


  are 
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For 1t   , ( )n kD t   reduces to ,

2
(1)n k

n
D

n k

 
   

 and we get the triangle OEIS [12], A094527, 

       

For 2t   we get OEIS [12], A118384, 

      

 

The polynomials , ( )n kD t  are gamma -nonnegative. More precisely we have 

 
2

2
,

0

2
( ) (1 ) .

2

n k

j n k j
n k

j

j k n
D t t t

j j k

 
  

 



  
     
   (2.20) 

The proof is analogous to the corresponding proof of (1.26). 

For each non-negative NSEW- path 1 nu u  with  , , ,iu N S E W  whose endpoint is on 

height k  there are i  terms ( )jf u  negative and i k  terms ( ) 1jf u   for some .i  We can 

choose 2i k  places where ju N  or ju S  in 
2

n

i k

 
  

 ways.  By (2.2) for 1t   the weight 

of all non-negative paths is 
2

.
k i

i

 
 
 

 The remaining 2n i k   places can arbitrarily be filled 

with W  or .E  Therefore for arbitrary t  the weight of all such paths is 

  22
1 .

2
n k iin k i

t t
i k i

   
    

 

 

Let 0M  be the linear functional defined by  0 ( , ) [ 0].nM R x t n    Then (2.16) and (2.19) 

imply 

  0 ( ).n
nM x M t   (2.21) 

This result can be found in [1] and [13] and is implicitly contained in [17]. 
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 Formula (2.16) implies 2
, 2

0

( ) ( , )
n

n
n k k

k

x D t L x t


    and therefore 

  2
,0 ( ) ( ).n

n nM x D t M t    (2.22) 

In the same way there are rational functions , ( )n kE t  such that 2 1
, 2 1

0

( ) ( , )
n

n
n k k

k

x E t L x t




   

which implies  2 1 0.nM x    This gives 

 

 

Theorem 2 ([1], [13], [17]) 

Let M  be the linear functional defined  by  ( , ) [ 0].nM L x t n   Then the moments satisfy 

 
 
 

2

2 1

( ),

0.

n
n

n

M x M t

M x 




  (2.23) 

Let us now compute the generating functions ,
0

( , ) ( ) .n
k n k

n

f z t D t z


    

We get  1 1( , ) ( , ) (1 ) ( , ) ( , )k k k kf z t z f z t t f z t tf z t      for 0k   and 

0 0 1( , ) 1 (1 ) ( , ) 2 ( , ).f z t t zf z t tzf z t     

This gives 0( , ) ( , ) ( , )k k
kf z t z f z t f z t   with 

2 2

2

1 (1 ) (1 (1 ) ) 4 ( , ) 1
( , )

2

t z t z tz C t z
f z t

tz z

      
       by (1.29) .    Thus 

0 2 2 2

1 1
( , ) .

1 (1 ) 2 ( , ) (1 (1 ) ) 4
f z t

t z tz f z t t z tz
 

     
 

This gives  

 
2 2

0

1
( , ) ( )

(1 (1 ) ) 4

n
n

n

M t z M t z
t z tz

 
  

   (2.24) 

and 

  ,
0

( ) ( , ) ( , ) 1 .
kn

n k
n

D t z M t z C t z


    (2.25) 
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Corollary 

Let  

1

0

1
( , )

n
k

n
k

n n m m
c m t t

k k m n m





   
      
   

with 0 ( , ) 1c m t  be the m  fold convolution of ( )nC t  with itself (cf. (3.2)). 

Then for 1m    

 ,1
0 0

0

1
( ) ( , ) ( , ) .

( )

mn n m
j

n k k n m jm m
k j

j

D t R x t c m t x
t

n j



 
 



 
  

 


  (2.26) 

Proof 

By (3.4) we have 

,
,

0 0

( )
( , ) ( ) .

( ) ( 1)

m
n m k n m n

n km
n n

D t
z C t z D t z

t n m n


 




   
  

Therefore the left-hand side of (2.26) is the coefficient of n mz   of the power series 

,
0 0 0 0 0

( , ) ( ) ( , ) ( , ) ( , )
n

m n m n n i
n k k i

n k n i

C t z D t R x t z C t z x z c m t z x z
    

      


 

and the coefficient of n mz   is 
0

( , ) .
n m

j
n m j

j

c m t x


 

   

  

Since , 1
0 0

2
( )

m n n

n k tm
k k

n n j n n n m n n m
D t

j k j m m k j n j m k nt 
 

            
                            
    

(2.26) for 1t   implies 

2( ) 2( )
2

0 0 0

2 2
( ) ( ,1) .

2

n m n m n m
n m j n m j

k j
k j j

n m m jm
L x c m x x

n k jm j

  
   

  

    
        

     

For 1m   this reduces to 

1 1 1
2( 1 ) 2( 1 )

2
0 0 0

2 1 1 21
( ) .

1 2

n n n
n j n j

k j
k j j

n j
L x x C x

n k jj
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It seems that there are also similar extensions of (1.22) and (1.33). 

Conjecture 1 

  
1 1

1
, 1

0 01

( ) ( , ) ( 1) ( , ),
m mn n m

j
n k k n m jm

k jj

A t P x t n j j x c m t
t

  


  
 

 
    

    (2.27) 

  
1

,
0 01

( ) ( , ) 1 ( 1) ( , ).
m mn n m

j
n k k n m jm

k jj

B t Q x t n j j x c m t
t

 

 
 

 
     

    (2.28) 

 

Let me only mention one special case for 1.m     

Since  1

2 1( , )
( 1)

1
n

t

nB k t
k

n kt 

 
      

 we get 

1
2 1

2 1 1
0 0

2 1
( 1) ( ) ( 1) .

1

n n
j

k n j
k j

n
k F x j C x

n k




  
 

 
     

    

 

2.3. The polynomials 
 2 1 ,

( , ) .
n

n

L x t
S x t

x


   

Let 
2

0

1 4
( )

1

t t
t

t
  




  and 
1

1

1 1
( ) .

1 1

n n

n n n

t t
t t

t t






 
 

 
  

 The polynomials   

 
 2 1 ,

( , )
n

n

L x t
S x t

x


   (2.29) 

satisfy the recursion 

    
 

2

1 221

1 1
( , ) ( 1, ) ( , ) ( , )

1

n n

n n n
n

t t t
S x t x n t S x t S x t

t




 

 
   


  

with initial values 0 ( , ) 1S x t   and 
2

1

1 4
( , ) .

1

t t
S x t x

t

 
 


  

 

Theorem 3 

The polynomials ( , )nS x t  are explicitly given by 

 ,
0

1
( , ) ( 1) ( )

1

n
n k k

n n kn
k

S x t G t x
t





 
    (2.30) 
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 with 

 

 
 2

,
0

1
( 1)

1
( ) .

( 1)

n k
j n k j

n k
j

j k n j
n k j

k k
G t t t

k k


 



    
      

   (2.31) 

for 0k   and  

 
2

,0
0

( ) (2 1) .
n

n j
n

j

G t n t t


     (2.32) 

 

The first terms of the sequence  ,0 ,1 , 0
( ), ( ), , ( )n n n n n

G t G t G t


  are 

  

 

To prove this observe that by (2.10) we get 

1( , ) ( , ) (2 , ) ( , ).n n nxS x t R x t n t R x t    

This is equivalent with 

    1 1
1 ,1 ( , ) 1 ( , ) ( 1) ( ).k n n n k

n n n kx t R x t t R x t G t  
          

Let us first consider the coefficient of jt  with .j n   

Comparing coefficients gives the easily verified identity 

 

1 1

11 1

1
( 1)

1
.

( 1)

k j k j

n n k n n kj j

n nk j k j

j j

n j k j
k n j

k j

k k

    
                              
   
   

    
     



  

Now let us consider the coefficient of 2 .n k jt     Here we have to show that 

 

 
 

1
1

1
( 1)

1
( 1) [ ] ( , ) ( , ) .

( 1)
n k n k j k

n n

j k n j
n k j

k k
t x R x t tR x t

k k
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The left-hand side is 

1 11 1
11 1 1

1

n n k n j n n k n j

n nk j k k j k

k j k j

            
                    

        

  

which can be simplified to give the right-hand side. 

The coefficients of  , ( )n kG t  are related to the  numbers ( , , )g n j k  in OEIS [12]  A051340,  

A141419, A185874, A185875, A185876.  

 

Theorem 4 

The functions , ( )n kE t  which satisfy  

 ,
0

( ) ( , )
n

n
n k k

k

E t S x t x


   (2.33) 

are  

 
 1

0
, 1

1

( )
1

n k
j n j

j
n k k

n n
t t

k j j
E t

t


 




  
    




  (2.34) 

 

for n k  and , ( ) 0n kE t   else. 

 

As special case note that  

 
 

2
1

1

0 0 1
,0

1 1

( )
( ) .

1 1 1

n n
j n j j

j j n
n

n n n
t t t

j j j M t
E t

t t t


 

  

     
    

      
  

 
  (2.35) 

 

Proof 

By (1.1) this follows from 

 
, , , 1 1

0 0

1
1

0 0

1
0

1
( ) ( ) (2 1) ( )

11

1 11

11

1

1

kn k n
j j

n k n k n k k
j j

n k n k
j j k

k
j j

n k

k
j

t tn n n n
E t D t k D t t t

j k j j k jt

n n n n
t t

j k j j k jt

n

jt




 
 

 
 


 






     
                
        

                

 
    

 

 

1

0

1
.

n k
j n j

j

n n n
t t

k j k j j
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Thus the linear functional 1M  defined by  1 ( , ) [ 0]nM S x t n    has the moments 

   1
1

( )
.

1
n nM t

M x
t




  (2.36) 

The first terms of the triangle     2 1
,0 ,1 ,

0
(1 ) ( ), 1 ( ), , 1 ( )n

n n n n
n

t E t t E t t E t


    are 

  

 

The first terms of the triangle  ,0 ,1 , 0
(2), (2), , (2)n n n n n

E E E


  are 

  

Note that the first column contains the numbers 1
,0

(2)
(2) .

3
n

n

M
E    By [7] , Theorem 5.8, the 

Delannoy numbers (2)nM  are multiples of 3,  i.e. 1,0 (2) ,nE     if and only if  the base 3  

representation of n  contains at least one 1.  This is sequence  OEIS [12], A081606, 

 1,3, 4,5,7,9, .   

 

3. Convolutions of  Narayana polynomials. 

Finally we want to derive some convolution formulae.  By (1.41) we have 

2 2

0

1 ( 1) 1 2 ( 1) ( 1)
( , ) ( )

2
n

n
n

z t z t z t
C t z C t z

tz

      
    

or equivalently  

 2( , ) ( , ) 1 ( , ) ( , ).tzC t z C t z zC t z tzC t z      (3.1) 

We will show that 

 
0

( , ) ( , )m n
n

n

C t z c m t z


   (3.2) 

with 
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1

0

1
( , )

n
k

n
k

n n m m
c m t t

k k m n m





   
      
   (3.3) 

and 0 ( , ) 1.c m t    

 

Note that 
1 1

0 0

1 1 11 1
(1, ) ( ).

1 1 1

n n
k k

n n
k k

n n n n
c t t t C t

k k k kn k

 

 

       
              
    

It suffices to show that  

 1 2( , ) ( , ) 1 ( 1) ( , )m m mtzC t z C t z z t C t z      

holds if we replace ( , )mC t z   by 
0

( , ) .n
n

n

c m t z

  

The coefficient of 1nz   is 

  1 1, ( 1, ) ( 1) ( 1, ) ( 2, ).n n n ntc m t c m t t c m t c m t         

 The coefficient of 1kt   is 

1 1 11 1

1 1 1

1 1 11 2

1 1 11 1

n n m n n m n n mm m m

k k m k k m k k mn m n m n m

n n m n n mm m

k k m k k mn m n m

              
                        

          
                  

  

Dividing by 
1 1

1

n n m

k k m

    
     

  this gives 

1 1 1 1 2

1 1 1 1 1 1

m n m m n k n k m n m

k m k k m n m k k m n m k n m

      
   

           
  

which is easily verified. 

More generally we want to show that 

 ,
,

0 0

( )
( , ) ( ) .

( ) ( 1)

m
n m k n m n

n km
n n

D t
z C t z D t z

t n m n


 




   
  (3.4) 

The coefficient of nz  of the left-hand side is 

0

( , , )
n

j m

j

n m n m j

j j k m
v n m k t

n m

m





    
      

 
 
 

   

As above it suffices to verify that 
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 1 2
, , ,

0 0 0

( , ) ( ) ( , ) ( ) 1 ( 1) ( , ) ( )m n m n m n
n k n k n k

n n n

tzC t z D t z C t z D t z z t C t z D t z 

  

        

or 

( , , ) ( 1, 1, ) ( 1) ( , 1, ) ( 1, 2, ).tv n m k v n m k t v n m k v n m k           

This can easily be verified. 

 

For 1t   formula (3.2) reduces to the well-known formula 

 
0

21 1 4
(1, ) .

2 2

m

m n

n

n mz m
C z z

nz n m

    
         

   (3.5) 

 

A well-known convolution formula for the central binomial coefficients is 

 
0

2 2( )
4 .

n
n

k

k n k

k n k

  
    

   (3.6) 

A computational proof follows immediately by squaring the generating function (2.4). 

For the m  fold convolution we get 

 
1

1 2

1 2

22 2 1
( ) 4 2

m

m n
m

i i n m

m
ii i n
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since 
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A combinatorial proof has been given in [8]. 

I want now to compute the corresponding convolutions of the polynomials ( ).nM t  

Their generating function is  
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Then we get  

Theorem 5 
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  (3.10) 

To prove these identities by induction observe that  
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holds for all .n   

The first 5   terms of 1 2 5( , ), ( , ), , ( , )u n t u n t u n t  are 

 

 

All these polynomials are palindromic and gamma-nonnegative: 
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  (3.11) 

For the proof we make use of Gauss’s theorem for hypergeometric polynomials 
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 By comparing coefficients of kt  in (3.10) and (3.11) it suffices to show that 
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The left-hand side can we written as  2 1

,
,11
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   which by Gauss’s Theorem equals 
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Let us finally consider two special cases in detail. 

For 2m   we get 

 2
0 0

2 2 1 11
( , ) ( ) ( ) .

2 1 2 2 12

n n
k k k

k n k
k k k k

n n n
u n t M t M t t t t

k k k
 

       
             
      (3.13) 

For the generating function of 2
2 ( , )u n t  is 
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This implies 
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The right-hand side follows from   2 2(1 ) (1 ) (1 ) (1 ) (1 ) (1 ) .n n n n n nt t t t t t            

 

For 3m   we get 
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It would be interesting to find combinatorial interpretations of these results. 
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