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Abstract 

We give a survey of some known and some new results about factors of different sorts of q 
Fibonacci numbers. 

 

0. Introduction 

Let    0
0,1,1, 2,3,5,8,n n

F

   be the sequence of Fibonacci numbers and  let ( )pv n  be the 

p  adic valuation of ,n  i.e. the highest power of  the prime  number p  which divides .n  The 

Fibonacci numbers satisfy (cf. [7])     5 5 ,nv F v n  2 3 1nv F   for odd n  and 

   2 6 2 3.nv F v n    If p  is a prime different from 2  and 5  then either 1pF   or 1pF   is 

divisible by .p   

For q   let 11
[ ] [ ] 1

1

n
n

q

q
n n q q

q


     


  and let  
[ ] [ 1]

[1][2] [ ]

n n n k

k k

   
 

 




 be a q 

binomial coefficient.  

The Schur-Carlitz q  Fibonacci numbers    2

1

2

0

1
n

k
n

k

n k
F q q

k

 
  



  
  

 
  and 

2

1

2

0

1
( )

n

k k
n

k

n k
G q q

k

 
  





  
  

 
   (cf. [9],[2]) which have been introduced by I. Schur in his proof 

of the Rogers-Ramanujan identities inherit some of the properties for odd primes  and the q 

Fibonacci numbers  
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   introduced in [4] inherit divisibility 

properties by 2.   

 

1. Divisibility properties for odd primes 5.p     

1.1.   The q  Fibonacci numbers ( )nF q  satisfy the recurrence  

 2
1 2( ) ( ) ( )n

n n nF q F q q F q
     (1.1) 
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 with initial values 0 ( ) 0F q   and 1( ) 1.F q    

The first terms are  

2 2 3 4 2 3 4 5 60,1,1,1 ,1 ,1 ,1 2 , .q q q q q q q q q q q q q                

It is clear that (1) .n nF F   

 

Theorem 1.1 (George E. Andrews , Leonard Carlitz [1]) 

If p  is an odd prime with 2 mod5p    then 1( ) 0 mod[ ] .p qF q p   

For 1q   this can be proved (cf. [6], Theorem 180) using Binet’s formula 
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 Here all binomial coefficients are divisible by p  except the first and last one. Therefore 

1
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12 1 5  mod .

p
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     Hence 1 0 modpF p   if 
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  By the quadratic 

reciprocity law 
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 This implies 1
5

p    
 

 and thus 2 mod5.p     

 

Since there is no analogue of Binet’s formula for q  Fibonacci numbers  L. Carlitz  used the 

polynomial version of the first Rogers-Ramanujan identity (cf. [9], [5]) 
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   (1.2) 

He showed more generally  

Lemma 1.1 

Let ( )n q  be the n  th cyclotomic polynomial. Then 1( )nF q  is divisible by ( )n q  if and 

only if 2 mod5,n    where n  is an arbitrary positive integer. 

 

For a prime n p  the cyclotomic polynomial reduces to 11 [ ]p
qq q p     and therefore  

implies  Theorem 1.1. 
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 is divisible by ( )n q  for 1 1k n    we get by  (1.2)  
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1( ) ( 1) ( 1) mod ( )5 5
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It suffices  to verify that  1( ) 0 mod ( )n nF q q    for 10 2,  10 3,  10 7,  10 8.n m m m m       

This is shown in the following table: 

 

2 5 5
( ) ( )

( ) ( )5 2 2

10 2 2 10 1 1 [ ] [ ]

10 3 2 1 10 4 1 0 0

10 7 2 1 10 6 1 [ ] [ ]

10 8 2 2 10 9 1 0 0

n nn n r n r
n r e r e r

e r e r

m m m n n

m m m

m m m n n

m m m

                                
 
   
  
   

  

In each case both terms of (1.3) vanish modulo ( ).n q   

Also observe that ( ) 0 mod ( )nf q q   for a polynomial ( )f q  is equivalent with   0nf    

for a primitive n  th root of unity .n    

 

1.2.  The q  Fibonacci numbers ( )nG q  satisfy the recurrence  

 1
1 2( ) ( ) ( )n

n n nG q G q q G q
     (1.4) 

 with initial values 0 ( ) 0G q   and 1( ) 1.G q   The first terms are  

2 2 3 2 3 4 6 2 3 4 5 6 7 80,1,1,1 ,1 ,1 ,1 , .q q q q q q q q q q q q q q                 

The polynomial version of the second Rogers-Ramanujan identity  (cf.[9] ,[5]) gives 
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For 5n m  this implies  

 
(5 3)

2
5 5

5

( ) ( 1) 0mod ( )5( ) 1

2

k km
k

m m
k m

q

m

G q q qm k




 
       
    

   (1.6) 

since no q  binomial coefficient reduces to 1.   

As has been observed by H. Pan [8] for 0mod5n    there remain  modulo ( )n q only the 

terms with ( ),k r n  where  
2

( )
5

n
r n

    
  if 3mod5n   and 4mod5n    and 

2
( )

5

n
r n

     
 if 1mod5n   or 2mod5.n     

This leads to the following table where the congruences are modulo ( ).n q   

(5 3)
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(5 3)
3 12

( 1)(5 2)
1 2 12
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The congruences in the right column are easily verified. For example we have  for 5 2n m   
and  even m   

(5 3) 5 2
(5 2) 3 12 2 2 2 2( 1)

m m m m m m
mm mq q q q q

 
          

and for odd m   
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1 3 12 2 2( 1) .

m m m m m m
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Theorem 1.2 ( H. Pan [8]) 

If p  is a prime with 1 mod5p    then 1( ) 0 mod[ ] .p qG q p   

For example 

 2

3 4 6
10 ( ) [11] [5] 1 .q q

G q q q q q      
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Let me sketch  H. Pan’s proof. 

By (1.5) we get 
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For 5 1n m   this reduces to 
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   satisfies ( , 2 1) ( , 2 ) 5 1m k m k m n        

if 0mod 2m   and ( , 2 1) ( , 2 ) 5 1m k m k m n          if 1mod 2.m    

Therefore  each pair of adjacent terms in 
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nq q q     if m  is even and 

( ,2 ) ( ,2 1) 0mod ( )m k m k
nq q q     if m  is odd.  
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the situation is analogous.  

With  the same arguments H. Pan has shown that  

 5 5( ) 0 mod ( ).n nF q q    (1.7) 

By (1.2) we get 
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and as above each pair of adjacent elements sums to 0.  

 

1.3.  Let 
1

( ) .
1 0

x
A x

 
  
 

  Then it is easily verified (cf. [3])  that 

       11 2

1

( ) ( )
(1) .

( ) ( )
n nn n

n n

F q G q
A q A q A q A

F q G q
 



 
  
 

   (1.8) 

 

If we take the determinant of (1.8) we get the q Cassini formula 
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The above results and Cassini’s formula give  

Corollary 1.1 

If  0mod5n   then ( ) ( ) 0 mod ( )n n nF q G q q    and if 

0mod5n   then  

 ( ) ( ) 1mod ( ).n n nF q G q q    (1.11) 

 

More generally we get 

Corollary 1.2 

Let k  be a primitive k  th root of unity. Then 
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Proof 
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The proof for ( )nG q  is essentially the same. 

 

2. The main result for 5 ( )nF q  and 5 ( ).nG q   

Theorem 2.1 

Let 5kn m  with 1k   and 0mod5.m    Then 

 
5 5
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F q and q are divisible by      (2.1) 

For example  
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4 2 3 4 4
10 ( ) [5] 1 [9] [5] 1 1 [9] ,q q qq

F q q q q q q q q q            

2
5 ( ) [5] (1 ),qG q q q     
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3 4 6
10 ( ) [5] [11] 1 .qq

G q q q q q       
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Let us first recall how to prove that    5 5 .nv F v n  By Binet’s formula we get 
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This implies 5 5( ) ( ).nv F v n   

 

It is rather trivial that 5 ( )nF q  and 5 ( )nG q  are divisible by [5] .q   

To show this observe that (mod5) (mod[5] ).n n
qq q  Therefore  5 ( ) 0 mod[5]n qF q   by (1.1) 
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For example we see that 10 ( )F q  is divisible by 5 10( ) ( ),q q   15 ( )F q  is divisible by 

5 15( ) ( ),q q    or 20 ( )F q  is divisible by 5 10 20( ) ( ) ( ).q q q     

 

3. The Fibonacci numbers ( , ).rf n q   

Let for some r   
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These polynomials satisfy the recurrence  (cf. [4]) 

 3 2 4 4( , ) ( 1, ) ( 3, ) ( 4, )n r n r
r r r rf n q f n q q f n q q f n q           (3.2) 

with initial values (0, ) 0,rf q   (1, ) 1,rf q   (2, ) 1,rf q  2(3, ) 1 r
rf q q   and 

2 1 2(4, ) 1 .r r
rf q q q      

Of special interest is  0( , ) ( , ).f n q f n q     The first terms  of  ( , )f n q    are 

 2 2 2 3 4 50,1,1, 2, 2 , 2 2 , 2(1 ) 1 , 2 2 2 4 2 , .q q q q q q q q q q             

 

Conjecture 3.1 

Let 2 (2 1)kn m  with 0.k    Then 

   2 1

2(6 , ) 6 (2 1) 2 ,  2 2   . 
m

k k

q
is df n q f m q ivisible by 

         (3.3) 

 

For example    3 5 6 7 8 9 11(12, ) 2 8 1 2
q

f q q q q q q q q         and (18, )f q  is divisible 

by   32 4 .
q

  

Let me prove some trivial facts: 

The Fibonacci numbers nF  satisfy 6 0 mod8.nF   For 

   0
mod8 0,1,1,2,3,5,0,1,1,2,3,5,0, .n n
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Cf. [4],Theorem 3.2 and the literature cited there.  

It is also easy to show by induction that 
(3 1) (3 1)

2 2(3 , ) mod 2 0,   (3 1, ) mod 2 ,   (3 2, ) mod 2 .
n n n n

f n q f n q q f n q q
 

      

 

Observe that  2 3(6, ) 2 1 2[4] .qf q q q q        

The sequence    2 2mod[4] 1, , , 1 ,nq q q q q      is periodic with period 4.   

This implies that the sequence ( 24, ) mod[4]qf n q  satisfies the same recurrence. It is easily 

verified that it also has the same initial values. Therefore the sequence ( , ) mod[4]qf n q   
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has period 24.  Since it satisfies (6 , ) 0 mod[4]qf n q   we finally get that (6 , )f n q  is divisible 

by  22(1 ) 1 .q q     

For general r  we get   

Conjecture 3.2 

Let 2 (2 1)kn m  with 0.k    Then 

 (6 , ) 6 (2 1) 2 ,k
rf n q f m q      is divisible by 

2 1

22 .
m

k

q 

     

For example     2 2 1 2 2 2 36, 1 1r r r r
rf q q q q q        is a multiple of  2(1 ) 1 .q q   If r  

is even then i  and 1  are roots of the second factor, if r  is odd then i  is a root of the first 

factor and 1  is a root of the second factor of  6, .rf q   
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