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Abstract

We give a survey of some known and some new results about factors of different sorts of q—
Fibonacci numbers.

0. Introduction

Let (F,),., =(0,1,1,2,35,8,--) be the sequence of Fibonacci numbers and let v (n) be the
p —adic valuation of n, i.e. the highest power of the prime number p which divides n. The
Fibonacci numbers satisfy (cf. [7]) v, (F,)=Vs(n), v,(F;,)=1 forodd n and

V,(Fsy) =V, (n)+3. If p isaprime different from 2 and 5 then either F, or F,, is

divisible by p.
—_qg" n —
For qe C let [n]=[n], :l g =1+q+---+q"" and let { }:[n] [n—k+] bea q-
1- k [1r2]---[k]
binomial coefficient.
2
. . . 2 K2 n-1-k
The Schur-Carlitz q— Fibonacci numbers F,(q)= Y. q ) and
k=0
n-1
20 e n=1-k : : -
G,()= Z q ) (cf. [9],[2]) which have been introduced by I. Schur in his proof
k=0

of the Rogers-Ramanujan identities inherit some of the properties for odd primes and the q—
n-1

Z) [(5Tn-1-k
Fibonacci numbers f(n,q)= > q[zj{ ) } introduced in [4] inherit divisibility
k=0

properties by 2.

1. Divisibility properties for odd primes p = 5.

1.1. The q- Fibonacci numbers F (q) satisfy the recurrence
F.(@)=F..(@)+0a""F,_,(a) (1.1)
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with initial values F,(q) =0 and F,(q) =1.
The first terms are
0,1,11+09,1+q+09%1+q+9* +9* +q*, 1+q+q?+q* +29* +9° +q°, -

Itis clear that F, (1) = F,.

Theorem 1.1 (George E. Andrews , Leonard Carlitz [1])
If p isanodd prime with p=+2 mod5 then F,,(q) =0 mod[p],.

For g =1 this can be proved (cf. [6], Theorem 180) using Binet’s formula

F :ﬁ((uﬁ)"—(l—ﬁ)”).

This gives

p-1
N N L

Here all binomial coefficients are divisible by p except the first and last one. Therefore

P
2

p-1
2°F,,;=1+52 modp. Hence F,,, =0 modp if 52 E(Ej: —1 mod p. By the quadratic
p

reciprocity law (g}(%} =1. This implies (Ej =-1 and thus p=+2 mod>.

Since there is no analogue of Binet’s formula for q— Fibonacci numbers L. Carlitz used the
polynomial version of the first Rogers-Ramanujan identity (cf. [9], [5])

L%ZJ k (5k-1) n
F..() = %J(—l)kq 2 Ln+5kJ. (1.2)
k=7”L52 2

He showed more generally

Lemmal.l

Let @, (q) be the n—th cyclotomic polynomial. Then F,(q) is divisible by @, (q) if and
only if n=+2 mod5, where n is an arbitrary positive integer.

For a prime n=p the cyclotomic polynomial reduces to 1+q+---+q°* =[p], and therefore
implies Theorem 1.1.



n
Since {k} is divisible by @ (q) for 1<k <n-1 we get by (1.2)

r(5r+1) n r(5r-1) n
Fa(@=-D"q 2 [n—SrJ +(-D'q ? [n+5rJ mod @, (q) (1.3)
2 2

with r = LEJ
5
It suffices to verify that F, ,(q)=0 mod®,(q) for n=10m+2, 10m+3, 10m+7, 10m+8.

This is shown in the following table:

n+2 n-+5r n->5r
o s

o) s

10m+2 2m 10m+1 1 [n] [n]
10m+3 2m+1 10m+4 -1 0 0
10m+7 2m+1 10m+6 1 [n] [n]
10m+8 | 2m+2 10m+9 -1 0 0

In each case both terms of (1.3) vanish modulo @ (q).

Also observe that f(q)=0mod®, (q) for a polynomial f(q) is equivalent with f ((n) =0
for a primitive n— th root of unity ¢ .

1.2. The q-Fibonacci numbers G, (q) satisfy the recurrence

G, (a)= Gn—l(q)+qn_lGn—2 () 1.4)
with initial values G,(q) =0 and G,(q) =1. The first terms are
011,1,1+q211+q2 +q3,1+q2+q3+q4+q6,1+q2 +q3+q4 +q5+q6 +q7 +q81”_.

The polynomial version of the second Rogers-Ramanujan identity (cf.[9],[5]) gives

niszJ k (5k—3) n
G,(q9)= %J(—l)kq 2 Ln—1+5kJ. (1.5)
]2 —



For n=5m this implies

m k (5k-3) 5m
Gsn(@) = . (-D'q 2 L5(m+ K)-1 J =0mod @, (q) (1.6)
k=—m 2 q

since no q— binomial coefficient reduces to 1.
As has been observed by H. Pan [8] for n = 0mod5 there remain modulo @ (q)only the
terms with k =r(n), where r(n)= [n%ZJ if n=3mod5 and n=4mod5 and

r(n)=—LnT+2J if n=1mod5 or n=2mod>.

This leads to the following table where the congruences are modulo @, (q).

n | r(n) G,(q)
5m 0 0
m(5m+3)
5m+1| —m (-D"q 2 =q"
m(5m+3)
5m+2| -m | (-)"q ? =-g*™
(m+1)(5m+2)
5m+3 | m+1|(-)™'q 2 =-g**
(m+1)(5m+2)
5m+4 |m+1| (<)™q 2 =g

The congruences in the right column are easily verified. For example we have for n=5m+2
and even m

m(5m+3) m(5m+2) m

(-D"q ? =9°> g9*=-q

and for odd m

5m+2
+

2 =—q

m
2 3m+1

m(5m+3)

(-)"™q 2

m(5m+3) (5m+2)(m-1)

Eq 2 2

3m+1

=q

Theorem 1.2 ( H. Pan [8])

If p isaprimewith p=+1 mod5 then G,_,(q) =0 mod[p],.
For example

Gy, (a) = [11]q[5]q2 (1—q + q3 —q“ + q6).



Let me sketch H. Pan’s proof.
By (1.5) we get
r%lj k(5k—3) n-1
G(@= >, (-D'q ? Ln—2+5kJ .
n+1 - A
% 2

For n=5m+1 this reduces to

m k(5k-3) 5m m

k=-m+1 k=-m+1

Gsn(@)= D, (-D'q 2 [5(m+k)—1J = > (-Dq ?

2

5(m+k)-1

k(5k-3) {fj [5m +1] -] o

B Tl T

k=-m+1 j=1 q [J]q k=—m+1

Now observe that

5(m+k)+1

f(m,k):k(5k2_3)— [ 2 J satisfies ¢(m,2k —1) - ¢(m,2k) =5m+1=n

2

if m=0mod2 and ¢(m,2k +1) — ¢/(m,2k) =-5m—-1=-n if m=1mod?2.

Therefore each pair of adjacent terms in G, (q) = z (-1 {

k=-m+1

satisfies +q"™* 9™ =0mod®,_(q) if m is even and

+q/ ™29 £q' ™% =0mod @, (q) if m is odd.

For n=5m+4 and

m+1 k(5k=3) Sm+3
Gz ()= 2 (-D"q 2 [5(m+k)+2J mod @, (q)
k=—m —_—
2

the situation is analogous.

With the same arguments H. Pan has shown that

F,(q) =0mod @, (q).

By (1.2) we get
n K(5k-1) on-1
Fo(@= > (-D'a ? |s5n+5k-1
k=—n+1 T
q

J[Sm +1- j]q

5(m+k)-1

Jq“m‘“ mod @, (q)

J] mod @, ().

(1.7)



and as above each pair of adjacent elements sums to 0.

1 x
1.3. Let A(X) :[1 OJ' Then it is easily verified (cf. [3]) that

g . F.a(@) G (a)
Al(g")A(9"?)---A(q A(1)=( i " . (1.8)
() A=) A(@) F.(@)  G,.(a)
If we take the determinant of (1.8) we get the q— Cassini formula
F,..(2)G,,(a) - F,(a)G, (q) =(—1)“q@. (1.9)
[nj n\n-1
If q is a primitive n— th root of unity then g‘* :[qzj =-1if n=0mod2 and
(2
0¥ =(q")? =1 if n=1mod2. Therefore we get
(-1)" q[2] =-1mod @ (q). (1.10)
The above results and Cassini’s formula give
Corollary 1.1
If n=0mod5 then F, (q)G,(q)=0mod®,(q) and if
n = 0mod5 then
F,(9)G,(q) =1mod @, (q). (1.11)
More generally we get
Corollary 1.2
Let £, be a primitive k —th root of unity. Then
F =FF :
kn (é/k) n k(é/k) (112)
Gkn (gk): FnGk (é/k)’
and therefore
F(£)60 ()= 0 if k=0mod5 (1.13)
AP T2 ER if k= 0mod 5. '
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Proof

Let j=mk+ ¢ with 0</¢<k. Then for km+/<k(n-m)—-/¢-1

k(n-m)—-/¢-1 3 m 1—qk(n—m—i) (1—qk(n—m)—é—1)-.-(1—qk(”_m)_k+l)(l_qk(“‘m)—k—l),,,(1_qk(n—m)_k_[)
|: km"t‘g :| _]IJ l_qki * (l—q)...(l_qkfl)
*-.,*(l_qkikil)--.(l_qkfzfifl)

(1__q).”(1__qf)

n-m-1
If we let g — &, then the first term converges to ( . ) the middle terms give 1

because the factors of the numerator are a permutation of the factors of the denominator, and

k—/¢-1
the last term converges to ' .
Sk

Therefore we get

T il

: J . m km+/

DS AR SRR T

m
k

The proof for G, (q) is essentially the same.

2. The main result for F, (q) and G, (q).
Theorem 2.1

Let n=5“m with k>1 and m = 0mod5. Then

F. (q) and G, (q) are divisible by [SK}qm . (2.1)

For example

Fs (q) = [5]q!
Fo(@) =51 (1+a+9°9], ) =[5, (1-q+9” —a*+q*)(L+q+q°[9], ),
G,(a) =[5],L-q+9*),

G, (q) = [5]q2 [11], (1—q +q°—q* + qe).



Let us first recall how to prove that v, (F, ) =v;(n). By Binet’s formula we get
1 s n n_l Kk

F = 1+ 5

" 2[(( I) ( )) 2”120[ ] 2”1§2k+1(2kJ

X n-1
For each k >0 we have v >0 >V, (n) and for k=0 we have v, n =V, (n).
2k +1 100

This implies v, (F,) = v;(n).

It is rather trivial that F; (q) and G;,(q) are divisible by [5],.

To show this observe that g" = g"™* (mod[5],). Therefore F, (q) =0(mod[5], ) by (1.1)
implies F;,,,(0) = F,,.(A), Fsn,5(a) = R, (@) +0Fs,..(Q) = R0 (@) (14 ),

Fon.s () = Fopos(@) + 0% Fy, 0 (@) = (1+9+ 07 ) R, (q) and finally

Fons (A) = o0 (@) + 0°F () = (1+ 9+ 0% +0° +0* ) ., (9) = 0( mod[5], ).

Analogously G, (q) =0(mod[5], ) by (L.1) implies G, ,,(q) = Gg,.,(q),

Gsr.3(0) = Gy (@) + 9°Gy, 4 (0) = Gy, 1 (@) (107,

Gipa (@) = Gsy,5(A) +4°Gs,, (@) = (1+9° +0°) G4 (q) and finally

Gsnis (@) =Gy s () +0°Giy 5 () = (1407 +0° +0° +0°) G4 () =[5], (1- 0+ 07 ) G4 ()
= 0(mod(5], ).

For the general case observe that by (1.7) and (1.6) F,, (q)=0mod®,, (q) and
G, (q)=0mod®, (q) for each factor 5'r of 5m with ¢>1 and that all @, (q) are

irreducible. Therefore the product of all these cyclotomic polynomials divides F, (q) and

o KA G))
_ o _ ) v _1—q5m_d|5km

G, (q). But this product coincides with | 5 ]qm because [ 5 ]qm T [[o@
dim

For example we see that F,,(q) is divisible by ®,(q)®,,(q), Fs(q) is divisible by
D5 (q)P;5(q), or Fy(q) is divisible by @, (q)D,, ()P, (a)-

3. The Fibonacci numbers f,(n,q).
Let for some r e Z

f,(n q)—@q[ }m[”_l_k} (31)

k
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These polynomials satisfy the recurrence (cf. [4])
f (n,g)=f,(n-1,0)+q"**f (n-3,9)+g" " f (n—4,0)

with initial values f (0,q)=0, f.(1,q)=1 f (2,9)=1 f (3,q)=1+g"" and

1+2r

f.(4,0)=1+9" +q
Of special interestis f(n,q) = f,(n,q). The firstterms of f(n,q) are

0,1,1,2,2+q,2+2q+q2,2(1+q)(1+q2),2+2q+2q2+4q3+2q4+q5,...,

Conjecture 3.1

Let n=2%(2m+1)with k >0. Then

f(6n,q) = (6-(2m+1)-2,q) is divisible by 2[ 2% |

2m+l *

(3.2)

(3.3)

For example f(12,q) =2[8], (1+0°+0°+9°+q"+20° +0° +q") and f(18,q) is divisible

by 2[4]

¢
Let me prove some trivial facts:

The Fibonacci numbers F, satisfy F,, =0 mod8. For
(F,mod8) =(0,11235,0,112,35,0,-).

= 5)[3n-1-k
Now observe that f(3n,q) is even because Y (-1)*q* { ) }:0.
k=0

Cf. [4],Theorem 3.2 and the literature cited there.

It is also easy to show by induction that
n(3n-1) n(3n+1)

f(3n,qymod2=0, f(3n+1l,q)mod2=q 2 , f(3n+2,q)ymod2=q 2

Observe that f (6,q) = 2(1+q+9* +9°) = 2[4],.

The sequence (g" mod[4]) =(1,9,9%, ~1-q-q? ---) is periodic with period 4.

This implies that the sequence f (n+24,q) mod[4], satisfies the same recurrence. It is easily

verified that it also has the same initial values. Therefore the sequence f (n,q) mod[4],



has period 24. Since it satisfies f (6n,q) =0mod[4], we finally get that f (6n,q) is divisible
by 2(L+q)(1+9°).

For general r we get

Conjecture 3.2

Let n=2(2m+1)with k >0. Then

f.(6n,q) = (6-(2m+1)-2",q) is divisible by [2k+2]q

2r+1

For example f,(6,q)=(1+0" )(1+g°* +g°** +¢***) isamultiple of (1+q)(1+q°). If r

is even then i and —1 are roots of the second factor, if r is odd then i is a root of the first
factor and —1 is a root of the second factor of f, (6,q).
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