Some divisibility properties of q-Fibonacci numbers

Johann Cigler
Fakultät für Mathematik
Universität Wien
johann.cigler@univie.ac.at

Abstract

We give a survey of some known and some new results about factors of different sorts of q Fibonacci numbers.

0. Introduction

Let $\left(F_{n}\right)_{n \geq 0}=(0,1,1,2,3,5,8, \cdots)$ be the sequence of Fibonacci numbers and let $v_{p}(n)$ be the p-adic valuation of n, i.e. the highest power of the prime number p which divides n. The Fibonacci numbers satisfy (cf. [7]) $v_{5}\left(F_{n}\right)=v_{5}(n), v_{2}\left(F_{3 n}\right)=1$ for odd n and $v_{2}\left(F_{6 n}\right)=v_{2}(n)+3$. If p is a prime different from 2 and 5 then either F_{p-1} or F_{p+1} is divisible by p.

For $q \in \mathbb{C}$ let $[n]=[n]_{q}=\frac{1-q^{n}}{1-q}=1+q+\cdots+q^{n-1}$ and let $\left[\begin{array}{l}n \\ k\end{array}\right]=\frac{[n] \cdots[n-k+1]}{[1][2] \cdots[k]}$ be a $q-$ binomial coefficient.

The Schur-Carlitz q - Fibonacci numbers $F_{n}(q)=\sum_{k=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor} q^{k^{2}}\left[\begin{array}{c}n-1-k \\ k\end{array}\right]$ and
$G_{n}(q)=\sum_{k=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor} q^{k^{2}+k}\left[\begin{array}{c}n-1-k \\ k\end{array}\right]$ (cf. [9],[2]) which have been introduced by I. Schur in his proof of the Rogers-Ramanujan identities inherit some of the properties for odd primes and the q Fibonacci numbers $f(n, q)=\sum_{k=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor} q^{\binom{k}{2}}\left[\begin{array}{c}n-1-k \\ k\end{array}\right]$ introduced in [4] inherit divisibility properties by 2 .

1. Divisibility properties for odd primes $p \neq 5$.

1.1. The q-Fibonacci numbers $F_{n}(q)$ satisfy the recurrence

$$
\begin{equation*}
F_{n}(q)=F_{n-1}(q)+q^{n-2} F_{n-2}(q) \tag{1.1}
\end{equation*}
$$

with initial values $F_{0}(q)=0$ and $F_{1}(q)=1$.
The first terms are
$0,1,1,1+q, 1+q+q^{2}, 1+q+q^{2}+q^{3}+q^{4}, 1+q+q^{2}+q^{3}+2 q^{4}+q^{5}+q^{6}, \cdots$.
It is clear that $F_{n}(1)=F_{n}$.

Theorem 1.1 (George E. Andrews , Leonard Carlitz [1])
If p is an odd prime with $p \equiv \pm 2 \bmod 5$ then $F_{p+1}(q) \equiv 0 \bmod [p]_{q}$.
For $q=1$ this can be proved (cf. [6], Theorem 180) using Binet’s formula
$F_{n}=\frac{1}{2^{n} \sqrt{5}}\left((1+\sqrt{5})^{n}-(1-\sqrt{5})^{n}\right)$.
This gives
$2^{p} F_{p+1}=\binom{p+1}{1}+\binom{p+1}{3} 5+\cdots+\binom{p+1}{p} 5^{\frac{p-1}{2}}$.
Here all binomial coefficients are divisible by p except the first and last one. Therefore $2^{p} F_{p+1} \equiv 1+5^{\frac{p-1}{2}} \bmod p$. Hence $F_{p+1} \equiv 0 \bmod p$ if $5^{\frac{p-1}{2}} \equiv\left(\frac{5}{p}\right)=-1 \bmod p$. By the quadratic reciprocity law $\left(\frac{p}{5}\right)\left(\frac{5}{p}\right)=1$. This implies $\left(\frac{p}{5}\right)=-1$ and thus $p \equiv \pm 2 \bmod 5$.

Since there is no analogue of Binet's formula for q - Fibonacci numbers L. Carlitz used the polynomial version of the first Rogers-Ramanujan identity (cf. [9], [5])

$$
F_{n+1}(q)=\sum_{\left.k=-\frac{n+2}{5}\right\rfloor}^{\left\lfloor\frac{n+2}{5}\right\rfloor}(-1)^{k} q^{\frac{k(5 k-1)}{2}}\left[\begin{array}{c}
n \tag{1.2}\\
\left.\frac{n+5 k}{2}\right\rfloor \\
\hline
\end{array}\right] .
$$

He showed more generally

Lemma 1.1

Let $\Phi_{n}(q)$ be the n-th cyclotomic polynomial. Then $F_{n+1}(q)$ is divisible by $\Phi_{n}(q)$ if and only if $n \equiv \pm 2 \bmod 5$, where n is an arbitrary positive integer.

For a prime $n=p$ the cyclotomic polynomial reduces to $1+q+\cdots+q^{p-1}=[p]_{q}$ and therefore implies Theorem 1.1.

Since $\left[\begin{array}{l}n \\ k\end{array}\right]$ is divisible by $\Phi_{n}(q)$ for $1 \leq k \leq n-1$ we get by (1.2)

$$
F_{n+1}(q) \equiv(-1)^{r} q^{\frac{r(5 r+1)}{2}}\left[\begin{array}{c}
n \tag{1.3}\\
\left\lfloor\frac{n-5 r}{2}\right\rfloor \\
\hline
\end{array}\right]+(-1)^{r} q^{\frac{r(5 r-1)}{2}}\left[\left\lfloor\begin{array}{c}
n \\
\left\lfloor\frac{n+5 r}{2}\right.
\end{array}\right\rfloor\right] \bmod \Phi_{n}(q)
$$

with $r=\left\lfloor\frac{n+2}{5}\right\rfloor$.
It suffices to verify that $F_{n+1}(q) \equiv 0 \bmod \Phi_{n}(q)$ for $n=10 m+2,10 m+3,10 m+7,10 m+8$.
This is shown in the following table:

n	$r=\left\lfloor\frac{n+2}{5}\right\rfloor$	$e(r)=\left\lfloor\frac{n+5 r}{2}\right\rfloor$	$e(-r)=\left\lfloor\frac{n-5 r}{2}\right\rfloor$	$\left[\begin{array}{c}n \\ e(r)\end{array}\right]$	$\left[\begin{array}{c}n \\ e(-r)\end{array}\right]$
$10 m+2$	$2 m$	$10 m+1$	1	[n]	[n]
$10 m+3$	$2 m+1$	$10 m+4$	-1	0	0
$10 m+7$	$2 m+1$	$10 m+6$	1	[n]	[n]
$10 m+8$	$2 m+2$	$10 m+9$	-1	0	0

In each case both terms of (1.3) vanish modulo $\Phi_{n}(q)$.
Also observe that $f(q) \equiv 0 \bmod \Phi_{n}(q)$ for a polynomial $f(q)$ is equivalent with $f\left(\zeta_{n}\right)=0$ for a primitive n - th root of unity ζ_{n}.
1.2. The q - Fibonacci numbers $G_{n}(q)$ satisfy the recurrence

$$
\begin{equation*}
G_{n}(q)=G_{n-1}(q)+q^{n-1} G_{n-2}(q) \tag{1.4}
\end{equation*}
$$

with initial values $G_{0}(q)=0$ and $G_{1}(q)=1$. The first terms are

$$
0,1,1,1+q^{2}, 1+q^{2}+q^{3}, 1+q^{2}+q^{3}+q^{4}+q^{6}, 1+q^{2}+q^{3}+q^{4}+q^{5}+q^{6}+q^{7}+q^{8}, \cdots .
$$

The polynomial version of the second Rogers-Ramanujan identity (cf.[9] ,[5]) gives

$$
\left.G_{n}(q)=\sum_{k=-\left\lfloor\frac{n+2}{5}\right\rfloor}^{\left\lfloor\frac{n+2}{5}\right\rfloor}(-1)^{k} q^{\frac{k(5 k-3)}{2}}\left[\begin{array}{c}
n \tag{1.5}\\
\frac{n-1+5 k}{2}
\end{array}\right\rfloor\right]
$$

For $n=5 m$ this implies

$$
\left.G_{5 m}(q)=\sum_{k=-m}^{m}(-1)^{k} q^{\frac{k(5 k-3)}{2}}\left[\begin{array}{c}
5 m \tag{1.6}\\
{\left[\frac{5(m+k)-1}{2}\right.}
\end{array}\right]\right]_{q} \equiv 0 \bmod \Phi_{5 m}(q)
$$

since no q-binomial coefficient reduces to 1 .
As has been observed by H. Pan [8] for $n \neq 0 \bmod 5$ there remain modulo $\Phi_{n}(q)$ only the terms with $k=r(n)$, where $r(n)=\left\lfloor\frac{n+2}{5}\right\rfloor$ if $n \equiv 3 \bmod 5$ and $n \equiv 4 \bmod 5$ and $r(n)=-\left\lfloor\frac{n+2}{5}\right\rfloor$ if $n \equiv 1 \bmod 5$ or $n \equiv 2 \bmod 5$.

This leads to the following table where the congruences are modulo $\Phi_{n}(q)$.

n	$r(n)$	$G_{n}(q)$
$5 m$	0	0
$5 m+1$	$-m$	$(-1)^{m} q^{\frac{m(5 m+3)}{2}} \equiv q^{m}$
$5 m+2$	$-m$	$(-1)^{m} q^{\frac{m(5 m+3)}{2}} \equiv-q^{3 m+1}$
$5 m+3$	$m+1$	$(-1)^{m+1} q^{\frac{(m+1)(5 m+2)}{2}} \equiv-q^{2 m+1}$
$5 m+4$	$m+1$	$(-1)^{m+1} q^{\frac{(m+1)(5 m+2)}{2}} \equiv q^{4 m+3}$

The congruences in the right column are easily verified. For example we have for $n=5 m+2$ and even m

$$
(-1)^{m} q^{\frac{m(5 m+3)}{2}} \equiv q^{\frac{m}{2}(5 m+2)} q^{\frac{m}{2}} \equiv-q^{\frac{m}{2}+\frac{5 m+2}{2}}=-q^{3 m+1}
$$

and for odd m

$$
(-1)^{m+1} q^{\frac{m(5 m+3)}{2}} \equiv q^{\frac{m(5 m+3)}{2}-\frac{(5 m+2)(m-1)}{2}} \equiv q^{3 m+1} .
$$

Theorem 1.2 (H. Pan [8])
If p is a prime with $p \equiv \pm 1 \bmod 5$ then $G_{p-1}(q) \equiv 0 \bmod [p]_{q}$.
For example
$G_{10}(q)=[11]_{q}[5]_{q^{2}}\left(1-q+q^{3}-q^{4}+q^{6}\right)$.

Let me sketch H. Pan’s proof.
By (1.5) we get

$$
G_{n-1}(q)=\sum_{\left.k=-\frac{n+1}{5}\right\rfloor}^{\lfloor-1)^{k} q^{\frac{k(5 k-3)}{2}}\left[\begin{array}{c}
n-1 \\
\left\lfloor\frac{n-2+5 k}{2}\right.
\end{array}\right]}
$$

For $n=5 m+1$ this reduces to

$$
\begin{aligned}
& G_{5 m}(q)=\sum_{k=-m+1}^{m}(-1)^{k} q^{\frac{k(5 k-3)}{2}}\left[\left|\frac{5(m+k)-1}{2}\right|\right]=\sum_{k=-m+1}^{m}(-1)^{k} q^{\frac{k(5 k-3)}{2}} \prod_{j=1}^{\left.\frac{5(m+k)-1}{2}\right]} \frac{[5 m+1-j]_{q}}{[j]_{q}} \\
& \left.=\sum_{k=-m+1}^{m}(-1)^{k} q^{\frac{k(5 k-3)}{2}} \prod_{j=1}^{\left.\frac{5(m+k)-1}{2}\right]} \frac{[5 m+1]_{q}-[j]_{q}}{q^{j}[j]_{q}} \equiv \sum_{k=-m+1}^{m}(-1)^{\left.k+\frac{5(m+k)-1}{2}\right]} q^{\frac{k(5 k-3)}{2}-\left\{\frac{5(m+k)+1}{2}\right]} 2\right] \bmod \Phi_{n}(q) .
\end{aligned}
$$

Now observe that
$\ell(m, k)=\frac{k(5 k-3)}{2}-\left(\left\lfloor\frac{5(m+k)+1}{2}\right\rfloor\right)$ satisfies $\ell(m, 2 k-1)-\ell(m, 2 k)=5 m+1=n$
if $m \equiv 0 \bmod 2$ and $\ell(m, 2 k+1)-\ell(m, 2 k)=-5 m-1=-n$ if $m \equiv 1 \bmod 2$.
Therefore each pair of adjacent terms in $G_{m}(q)=\sum_{k=-m+1}^{m}(-1)^{k+\left[\frac{5(m+k)-1}{2}\right]} q^{\ell(m, k)} \bmod \Phi_{n}(q)$
satisfies $\pm q^{\ell(m, 2 k-1)} \mp q^{\ell(m, 2 k)}=0 \bmod \Phi_{n}(q)$ if m is even and
$\pm q^{\ell(m, 2 k)} \mp q^{\ell(m, 2 k+1)}=0 \bmod \Phi_{n}(q)$ if m is odd.
For $n=5 m+4$ and
$G_{5 m+3}(q)=\sum_{k=-m}^{m+1}(-1)^{k} q^{\frac{k(5 k-3)}{2}}\left[\left\lfloor\frac{5 m+3}{\left[\frac{5(m+k)+2}{2}\right.}\right\rfloor\right] \bmod \Phi_{n}(q)$
the situation is analogous.
With the same arguments H. Pan has shown that

$$
\begin{equation*}
F_{5 n}(q) \equiv 0 \bmod \Phi_{5 n}(q) . \tag{1.7}
\end{equation*}
$$

By (1.2) we get
$F_{5 n}(q)=\sum_{k=-n+1}^{n}(-1)^{k} q^{\frac{k(5 k-1)}{2}}\left[\begin{array}{c}5 n-1 \\ \frac{5 n+5 k-1}{2}\end{array}\right]_{q}$
and as above each pair of adjacent elements sums to 0 .
1.3. Let $A(x)=\left(\begin{array}{ll}1 & x \\ 1 & 0\end{array}\right)$. Then it is easily verified (cf. [3]) that

$$
A\left(q^{n-1}\right) A\left(q^{n-2}\right) \cdots A(q) A(1)=\left(\begin{array}{cc}
F_{n+1}(q) & G_{n}(q) \tag{1.8}\\
F_{n}(q) & G_{n-1}(q)
\end{array}\right)
$$

If we take the determinant of (1.8) we get the q-Cassini formula

$$
\begin{equation*}
F_{n+1}(q) G_{n-1}(q)-F_{n}(q) G_{n}(q)=(-1)^{n} q^{\binom{n}{2}} \tag{1.9}
\end{equation*}
$$

If q is a primitive n-th root of unity then $q^{\binom{n}{2}}=\left(q^{\frac{n}{2}}\right)^{n-1}=-1$ if $n \equiv 0 \bmod 2$ and $q^{\binom{n}{2}}=\left(q^{n}\right)^{\frac{n-1}{2}}=1$ if $n \equiv 1 \bmod 2$. Therefore we get

$$
\begin{equation*}
(-1)^{n} q^{\binom{n}{2}} \equiv-1 \bmod \Phi_{n}(q) \tag{1.10}
\end{equation*}
$$

The above results and Cassini's formula give

Corollary 1.1

If $n \equiv 0 \bmod 5$ then $F_{n}(q) G_{n}(q) \equiv 0 \bmod \Phi_{n}(q)$ and if
$n \neq 0 \bmod 5$ then

$$
\begin{equation*}
F_{n}(q) G_{n}(q) \equiv 1 \bmod \Phi_{n}(q) . \tag{1.11}
\end{equation*}
$$

More generally we get

Corollary 1.2

Let ζ_{k} be a primitive k - th root of unity. Then

$$
\begin{align*}
& F_{k n}\left(\zeta_{k}\right)=F_{n} F_{k}\left(\zeta_{k}\right), \\
& G_{k n}\left(\zeta_{k}\right)=F_{n} G_{k}\left(\zeta_{k}\right), \tag{1.12}
\end{align*}
$$

and therefore

$$
F_{k n}\left(\zeta_{k}\right) G_{k n}\left(\zeta_{k}\right)=\left\{\begin{array}{ccc}
0 & \text { if } k \equiv 0 \bmod 5 \tag{1.13}\\
F_{n}^{2} & \text { if } k \neq 0 \bmod 5 .
\end{array}\right.
$$

Proof

Let $j=m k+\ell$ with $0 \leq \ell<k$. Then for $k m+\ell \leq k(n-m)-\ell-1$
$\left[\begin{array}{c}k(n-m)-\ell-1 \\ k m+\ell\end{array}\right]_{q}=\prod_{i=1}^{m} \frac{1-q^{k(n-m-i)}}{1-q^{k i}} * \frac{\left(1-q^{k(n-m)-\ell-1}\right) \cdots\left(1-q^{k(n-m)-k+1}\right)\left(1-q^{k(n-m)-k-1}\right) \cdots\left(1-q^{k(n-m)-k-\ell}\right)}{(1-q) \cdots\left(1-q^{k-1}\right)}$
$* \cdots * \frac{\left(1-q^{k-\ell-1}\right) \cdots\left(1-q^{k-2 \ell-1}\right)}{(1-q) \cdots\left(1-q^{\ell}\right)}$
If we let $q \rightarrow \zeta_{k}$ then the first term converges to $\binom{n-m-1}{m}$, the middle terms give 1 because the factors of the numerator are a permutation of the factors of the denominator, and the last term converges to $\left[\begin{array}{c}k-\ell-1 \\ \ell\end{array}\right]_{\zeta_{k}}$.

Therefore we get

$$
\begin{aligned}
& F_{k n}\left(\zeta_{k}\right)=\sum_{j}\left[\begin{array}{c}
k n-1-j \\
j
\end{array}\right]_{\zeta_{k}}^{\zeta_{k}^{j^{2}}}=\sum_{m} \sum_{\ell}\left[\begin{array}{c}
k(n-m)-1-\ell \\
k m+\ell
\end{array}\right]_{\zeta_{k}} \zeta_{k}^{(k m+\ell)^{2}} \\
& =\sum_{m} \sum_{\ell}\binom{n-m-1}{m}\left[\begin{array}{c}
k-\ell-1 \\
\ell
\end{array}\right]_{\zeta_{k}} \zeta_{k}^{\ell^{2}}=\sum_{\ell}\left[\begin{array}{c}
k-\ell-1 \\
\ell
\end{array}\right]_{\zeta_{k}} \zeta_{k}^{\ell^{2}} \sum_{m}\binom{n-m-1}{m}=F_{n} F_{k}\left(\zeta_{k}\right) .
\end{aligned}
$$

The proof for $G_{n}(q)$ is essentially the same.
2. The main result for $F_{5 n}(q)$ and $G_{5 n}(q)$.

Theorem 2.1

Let $n=5^{k} m$ with $k \geq 1$ and $m \neq 0 \bmod 5$. Then

$$
\begin{equation*}
F_{5^{k} m}(q) \text { and } G_{5^{k} m}(q) \text { are divisible by }\left[5^{k}\right]_{q^{m}} \text {. } \tag{2.1}
\end{equation*}
$$

For example
$F_{5}(q)=[5]_{q}$,
$F_{10}(q)=[5]_{q^{2}}\left(1+q+q^{4}[9]_{q}\right)=[5]_{q}\left(1-q+q^{2}-q^{3}+q^{4}\right)\left(1+q+q^{4}[9]_{q}\right)$,
$G_{5}(q)=[5]_{q}\left(1-q+q^{2}\right)$,
$G_{10}(q)=[5]_{q^{2}}[11]_{q}\left(1-q+q^{3}-q^{4}+q^{6}\right)$.

Let us first recall how to prove that $v_{5}\left(F_{n}\right)=v_{5}(n)$. By Binet's formula we get $F_{n}=\frac{1}{2^{n} \sqrt{5}}\left((1+\sqrt{5})^{n}-(1-\sqrt{5})^{n}\right)=\frac{1}{2^{n-1}} \sum_{k=0}^{n}\binom{n}{2 k+1} 5^{k}=\frac{1}{2^{n-1}} \sum_{k=0}^{n} \frac{n}{2 k+1}\binom{n-1}{2 k} 5^{k}$.

For each $k>0$ we have $v_{5}\left(\frac{5^{k} n}{2 k+1}\right)>v_{5}(n)$ and for $k=0$ we have $v_{5}\left(\frac{n}{1}\binom{n-1}{0}\right)=v_{5}(n)$. This implies $v_{5}\left(F_{n}\right)=v_{5}(n)$.

It is rather trivial that $F_{5 n}(q)$ and $G_{5 n}(q)$ are divisible by $[5]_{q}$.
To show this observe that $q^{n} \equiv q^{n(\bmod 5)}\left(\bmod [5]_{q}\right)$. Therefore $F_{5 n}(q) \equiv 0\left(\bmod [5]_{q}\right)$ by (1.1) implies $F_{5 n+2}(q) \equiv F_{5 n+1}(q), \quad F_{5 n+3}(q) \equiv F_{5 n+2}(q)+q F_{5 n+1}(q) \equiv F_{5 n+1}(q)(1+q)$, $F_{5 n+4}(q) \equiv F_{5 n+3}(q)+q^{2} F_{5 n+2}(q) \equiv\left(1+q+q^{2}\right) F_{5 n+1}(q)$ and finally $F_{5 n+5}(q) \equiv F_{5 n+4}(q)+q^{3} F_{5 n+3}(q) \equiv\left(1+q+q^{2}+q^{3}+q^{4}\right) F_{5 n+1}(q) \equiv 0\left(\bmod [5]_{q}\right)$.

Analogously $G_{5 n}(q) \equiv 0\left(\bmod [5]_{q}\right)$ by (1.1) implies $G_{5 n+2}(q) \equiv G_{5 n+1}(q)$,
$G_{5 n+3}(q) \equiv G_{5 n+2}(q)+q^{2} G_{5 n+1}(q) \equiv G_{5 n+1}(q)\left(1+q^{2}\right)$,
$G_{5 n+4}(q) \equiv G_{5 n+3}(q)+q^{3} G_{5 n+2}(q) \equiv\left(1+q^{2}+q^{3}\right) G_{5 n+1}(q)$ and finally
$G_{5 n+5}(q) \equiv G_{5 n+4}(q)+q^{4} G_{5 n+3}(q) \equiv\left(1+q^{2}+q^{3}+q^{4}+q^{6}\right) G_{5 n+1}(q)=[5]_{q}\left(1-q+q^{2}\right) G_{5 n+1}(q)$
$\equiv 0\left(\bmod [5]_{q}\right)$.
For the general case observe that by (1.7) and (1.6) $F_{5^{\prime} r}(q) \equiv 0 \bmod \Phi_{5^{\prime} r}(q)$ and $G_{5^{\prime} r}(q) \equiv 0 \bmod \Phi_{5^{\prime} r}(q)$ for each factor $5^{\ell} r$ of $5^{k} m$ with $\ell \geq 1$ and that all $\Phi_{5^{\ell} r}(q)$ are irreducible. Therefore the product of all these cyclotomic polynomials divides $F_{5^{k} m}(q)$ and
$G_{5^{k} m}(q)$. But this product coincides with $\left[5^{k}\right]_{q^{m}}$ because $\left[5^{k}\right]_{q^{m}}=\frac{1-q^{5^{k} m}}{1-q^{m}}=\frac{\prod_{d| |^{k} m} \Phi_{d}(q)}{\prod_{d \mid m} \Phi_{d}(q)}$.
For example we see that $F_{10}(q)$ is divisible by $\Phi_{5}(q) \Phi_{10}(q), F_{15}(q)$ is divisible by $\Phi_{5}(q) \Phi_{15}(q)$, or $F_{20}(q)$ is divisible by $\Phi_{5}(q) \Phi_{10}(q) \Phi_{20}(q)$.
3. The Fibonacci numbers $f_{r}(n, q)$.

Let for some $r \in \mathbb{Z}$

$$
f_{r}(n, q)=\sum_{k=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor} q^{\binom{k}{2}+2 r k}\left[\begin{array}{c}
n-1-k \tag{3.1}\\
k
\end{array}\right] .
$$

These polynomials satisfy the recurrence (cf. [4])

$$
\begin{equation*}
f_{r}(n, q)=f_{r}(n-1, q)+q^{n-3+2 r} f_{r}(n-3, q)+q^{n-4+4 r} f_{r}(n-4, q) \tag{3.2}
\end{equation*}
$$

with initial values $f_{r}(0, q)=0, f_{r}(1, q)=1, \quad f_{r}(2, q)=1, f_{r}(3, q)=1+q^{2 r}$ and $f_{r}(4, q)=1+q^{2 r}+q^{1+2 r}$.

Of special interest is $f(n, q)=f_{0}(n, q)$. The first terms of $f(n, q)$ are $0,1,1,2,2+q, 2+2 q+q^{2}, 2(1+q)\left(1+q^{2}\right), 2+2 q+2 q^{2}+4 q^{3}+2 q^{4}+q^{5}, \cdots$.

Conjecture 3.1

Let $n=2^{k}(2 m+1)$ with $k \geq 0$. Then

$$
\begin{equation*}
f(6 n, q)=f\left(6 \cdot(2 m+1) \cdot 2^{k}, q\right) \text { is divisible by } 2\left[2^{k+2}\right]_{q^{2 m+1}} . \tag{3.3}
\end{equation*}
$$

For example $f(12, q)=2[8]_{q}\left(1+q^{3}+q^{5}+q^{6}+q^{7}+2 q^{8}+q^{9}+q^{11}\right)$ and $f(18, q)$ is divisible by $2[4]_{q^{3}}$.

Let me prove some trivial facts:
The Fibonacci numbers F_{n} satisfy $F_{6 n} \equiv 0 \bmod 8$. For $\left(F_{n} \bmod 8\right)_{n \geq 0}=(0,1,1,2,3,5,0,1,1,2,3,5,0, \cdots)$.

Cf. [4],Theorem 3.2 and the literature cited there.
It is also easy to show by induction that

$$
f(3 n, q) \bmod 2=0, f(3 n+1, q) \bmod 2=q^{\frac{n(3 n-1)}{2}}, f(3 n+2, q) \bmod 2=q^{\frac{n(3 n+1)}{2}} .
$$

Observe that $f(6, q)=2\left(1+q+q^{2}+q^{3}\right)=2[4]_{q}$.
The sequence $\left(q^{n} \bmod [4]\right)=\left(1, q, q^{2},-1-q-q^{2}, \cdots\right)$ is periodic with period 4 .
This implies that the sequence $f(n+24, q) \bmod [4]_{q}$ satisfies the same recurrence. It is easily verified that it also has the same initial values. Therefore the sequence $f(n, q) \bmod [4]_{q}$
has period 24. Since it satisfies $f(6 n, q) \equiv 0 \bmod [4]_{q}$ we finally get that $f(6 n, q)$ is divisible by $2(1+q)\left(1+q^{2}\right)$.

For general r we get

Conjecture 3.2

Let $n=2^{k}(2 m+1)$ with $k \geq 0$. Then

$$
f_{r}(6 n, q)=f\left(6 \cdot(2 m+1) \cdot 2^{k}, q\right) \text { is divisible by }\left[2^{k+2}\right]_{q^{2 m+1}}
$$

For example $f_{r}(6, q)=\left(1+q^{2 r}\right)\left(1+q^{2 r+1}+q^{2 r+2}+q^{2 r+3}\right)$ is a multiple of $(1+q)\left(1+q^{2}\right)$. If r is even then i and -1 are roots of the second factor, if r is odd then i is a root of the first factor and -1 is a root of the second factor of $f_{r}(6, q)$.

References

[1] L. Carlitz, Solution of Problem H- 138, Fibonacci Quart. 8(1), 1970, 76-81
[2] L. Carlitz, Fibonacci notes 3: q-Fibonacci numbers, Fib. Quart. 12 (1974), 317-322
[3] J. Cigler, q- Fibonacci polynomials, Fib. Quart. 41 (2003), 31-40
[4] J. Cigler, A new class of q - Fibonacci polynomials, Electronic J. Comb. 10 (2003), R 19
[5] J. Cigler, Fibonacci-Zahlen, Gitterpunktwege und die Identitäten von Rogers-Ramanujan, Math. Semesterber. 52 (2005), 97-125
[6] G.H. Hardy and E. M. Wright, An introduction to the theory of numbers, $3^{\text {rd }} \mathrm{ed}$. Oxford 1954
[7] T. Lengyel, The order of the Fibonacci and Lucas numbers, Fib. Quart. 33 (1995), 234-239
[8] H. Pan, Arithmetic properties of q - Fibonacci numbers and q - Pell numbers, Discr. Math. 306 (2006), 2118-2127
[9] I. Schur. "Ein Beitrag zur additiven Zahlentheorie." Sitzungsber., Akad. Wissensch. Berlin, Phys.-Math. Klasse, (1917), pp. 302-321.

