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Abstract 

We present a simple approach to discrete q   Hermite polynomials with special emphasis on analogies 

with the classical case. 

0. Introduction 

The so-called  “discrete q   Hermite polynomials” are  q   analogues of the classical Hermite 

polynomials which generalize most of their elementary properties. The purpose of this paper is to 
emphasize these analogies without recourse to sophisticated general theories. Some 35 years ago I 
stumbled upon these polynomials (cf. [3], [4]) as I studied some q   identities from the point of view of 

Rota’s umbral calculus ([15]).  In his thesis Peter Kirschenhofer [12]  obtained further properties and 
determined a measure on the real line with respect to which they are orthogonal. At that time I was 
unaware that Al-Salam and Carlitz [1] had introduced these polynomials some years earlier via 
generating functions. Some properties of these polynomials are collected in [13] within the framework of 
the Askey- scheme of hypergeometric orthogonal polynomials and its q   analogue. They are also dealt 

with in an elementary way in [8], [9] and [14]. Here I give an introduction to these polynomials in the 
spirit of my papers [3], [4].  I shall derive recurrence relations, generating functions, Rodrigues type 
formulae together with q   analogues of Burchnall’s and Nielsen’s formula and some measures with 

respect to which the polynomials are orthogonal. Finally a curious connection with tangent and Euler 
numbers is mentioned. Whereas most results are well known or hidden in more general theories the 
approach seems to be novel. 
 

   

1. Background material about Hermite polynomials 

In this section I state some well-known results about the classical  (probabilists’) Hermite polynomials 
(cf. [2], [15]) which have beautiful generalizations for discrete q   Hermite polynomials. The main 

interest is in ( ) ( ,1)n nH x H x  but it is convenient to state some results more generally for bivariate 

Hermite polynomials. 

For 0s   the bivariate Hermite polynomials    
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are monic polynomials which satisfy 

 1( , ) ( , )n n

d
H x s nH x s

dx    (1.2) 

and are orthogonal with respect to  the linear functional   defined by   

  ( , ) [ 0].nH x s n     (1.3) 

They satisfy the recurrence  

 1 1( , ) ( , ) ( , )n n nH x s xH x s nsH x s     (1.4) 

with initial values 0 ( , ) 1H x s   and   

Their generating function is 
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Since the differentiation operator D  satisfies xz xzDe ze   this can also be written as  
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   or equivalently 
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By (1.5) we have  
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sz
xze e    which by comparing coefficients is equivalent with the moments 
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The Taylor expansion  
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gives the Rodrigues formula 
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Let g(x)   denote the multiplication operator with a function ( ),g x i.e. ( ) ( ) ( ).f x g x f xg(x)   
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Since ( )D D  g x g(x) g (x)  we have sD sD x 
2 2 2x x x

- - -
2s 2s 2se e e  and  therefore 
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This implies that the Hermite polynomials ( , )nH x s   satisfy  

  ( , ) 1.
n

nH x s sD x   (1.10) 

A generalization of  (1.10)  is Burchnall’s operational formula (cf. e.g. [15]) 
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which implies Nielsen’s identity 
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The Rodrigues formula provides an easy proof that 
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for polynomials ( ).f x  

It suffices to show that 
2
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   for 0.n    

This is immediate by  (1.8) and integration by parts: 
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For 0n    we need the normalization 
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From (1.4) we see that 

  ( , ) ( , ) ![ ].n
n mH x s H x s s n n m     (1.14) 
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2. Bivariate q-Hermite polynomials and their generating functions 

 

2.1. The polynomials 

In this section I freely use some well-known notations of q  analysis in the form I used in [7].  Let me 

only mention that we always assume 0 1q   and that qD  denotes the q  differentiation operator 

defined by 
( ) ( )

(x)
(1 )q

f x f qx
D f

q x
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qD x n x   with 
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q
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q


 


    

My original approach to these polynomials has been (cf. [3], [4]) to look for sequences of monic 
polynomials which satisfy  

 1( ) [ ] ( )q n nD p x n p x   (2.1) 

and are orthogonal with respect to a linear functional .   This means that  ( ) ( ) [ ]m n np x p x c n m     

with 0.nc    

By Favard’s theorem they must satisfy a 3-term recurrence of the form 

 1 1( ) ( ) ( ) ( ).n n np x xp x a n p x     (2.2) 

If we apply the operator qD   and observe that  ( ) ( ) ( )q qD xf x qxD f x f x   we get 

 1 2[ 1] ( ) [ ] ( ) ( ) ( ) 1 ( )n n n nn p x qx n p x p x a n n p x       

or 
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Comparing with (2.2) we see that  
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or 

1( ) [ ] (1).na n q n a   

By choosing (1)a qs    we get  the  q   Hermite polynomials ( , , )nH x s q  which satisfy 

 1 1( , , ) ( , , ) [ ] ( , , )n
n n nH x s q xH x s q q s n H x s q     (2.3) 

with initial values 1( , , ) 0H x s q    and 0 ( , , ) 1.H x s q     

It is easy to determine the coefficients of ( , , ).nH x s q   

From (2.3) it is clear that 2( , , ) ( , ) n k
nH x s q a n k x    for some ( , ).a n k   
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Futhermore 1
2(0, , ) [ 1] (0, , )n

n nH s q q s n H s q
     which gives 2 1(0, , ) 0kH s q    and 
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It is easily verified that (2.4)  really satisfies both (2.1) and (2.3). 

Now we define the linear functional    by  ( , , ) [ 0].nH x s q n    By Favard’s theorem we know 

that the sequence  ( , , )nH x s q   is orthogonal with respect to .   

Since ( , , )nH x s q   is monic we have    2( , , ) ( , , ) .n
n nH x s q x H x s q     

By (2.3) we see that    1
1( , , ) [ ] ( , , ) .n n n

n nx H x s q q s n x H x s q
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From (2.3) we deduce the following determinant representation 
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If we replace q  by 
1

q
  and observe that    1
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 1 1 1 2 1
1 1( , , ) ( , , ) [ ] ( , , )n

n n q nH x s q xH x s q q s n H x s q   
     (2.6) 

and 

 
2

2 21 2

2

( , , ) ( ) [2 1]!! .
2

n k n

k n k
n

k n

n
H x s q s q k x

k

   
   

    



 
   

 
   (2.7) 

Since 1

1
qq

D D
   identity (2.1) becomes 
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Some formulae become simpler if we consider the polynomials 
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Here we have 
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   (2.10) 

and 

 1 1( , , ) ( , , ) [ ] ( , , ).n
n n nK x s q q xK x s q s n K x s q     (2.11) 

 

Furthermore  

   1( , , ) [ ] ( , , ).q n nD K x s q n K qx s q   (2.12) 

 

Remark 

There are many orthogonal q   polynomials which reduce to ( , )nH x s   for 1.q   But only the 

continuous q   Hermite polynomials ( , , )nH x s q  (cf. e.g. [7] )  which satisfy 

1 1( , , ) ( , , ) [ ] ( , , )n n nH x s q xH x s q n sH x s q      seem to have interesting properties too. 

On the other hand there are q   analogues with simple formulae and recurrence relations but which are 

not orthogonal. For example the simplest q   analogue of formula (1.1) seems to be  
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   (2.13) 

which has been studied by Kirschenhofer [12] and satisfies 

 ( , , ) [ ] ( , , ),q n nD h x s q n h x s q   (2.14) 

 1
1 1 2( , , ) ( , , ) [ ] ( , , ) [ ](1 ) ( , , )n

n n n nh x s q xh x s q s n h x s q xs n q h x s q
        (2.15) 

and 

 1 1( , , ) ( , , ) [ ] ( , , ).n n nh x s q xh x s q s n h qx s q     (2.16) 
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2.2. Generating functions 

In the following we need different q  analogues of the exponential series. These are well known, but for 

the convenience of the reader I state them explicitly. 

The  power series 
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are related by  

 ( ) ( ) 1q qe z E z    (2.19) 

and  

 1 ( ) ( ).qq
e z E z    (2.20) 

They can be regarded as formal power series or as convergent power series. In the second case (2.17) 

converges for 1z    whereas (2.18) is an entire function. 

Let us note that  
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From the definition of  qD  these identities are equivalent with 
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which converges for all .z   

In their domains of convergence we have ( ) ((1 ) , )qe z e q z q    and ( ) ((1 ) , ).qE z E q z q     
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Let us also note that (cf. e.g. [4]) 
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As a q   analogue of  (1.5) we get the generating function of the q   Hermite polynomials  
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An equivalent version of the generating function for 1z    is   
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    Whereas this is no direct q   analogue of the Hermite 

polynomials it is very useful since the infinite products on the right-hand side are sometimes easier to 
handle. 
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which generalizes (1.6). 
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From this we see that for the linear functional    defined by  ( , , ) [ 0]nh x s q n     we get the 

moments 

 2 1 0nx     and   22 [2 1]!!.n n n nx q s n      

It is easily seen that    2 2
1 3 1 [3] 0,h h q s     which implies that the sequence  nh  cannot be 

orthogonal. 

  

2.3. The simplest special cases 

2.3.1. The polynomials with the simplest right-hand side of  (2.28) occur for 1.qs    

Here we get the polynomials  
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which have been called in [13]  discrete q Hermite polynomials I. 
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These polynomials have first been considered by Al-Salam and Carlitz in [1]. They studied more 
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which for 1a     reduce to  ( ; ),nh x q  because      2 21
; ; ; .

( , ) ( , )
z q z q z q

e z q e z q   
  


 

 From  

 
   

     
 0

2 1

; ; ;
( ; ) ;

; ; ;

( 1)( ) ( )
( ; ) ( ; )

n

n
n n

j j k
k

j kj k

z q z q z qz
h x q z q

q q xz q xz q

z z
q x x q x q

q q q q

  


  

 
 

 


  

   



  

  

we deduce by (2.26)  that 

     2 1

0

( ; ) 1 .
n j

n
j

n
j

n
h x q q x x q x q

j

 
 

 



 
    

 
    (2.41) 

The identity (2.29) becomes  

  2 2

1
( , )

,
n

n

q

x h x q
e q

   (2.42) 

where (1 )q qq D    with  1(1 ) .n n n
q x q x     

By (2.30) we have 

  
2

2
2

0

; ( ; ).
2

n

n
n kk

k

n
x q q h x q

k

 
  




 
  

 
   (2.43) 
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By (2.34) we have 
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3. Rodrigues-type formulae 

3.1. Bivariate and discrete q- Hermite polynomials I 

3.1.1. For the bivariate  q   Hermite polynomials we get two different q   analogues of  (1.10). 

The first one is  
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1 1 1( , , ) ( , , ) ( , , ) ( , , ).n n

n n q n q nH x s q xH x s q q sD H x s q q sD H x s q 
     x   
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The second one is 

     3 2 1( , , ) 1.n
n q q qH x s q qsD q sD q sD   x x x   (3.3) 

 

To prove this we observe that 

1 1( , , ) ( , , ) [ ] ( , , )n
n n nH x s q xH x s q q s n H x s q     and  1 ( , , ) [ 1] ( , , )q n nD H x s q n H x s q    

imply  1
1 1( , , ) ( , , ) ( 1) [ 1] ( , , ) 1 ( , , )n

n n n nH qx s q H x s q q x n H x s q q xH x s q
        

and therefore  

 1
1 1

1
1

( , , ) ( , , ) [ ] ( , , ) 1 ( , , )

( , , ) [ ] ( , , )

n n
n n n n

n n
n n

H qx s q xH x s q q n sH x s q q xH x s q

q xH x s q q n sH x s q


 




   

 
  

Changing 
x

x
q

   we get another recurrence relation for the q   Hermite polynomials 

 1 1( , , ) , , [ ] , , .n n
n n n

x x
H x s q q xH s q q n sH s q

q q 

   
    

   
  (3.4) 

Since 2( , , ) , ,n
n n

x
H x q s q q H s q

q

 
  

 
  this is equivalent with 

    2 2
1 1( , , ) , , [ ] , , .n n nH x s q xH x q s q qs n H x q s q     (3.5) 

This implies 

 
    

2 2 2
1 1 1

3 2 1

( , , ) ( , , ) ( , , ) ( , , )

1.

n n q n q n

n
q q q

H x s q xH x q s q qsD H x q s q qsD H x q s q

qsD q sD q sD

  



   

   

x

x x x
  

 

(3.4) also implies that  

   2 1( , , ) 1.
n

n

n qq H x s q x qsD 
 

 
      (3.6) 

Let us give another formula for the right-hand side of this identity. 

The q   differentiation operator qD   satisfies 

    ( ) ( ) ( ) ( ) ( ) ( )q q qD f x g x f qx D g x D f x g x    (3.7) 

and thus 

  q qD D qf(x) = f(qx) + D f (x)   (3.8) 
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  and  

   .q qD D qf(x) = f(x) + D f (x)   (3.9) 

Since 2 2

2 2 2

1 1q q q

ax q ax
D E axE

q q

   
       

 we get from (3.8) 

 1 1 1( )q qsD qsD as     
       

 
 

2

2

2

2 q

q

1 -aqx
E x

1+ q-aqx
E

1+ q

  (3.10) 

and therefore for 
1

a
s

   

  

 2

2

2
2 1

2

1
( , , ) ( ) .

(1 )

(1 )

n

n
n q q

q

qx
q H x s q qsD E

q sqx
E

q s


 

 
   

      
  

  (3.11) 

 

Letting in (3.11) (1 )s q s    and 
1

(1 )
a

q s



 we  get 

 

   2

2

2
21

22

2

1
(1 ) ( , (1 ) , )

1

1

n
n

q nq

q

qx
q qsD E q H x q s q

q sqx
E

q s


 

 
  

     
      

  

 

or equivalently 

   
2

21 2

2
2

1
( 1) ; ( , (1 ) , ).

;

n
nn n

q n

qx
q s D q q H x q s q

sqx
q

s


 

 
  





 
      

 
 

   (3.12) 

3.1.2.  

By (3.12) we have   

      2 1 2 2 2

2 2 2

1
( ; ) ( 1) ; .

;

n
n nn

n qh x q q q D q x q
q x q


 

 
 




    (3.13) 

  

Let us give another proof. 

Since    2 2 2 2 4 2 2(1 ) ; ;qq D q x q q x q x q
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we get  by (3.7)  

 

     1 2 1 2 1(1 ) (1 )q qq D qx q qD    

  
    2 2 2 2 2 2 2q x ;q q x ;q q x ;q  . 

or 

 
     1 2 1 1

2

1 1
(1 ) .q q

q
D q D

q
    





  2 2

2 2
q x ;q x

q x ;q
  (3.14) 

 

This implies (3.13) 

Observing that 1

1
qq

D D
  this formula implies [13], (3.28.9) 

    1

1
2 2 2 2 2 2

1; ( ; ) ; ( ; ).
1

n

n nq

q
D q x q h x q q x q h x q

q


 

 
 


  (3.15) 

 

3.2. The discrete q-Hermite polynomials II 

By (3.6)  for 
1

q
q

  we deduce the following q   analogue of (1.10):  

  ( , , ) 1.
n

n qK x s q sD x   (3.16) 

For 2

2

( )
[2]q

q

ax
f x e

 
   

 
  we have    q qD D a  f(x) f(x) x   or  

 

1

.q qD D a 


   
       

   
2 2

2 2

q q
q q

ax ax
e e x

[2] [2]
  (3.17) 

Comparing (3.17) with (3.16) we get the Rodrigues-type formula 

  

  
1

( , , ) 1 ( ) .
n n n

n q qK x s q sD s D


   
          

   
2 2

2 2

q q
q q

-x -x
x e e

[2] s [2] s
  (3.18) 

Since 
2 2 2 2

1 1
1 1

; ;
qsD x

q q
x q x q

s s 

  
        

   

  

we get in the same way 
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( )q qsD sD          
 
 

2 2

2 2¥

¥

1- q 1
- x ;q x

1- qs - x ;q
s

  

and therefore the equivalent formula 

      
1 2 2

1 2 2

1
( , , ) 1 ( ) ( 1) ; .

( 1) ;

n n n
n q qK x s q sD s q s x q D

q s x q
 




    


x   (3.19) 

For 1s q     this reduces to the Rodrigues type formula [13], (3.29.10) 

    
2

2 2 2 2

1 1
( ; ) ( 1) .

; ;

n

n n
n qh x q q q D

x q x q

 
 
 

 

 
 


  (3.20) 

 

 

Remark 

For the polynomials ( , , )nh x s q   we get (cf. [12]) by (2.14) and (2.16). 

  ( , , ) 1.
n

n qh x s q x s D    (3.21) 

The sequence of  polynomials  ( , , )nh x qs q   is the umbral-inverse sequence to the sequence 

 ( , , ) .nH x s q   This means that the linear map U   defined by    ( , , ) 1
nn

n qU x h x s q x s D    

satifies  ( , , ) n
nU H x s q x  or with other words that 

  1 .n
n qH qs D x x   (3.22) 

 The proof is straightforward by induction since (3.22) hold for 0n    and 1:n    

    1 1
1 , , [ ] .n n n n

n q qH qs D s q qs D x q n sx x   
     x x   

In another form this fact has already been shown in (2.30). 

 

The Hermite polynomials satisfy (cf. e.g. [15]) 

 
0

( , ) ( , ) ( ) .
n

n
n k k

k

n
H x s H y s x y

k 


 
   

 
   (3.23) 

A q   analogue is 

  
0 0

( , , ) ( , , ).
n n

k n k
n k k

k k

n n
x y H x s q h y qs q

k k



 

   
    

   
    (3.24) 
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This follows from  

2

2

2

2
0 0

( )
( ) ( ) ( ) ( , , ) ( , , )

1 [ ]! [ ]!

1

n n
q

q q q n nq
n n

q

e xz qsz z z
e xz e yz e yz e H x s q h y qs q

q n nqsz
e

q
 

 
      

  

    

by comparing coefficients. 

 

3.3. A q-Burchnall formula 

In [6] I have given some q   analogues of  Burchnall’s formula. The simplest one is the following 

q   Burchnall formula 

       3 2 1

0

( , , ) .
n kn kn

q q q n k q
k

n
qsD q sD q sD q H s q sD

k





 
     

 
x x x x   (3.25) 

  The proof is by induction. 

     

    

  

2 2 2 2

0 0

( 1) 2 2 2

0 0

2 2

( , , ) ( , , )

( , , ) ( , , )

( , , )

n nk kkn kn
q n k q n k q

k k

n n kkk n kn
n k q q q n k q

k k

kn
q n k

n n
qsD q H q s q q sD q H q s q q sD

k k

n n
qs q H q q s q qsD D qs q D H q s q q sD

k k

n
q qsD H q s q q

k

 
 


 

 



   
      

   
   

      
   

 
   

 

 

 

x x x x

x x

x x    

   

 

1( 1) 2

0

1( 1) ( 1)( 1)
1

( 1) ( 1)
1

( , , )

( , , ) ( , , )

1
( , , )

1

n k kk n
q n k q

k k

k kk k n k n
n k q n k q

k k

kk k n k n
n k q

k

n
sD q H q q s q qsD

k

n n
q q H s q sD q H s q sD

k k

n n n
q q H s q sD q

k k k






  
  

 
 

 
  

 
   

      
   

       
               

 

 



x

x x

x  1 ( , , ) .
k

n k q
k

H s q sD   x

 

 

If we apply (3.25) to  2, ,n
mH x q s q   we get a q   analogue of Nielsen’s identity 

  2( , , ) [ ]! ( ) ( , , ) , , .kn k n
n m n k m k

k

n m
H x s q k q s H x s q H x q s q

k k  

   
    

   
   (3.26) 

Since  2 ( ), , , ,n m k n
m k m k n

x
H x q s q q H s q

q


 

 
  

 
  this coincides with  

 ( , , ) [ ]!( ) ( , , ) , , ,mn k
n m n k m k n

k

n m x
H x s q q k s H x s q H s q

k k q  

     
      

     
   (3.27) 

which has been proved in [4] with another method. 
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4. Associated probability  measures   

4.1. The  q-integral 

In the classical case the linear functional   which satisfies  ( , ) [ 0]nH x s n     is given by  

 
2

21
( ) .

2

x

sf f x e dx
s




     

In order to find a q   analogue we need the Jackson q   integral (cf. [10], [11], [14]).  We assume that 
0 1.q    

We call ( )F x  a q   antiderivative of ( )f x   if  ( ) ( ).qD F x f x  This means that 

( ) ( ) (1 ) ( )F x F qx q xf x     or (1 ) ( ) (1 ) ( )q F x q xf x     or  

0 0

1
( ) (1 ) ( ) (1 ) ( ) (1 ) ( ).

1
n n n
q

n nq

F x q xf x q xf x q q xf q x
  

     
     

If this sum converges absolutely it is clear that ( )F x  is a q   antiderivative of ( )f x  because  

( ) ( ) (1 ) ( ).F x F qx q xf x    In the classical case all antiderivatives of 0  are constants. In the q   

case also each  function ( )x   with ( ) ( )qx x    is a q   antiderivative of 0.  But it can be shown 

that up to a constant any function has at most one q   antiderivative that is continuous at 0.x   (Cf. 

[11] for details). 

This leads to the following definition. We always assume that 0 1.q    

Let 0 .a b    The definite q  integral is defined as 

   1

0
0

( )
b j j j

q
j

f x d x f q b q q b






    (4.1) 

and 

 
0 0

( ) ( ) ( )
b b a

q q qa
f x d x f x d x f x d x      (4.2) 

provided  that the sums converge absolutely, for example  if ( )x f x M   in a neighbourhood of  0  

for some 0 1.   For then we have    1( ) .
jj j j jq f q x Mq q x Mx q

       

Note that ( )
b

qa
f x d x   depends on the values of ( )f x   in the whole interval (0, ].b   

If ( )f x   is continuous at 0x   and the q  integral converges absolutely, then  

 ( ) ( ) ( ).
b

q qa
D f x d x f b f a    (4.3) 

For all q  antiderivatives of  ( )qD f x  which are continuous at 0  are of the form ( ) .f x C  
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From the product rule  

     ( ) ( ) ( ) ( ) ( ) ( )q q qD f x g x f x D g x g qx D f x    

we obtain by (4.3) the formula for integration by parts 

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) .
b b

q q q qa a
f x D g x d x f b g b f a g a g qx D f x d x      (4.4) 

 

4.2. The probability measure for the discrete q-Hermite polynomials I 

We start from the Rodrigues-type formula 

     2 1 2 2 2

2 2 2

1
( ; ) ( 1) ; .

;

n
n nn

n qh x q q q D q x q
q x q


 

 
 




   

 By multiplying both sides with   2 2 2;q x q


 and applying 1     we see that  

   1 2 2;
n

qD x q 


  is of the form  2 2; ;n n

x
C h q x q

q 

 
 
 

 and thus vanishes at 1.x     

This implies that for 0n    

  1 2 2 2

1
( ; ) ; 0.n qh x q q x q d x


   (4.5) 

Since  2 2 2;q x q


  is continuous and therefore bounded on [ 1,1]   the q  integral (4.5) is given by an  

absolutely convergent series. 

Thus the linear functional    which gives  ( ; ) [ 0]nh x q n     is 

 

  
 

 

1 2 2 2

1
1 2 2 2

1

( ) ;
( ) .

;

q

q

f x q x q d x
f x

q x q d x





  


  (4.6) 

 

Let us now calculate    1 12 2 2 2 2 2

1 0
; 2 ; .q qq x q d x q x q d x

 
    

By definition of the q   integral  we have 

       

       

1 2 2 2 2 2 2 2

2 20

2 2 2

2

; (1 ) ; (1 ) ;
;

1
(1 ) ; , (1 ) ; ( ; ) .

;

n
n n

q
n n

n

q
q x q d x q q q q q q q

q q

q q q e q q q q q q q
q q
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As  Euler has shown  

    
  
      

2 4 6

2 3

2 3 5 2 3

(1 ) 1 11 1
1 1 1 .

; (1 ) 1 1 (1 ) 1 1

q q q
q q q

q q q q q q q q


  
     

     




 
  

Therefore 

     
1 2 2 2

0
; (1 ) ; ( ; ) ; .qq x q d x q q q q q q q 

      

If we choose  x q   in Jacobi’s triple product identity 

2( 1) ( ; ) ; ( ; )
k

k k

k

q
q x x q q q q

x

 
 
 

 
 

    
 




   

we see that 

      
1

1 22 2 2 2 2

1
0

; 2(1 ) ; ; (1 ) .
n

q
n

q x q d x q q q q q q q
   

 
 



        (4.7) 

Thus we get  

 

 
 

 
   

1 2 2 2

2 2 21
1 12 2 2

02
1

0

( ) ; 1
( ) ( ) ( ) ; .

;

q j j j j

n
j

q

n

f x q x q d x
f x f q f q q q q

q x q d x
q




     
 



     
 

  (4.8) 

 

Let us look what this gives for the moments  .mx  For odd m  it is clear that   0.mx    

Observe that 

           
 

 
           

2 22( 1) j
(2 1) 2 2 2 2 2 2 2 2 1 2

2 2 2 1 2
0

12 2

22 2 2 2 2

2
0

;
; ; ; ;

; ;

;
; ; ; ; ; .

;

m
m j j m

m
j n

n

n

m m m
n

q qq
q q q q q q q e q q

q q q q

q q
q q q q q q q q q q q

q q


   

  




   
  






  

   

 


  

 

This implies 

     2 (2 1) 2 2 2 2

1
02

0

1
; ;m m j j

n m
j

n

x q q q q q

q


 

     
 



  


 

which agrees with (2.44). 
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Remark 

Formula (4.8) has already been found by Al-Salam and Carlitz [1].  

They observed that the moments  mx  satisfy  

     2 2 2 1 2 2; (1 )m m m

m
x q q q x       and   2 1 0mx     

and therefore are characterized by      1 11m m mx q x       with initial values  1 1    and 

  0x   and constructed an infinite sum with the same properties. This is simply the reverse of the 

computation above. 

 

4.3. Probability measures for the discrete q-Hermite polynomials II 

In this case we need the notion of an improper q  integral.  

We define for 0c    

 

  

   

. 1

0 0
0

( ) ( ) lim ( ) ( ) lim

lim(1 ) (1 )

Nc q c j N j j N
q q

N N
j

j j j j

N
j N j

f x d x f x d x f q c q q q c

q f q c q c q f q c q c

    

 


 


 

  

   

 

 
  

provided the last sum converges absolutely. 

The formula 

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
b b

q q q qa a
f x D g x d x f b g b f a g a g qx D f x d x      (4.9) 

also holds in the improper case by letting  Nb q c  tending to infinity.  

In a similar way we define 

     .

.
( ) ( ) (1 ) .

c j j j
qc

j

f x d x q f q c f q c q c





       (4.10) 

 

 By (3.20)  we see that  

    
2

2 2 2 2

1 1
( ; ) ( 1) .

; ;

n

n n
n qh x q q q D

x q x q

 
 
 

 

 
 


  (4.11) 

  

This implies that for 0n    
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.

. .2 1

2 2 2 2 2 2. .

.

( ; ) 1 1
( 1) ( 1) 0

( ; ; ;

c
n

c cn n n nn
q q qc c

c

h x q
d x q q D q D

x q x q x q


 

    

 
   

    
  


 

if the integral exists and the limits are 0.    

For this it suffices to show that ( )j j
m

j

q cf q c



  converges if  2 2

( ) ,
;

m

m

x
f x

x q





 .m    

It is clear that 
0

( c)j j
m

j

q cf q



   converges because  ( ) .m

mf x x  Since  

    212 2 2 2 2 2 2 2;
mm m m mx q q x q x
  


     we have  

  2 2

( 1)
1

2 2 2 2 2 2

mN m m N
N N N m

m m m mN N m m

q c q
q cf q c q c c

q q q

 
   

   
   

and therefore we see that also 
0

( c)j j
m

j

q cf q


 


   converges. 

Therefore in this case the linear functional L  has infinitely many representations as a q   integral. 

 In order to compute  

       . 2 2

2 2 2 2 2 2 2.

1 2(1 )
2(1 ) ;

; ; ;

jc j
q j jc

j j

q c q
d x q q c c q

x q q c q c q

 


 

  


   

      

we need Ramanujan’s summation formula (cf. [2], 10.5.3) 

   

 

; ; ;
( ; ) .

; ;

n
n

n

q
ax q q q q

ax
a q x

q
x q q

a

  







 
 
 

 
 
 

   

 

This gives 

     
   

   

2 2 2 2 2
2. 2 2

22 2 2 2.
2 2 2 2

2

2(1 ) ; ; ;
1 2(1 )

;
( ; ;

; ; ;

c j
q jc

j

q
q c q q q q q

q c
d x q c q

qx q c q
c q q q q

c

  





 
 



        
     
 

   

Combining these results we see that the linear functional L  defined by  ( ; ) [ 0]nL h x q n   can be 

represented by each of the improper q   integrals (cf. [13]) 
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2
2 2 2 2

2
.

2 2.
2 2 2 2 2

2

; ; ;
( )

( ) .
;2(1 ) ; ; ;

c

qc

q
c q q q q

c f x
L f x d x

q x qq c q q q q q
c

  





 


 
  

 
     
 

   (4.12) 

 

As above we can compute  

    
2

2

2
;

,m m

m

q q
L x

q
   (4.13) 

which can also be obtained from (2.49). 

 

 

5. Some curious identities 

The tangent numbers 2 1nT    and Euler numbers 2nE  can be defined by 

 
2 1

2 1
0

( 1)
(2 1)!

z z n
n

nz z
n

e e z
T

e e n

 





 

    

and 

2

2
0

2
( 1) .

(2 )!

n
n

nz z
n

z
E

e e n


 
    

The first terms are  

   2 1 0
1, 2,16, 272,7936,n n

T  
    and    2 0

1,1,5,61,1385, .n n
E


    

The polynomials (1, )nH s  are polynomials in s   with degree .
2

n 
  

 Consider the linear functional F  

on the polynomials in s   defined by  

  2 (1, ) [ 0].nF H s n    (5.1) 

 

Then  

  2 1 2 1(1, ) ( 1)n
n nF H s T     (5.2) 

and  

   2 .
(2 1)!!

n nE
F s

n



  (5.3) 
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To prove this let 

2

2

0

( ) (1, ) .
!

szn
z

n
n

z
H z H s e

n





    

Then 2( ) ( )zH z e H z   and therefore 

 
2 1 2

2 1 2
0 0

(1, ) (1, ) .
(2 1)! (2 )!

n z z n

n nz z
n n

z e e z
H s H s

n e e n

 

 
 




    

Applying F  we get   

 
2 1 2 1

2 1 2 1
0 0

(1, ) ( 1) ,
(2 1)! (2 1)!

n z z n
n

n nz z
n n

z e e z
F H s T

n e e n

  

 
 


  

     

which gives (5.2). 

To prove (5.3)  observe that 

   
2 2 2 1

2 2
2 1

0 0

2 1 2

2 1 2
0 0

(1, ) 1 (1, )
! (2 1)!

2
1 ( 1) 1 ( 1) .

(2 1)! (2 )!

sz sz n n
zz z z

n n
n n

n z z n
z n z n

n nz z z z
n n

z z
F e F e e e F H s e F H s

n n

z e e z
e T e E

n e e e e n

   


 

 
 

  
 

     
                

   
               

 

 
  

 

These arguments can immediately be transferred to the polynomials (1, , ).nH s q   

Define the q   tangent  and q   Euler numbers by 

2 1

2 1
0

( ) ( )
( 1) ( )

( ) ( ) [2 1]!

n
q q n

n
nq q

e z e z z
T q

e z e z n






 
 

     

and 

2

2
0

2
( 1) ( ) .

( ) ( ) [2 ]!

n
n

n
nq q

z
E q

e z e z n

 
     

Let now   be the linear functional defined by 

  2 (1, , ) [ 0].nH s q n     (5.4) 

Then 

    2 1 2 11 ( )
n

n nH T q      (5.5) 

and  

   2
2 ( )

.
[2 1]!!

n n

n

E q
s

q n
 


  (5.6) 
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