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Abstract. Two well-known q-Hermite polynomials are the continuous and discrete q-Hermite
polynomials. In this paper we consider a new family of q-Hermite polynomials and prove
several curious properties about these polynomials. One striking property is the connection
with q-Fibonacci and q-Lucas polynomials. The latter relation yields a generalization of the
Touchard-Riordan formula.

1. Introduction

The classical Hermite polynomials have two important properties: (i) they form a family
of orthogonal polynomials and (ii) are intimately connected with the commutation properties
between the multiplication operator x and the differentiation operator D. In contrast to
the discrete q-Hermite polynomials, which generalize both aspects, the continuous q-Hermite
polynomials generalize only the first one. The purpose of this paper is to introduce a q-analogue
which generalizes the second property and establish the missing link with the continuous q-
Hermite polynomials. It turns out that these new polynomials are in some sense dual to
the continuous q-Hermite polynomials. Moreover, they provide interesting connections with
q-Fibonacci and q-Lucas polynomials and the Touchard-Riordan formula for the moments of
the continuous q-Hermite polynomials. In order to provide the reader with the necessary
background we first collect some well-known results about the classical Hermite polynomials
and their known q-analogues.

The normalized Hermite polynomials Hn(x, s) = sn/2Hn(x/
√
s, 1) (n ≥ 0) may be defined

by the recurrence relation:

Hn+1(x, s) = xHn(x, s)− nsHn−1(x, s), (1.1)

with initial values H0(x, s) = 1 and H−1(x, s) = 0. By induction, we have

Hn(x, s) = (x− sD)n · 1, (1.2)

where D = d
dx denotes the differentiation operator. It follows that

DHn(x, s) = nHn−1(x, s). (1.3)

The Hermite polynomials have the explicit formula (see [1, Chapter 6])

Hn(x, s) =
n∑
k=0

(
n

2k

)
(−s)k(2k − 1)!!xn−2k.
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The first few polynomials are

1, x, −s+ x2, −3sx+ x3, 3s2 − 6sx2 + x4, 15s2x− 10sx3 + x5.

The Hermite polynomials are orthogonal with respect to the linear functional defined by the
moments

µn =
1√
2π

∫ ∞
−∞

xne−x
2/2dx =

{
(n− 1)!! if n is even,

0 otherwise.

In other words, the n-th moment µn of the measure of the Hermite polynomials is the number
of the complete matchings on [n] := {1, . . . , n}, i.e., µ2n = (2n− 1)!! and µ2n+1 = 0.

Consider the rescaled Hermite polynomials pn(z, x, s) = Hn(z − x,−s), also determined by

pn+1(z, x, s) = (z − x)pn(z, x, s) + snpn−1(z, x, s) (1.4)

with initial values p0(z, x, s) = 1 and p−1(z, x, s) = 0. Let F be the linear functional on
polynomials in z defined by F(pn(z, x, s)) = δn,0. Then the moments F(zn) are again the
Hermite polynomials

F(zn) = (
√
−s)n

n∑
k=0

(
n

k

)
(x/
√
−s)n−kµk = Hn(x, s). (1.5)

This is equivalent to saying that the generating function of the Hermite polynomials Hn(x, s)
has the following continued fraction expansion:

H(z, x, s) =
∑
n≥0

Hn(x, s)zn =
1

1− xz +
sz2

1− xz +
2sz2

1− xz +
3sz2

· · ·

. (1.6)

Two important classes of orthogonal q-analogues of Hn(x, s) are the continuous and the dis-
crete q-Hermite I polynomials, which are both special cases of the Al-Salam–Chihara polynomi-
als. Before we describe these q-Hermite polynomials, we introduce some standard q-notations
(see [6]). For n ≥ 1 let

[n] := [n]q =
1− qn

1− q
, [n]q! =

n∏
k=1

[k]q, [2n− 1]q!! =
n∏
k=1

[2k − 1]q,

and (a; q)n = (1 − a)(1 − aq) · · · (1 − aqn−1) with (a; q)0 = 1. The q-binomial coefficient is
defined by [

n

k

]
:=
[
n

k

]
q

=
(q; q)n

(q; q)k(q; q)n−k
for 0 ≤ k ≤ n and zero otherwise.

Recall [8] that the Al-Salam–Chihara polynomials Pn(x; a, b, c) satisfy the three term recur-
rence:

Pn+1(x; a, b, c) = (x− aqn)Pn(x; a, b, c)− (c+ bqn−1)[n]qPn−1(x; a, b, c) (1.7)

with initial values P−1(x; a, b, c) = 0 and P0(x; a, b, c) = 1.
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Definition 1. Let Fa,b,c be the unique linear functional acting on the polynomials in z that
satisfies

Fa,b,c(Pn(z; a, b, c)) = δn,0. (1.8)

Then the continuous q-Hermite polynomials are

H̃n(x, s|q) = Pn(x; 0, 0, s) (1.9)

and are also the moments (see [8] and Proposition 16):

H̃n(x, s|q) = Fx,−s,0(zn). (1.10)

The discrete q-Hermite polynomials I are

h̃n(x, s; q) = Pn(x; 0, (1− q)s, 0), (1.11)

and the discrete q-Hermite polynomials II are

h̃n(x; q) = (−i)nh̃n(ix, 1; q−1). (1.12)

It is also convenient to introduce the polynomials

hn(x, s; q) := Pn(0;−x, 0, s), (1.13)

which are actually a rescaled version of h̃n(x; q) (see Section 4). The main purpose of this
paper is to study another q-analogue of Hermite polynomials.

Definition 2. The q-Hermite polynomials Hn(x, s|q) are defined by

Hn(x, s|q) := Fx,0,−s(zn). (1.14)

The q-Hermite polynomials H̃n(x, s|q) have, amongst other facts,
(1) orthogonality with an explicit measure,
(2) an explicit 3-term recurrence relation,
(3) explicit expressions,
(4) a combinatorial model using matchings,
(5) are moments for other orthogonal polynomials,
(6) a closed form expression for Hankel determinants,
(7) an explicit Jacobi continued fraction as generating function.

The new q-Hermite polynomials Hn(x, s|q) are not orthogonal, i.e., they do not have (1) and
(2). Instead they have a nice q-analogue of the operator formula (1.2) for the ordinary Hermite
polynomials (see Theorem 5), the coefficients of the Hn(x, s|q) appear in the inverse matrix
of the coefficients in the continuous q-Hermite polynomials (cf. Theorem 6), they have simple
connection coefficients with q-Lucas and q-Fibonacci polynomials (cf. Theorem 12). The
discrete q-Hermite polynomials hn(x, s; q) also have (1)–(4), and we will show in Theorem 7 that
they are also moments. Moreover, the quotients of two consecutive polynomials hn(x, s; q) (see
Eq.(4.21)) appear as coefficients in the expansion of the S-continued fraction of the generating
function of the Hn(x, s|q)’s, which leads to a second proof of Theorem 5.

This paper is organized as follows: in Section 2, we recall some well-known facts about the
general theory of orthogonal polynomials and show how to prove (1.10) by using this theory; we
prove the main properties of Hn(x, s|q) and hn(x, s; q) in Section 3 and Section 4, respectively;
in Section 5 we shall establish the connection between our new q-Hermite polynomials and the
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q-Fibonacci and q-Lucas polynomials. This yields, in particular, a generalization of Touchard-
Riordan’s formula for the moments of continuous q-Hermite polynomials (cf. Proposition 15),
first obtained by Josuat-Vergès [10].

2. Some well-known facts

In this section we recall some well-known facts about orthogonal polynomials (see [2, 18, 17]).
Let pn(x) be a sequence of polynomials which satisfies the three term recurrence relation

pn+1(x) = (x− bn)pn(x)− λnpn−1(x) (2.1)

with initial values p0(x) = 1 and p−1(x) = 0.
Define the coefficients a(n, k) (0 ≤ k ≤ n) by

n∑
k=0

a(n, k)pk(x) = xn. (2.2)

These are characterized by the Stieltjes tableau:

a(0, k) = δk,0,

a(n, 0) = b0a(n− 1, 0) + λ1a(n− 1, 1),

a(n, k) = a(n− 1, k − 1) + bka(n− 1, k) + λk+1a(n− 1, k + 1).
(2.3)

If F is the linear functional such that F(pn(x)) = δn,0, then

F(xn) = a(n, 0). (2.4)

The generating function of the moments has the continued fraction expansion∑
n≥0

F(xn)zn =
1

1− b0z −
λ1z

2

1− b1z −
λ2z

2

1− · · ·

. (2.5)

The Hankel determinants for the moments are

d(n, 0) = det(F(zi+j))n−1
i,j=0 =

n−1∏
i=1

i∏
k=1

λk, (2.6)

and

d(n, 1) = det(F(zi+j+1))n−1
i,j=0 = d(n, 0)(−1)npn(0). (2.7)

By using the Stieltjes tableau we can give a simple proof of (1.10).

Proposition 3. The continuous q-Hermite polynomials H̃n(x, s|q) defined by (1.9), i.e.,

H̃n+1(x, s|q) = xH̃n(x, s|q)− s[n]qH̃n−1(x, s|q), (2.8)

are the moments of the measure of the orthogonal polynomials pn(z) := Pn(z;x,−s, 0) defined
by the recurrence

pn+1(z) = (z − xqn)pn(z) + sqn−1[n]qpn−1(z). (2.9)
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Proof. Let bn = qnx and λn+1 = (−s)qn[n+ 1]q for n ≥ 0. It is sufficient to verify that in this
case (2.3) is satisfied with

a(n, k) =
[
n

k

]
H̃n−k(z, s|q). (2.10)

This is clearly equivalent to (2.8).

As a consequence of the previous proposition, and in view of (2.6) and (2.7), we can derive
immediately the Hankel determinants

d(n, 0) = (−s)(
n
2)q(

n
3)
n−1∏
j=0

[j]q!, (2.11)

and

d(n, 1) = d(n, 0)r(n), (2.12)

where r(n) = (−1)npn(0;x,−s, 0).
Note that the polynomials r(n) satisfy

r(n) = qn−1xr(n− 1) + qn−2s[n− 1]qr(n− 2).

This implies that

r(n) = q
n(n−2)

2 H̃n

(
x
√
q,−s|1

q

)
. (2.13)

The first few polynomials of the sequence H̃n(x, s|q) are

1, x, −s+ x2, x(−(2 + q)s+ x2), (1 + q + q2)s2 − (3 + 2q + q2)sx2 + x4,

x((3 + 4q + 4q2 + 3q3 + q4)s2 − (4 + 3q + 2q2 + q3)sx2 + x4).

From their recurrence relation we see that

H̃2n(0, s|q) = (−s)n[2n− 1]q!! and H̃2n+1(0, s|q) = 0.

3. The q-Hermite polynomials Hn(x, s|q)

By (1.8) the q-Hermite polynomials Hn(x, s|q) are the moments of the measure of the or-
thogonal polynomials Pn(z) satisfying the recurrence:

Pn+1(z) = (z − xqn)Pn(z) + s[n]qPn−1(z). (3.1)

Recall [13, p.80] that the Al-Salam–Chihara polynomials Qn(x) := Qn(x;α, β) satisfy the three
term recurrence:

Qn+1(x) = (2x− (α+ β)qn)Qn(x)− (1− qn)(1− αβqn−1)Qn−1(x), (3.2)

with Q0(x) = 1 and Q−1(x) = 0. They have the following explicit formulas:

Qn(x;α, β|q) = (αeiθ; q)ne−iθ2φ1

(
q−n, βe−iθ

α−1q−n+1e−iθ
|q;α−1qeiθ

)
, (3.3)

where x = cos θ.
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Comparing (3.1) and (3.2) we have Pn(z) = 1
(2a)nQn(az;α, 0) with

a =
1
2

√
q − 1
s

and α = x

√
q − 1
s

. (3.4)

Using the known formula for Al-Salam–Chihara polynomials we obtain

Pn(z) =
1

(2aα)n

n∑
k=0

(q−n; q)k
(q; q)k

qk
k−1∏
i=0

(1 + α2q2i − 2qiaαz)

=
(

s

x(q − 1)

)n n∑
k=0

(q−n; q)k
(q; q)k

(
−q
s

)k k−1∏
i=0

(
(q − 1)qixz − s− (q − 1)q2ix2

)
. (3.5)

The first few polynomials Pn(z) are

P1(z) = z − x,
P2(z) = z2 − x(1 + q)z + (s+ qx2),

P3(z) = z3 − x[3]qz2 + (2s+ qs+ q[3]qx2)z − (s+ qs+ q2s+ q3x2)x.

A matching m of {1, 2, . . . , n} is a set of pairs (i, j) such that i < j and i, j ∈ [n]. Each pair
(i, j) is called an edge of the matching. Let ed(m) be the number of edges of m, so n− 2ed(m)
is the number of unmatched vertices. Two edges (i, j) and (k, l) have a crossing if i < k < j < l
or k < i < l < j. Let cr(m) be the number of crossing numbers in the matching m. Using the
combinatorial theory of Viennot [17], Ismail and Stanton [8, Theorem 6] gave a combinatorial
interpretation of the moments of Al-Salam–Chihara polynomials. In particular we derive the
following result from [8, Theorem 6].

Lemma 4. The moments of the measure of the orthogonal polynomials {Pn(x)} are the gen-
erating functions for all matchings m of [n]:

Fx,0,−s(zn) =
∑
m

xn−2ed(m)(−s)ed(m)qc(m)+cr(m), (3.6)

where c(m) =
∑

a−vertices |{edges i < j : i < a < j}| and the sum extends over all matchings
m of [n].

Let M(n, k) be the set of matchings of {1, . . . , n} with k unmatched vertices. Then

Fx,0,−s(zn) =
∑
k

c(n, k, q)xk(−s)
n−k

2 , (3.7)

where

c(n, k, q) =
∑

m∈M(n,k)

qc(m)+cr(m). (3.8)

It is easy to verify that

c(n, k, q) = c(n− 1, k − 1, q) + [k + 1]qc(n− 1, k + 1, q) (3.9)

with c(0, k, q) = δk,0 and c(n, 0, q) = c(n−1, 1, q). Indeed, if n is an unmatched vertex then for
the restriction m0 of m to [n − 1] we get c(m0) = c(m) and cr(m0) = cr(m). If n is matched
with m(n), such that there are i unmatched vertices and j endpoints of edges which cross the
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edge (m(n), n) between m(n) and n, then c(m) = c(m0) + i− j and cr(m) = cr(m0) + j. Thus
c(m) + cr(m) = c(m0) + cr(m0) + i. Since each i with 0 ≤ i ≤ k can occur we get (3.9).

Let now Dq be the q-derivative operator defined by

Dqf(z) =
f(z)− f(qz)

(1− q)z
.

We have then the following q-analogue of (1.2).

Theorem 5. The q-Hermite polynomials Hn(x, s|q), defined as moments Fx,0,−s(zn), have the
following operator formula:

Hn(x, s|q) = (x− sDq)n · 1. (3.10)

Proof. We know that

Hn(x, s|q) =
∑
k

c(n, k, q)xk(−s)
n−k

2 , (3.11)

where c(n, k, q) satisfies (3.9). Therefore

Hn(x, s|q) =
∑
k

c(n− 1, k − 1, q)xk(−s)
n−k

2 +
∑
k

[k + 1]qc(n− 1, k + 1, q)xk(−s)
n−k

2

= xHn−1(x, s|q)− sDqHn−1(x, s|q).

The result then follows by induction on n.

Remark. It should be noted that the method of Varvak [16] (see also [10]) can also be applied
to prove Theorem 5. In fact her method proves first that (x−sDq)n ·1 is a generating function
of some rook placements, which is then shown to count involutions with respect to the statistic
c(m) + cr(m) (see [16, Theorem 6.4]). We will give another proof of (3.10) by using continued
fractions, see the remark after Theorem 9.

The first few polynomials Hn(x, s|q) are

1, x, −s+ x2, x(−(2 + q)s+ x2), (2 + q)s2 − (3 + 2q + q2)sx2 + x4,

x((5 + 6q + 3q2 + q3)s2 − (4 + 3q + 2q2 + q3)sx2 + x4), . . .

Let

H̃n(x, s|q) =
∑
k

b(n, k, q)xk(−s)
n−k

2 . (3.12)

Theorem 6. The matrices (c(i, j, q))n−1
i,j=0 and (b(i, j, q)(−1)

i−j
2 )n−1

i,j=0 are mutually inverse.

Proof. We first show by induction that

H̃n(x+ sDq, s|q) · 1 = xn. (3.13)

For this is obvious for n = 0. If it is already shown for n we get

H̃n+1(x+ sDq, s|q) · 1 = (x+ sDq)H̃n(x+ sDq, s|q) · 1− s[n]qH̃n−1(x+ sDq, s|q) · 1
= (x+ sDq)xn − s[n]qxn−1 = xn+1.
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On the other hand we have

H̃n(x+ sDq, s|q) · 1 =
n∑
k=0

b(n, k, q)(−s)
n−k

2 (x+ sDq)k · 1

=
n∑
k=0

b(n, k, q)(−s)
n−k

2

k∑
j=0

c(k, j, q)s
k−j
2 xj

=
n∑
j=0

s
n−j

2 xj
n∑
k=j

b(n, k, q)(−1)
n−k

2 c(k, j, q). (3.14)

The result then follows by comparing (3.13) and (3.14).

Remark. If we set q = 0 then (3.9) reduces to the well-known Catalan triangle (see [2, Chap.
7]), which implies

c(2n, 0, 0) = Cn =
1

n+ 1

(
2n
n

)
,

c(2n, 2k, 0) =
2k + 1

n+ k + 1

(
2n
n− k

)
=
(

2n
n− k

)
−
(

2n
n− k − 1

)
,

c(2n+ 1, 2k + 1, 0) =
2k + 2

n+ k + 2

(
2n+ 1
n− k

)
=
(

2n+ 1
n− k

)
−
(

2n+ 1
n− k − 1

)
.

The recurrence (3.1) implies that the Hankel determinants of Hn(x, s|q) are

det(Hi+j(x, s|q))n−1
i,j = (−s)(

n
2)
n−1∏
j=0

[j]q! (3.15)

and

det(Hi+j+1(x, s; q))n−1
i,j = hn(x,−s; q)(−s)(

n
2)
n−1∏
j=0

[j]q!, (3.16)

where

hn(x,−s; q) = (−1)nPn(0) =
(

s

x(1− q)

)n n∑
k=0

(q−n; q)k
(q; q)k

qk
k−1∏
i=0

(1 + x2(q − 1)q2i/s).

4. The rescaled discrete q-Hermite polynomials II

By definition (1.13) and (1.7) we have

hn+1(x, s; q) = qnxhn(x, s; q)− [n]qshn−1(x, s; q). (4.1)
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Comparing with the three-term recurrence relation for the discrete q-Hermite polynomials II
(see (1.12) and (1.7)), we derive

hn(x, s; q) = q(
n
2)
√
snh̃n

(
x√
s

; q
)

(4.2)

=
n∑
k=0

q(
n−2k

2 )
[
n

2k

]
[2k − 1]q!!(−s)kxn−2k, (4.3)

where the last expression follows from the known formula for h̃n(x; q).
Since Dq(fg) = Dq(f)g + f(qx)Dq(g) and Dq(x) = 1, we see that

Dq(hn+1(x)) = qnxDq(hn(x)) + qnhn(qx)− [n]qsDq(hn−1(x)).

We find by induction on n that

Dqhn(x, s; q) = [n]qhn−1(qx, s; q). (4.4)

The first few polynomials hn(x, s; q) are

1, x, qx2 − s, q3x3 − s[3]qx, q6x4 − s(q5 + q4 + 2q3 + q2 + q)x2 + s2[3]q.

The following result shows that the polynomials hn(x, s; q) are moments of some orthogonal
polynomials.

Theorem 7. The generating function of hn(x, s; q) has the continued fraction expansion:∑
m≥0

hn(x, s; q)tn =
1

1− b0t−
λ1t

2

1− b1t−
λ2t

2

1− b2t−
λ3t

2

1− · · ·

,

with

bn = qn−1(qn + qn+1 − 1)x and λn = −qn−1[n]q(s+ q2n−2(1− q)x2). (4.5)

Proof. To prove this it suffices to show that the Stieltjes tableau (2.3) is satisfied with

a(n, k) =
[
n

k

]
hn−k(qkx, s; q).

This is easily verified.

Using (2.6) and (2.7), Theorem 7 implies the following Hankel determinant evaluations:

det(hi+j(x, s; q))n−1
i,j = (−1)(

n
2)q(

n
3)
n−1∏
j=0

(
[j]q!(s+ q2j(1− q)x2)n−1−j) (4.6)

and
det(hi+j+1(x, s; q))n−1

i,j

det(hi+j(x, s; q))n−1
i,j

= w(n), (4.7)
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where w(n) satisfies

w(n+ 1) = qn−1(qn + qn+1 − 1)xw(n) + qn−1[n]q(s+ q2n−2(1− q)x2)w(n− 1).

It is easily verified that

w(n) =
n∑
k=0

q2(
n−k

2 )
[
n

2k

]
[2k − 1]q!!skxn−2k (4.8)

satisfies the same recurrence with the same initial values.

Lemma 8. Let Ln(x) := hn(x, (1− q)s; q). Then

sLn(x) + xLn+1(x) = (x2 + s)Ln(qx). (4.9)

Proof. First we note that the constant terms of both sides of (4.9) are equal to sLn(0). So it
suffices to show that the derivatives of the two sides are equal. Applying Dq to (4.9) and using
(4.4) we obtain, after replacing x by x/q,

s[n]Ln−1(x) + xq[n− 1]Ln(x) + Ln+1(x) = (x2 + s)q[n]Ln−1(qx).

Since Ln+1(x) = qnxLn(x)− (1− qn)sLn−1(x), we can rewrite the above equation as follows:

sLn−1(x) + xLn(x) = (x2 + s)Ln−1(qx). (4.10)

The proof is thus completed by induction on n.

We shall prove the following Jacobi continued fraction expansion for the generating function
of (x+ (1− q)sDq)n · 1. This is equivalent to Theorem 5.

Theorem 9. Let Tn(x, s) = (x+ (1− q)sDq)n · 1. Then∑
n≥0

Tn(x, s)tn =
1

1− b0t−
λ1t

2

1− b1t−
λ2t

2

1− · · ·

, (4.11)

where the coefficients are

bn = qnx, for n ≥ 0; and λn = (1− qn)s, for n ≥ 1. (4.12)

Proof. Since Tn(x, s) = (x+ (1− q)sDq)Tn−1(x, s), we have

Tn(x, s) = (x+
s

x
)Tn−1(x, s)− s

x
Tn−1(qx, s).

Equivalently the generating function G(x, t) =
∑

n≥0 Tn(x, s)tn satisfies the functional equa-
tion: (

1− x2 + s

x
t

)
G(x, t) = 1− s

x
tG(qx, t). (4.13)

10



Suppose that

G(x, t) =
1

1−
c1t

1−
c2t

1−
c3t

1− · · ·

, (4.14)

where cn = (gn − 1)gn−1A with A := A(x) = −x2+s
x and gi := gi(x).

Substituting (4.14) in (4.13) and then replacing t by t/A we obtain

1 + t

1− (g1 − 1)t

1− (g2 − 1)g1t

1− (g3 − 1)g2t

1− (g4 − 1)g3t
1− . . .

= 1 +
s

x2+s
t

1−
(g′1 − 1)A

′

A t

1−
(g′2 − 1)g′1

A′

A t

1−
(g′3 − 1)g′2

A′

A t

1− . . .

, (4.15)

where A′ := A(qx) and g′i := gi(qx). Comparing this with Wall’s formula (see [12]):

1 + z

1− (g1 − 1)z

1− (g2 − 1)g1z

1− (g3 − 1)g2z

1− (g4 − 1)g3z
1− . . .

= 1 +
g1z

1− (g1 − 1)g2z

1− (g2 − 1)g3z

1− (g3 − 1)g4z
1− . . .

, (4.16)

we derive that g0 = 1 and for n ≥ 1,
g2n =

A′

A

g′2n−1 − 1
g2n−1 − 1

g′2n−2,

g2n+1 =
A′

A

g′2n − 1
g2n − 1

g′2n−1.

(4.17)

For example,

g1 =
s

x2 + s
, g3 =

A′

A

g′2 − 1
g2 − 1

g′1 =
s

x2 + s

1
q
,

g2 =
A′

A

g′1 − 1
g1 − 1

= q, g4 =
A′

A

g′3 − 1
g3 − 1

g′2 =
−s+ qs+ q3x2

−s+ qs+ qx2
.

In general we have the following result
g2n =

sLn(x) + xLn+1(x)
(x2 + s)Ln(x)

,

g2n+1 =
sLn(x)

sLn(x) + xLn+1(x)
,

(n ≥ 0). (4.18)

11



This can be verified by induction on n. Suppose that the formula (4.18) is true for n ≥ 0. We
prove that the formula holds for n+ 1. By (4.17) we have

g2n+2 =
A′

A

g′2n+1 − 1
g2n+1 − 1

g′2n =
sLn(x) + xLn+1(x)

(x2 + s)Ln+1(x)
Ln+1(qx)
Ln(qx)

.

It follows from Lemma 1 that

g2n+2 =
sLn+1(x) + xLn+2(x)

(x2 + s)Ln+1(x)
. (4.19)

Since

Ln+1(x)− xLn(x) = (qn − 1)(xLn(x) + sLn−1(x)), (4.20)

the verification for g2n+3 is then straightforward. We derive from (4.14) and (4.18) that
c2n = (g2n − 1)g2n−1A = (1− qn)s

Ln−1(x)
Ln(x)

, for n ≥ 1;

c2n+1 = (g2n+1 − 1)g2nA =
Ln+1(x)
Ln(x)

, for n ≥ 0.
(4.21)

Invoking the contraction formula (see [19]), which transforms a S-continued fraction to a J-
continued fraction,

1

1− c1z

1− c2z

1− c3z

1− c4z

· · ·

=
1

1− c1z −
c1c2z

2

1− (c2 + c3)z −
c3c4z

2

· · ·

, (4.22)

we obtain
bn =

hn+1(x, (1− q)s; q)
hn(x, (1− q)s; q)

+ (1− qn)s
hn−1(x, (1− q)s; q)
hn(x, (1− q)s; q)

= qnx,

λn =
hn(x, (1− q)s; ; q)
hn−1(x, (1− q)s; q)

· (1− qn)s
hn−1(x, (1− q)s; ; q)
hn(x, (1− q)s; ; q)

= (1− qn)s.
(4.23)

This completes the proof.

Remark. Instead of the contraction formula (4.22), we can also proceed as follows. Define a
table (A(n, k))n,k≥0 by

A(0, k) = δk,0,

A(n, 0) = c1A(n− 1, 1), (4.24)

A(n, k) = A(n− 1, k − 1) + ck+1A(n− 1, k + 1).

In this case A(2n, 2k + 1) = A(2n+ 1, 2k) = 0 for all n, k. If we define

a(n, k) = A(2n, 2k),

then it is easily verified that a(n, k) satisfy (2.3) with

b0 = c1, bn = c2n + c2n+1, λn = c2nc2n−1. (4.25)
12



Substituting the values in (4.21) for cn we obtain (4.23). Therefore∑
n

A(2n, 0)tn =
∑
n

a(n, 0)tn =
∑
n

Tn(x, s)tn.

As another application of this remark we prove the following result.

Proposition 10. Let wn(m, q) = q
n((2m+1)n+1)

2 . Then∑
m≥0

wn(m, q)tn =
1

1− b0t−
λ1t

2

1− b1t−
λ2t

2

1− b2t−
λ3t

2

1− · · ·

,

where

bn = q(2m+1)n−m(q(2m+1)n − 1) + q(2m+1)(2n+1)−m,

λn = q(2m+1)(3n−1)−2m(q(2m+1)n − 1).

Proof. Let

A(2n, 2k) =
wn(m, q)
wk(m, q)

[
n

k

]
q2m+1

and A(2n+ 1, 2k + 1) =
wn+1(m, q)
wk+1(m, q)

[
n

k

]
q2m+1

.

Then it is easily verified that the table (4.24) holds with c2n = q(2m+1)n−m(q(2m+1)n − 1) and
c2n+1 = q(2m+1)(2n+1)−m. Therefore∑

n

A(2n, 0)tn =
∑
n

a(n, 0)tn =
∑
n

wn(m, q)tn.

5. Connection with q-Fibonacci polynomials and q-Lucas polynomials

In this section we derive some explicit expansion formulae for the q-Hermite polynomials
Hn(x, s|q) in terms of q-Fibonacci polynomials and q-Lucas polynomials. We first recall some
basic results about the latter polynomials in the q = 1 case and then define their q-analogue
with the ordinary Fibonacci and Lucas polynomials and q-operator Dq.

The Lucas polynomials are defined by the recurrence

ln(x, s) = xln−1(x, s) + sln−2(x, s) for n > 2,

with initial values l1(x, s) = x and l2(x, s) = x2 + 2s. They have the explicit formula

ln(x, s) =
∑
2k≤n

n

n− k

(
n− k
k

)
skxn−2k (n > 0). (5.1)

Furthermore we define l0(x, s) = 1. Note that this definition differs from the usual one in
which l0(x, s) = 2.

The Fibonacci polynomials are defined by

fn(x, s) = xfn−1(x, s) + sfn−2(x, s)
13



with f0(x, s) = 0 and f1(x, s) = 1. They have the explicit formula

fn(x, s) =
bn−1

2 c∑
k=0

(
n− 1− k

k

)
skxn−1−2k. (5.2)

We first establish the following inversion of (5.1) and (5.2), which will be used in the proof
of Theorem 12.

Lemma 11.

xn =
∑
2k≤n

(
n

k

)
skln−2k(x,−s), (5.3)

xn =
∑

2k≤n+1

((
n

k

)
−
(

n

k − 1

))
skfn+1−2k(x,−s). (5.4)

Proof. Recall the Tchebyshev inverse relations [15, p. 54-62]:

bn =
bn

2 c∑
k=0

(−1)k
n

n− k

(
n− k
k

)
an−2k ⇐⇒ an =

bn
2 c∑

k=0

(
n

k

)
bn−2k, (5.5)

where a0 = b0 = 1, and

bn =
bn

2 c∑
k=0

(−1)k
(
n− k
k

)
an−2k ⇐⇒ an =

bn
2 c∑

k=0

[(
n

k

)
−
(

n

k − 1

)]
bn−2k. (5.6)

We derive immediately (5.3) from (5.1) and (5.5). Clearly (5.2) is equivalent to the left identity
in (5.6) with an =

(
x√
s

)n
and bn = fn+1(x,−s)

(
√
s)n . By inversion we find

xn =
bn

2 c∑
k=0

((
n

k

)
−
(

n

k − 1

))
skfn+1−2k(x,−s). (5.7)

Now, noticing that

• if n is odd, then
(
n
k

)
=
(
n
k−1

)
for k =

⌊
n+1

2

⌋
,

• if n is even, then
⌊
n+1

2

⌋
=
⌊
n
2

⌋
,

we see the equivalence of (5.4) and (5.7).

Define the q-Lucas and q-Fibonacci polynomials by

Ln(x, s) = ln(x+ (q − 1)sDq, s) · 1, (5.8)

Fn(x, s) = fn(x+ (q − 1)sDq, s) · 1. (5.9)
14



It is known (see [3] and [4] ) that they have the explicit formulae

Ln(x, s) =
bn

2 c∑
k=0

q(
k
2) [n]

[n− k]

[
n− k
k

]
skxn−2k, (5.10)

Fn(x, s) =
bn−1

2 c∑
k=0

q(
k+1
2 )
[
n− 1− k

k

]
skxn−1−2k, (5.11)

for n > 0, with L0(x, s) = 1 and F0(x, s) = 0.

Theorem 12. We have

Hn(x, (q − 1)s|q) =
bn

2 c∑
k=0

(
n

k

)
skLn−2k(x,−s) (5.12)

=
bn+1

2 c∑
k=0

((
n

k

)
−
(

n

k − 1

))
skFn+1−2k(x,−s). (5.13)

Proof. Since

Ln(x,−s) = ln(x− (q − 1)sDq, s) · 1,
Fn(x,−s) = fn(x− (q − 1)sDq, s) · 1,

the theorem follows by applying the homomorphism x 7→ x− (q − 1)sDq to (5.3) and (5.4).

We derive some consequences of the formula (5.13).

Corollary 13. We have

Hn(1, q − 1|q) =
bn/3c∑

k=−b(n+1)/3c

(−1)kq
k(3k+1)

2

(
n⌊

n−3k
2

⌋). (5.14)

Proof. Let r(j) = j(3j+1)
2 . Then, it follows from [3] that

F3n(1,−1) =
n−1∑
j=−n

(−1)jqr(j), F3n+1(1,−1) = F3n+2(1,−1) =
n∑

j=−n
(−1)jqr(j),

or

Fn(1,−1) =
∑

−n≤3j≤n−1

(−1)jqr(j).

Let w(n) =
∑

k≥0

((
n
k

)
−
(
n
k−1

))
Fn+1−2k(1,−1). Consider a fixed term (−1)jqr(j). This term

occurs in Fn(1,−1) if −n
3 ≤ j ≤ n−1

3 . We are looking for all k, such that this term occurs

in Fn+1−2k(1,−1). If j ≥ 0 then the largest such number is k0 =
⌊
n−3j

2

⌋
. For j ≤ n−2k

3 is
15



equivalent with k ≤ k0. Therefore the coefficient of (−1)jqr(j) in w(n) is
∑k0

k=0

((
n
k

)
−
(
n
k−1

))
=(

n
k0

)
. If j < 0 then −n+1−2k

3 ≤ j is equivalent with k ≤ bn+1+3j
2 c. This gives

Hn(1, q − 1|q) =
bn/3c∑
j=0

(−1)jq
j(3j+1)

2

(
n⌊

n−3j
2

⌋)+
b(n+1)/3c∑

j=1

(−1)jq
j(3j−1)

2

(
n⌊

n−3j+1
2

⌋). (5.15)

Now, we have (
n⌊

n−3j+1
2

⌋) =
(

n⌊
n+3j

2

⌋)
because

⌊
n−3j+1

2

⌋
+
⌊
n+3j

2

⌋
= n. So (5.15) is equivalent to (5.14).

Corollary 14. We have

H2n

(
1,
q − 1
q
|q
)

= q−n
n∑

j=−n

((
2n

n− 3j

)
−
(

2n
n− 3j − 1

))
q2j(3j+1), (5.16)

and

H2n+1(1,
q − 1
q
|q) = q−n

n∑
j=−n

((
2n+ 1
n− 3j

)
−
(

2n+ 1
n− 3j − 1

))
q2j(3j+2). (5.17)

Proof. Note that

H2n(1,
q − 1
q
|q) =

1
qn

n∑
k=0

((
2n
n− k

)
−
(

2n
n− k − 1

))
qkF2k+1(1,−1

q
), (5.18)

H2n+1(1,
q − 1
q
|q) =

1
qn

n+1∑
k=0

((
2n+ 1
n+ 1− k

)
−
(

2n+ 1
n− k

))
qk−1F2k(1,−

1
q

). (5.19)

Recall (see [3]) that

F3n(1,−1
q

) = 0, F3n+1(1,−1
q

) = (−1)nqr(n), F3n+2(1,−1
q

) = (−1)nqr(−n). (5.20)

Hence
• if k = 3j then 2k + 1 = 6j + 1 and qkF2k+1(1,−1

q ) = q3jF6j+1(1,−1
q ) = q2j(3j+1).

• if k = 3j + 1 then 2k + 1 = 6j + 3 and qkF2k+1(1,−1
q ) = 0.

• If k = 3j + 2 then 2k + 1 = 6j + 5 and qkF2k+1(1,−1
q ) = q3j+2.

• if k = 3j then 2k = 6j and qk−1F2k(1,−1
q ) = 0.

• if k = 3j + 1 then 2k = 6j + 2 and qk−1F2k(1,−1
q ) = q2j(3j+2).

• If .k = 3j + 2 then 2k = 6j + 4 and qk−1F2k(1,−1
q ) = −q(3j+1)(2j+2).

Substituting the above values into (5.18) and (5.19) yields (5.16) and (5.17).

Finally, from (5.12) and (3.8) we derive two explicit formulae for the coefficient c(n, k, q).
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Proposition 15. If k ≡ n (mod 2) then

c(n, k, q) =
∑

m∈M(n,k)

qc(m)+cr(m)

= (1− q)−
n−k

2

∑
j≥0

(
n

n−k−2j
2

)
(−1)jq(

j
2) [k + 2j]

[k + j]

[
k + j

j

]
(5.21)

= (1− q)−
n−k

2

∑
j≥0

((
n

n−k−2j
2

)
−
(

n
n−k−2j−2

2

))
(−1)jq(

j+1
2 )
[
k + j

k

]
. (5.22)

We now give a second proof of Proposition 15 using Theorem 6 and the orthogonality of the
continuous q-Hermite polynomials.

Proof. Clearly Theorem 6 is equivalent to

xn =
∑

k≡n (mod 2)

c(n, k, q)s(n−k)/2H̃k(x, s|q). (5.23)

To compute c(n, k, q) we can take s = 1 and let H̃n(x|q) = H̃n(x, s|q). It is known (see [9])
that the continuous q-Hermite polynomials (H̃n(x|q)) are orthogonal with respect to the linear
functional ϕ defined by

ϕ(xn) =
∫ 2/

√
1−q

−2/
√

1−q
xnv(x, q)dx, (5.24)

where

v(x, q) =

√
(1− q)(q)∞√

1− (1− q)x2/44π

∞∏
k=0

{1 + (2− (1− q)x2)qk + q2k}.

Since ϕ((H̃k(x|q))2) = [k]q!, it follows from (5.23) that, for k ≡ n (mod 2),

c(n, k, q) =
1

[k]q!
ϕ(xnH̃k(x|q)). (5.25)

Recall the well-known formula (see [9])

x2n =
n∑

j=−n

(
2n
n+ j

)
T2j(x/2), (5.26)

where Tn(cos θ) = cos(nθ) = T−n(cos θ) is the nth Chybyshev polynomial of the first kind. By
using the Jacobi triple product formula and the terminating q-binomial formula, we can prove
(see [7, p. 307]) that, for any integer j and a =

√
1− q,

ϕ(Tn−2j(ax/2)H̃n(x|q)) =
(−1)n+j

2an
q(

n−j
2 ){(q−n+j+1; q)n + qn−j(q−n+j ; q)n}. (5.27)
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It follows from (5.25), (5.26) and (5.27) that

c(2n, 2k, q) =
a−2n

[2k]q!

n∑
j=−n

(
2n
n+ j

)
ϕ(T2j(ax/2)H̃2k(x|q))

=
(1− q)−(n−k)

(q; q)2k

n∑
j=−n

(
2n
n+ j

)
(−1)k+j

2
q(

k+j
2 ){(q−k−j+1; q)2k + qk+j(q−k−j ; q)2k}.

Since (q−k−j+1; q)2k is zero if j 6= −n, . . . ,−k and j 6= k + 1, . . . , n, and (q−k−j ; q)2k is zero if
j 6= −n, . . . ,−k − 1 or j 6= k, . . . , n, we can split the last summation into the following four
summations:

S1 =
−k∑
j=−n

(
2n
n+ j

)
(−1)k+j

2
q(

k+j
2 )(q−k−j+1; q)2k,

S2 =
n∑

j=k+1

(
2n
n+ j

)
(−1)k+j

2
q(

k+j
2 )(q−k−j+1; q)2k,

S3 =
−k−1∑
j=−n

(
2n
n+ j

)
(−1)k+j

2
q(

k+j
2 )qk+j(q−k−j ; q)2k,

S4 =
n∑
j=k

(
2n
n+ j

)
(−1)k+j

2
q(

k+j
2 )qk+j(q−k−j ; q)2k.

It is readily seen, by replacing j by −j in S1 and S3, that S1 = S4 and S2 = S3. Therefore,

c(2n, 2k, q) =
(1− q)−(n−k)

(q; q)2k
(S2 + S4)

= (1− q)−(n−k)
∑
j≥0

(
2n

n+ k + j

)
(−1)jq(

j
2) [2k + 2j]

[2k + j]

[
2k + j

j

]
. (5.28)

This corresponds to (5.21) for even indices. To derive the formula for odd indices we can use
(3.9) to get

c(2n+ 1, 2k + 1, q) = [2k + 2]qc(2n, 2k + 2, q) + c(2n, 2k, q),

and then apply (5.28).

Some remarks about the above formula are in order.
(a) Formula (5.22) has been obtained by different means by Josuat-Vergès [10, Proposition

12] and is also used in [5]. It is easy to see that (5.21) and (5.22) are equal by writing

[k + 2j]
[k + j]

= qj +
[j]

[k + j]
.

(b) When k = 0, we recover a formula of Touchard-Riordan (see [2, 9, 14]):

c(2n, 0, q) =
∑

m∈M(2n,0)

qcr(m) =
1

(1− q)n
n∑

j=−n

(
2n
n+ j

)
(−1)jq(

j
2). (5.29)
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(c) Notice that H2n(0,−1|q) = c(2n, 0, q) and H2n+1(0,−1|q) = c(2n+ 1, 0, q) = 0. Hence∑
n≥0

c(n, 0, q)tn =
1

1−
t2

1−
[2]qt2

1−
[3]qt2

1− · · ·

.

We derive a known result (see [9]): the coefficient c(n, 0, q) coincides with the n-th
moment of the continuous q-Hermite polynomials H̃(x, 1|q), i.e.,

F(zn) = c(n, 0, q),

where F is the linear functional acting on the polynomials in z defined by F(H̃n(z, 1|q)) =
δn,0.

As in [11] we can derive another double sum expression for Hn(x, s|q). The proof is omitted.

Proposition 16. We have

Hn(x, s|q) =
n∑
k=0

(−1)kq−(k
2)

k∑
i=0

(
s

x(q − 1)
q−i + xqi

)n

×
k∏

j=0,j 6=i

1
q−i − q−j + x2 q−1

s (qi − qj)
. (5.30)
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