# A CURIOUS $q$-ANALOGUE OF HERMITE POLYNOMIALS 

JOHANN CIGLER AND JIANG ZENG


#### Abstract

Two well-known $q$-Hermite polynomials are the continuous and discrete $q$-Hermite polynomials. In this paper we consider a new family of $q$-Hermite polynomials and prove several curious properties about these polynomials. One striking property is the connection with $q$-Fibonacci and $q$-Lucas polynomials. The latter relation yields a generalization of the Touchard-Riordan formula.


## 1. Introduction

The classical Hermite polynomials have two important properties: (i) they form a family of orthogonal polynomials and (ii) are intimately connected with the commutation properties between the multiplication operator $x$ and the differentiation operator $D$. In contrast to the discrete $q$-Hermite polynomials, which generalize both aspects, the continuous $q$-Hermite polynomials generalize only the first one. The purpose of this paper is to introduce a $q$-analogue which generalizes the second property and establish the missing link with the continuous $q$ Hermite polynomials. It turns out that these new polynomials are in some sense dual to the continuous $q$-Hermite polynomials. Moreover, they provide interesting connections with $q$-Fibonacci and $q$-Lucas polynomials and the Touchard-Riordan formula for the moments of the continuous $q$-Hermite polynomials. In order to provide the reader with the necessary background we first collect some well-known results about the classical Hermite polynomials and their known $q$-analogues.

The normalized Hermite polynomials $H_{n}(x, s)=s^{n / 2} H_{n}(x / \sqrt{s}, 1)(n \geq 0)$ may be defined by the recurrence relation:

$$
\begin{equation*}
H_{n+1}(x, s)=x H_{n}(x, s)-n s H_{n-1}(x, s), \tag{1.1}
\end{equation*}
$$

with initial values $H_{0}(x, s)=1$ and $H_{-1}(x, s)=0$. By induction, we have

$$
\begin{equation*}
H_{n}(x, s)=(x-s \mathcal{D})^{n} \cdot 1, \tag{1.2}
\end{equation*}
$$

where $\mathcal{D}=\frac{d}{d x}$ denotes the differentiation operator. It follows that

$$
\begin{equation*}
\mathcal{D} H_{n}(x, s)=n H_{n-1}(x, s) . \tag{1.3}
\end{equation*}
$$

The Hermite polynomials have the explicit formula (see [1, Chapter 6])

$$
H_{n}(x, s)=\sum_{k=0}^{n}\binom{n}{2 k}(-s)^{k}(2 k-1)!!x^{n-2 k} .
$$

[^0]The first few polynomials are

$$
1, x,-s+x^{2},-3 s x+x^{3}, 3 s^{2}-6 s x^{2}+x^{4}, 15 s^{2} x-10 s x^{3}+x^{5} .
$$

The Hermite polynomials are orthogonal with respect to the linear functional defined by the moments

$$
\mu_{n}=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} x^{n} e^{-x^{2} / 2} d x=\left\{\begin{array}{cc}
(n-1)!! & \text { if } n \text { is even } \\
0 & \text { otherwise. }
\end{array}\right.
$$

In other words, the $n$-th moment $\mu_{n}$ of the measure of the Hermite polynomials is the number of the complete matchings on $[n]:=\{1, \ldots, n\}$, i.e., $\mu_{2 n}=(2 n-1)!$ ! and $\mu_{2 n+1}=0$.

Consider the rescaled Hermite polynomials $p_{n}(z, x, s)=H_{n}(z-x,-s)$, also determined by

$$
\begin{equation*}
p_{n+1}(z, x, s)=(z-x) p_{n}(z, x, s)+\operatorname{snp}_{n-1}(z, x, s) \tag{1.4}
\end{equation*}
$$

with initial values $p_{0}(z, x, s)=1$ and $p_{-1}(z, x, s)=0$. Let $\mathcal{F}$ be the linear functional on polynomials in $z$ defined by $\mathcal{F}\left(p_{n}(z, x, s)\right)=\delta_{n, 0}$. Then the moments $\mathcal{F}\left(z^{n}\right)$ are again the Hermite polynomials

$$
\begin{equation*}
\mathcal{F}\left(z^{n}\right)=(\sqrt{-s})^{n} \sum_{k=0}^{n}\binom{n}{k}(x / \sqrt{-s})^{n-k} \mu_{k}=H_{n}(x, s) . \tag{1.5}
\end{equation*}
$$

This is equivalent to saying that the generating function of the Hermite polynomials $H_{n}(x, s)$ has the following continued fraction expansion:

$$
\begin{equation*}
H(z, x, s)=\sum_{n \geq 0} H_{n}(x, s) z^{n}=\frac{1}{1-x z+\frac{s z^{2}}{1-x z+\frac{2 s z^{2}}{1-x z+\frac{3 s z^{2}}{\cdots}}}} . \tag{1.6}
\end{equation*}
$$

Two important classes of orthogonal $q$-analogues of $H_{n}(x, s)$ are the continuous and the discrete $q$-Hermite I polynomials, which are both special cases of the Al-Salam-Chihara polynomials. Before we describe these $q$-Hermite polynomials, we introduce some standard $q$-notations (see [6]). For $n \geq 1$ let

$$
[n]:=[n]_{q}=\frac{1-q^{n}}{1-q}, \quad[n]_{q}!=\prod_{k=1}^{n}[k]_{q}, \quad[2 n-1]_{q}!!=\prod_{k=1}^{n}[2 k-1]_{q},
$$

and $(a ; q)_{n}=(1-a)(1-a q) \cdots\left(1-a q^{n-1}\right)$ with $(a ; q)_{0}=1$. The $q$-binomial coefficient is defined by

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]:=\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\frac{(q ; q)_{n}}{(q ; q)_{k}(q ; q)_{n-k}}
$$

for $0 \leq k \leq n$ and zero otherwise.
Recall [8] that the Al-Salam-Chihara polynomials $P_{n}(x ; a, b, c)$ satisfy the three term recurrence:

$$
\begin{equation*}
P_{n+1}(x ; a, b, c)=\left(x-a q^{n}\right) P_{n}(x ; a, b, c)-\left(c+b q^{n-1}\right)[n]_{q} P_{n-1}(x ; a, b, c) \tag{1.7}
\end{equation*}
$$

with initial values $P_{-1}(x ; a, b, c)=0$ and $P_{0}(x ; a, b, c)=1$.

Definition 1. Let $\mathcal{F}_{a, b, c}$ be the unique linear functional acting on the polynomials in $z$ that satisfies

$$
\begin{equation*}
\mathcal{F}_{a, b, c}\left(P_{n}(z ; a, b, c)\right)=\delta_{n, 0} . \tag{1.8}
\end{equation*}
$$

Then the continuous $q$-Hermite polynomials are

$$
\begin{equation*}
\tilde{H}_{n}(x, s \mid q)=P_{n}(x ; 0,0, s) \tag{1.9}
\end{equation*}
$$

and are also the moments (see [8] and Proposition 16):

$$
\begin{equation*}
\tilde{H}_{n}(x, s \mid q)=\mathcal{F}_{x,-s, 0}\left(z^{n}\right) . \tag{1.10}
\end{equation*}
$$

The discrete $q$-Hermite polynomials I are

$$
\begin{equation*}
\tilde{h}_{n}(x, s ; q)=P_{n}(x ; 0,(1-q) s, 0), \tag{1.11}
\end{equation*}
$$

and the discrete $q$-Hermite polynomials II are

$$
\begin{equation*}
\tilde{h}_{n}(x ; q)=(-i)^{n} \tilde{h}_{n}\left(i x, 1 ; q^{-1}\right) . \tag{1.12}
\end{equation*}
$$

It is also convenient to introduce the polynomials

$$
\begin{equation*}
h_{n}(x, s ; q):=P_{n}(0 ;-x, 0, s), \tag{1.13}
\end{equation*}
$$

which are actually a rescaled version of $\tilde{h}_{n}(x ; q)$ (see Section 4). The main purpose of this paper is to study another $q$-analogue of Hermite polynomials.
Definition 2. The $q$-Hermite polynomials $H_{n}(x, s \mid q)$ are defined by

$$
\begin{equation*}
H_{n}(x, s \mid q):=\mathcal{F}_{x, 0,-s}\left(z^{n}\right) \tag{1.14}
\end{equation*}
$$

The $q$-Hermite polynomials $\tilde{H}_{n}(x, s \mid q)$ have, amongst other facts,
(1) orthogonality with an explicit measure,
(2) an explicit 3 -term recurrence relation,
(3) explicit expressions,
(4) a combinatorial model using matchings,
(5) are moments for other orthogonal polynomials,
(6) a closed form expression for Hankel determinants,
(7) an explicit Jacobi continued fraction as generating function.

The new $q$-Hermite polynomials $H_{n}(x, s \mid q)$ are not orthogonal, i.e., they do not have (1) and (2). Instead they have a nice $q$-analogue of the operator formula (1.2) for the ordinary Hermite polynomials (see Theorem 5), the coefficients of the $H_{n}(x, s \mid q)$ appear in the inverse matrix of the coefficients in the continuous $q$-Hermite polynomials (cf. Theorem 6), they have simple connection coefficients with $q$-Lucas and $q$-Fibonacci polynomials (cf. Theorem 12). The discrete $q$-Hermite polynomials $h_{n}(x, s ; q)$ also have (1)-(4), and we will show in Theorem 7 that they are also moments. Moreover, the quotients of two consecutive polynomials $h_{n}(x, s ; q)$ (see Eq.(4.21)) appear as coefficients in the expansion of the $S$-continued fraction of the generating function of the $H_{n}(x, s \mid q)$ 's, which leads to a second proof of Theorem 5.

This paper is organized as follows: in Section 2, we recall some well-known facts about the general theory of orthogonal polynomials and show how to prove (1.10) by using this theory; we prove the main properties of $H_{n}(x, s \mid q)$ and $h_{n}(x, s ; q)$ in Section 3 and Section 4, respectively; in Section 5 we shall establish the connection between our new $q$-Hermite polynomials and the
$q$-Fibonacci and $q$-Lucas polynomials. This yields, in particular, a generalization of TouchardRiordan's formula for the moments of continuous $q$-Hermite polynomials (cf. Proposition 15), first obtained by Josuat-Vergès [10].

## 2. Some well-known facts

In this section we recall some well-known facts about orthogonal polynomials (see [2, 18, 17]). Let $p_{n}(x)$ be a sequence of polynomials which satisfies the three term recurrence relation

$$
\begin{equation*}
p_{n+1}(x)=\left(x-b_{n}\right) p_{n}(x)-\lambda_{n} p_{n-1}(x) \tag{2.1}
\end{equation*}
$$

with initial values $p_{0}(x)=1$ and $p_{-1}(x)=0$.
Define the coefficients $a(n, k)(0 \leq k \leq n)$ by

$$
\begin{equation*}
\sum_{k=0}^{n} a(n, k) p_{k}(x)=x^{n} \tag{2.2}
\end{equation*}
$$

These are characterized by the Stieltjes tableau:

$$
\begin{align*}
& a(0, k)=\delta_{k, 0}, \\
& a(n, 0)=b_{0} a(n-1,0)+\lambda_{1} a(n-1,1),  \tag{2.3}\\
& a(n, k)=a(n-1, k-1)+b_{k} a(n-1, k)+\lambda_{k+1} a(n-1, k+1) .
\end{align*}
$$

If $\mathcal{F}$ is the linear functional such that $\mathcal{F}\left(p_{n}(x)\right)=\delta_{n, 0}$, then

$$
\begin{equation*}
\mathcal{F}\left(x^{n}\right)=a(n, 0) . \tag{2.4}
\end{equation*}
$$

The generating function of the moments has the continued fraction expansion

$$
\begin{equation*}
\sum_{n \geq 0} \mathcal{F}\left(x^{n}\right) z^{n}=\frac{1}{1-b_{0} z-\frac{\lambda_{1} z^{2}}{1-b_{1} z-\frac{\lambda_{2} z^{2}}{1-\cdots}}} \tag{2.5}
\end{equation*}
$$

The Hankel determinants for the moments are

$$
\begin{equation*}
d(n, 0)=\operatorname{det}\left(\mathcal{F}\left(z^{i+j}\right)\right)_{i, j=0}^{n-1}=\prod_{i=1}^{n-1} \prod_{k=1}^{i} \lambda_{k} \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
d(n, 1)=\operatorname{det}\left(\mathcal{F}\left(z^{i+j+1}\right)\right)_{i, j=0}^{n-1}=d(n, 0)(-1)^{n} p_{n}(0) . \tag{2.7}
\end{equation*}
$$

By using the Stieltjes tableau we can give a simple proof of (1.10).
Proposition 3. The continuous $q$-Hermite polynomials $\tilde{H}_{n}(x, s \mid q)$ defined by (1.9), i.e.,

$$
\begin{equation*}
\tilde{H}_{n+1}(x, s \mid q)=x \tilde{H}_{n}(x, s \mid q)-s[n]_{q} \tilde{H}_{n-1}(x, s \mid q), \tag{2.8}
\end{equation*}
$$

are the moments of the measure of the orthogonal polynomials $p_{n}(z):=P_{n}(z ; x,-s, 0)$ defined by the recurrence

$$
\begin{equation*}
p_{n+1}(z)=\left(z-x q^{n}\right) p_{n}(z)+s q^{n-1}[n]_{q} p_{n-1}(z) . \tag{2.9}
\end{equation*}
$$

Proof. Let $b_{n}=q^{n} x$ and $\lambda_{n+1}=(-s) q^{n}[n+1]_{q}$ for $n \geq 0$. It is sufficient to verify that in this case (2.3) is satisfied with

$$
a(n, k)=\left[\begin{array}{l}
n  \tag{2.10}\\
k
\end{array}\right] \tilde{H}_{n-k}(z, s \mid q) .
$$

This is clearly equivalent to (2.8).
As a consequence of the previous proposition, and in view of (2.6) and (2.7), we can derive immediately the Hankel determinants

$$
\begin{equation*}
d(n, 0)=(-s)^{\binom{n}{2}} q^{\binom{n}{3}} \prod_{j=0}^{n-1}[j] q!, \tag{2.11}
\end{equation*}
$$

and

$$
\begin{equation*}
d(n, 1)=d(n, 0) r(n) \tag{2.12}
\end{equation*}
$$

where $r(n)=(-1)^{n} p_{n}(0 ; x,-s, 0)$.
Note that the polynomials $r(n)$ satisfy

$$
r(n)=q^{n-1} x r(n-1)+q^{n-2} s[n-1]_{q} r(n-2) .
$$

This implies that

$$
\begin{equation*}
r(n)=q^{\frac{n(n-2)}{2}} \tilde{H}_{n}\left(x \sqrt{q},-s \left\lvert\, \frac{1}{q}\right.\right) . \tag{2.13}
\end{equation*}
$$

The first few polynomials of the sequence $\tilde{H}_{n}(x, s \mid q)$ are

$$
\begin{gathered}
1, x,-s+x^{2}, x\left(-(2+q) s+x^{2}\right),\left(1+q+q^{2}\right) s^{2}-\left(3+2 q+q^{2}\right) s x^{2}+x^{4} \\
x\left(\left(3+4 q+4 q^{2}+3 q^{3}+q^{4}\right) s^{2}-\left(4+3 q+2 q^{2}+q^{3}\right) s x^{2}+x^{4}\right)
\end{gathered}
$$

From their recurrence relation we see that

$$
\tilde{H}_{2 n}(0, s \mid q)=(-s)^{n}[2 n-1]_{q}!!\quad \text { and } \quad \tilde{H}_{2 n+1}(0, s \mid q)=0 .
$$

3. The $q$-Hermite polynomials $H_{n}(x, s \mid q)$

By (1.8) the $q$-Hermite polynomials $H_{n}(x, s \mid q)$ are the moments of the measure of the orthogonal polynomials $P_{n}(z)$ satisfying the recurrence:

$$
\begin{equation*}
P_{n+1}(z)=\left(z-x q^{n}\right) P_{n}(z)+s[n]_{q} P_{n-1}(z) . \tag{3.1}
\end{equation*}
$$

Recall [13, p.80] that the Al-Salam-Chihara polynomials $Q_{n}(x):=Q_{n}(x ; \alpha, \beta)$ satisfy the three term recurrence:

$$
\begin{equation*}
Q_{n+1}(x)=\left(2 x-(\alpha+\beta) q^{n}\right) Q_{n}(x)-\left(1-q^{n}\right)\left(1-\alpha \beta q^{n-1}\right) Q_{n-1}(x), \tag{3.2}
\end{equation*}
$$

with $Q_{0}(x)=1$ and $Q_{-1}(x)=0$. They have the following explicit formulas:

$$
Q_{n}(x ; \alpha, \beta \mid q)=\left(\alpha e^{i \theta} ; q\right)_{n} e^{-i \theta}{ }_{2} \phi_{1}\left(\begin{array}{cc}
q^{-n}, & \beta e^{-i \theta}  \tag{3.3}\\
\alpha^{-1} q^{-n+1} e^{-i \theta} & \mid q ; \alpha^{-1} q e^{i \theta}
\end{array}\right)
$$

where $x=\cos \theta$.

Comparing (3.1) and (3.2) we have $P_{n}(z)=\frac{1}{(2 a)^{n}} Q_{n}(a z ; \alpha, 0)$ with

$$
\begin{equation*}
a=\frac{1}{2} \sqrt{\frac{q-1}{s}} \quad \text { and } \quad \alpha=x \sqrt{\frac{q-1}{s}} . \tag{3.4}
\end{equation*}
$$

Using the known formula for Al-Salam-Chihara polynomials we obtain

$$
\begin{align*}
P_{n}(z) & =\frac{1}{(2 a \alpha)^{n}} \sum_{k=0}^{n} \frac{\left(q^{-n} ; q\right)_{k}}{(q ; q)_{k}} q^{k} \prod_{i=0}^{k-1}\left(1+\alpha^{2} q^{2 i}-2 q^{i} a \alpha z\right) \\
& =\left(\frac{s}{x(q-1)}\right)^{n} \sum_{k=0}^{n} \frac{\left(q^{-n} ; q\right)_{k}}{(q ; q)_{k}}\left(\frac{-q}{s}\right)^{k} \prod_{i=0}^{k-1}\left((q-1) q^{i} x z-s-(q-1) q^{2 i} x^{2}\right) . \tag{3.5}
\end{align*}
$$

The first few polynomials $P_{n}(z)$ are

$$
\begin{aligned}
& P_{1}(z)=z-x \\
& P_{2}(z)=z^{2}-x(1+q) z+\left(s+q x^{2}\right) \\
& P_{3}(z)=z^{3}-x[3]_{q} z^{2}+\left(2 s+q s+q[3]_{q} x^{2}\right) z-\left(s+q s+q^{2} s+q^{3} x^{2}\right) x
\end{aligned}
$$

A matching $m$ of $\{1,2, \ldots, n\}$ is a set of pairs $(i, j)$ such that $i<j$ and $i, j \in[n]$. Each pair $(i, j)$ is called an edge of the matching. Let $\operatorname{ed}(m)$ be the number of edges of $m$, so $n-2 \operatorname{ed}(m)$ is the number of unmatched vertices. Two edges $(i, j)$ and $(k, l)$ have a crossing if $i<k<j<l$ or $k<i<l<j$. Let $\operatorname{cr}(m)$ be the number of crossing numbers in the matching $m$. Using the combinatorial theory of Viennot [17], Ismail and Stanton [8, Theorem 6] gave a combinatorial interpretation of the moments of Al-Salam-Chihara polynomials. In particular we derive the following result from [8, Theorem 6].

Lemma 4. The moments of the measure of the orthogonal polynomials $\left\{P_{n}(x)\right\}$ are the generating functions for all matchings $m$ of $[n]$ :

$$
\begin{equation*}
\mathcal{F}_{x, 0,-s}\left(z^{n}\right)=\sum_{m} x^{n-2 \operatorname{ed}(m)}(-s)^{\operatorname{ed}(m)} q^{\mathrm{c}(m)+\operatorname{cr}(m)} \tag{3.6}
\end{equation*}
$$

where $c(m)=\sum_{\text {a-vertices }} \mid\{$ edges $i<j: i<a<j\} \mid$ and the sum extends over all matchings $m$ of $[n]$.

Let $M(n, k)$ be the set of matchings of $\{1, \ldots, n\}$ with $k$ unmatched vertices. Then

$$
\begin{equation*}
\mathcal{F}_{x, 0,-s}\left(z^{n}\right)=\sum_{k} c(n, k, q) x^{k}(-s)^{\frac{n-k}{2}} \tag{3.7}
\end{equation*}
$$

where

$$
\begin{equation*}
c(n, k, q)=\sum_{m \in M(n, k)} q^{c(m)+\operatorname{cr}(m)} \tag{3.8}
\end{equation*}
$$

It is easy to verify that

$$
\begin{equation*}
c(n, k, q)=c(n-1, k-1, q)+[k+1]_{q} c(n-1, k+1, q) \tag{3.9}
\end{equation*}
$$

with $c(0, k, q)=\delta_{k, 0}$ and $c(n, 0, q)=c(n-1,1, q)$. Indeed, if $n$ is an unmatched vertex then for the restriction $m_{0}$ of $m$ to $[n-1]$ we get $c\left(m_{0}\right)=c(m)$ and $\operatorname{cr}\left(m_{0}\right)=\operatorname{cr}(m)$. If $n$ is matched with $m(n)$, such that there are $i$ unmatched vertices and $j$ endpoints of edges which cross the
edge $(m(n), n)$ between $m(n)$ and $n$, then $c(m)=c\left(m_{0}\right)+i-j$ and $\operatorname{cr}(m)=\operatorname{cr}\left(m_{0}\right)+j$. Thus $c(m)+\operatorname{cr}(m)=c\left(m_{0}\right)+\operatorname{cr}\left(m_{0}\right)+i$. Since each $i$ with $0 \leq i \leq k$ can occur we get (3.9).

Let now $\mathcal{D}_{q}$ be the $q$-derivative operator defined by

$$
\mathcal{D}_{q} f(z)=\frac{f(z)-f(q z)}{(1-q) z} .
$$

We have then the following $q$-analogue of (1.2).
Theorem 5. The $q$-Hermite polynomials $H_{n}(x, s \mid q)$, defined as moments $\mathcal{F}_{x, 0,-s}\left(z^{n}\right)$, have the following operator formula:

$$
\begin{equation*}
H_{n}(x, s \mid q)=\left(x-s \mathcal{D}_{q}\right)^{n} \cdot 1 . \tag{3.10}
\end{equation*}
$$

Proof. We know that

$$
\begin{equation*}
H_{n}(x, s \mid q)=\sum_{k} c(n, k, q) x^{k}(-s)^{\frac{n-k}{2}}, \tag{3.11}
\end{equation*}
$$

where $c(n, k, q)$ satisfies (3.9). Therefore

$$
\begin{aligned}
H_{n}(x, s \mid q) & =\sum_{k} c(n-1, k-1, q) x^{k}(-s)^{\frac{n-k}{2}}+\sum_{k}[k+1]_{q} c(n-1, k+1, q) x^{k}(-s)^{\frac{n-k}{2}} \\
& =x H_{n-1}(x, s \mid q)-s \mathcal{D}_{q} H_{n-1}(x, s \mid q) .
\end{aligned}
$$

The result then follows by induction on $n$.
Remark. It should be noted that the method of Varvak [16] (see also [10]) can also be applied to prove Theorem 5. In fact her method proves first that $\left(x-s D_{q}\right)^{n} \cdot 1$ is a generating function of some rook placements, which is then shown to count involutions with respect to the statistic $c(m)+\operatorname{cr}(m)$ (see [16, Theorem 6.4]). We will give another proof of (3.10) by using continued fractions, see the remark after Theorem 9.

The first few polynomials $H_{n}(x, s \mid q)$ are

$$
\begin{gathered}
1, x,-s+x^{2}, x\left(-(2+q) s+x^{2}\right),(2+q) s^{2}-\left(3+2 q+q^{2}\right) s x^{2}+x^{4}, \\
x\left(\left(5+6 q+3 q^{2}+q^{3}\right) s^{2}-\left(4+3 q+2 q^{2}+q^{3}\right) s x^{2}+x^{4}\right), \ldots
\end{gathered}
$$

Let

$$
\begin{equation*}
\tilde{H}_{n}(x, s \mid q)=\sum_{k} b(n, k, q) x^{k}(-s)^{\frac{n-k}{2}} . \tag{3.12}
\end{equation*}
$$

Theorem 6. The matrices $(c(i, j, q))_{i, j=0}^{n-1}$ and $\left(b(i, j, q)(-1)^{\frac{i-j}{2}}\right)_{i, j=0}^{n-1}$ are mutually inverse.
Proof. We first show by induction that

$$
\begin{equation*}
\tilde{H}_{n}\left(x+s \mathcal{D}_{q}, s \mid q\right) \cdot 1=x^{n} . \tag{3.13}
\end{equation*}
$$

For this is obvious for $n=0$. If it is already shown for $n$ we get

$$
\begin{aligned}
\tilde{H}_{n+1}\left(x+s \mathcal{D}_{q}, s \mid q\right) \cdot 1 & =\left(x+s \mathcal{D}_{q}\right) \tilde{H}_{n}\left(x+s \mathcal{D}_{q}, s \mid q\right) \cdot 1-s[n]_{q} \tilde{H}_{n-1}\left(x+s \mathcal{D}_{q}, s \mid q\right) \cdot 1 \\
& =\left(x+s \mathcal{D}_{q}\right) x^{n}-s[n]_{q} x^{n-1}=x^{n+1}
\end{aligned}
$$

On the other hand we have

$$
\begin{align*}
\tilde{H}_{n}\left(x+s \mathcal{D}_{q}, s \mid q\right) \cdot 1 & =\sum_{k=0}^{n} b(n, k, q)(-s)^{\frac{n-k}{2}}\left(x+s \mathcal{D}_{q}\right)^{k} \cdot 1 \\
& =\sum_{k=0}^{n} b(n, k, q)(-s)^{\frac{n-k}{2}} \sum_{j=0}^{k} c(k, j, q) s^{\frac{k-j}{2}} x^{j} \\
& =\sum_{j=0}^{n} s^{\frac{n-j}{2}} x^{j} \sum_{k=j}^{n} b(n, k, q)(-1)^{\frac{n-k}{2}} c(k, j, q) . \tag{3.14}
\end{align*}
$$

The result then follows by comparing (3.13) and (3.14).

Remark. If we set $q=0$ then (3.9) reduces to the well-known Catalan triangle (see [2, Chap. $7]$ ), which implies

$$
\begin{aligned}
c(2 n, 0,0) & =C_{n}=\frac{1}{n+1}\binom{2 n}{n}, \\
c(2 n, 2 k, 0) & =\frac{2 k+1}{n+k+1}\binom{2 n}{n-k}=\binom{2 n}{n-k}-\binom{2 n}{n-k-1}, \\
c(2 n+1,2 k+1,0) & =\frac{2 k+2}{n+k+2}\binom{2 n+1}{n-k}=\binom{2 n+1}{n-k}-\binom{2 n+1}{n-k-1} .
\end{aligned}
$$

The recurrence (3.1) implies that the Hankel determinants of $H_{n}(x, s \mid q)$ are

$$
\begin{equation*}
\operatorname{det}\left(H_{i+j}(x, s \mid q)\right)_{i, j}^{n-1}=(-s)^{\binom{n}{2}} \prod_{j=0}^{n-1}[j]_{q}! \tag{3.15}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{det}\left(H_{i+j+1}(x, s ; q)\right)_{i, j}^{n-1}=h_{n}(x,-s ; q)(-s)^{\binom{n}{2}} \prod_{j=0}^{n-1}[j]_{q}!, \tag{3.16}
\end{equation*}
$$

where

$$
h_{n}(x,-s ; q)=(-1)^{n} P_{n}(0)=\left(\frac{s}{x(1-q)}\right)^{n} \sum_{k=0}^{n} \frac{\left(q^{-n} ; q\right)_{k}}{(q ; q)_{k}} q^{k} \prod_{i=0}^{k-1}\left(1+x^{2}(q-1) q^{2 i} / s\right) .
$$

## 4. The rescaled discrete $q$-Hermite polynomials II

By definition (1.13) and (1.7) we have

$$
\begin{equation*}
h_{n+1}(x, s ; q)=q^{n} x h_{n}(x, s ; q)-[n]_{q} s h_{n-1}(x, s ; q) . \tag{4.1}
\end{equation*}
$$

Comparing with the three-term recurrence relation for the discrete $q$-Hermite polynomials II (see (1.12) and (1.7)), we derive

$$
\begin{align*}
h_{n}(x, s ; q) & =q^{\binom{n}{2} \sqrt{s^{n}} \tilde{h}_{n}}\left(\frac{x}{\sqrt{s}} ; q\right)  \tag{4.2}\\
& =\sum_{k=0}^{n} q^{\binom{n-2 k}{2}}\left[\begin{array}{c}
n \\
2 k
\end{array}\right][2 k-1]_{q}!!(-s)^{k} x^{n-2 k}, \tag{4.3}
\end{align*}
$$

where the last expression follows from the known formula for $\tilde{h}_{n}(x ; q)$.
Since $\mathcal{D}_{q}(f g)=\mathcal{D}_{q}(f) g+f(q x) \mathcal{D}_{q}(g)$ and $\mathcal{D}_{q}(x)=1$, we see that

$$
\mathcal{D}_{q}\left(h_{n+1}(x)\right)=q^{n} x \mathcal{D}_{q}\left(h_{n}(x)\right)+q^{n} h_{n}(q x)-[n]_{q} s \mathcal{D}_{q}\left(h_{n-1}(x)\right) .
$$

We find by induction on $n$ that

$$
\begin{equation*}
\mathcal{D}_{q} h_{n}(x, s ; q)=[n]_{q} h_{n-1}(q x, s ; q) . \tag{4.4}
\end{equation*}
$$

The first few polynomials $h_{n}(x, s ; q)$ are

$$
\text { 1, } \quad x, \quad q x^{2}-s, \quad q^{3} x^{3}-s[3]_{q} x, \quad q^{6} x^{4}-s\left(q^{5}+q^{4}+2 q^{3}+q^{2}+q\right) x^{2}+s^{2}[3]_{q} .
$$

The following result shows that the polynomials $h_{n}(x, s ; q)$ are moments of some orthogonal polynomials.

Theorem 7. The generating function of $h_{n}(x, s ; q)$ has the continued fraction expansion:

$$
\sum_{m \geq 0} h_{n}(x, s ; q) t^{n}=\frac{1}{1-b_{0} t-\frac{\lambda_{1} t^{2}}{1-b_{1} t-\frac{\lambda_{2} t^{2}}{1-b_{2} t-\frac{\lambda_{3} t^{2}}{1-\cdots}}}},
$$

with

$$
\begin{equation*}
b_{n}=q^{n-1}\left(q^{n}+q^{n+1}-1\right) x \quad \text { and } \quad \lambda_{n}=-q^{n-1}[n]_{q}\left(s+q^{2 n-2}(1-q) x^{2}\right) . \tag{4.5}
\end{equation*}
$$

Proof. To prove this it suffices to show that the Stieltjes tableau (2.3) is satisfied with

$$
a(n, k)=\left[\begin{array}{l}
n \\
k
\end{array}\right] h_{n-k}\left(q^{k} x, s ; q\right) .
$$

This is easily verified.
Using (2.6) and (2.7), Theorem 7 implies the following Hankel determinant evaluations:

$$
\begin{equation*}
\left.\operatorname{det}\left(h_{i+j}(x, s ; q)\right)_{i, j}^{n-1}=(-1)^{\binom{n}{2}} q^{\binom{n}{3}} \prod_{j=0}^{n-1}([j]]_{q}!\left(s+q^{2 j}(1-q) x^{2}\right)^{n-1-j}\right) \tag{4.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\operatorname{det}\left(h_{i+j+1}(x, s ; q)\right)_{i, j}^{n-1}}{\operatorname{det}\left(h_{i+j}(x, s ; q)\right)_{i, j}^{n-1}}=w(n), \tag{4.7}
\end{equation*}
$$

where $w(n)$ satisfies

$$
w(n+1)=q^{n-1}\left(q^{n}+q^{n+1}-1\right) x w(n)+q^{n-1}[n]_{q}\left(s+q^{2 n-2}(1-q) x^{2}\right) w(n-1) .
$$

It is easily verified that

$$
w(n)=\sum_{k=0}^{n} q^{2\binom{n-k}{2}}\left[\begin{array}{c}
n  \tag{4.8}\\
2 k
\end{array}\right][2 k-1]_{q}!!s^{k} x^{n-2 k}
$$

satisfies the same recurrence with the same initial values.
Lemma 8. Let $L_{n}(x):=h_{n}(x,(1-q) s ; q)$. Then

$$
\begin{equation*}
s L_{n}(x)+x L_{n+1}(x)=\left(x^{2}+s\right) L_{n}(q x) . \tag{4.9}
\end{equation*}
$$

Proof. First we note that the constant terms of both sides of (4.9) are equal to $s L_{n}(0)$. So it suffices to show that the derivatives of the two sides are equal. Applying $\mathcal{D}_{q}$ to (4.9) and using (4.4) we obtain, after replacing $x$ by $x / q$,

$$
s[n] L_{n-1}(x)+x q[n-1] L_{n}(x)+L_{n+1}(x)=\left(x^{2}+s\right) q[n] L_{n-1}(q x) .
$$

Since $L_{n+1}(x)=q^{n} x L_{n}(x)-\left(1-q^{n}\right) s L_{n-1}(x)$, we can rewrite the above equation as follows:

$$
\begin{equation*}
s L_{n-1}(x)+x L_{n}(x)=\left(x^{2}+s\right) L_{n-1}(q x) . \tag{4.10}
\end{equation*}
$$

The proof is thus completed by induction on $n$.

We shall prove the following Jacobi continued fraction expansion for the generating function of $\left(x+(1-q) s \mathcal{D}_{q}\right)^{n} \cdot 1$. This is equivalent to Theorem 5.

Theorem 9. Let $T_{n}(x, s)=\left(x+(1-q) s \mathcal{D}_{q}\right)^{n} \cdot 1$. Then

$$
\begin{equation*}
\sum_{n \geq 0} T_{n}(x, s) t^{n}=\frac{1}{1-b_{0} t-\frac{\lambda_{1} t^{2}}{1-b_{1} t-\frac{\lambda_{2} t^{2}}{1-\cdots}}} \tag{4.11}
\end{equation*}
$$

where the coefficients are

$$
\begin{equation*}
b_{n}=q^{n} x, \quad \text { for } n \geq 0 ; \quad \text { and } \quad \lambda_{n}=\left(1-q^{n}\right) s, \quad \text { for } n \geq 1 . \tag{4.12}
\end{equation*}
$$

Proof. Since $T_{n}(x, s)=\left(x+(1-q) s \mathcal{D}_{q}\right) T_{n-1}(x, s)$, we have

$$
T_{n}(x, s)=\left(x+\frac{s}{x}\right) T_{n-1}(x, s)-\frac{s}{x} T_{n-1}(q x, s) .
$$

Equivalently the generating function $G(x, t)=\sum_{n \geq 0} T_{n}(x, s) t^{n}$ satisfies the functional equation:

$$
\begin{equation*}
\left(1-\frac{x^{2}+s}{x} t\right) G(x, t)=1-\frac{s}{x} t G(q x, t) . \tag{4.13}
\end{equation*}
$$

Suppose that

$$
\begin{equation*}
G(x, t)=\frac{1}{1-\frac{c_{1} t}{1-\frac{c_{2} t}{1-\frac{c_{3} t}{1-\cdots}}}}, \tag{4.14}
\end{equation*}
$$

where $c_{n}=\left(g_{n}-1\right) g_{n-1} A$ with $A:=A(x)=-\frac{x^{2}+s}{x}$ and $g_{i}:=g_{i}(x)$.
Substituting (4.14) in (4.13) and then replacing $t$ by $t / A$ we obtain

$$
\begin{equation*}
\frac{1+t}{1-\frac{\left(g_{1}-1\right) t}{1-\frac{\left(g_{2}-1\right) g_{1} t}{1-\frac{\left(g_{3}-1\right) g_{2} t}{1-\frac{\left(g_{4}-1\right) g_{3} t}{1-\ldots}}}}}=1+\frac{\frac{s}{x^{2}+s} t}{1-\frac{\left(g_{1}^{\prime}-1\right) \frac{A^{\prime}}{A} t}{1-\frac{\left(g_{2}^{\prime}-1\right) g_{1}^{\prime} \frac{A^{\prime}}{A} t}{1-\frac{\left(g_{3}^{\prime}-1\right) g_{2}^{\prime} \frac{A^{\prime}}{A} t}{1-\ldots}}},} \tag{4.15}
\end{equation*}
$$

where $A^{\prime}:=A(q x)$ and $g_{i}^{\prime}:=g_{i}(q x)$. Comparing this with Wall's formula (see [12]):

$$
\begin{equation*}
\frac{1+z}{1-\frac{\left(g_{1}-1\right) z}{1-\frac{\left(g_{2}-1\right) g_{1} z}{1-\frac{\left(g_{3}-1\right) g_{2} z}{1-\frac{\left(g_{4}-1\right) g_{3} z}{1-\ldots}}}}}=1+\frac{g_{1} z}{1-\frac{\left(g_{1}-1\right) g_{2} z}{1-\frac{\left(g_{2}-1\right) g_{3} z}{1-\frac{\left(g_{3}-1\right) g_{4} z}{1-\ldots}}}}, \tag{4.16}
\end{equation*}
$$

we derive that $g_{0}=1$ and for $n \geq 1$,

$$
\left\{\begin{align*}
g_{2 n} & =\frac{A^{\prime}}{A} \frac{g_{2 n-1}^{\prime}-1}{g_{2 n-1}-1} g_{2 n-2}^{\prime}  \tag{4.17}\\
g_{2 n+1} & =\frac{A^{\prime}}{A} \frac{g_{2 n}^{\prime}-1}{g_{2 n}-1} g_{2 n-1}^{\prime}
\end{align*}\right.
$$

For example,

$$
\begin{array}{ll}
g_{1}=\frac{s}{x^{2}+s}, & g_{3}=\frac{A^{\prime}}{A} \frac{g_{2}^{\prime}-1}{g_{2}-1} g_{1}^{\prime}=\frac{s}{x^{2}+s} \frac{1}{q}, \\
g_{2}=\frac{A^{\prime}}{A} \frac{g_{1}^{\prime}-1}{g_{1}-1}=q, & g_{4}=\frac{A^{\prime}}{A} \frac{g_{3}^{\prime}-1}{g_{3}-1} g_{2}^{\prime}=\frac{-s+q s+q^{3} x^{2}}{-s+q s+q x^{2}} .
\end{array}
$$

In general we have the following result

$$
\left\{\begin{align*}
g_{2 n} & =\frac{s L_{n}(x)+x L_{n+1}(x)}{\left(x^{2}+s\right) L_{n}(x)},  \tag{4.18}\\
g_{2 n+1} & =\frac{s L_{n}(x)}{s L_{n}(x)+x L_{n+1}(x)},
\end{align*}\right.
$$

This can be verified by induction on $n$. Suppose that the formula (4.18) is true for $n \geq 0$. We prove that the formula holds for $n+1$. By (4.17) we have

$$
g_{2 n+2}=\frac{A^{\prime}}{A} \frac{g_{2 n+1}^{\prime}-1}{g_{2 n+1}-1} g_{2 n}^{\prime}=\frac{s L_{n}(x)+x L_{n+1}(x)}{\left(x^{2}+s\right) L_{n+1}(x)} \frac{L_{n+1}(q x)}{L_{n}(q x)} .
$$

It follows from Lemma 1 that

$$
\begin{equation*}
g_{2 n+2}=\frac{s L_{n+1}(x)+x L_{n+2}(x)}{\left(x^{2}+s\right) L_{n+1}(x)} . \tag{4.19}
\end{equation*}
$$

Since

$$
\begin{equation*}
L_{n+1}(x)-x L_{n}(x)=\left(q^{n}-1\right)\left(x L_{n}(x)+s L_{n-1}(x)\right), \tag{4.20}
\end{equation*}
$$

the verification for $g_{2 n+3}$ is then straightforward. We derive from (4.14) and (4.18) that

$$
\left\{\begin{align*}
c_{2 n} & =\left(g_{2 n}-1\right) g_{2 n-1} A=\left(1-q^{n}\right) s \frac{L_{n-1}(x)}{L_{n}(x)}, \quad \text { for } n \geq 1  \tag{4.21}\\
c_{2 n+1} & =\left(g_{2 n+1}-1\right) g_{2 n} A=\frac{L_{n+1}(x)}{L_{n}(x)}, \quad \text { for } n \geq 0
\end{align*}\right.
$$

Invoking the contraction formula (see [19]), which transforms a $S$-continued fraction to a $J$ continued fraction,

$$
\begin{equation*}
\frac{1}{1-\frac{c_{1} z}{1-\frac{c_{2} z}{1-\frac{c_{3} z}{1-\frac{c_{4} z}{\cdots}}}}}=\frac{1}{1-c_{1} z-\frac{c_{1} c_{2} z^{2}}{1-\left(c_{2}+c_{3}\right) z-\frac{c_{3} c_{4} z^{2}}{\cdots}}}, \tag{4.22}
\end{equation*}
$$

we obtain

$$
\left\{\begin{array}{l}
b_{n}=\frac{h_{n+1}(x,(1-q) s ; q)}{h_{n}(x,(1-q) s ; q)}+\left(1-q^{n}\right) s \frac{h_{n-1}(x,(1-q) s ; q)}{h_{n}(x,(1-q) s ; q)}=q^{n} x,  \tag{4.23}\\
\lambda_{n}=\frac{h_{n}(x,(1-q) s ; ; q)}{h_{n-1}(x,(1-q) s ; q)} \cdot\left(1-q^{n}\right) s \frac{h_{n-1}(x,(1-q) s ; ; q)}{h_{n}(x,(1-q) s ; ; q)}=\left(1-q^{n}\right) s
\end{array}\right.
$$

This completes the proof.
Remark. Instead of the contraction formula (4.22), we can also proceed as follows. Define a table $(A(n, k))_{n, k \geq 0}$ by

$$
\begin{align*}
& A(0, k)=\delta_{k, 0} \\
& A(n, 0)=c_{1} A(n-1,1)  \tag{4.24}\\
& A(n, k)=A(n-1, k-1)+c_{k+1} A(n-1, k+1)
\end{align*}
$$

In this case $A(2 n, 2 k+1)=A(2 n+1,2 k)=0$ for all $n, k$. If we define

$$
a(n, k)=A(2 n, 2 k),
$$

then it is easily verified that $a(n, k)$ satisfy (2.3) with

$$
\begin{equation*}
b_{0}=c_{1}, \quad b_{n}=c_{2 n}+c_{2 n+1}, \quad \lambda_{n}=c_{2 n} c_{2 n-1} . \tag{4.25}
\end{equation*}
$$

Substituting the values in (4.21) for $c_{n}$ we obtain (4.23). Therefore

$$
\sum_{n} A(2 n, 0) t^{n}=\sum_{n} a(n, 0) t^{n}=\sum_{n} T_{n}(x, s) t^{n} .
$$

As another application of this remark we prove the following result.
Proposition 10. Let $w_{n}(m, q)=q^{\frac{n((2 m+1) n+1)}{2}}$. Then

$$
\sum_{m \geq 0} w_{n}(m, q) t^{n}=\frac{1}{1-b_{0} t-\frac{\lambda_{1} t^{2}}{1-b_{1} t-\frac{\lambda_{2} t^{2}}{1-b_{2} t-\frac{\lambda_{3} t^{2}}{1-\cdots}}}},
$$

where

$$
\begin{aligned}
& b_{n}=q^{(2 m+1) n-m}\left(q^{(2 m+1) n}-1\right)+q^{(2 m+1)(2 n+1)-m}, \\
& \lambda_{n}=q^{(2 m+1)(3 n-1)-2 m}\left(q^{(2 m+1) n}-1\right) .
\end{aligned}
$$

Proof. Let

$$
A(2 n, 2 k)=\frac{w_{n}(m, q)}{w_{k}(m, q)}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q^{2 m+1}} \quad \text { and } \quad A(2 n+1,2 k+1)=\frac{w_{n+1}(m, q)}{w_{k+1}(m, q)}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q^{2 m+1}} .
$$

Then it is easily verified that the table (4.24) holds with $c_{2 n}=q^{(2 m+1) n-m}\left(q^{(2 m+1) n}-1\right)$ and $c_{2 n+1}=q^{(2 m+1)(2 n+1)-m}$. Therefore

$$
\sum_{n} A(2 n, 0) t^{n}=\sum_{n} a(n, 0) t^{n}=\sum_{n} w_{n}(m, q) t^{n}
$$

## 5. Connection with $q$-Fibonacci polynomials and $q$-Lucas polynomials

In this section we derive some explicit expansion formulae for the $q$-Hermite polynomials $H_{n}(x, s \mid q)$ in terms of $q$-Fibonacci polynomials and $q$-Lucas polynomials. We first recall some basic results about the latter polynomials in the $q=1$ case and then define their $q$-analogue with the ordinary Fibonacci and Lucas polynomials and $q$-operator $\mathcal{D}_{q}$.

The Lucas polynomials are defined by the recurrence

$$
l_{n}(x, s)=x l_{n-1}(x, s)+s l_{n-2}(x, s) \text { for } n>2,
$$

with initial values $l_{1}(x, s)=x$ and $l_{2}(x, s)=x^{2}+2 s$. They have the explicit formula

$$
\begin{equation*}
l_{n}(x, s)=\sum_{2 k \leq n} \frac{n}{n-k}\binom{n-k}{k} s^{k} x^{n-2 k} \quad(n>0) . \tag{5.1}
\end{equation*}
$$

Furthermore we define $l_{0}(x, s)=1$. Note that this definition differs from the usual one in which $l_{0}(x, s)=2$.

The Fibonacci polynomials are defined by

$$
f_{n}(x, s)=x f_{n-1}(x, s)+s f_{n-2}(x, s)
$$

with $f_{0}(x, s)=0$ and $f_{1}(x, s)=1$. They have the explicit formula

$$
\begin{equation*}
f_{n}(x, s)=\sum_{k=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor}\binom{n-1-k}{k} s^{k} x^{n-1-2 k} . \tag{5.2}
\end{equation*}
$$

We first establish the following inversion of (5.1) and (5.2), which will be used in the proof of Theorem 12.

## Lemma 11.

$$
\begin{align*}
& x^{n}=\sum_{2 k \leq n}\binom{n}{k} s^{k} l_{n-2 k}(x,-s),  \tag{5.3}\\
& x^{n}=\sum_{2 k \leq n+1}\left(\binom{n}{k}-\binom{n}{k-1}\right) s^{k} f_{n+1-2 k}(x,-s) . \tag{5.4}
\end{align*}
$$

Proof. Recall the Tchebyshev inverse relations [15, p. 54-62]:

$$
\begin{equation*}
b_{n}=\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor}(-1)^{k} \frac{n}{n-k}\binom{n-k}{k} a_{n-2 k} \Longleftrightarrow a_{n}=\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor}\binom{n}{k} b_{n-2 k} \tag{5.5}
\end{equation*}
$$

where $a_{0}=b_{0}=1$, and

$$
\begin{equation*}
b_{n}=\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor}(-1)^{k}\binom{n-k}{k} a_{n-2 k} \Longleftrightarrow a_{n}=\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor}\left[\binom{n}{k}-\binom{n}{k-1}\right] b_{n-2 k} . \tag{5.6}
\end{equation*}
$$

We derive immediately (5.3) from (5.1) and (5.5). Clearly (5.2) is equivalent to the left identity in (5.6) with $a_{n}=\left(\frac{x}{\sqrt{s}}\right)^{n}$ and $b_{n}=\frac{f_{n+1}(x,-s)}{(\sqrt{s})^{n}}$. By inversion we find

$$
\begin{equation*}
x^{n}=\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor}\left(\binom{n}{k}-\binom{n}{k-1}\right) s^{k} f_{n+1-2 k}(x,-s) . \tag{5.7}
\end{equation*}
$$

Now, noticing that

- if $n$ is odd, then $\binom{n}{k}=\binom{n}{k-1}$ for $k=\left\lfloor\frac{n+1}{2}\right\rfloor$,
- if $n$ is even, then $\left\lfloor\frac{n+1}{2}\right\rfloor=\left\lfloor\frac{n}{2}\right\rfloor$,
we see the equivalence of (5.4) and (5.7).

Define the $q$-Lucas and $q$-Fibonacci polynomials by

$$
\begin{align*}
& L_{n}(x, s)=l_{n}\left(x+(q-1) s \mathcal{D}_{q}, s\right) \cdot 1,  \tag{5.8}\\
& F_{n}(x, s)=f_{n}\left(x+(q-1) s \mathcal{D}_{q}, s\right) \cdot 1 . \tag{5.9}
\end{align*}
$$

It is known (see [3] and [4] ) that they have the explicit formulae

$$
\begin{align*}
L_{n}(x, s) & =\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor} q^{\binom{k}{2}} \frac{[n]}{[n-k]}\left[\begin{array}{c}
n-k \\
k
\end{array}\right] s^{k} x^{n-2 k}  \tag{5.10}\\
F_{n}(x, s) & =\sum_{k=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor} q^{\binom{k+1}{2}}\left[\begin{array}{c}
n-1-k \\
k
\end{array}\right] s^{k} x^{n-1-2 k} \tag{5.11}
\end{align*}
$$

for $n>0$, with $L_{0}(x, s)=1$ and $F_{0}(x, s)=0$.
Theorem 12. We have

$$
\begin{align*}
H_{n}(x,(q-1) s \mid q) & =\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor}\binom{n}{k} s^{k} L_{n-2 k}(x,-s)  \tag{5.12}\\
& =\sum_{k=0}^{\left\lfloor\frac{n+1}{2}\right\rfloor}\left(\binom{n}{k}-\binom{n}{k-1}\right) s^{k} F_{n+1-2 k}(x,-s) \tag{5.13}
\end{align*}
$$

Proof. Since

$$
\begin{aligned}
L_{n}(x,-s) & =l_{n}\left(x-(q-1) s \mathcal{D}_{q}, s\right) \cdot 1 \\
F_{n}(x,-s) & =f_{n}\left(x-(q-1) s \mathcal{D}_{q}, s\right) \cdot 1
\end{aligned}
$$

the theorem follows by applying the homomorphism $x \mapsto x-(q-1) s \mathcal{D}_{q}$ to (5.3) and (5.4).

We derive some consequences of the formula (5.13).
Corollary 13. We have

$$
\begin{equation*}
H_{n}(1, q-1 \mid q)=\sum_{k=-\lfloor(n+1) / 3\rfloor}^{\lfloor n / 3\rfloor}(-1)^{k} q^{\frac{k(3 k+1)}{2}}\binom{n}{\left\lfloor\frac{n-3 k}{2}\right\rfloor} \tag{5.14}
\end{equation*}
$$

Proof. Let $r(j)=\frac{j(3 j+1)}{2}$. Then, it follows from [3] that

$$
F_{3 n}(1,-1)=\sum_{j=-n}^{n-1}(-1)^{j} q^{r(j)}, \quad F_{3 n+1}(1,-1)=F_{3 n+2}(1,-1)=\sum_{j=-n}^{n}(-1)^{j} q^{r(j)}
$$

or

$$
F_{n}(1,-1)=\sum_{-n \leq 3 j \leq n-1}(-1)^{j} q^{r(j)}
$$

Let $w(n)=\sum_{k \geq 0}\left(\binom{n}{k}-\binom{n}{k-1}\right) F_{n+1-2 k}(1,-1)$. Consider a fixed term $(-1)^{j} q^{r(j)}$. This term occurs in $F_{n}(1,-1)$ if $-\frac{n}{3} \leq j \leq \frac{n-1}{3}$. We are looking for all $k$, such that this term occurs in $F_{n+1-2 k}(1,-1)$. If $j \geq 0$ then the largest such number is $k_{0}=\left\lfloor\frac{n-3 j}{2}\right\rfloor$. For $j \leq \frac{n-2 k}{3}$ is
equivalent with $k \leq k_{0}$. Therefore the coefficient of $(-1)^{j} q^{r(j)}$ in $w(n)$ is $\sum_{k=0}^{k_{0}}\left(\binom{n}{k}-\binom{n}{k-1}\right)=$ $\binom{n}{k_{0}}$. If $j<0$ then $-\frac{n+1-2 k}{3} \leq j$ is equivalent with $k \leq\left\lfloor\frac{n+1+3 j}{2}\right\rfloor$. This gives

$$
\begin{equation*}
\left.H_{n}(1, q-1 \mid q)=\sum_{j=0}^{\lfloor n / 3\rfloor}(-1)^{j} q^{\frac{j(3 j+1)}{2}}\left(\left\lfloor\frac{n}{\lfloor }\right\rfloor\right\rfloor j\right)+\sum_{j=1}^{\lfloor(n+1) / 3\rfloor}(-1)^{j} q^{\frac{j(3 j-1)}{2}}\binom{n}{\left\lfloor\frac{n-3 j+1}{2}\right\rfloor} . \tag{5.15}
\end{equation*}
$$

Now, we have

$$
\binom{n}{\left\lfloor\frac{n-3 j+1}{2}\right\rfloor}=\binom{n}{\left\lfloor\frac{n+3 j}{2}\right\rfloor}
$$

because $\left\lfloor\frac{n-3 j+1}{2}\right\rfloor+\left\lfloor\frac{n+3 j}{2}\right\rfloor=n$. So (5.15) is equivalent to (5.14).
Corollary 14. We have

$$
\begin{equation*}
H_{2 n}\left(1, \left.\frac{q-1}{q} \right\rvert\, q\right)=q^{-n} \sum_{j=-n}^{n}\left(\binom{2 n}{n-3 j}-\binom{2 n}{n-3 j-1}\right) q^{2 j(3 j+1)}, \tag{5.16}
\end{equation*}
$$

and

$$
\begin{equation*}
H_{2 n+1}\left(1, \left.\frac{q-1}{q} \right\rvert\, q\right)=q^{-n} \sum_{j=-n}^{n}\left(\binom{2 n+1}{n-3 j}-\binom{2 n+1}{n-3 j-1}\right) q^{2 j(3 j+2)} \tag{5.17}
\end{equation*}
$$

Proof. Note that

$$
\begin{gather*}
H_{2 n}\left(1, \left.\frac{q-1}{q} \right\rvert\, q\right)=\frac{1}{q^{n}} \sum_{k=0}^{n}\left(\binom{2 n}{n-k}-\binom{2 n}{n-k-1}\right) q^{k} F_{2 k+1}\left(1,-\frac{1}{q}\right),  \tag{5.18}\\
H_{2 n+1}\left(1, \left.\frac{q-1}{q} \right\rvert\, q\right)=\frac{1}{q^{n}} \sum_{k=0}^{n+1}\left(\binom{2 n+1}{n+1-k}-\binom{2 n+1}{n-k}\right) q^{k-1} F_{2 k}\left(1,-\frac{1}{q}\right) . \tag{5.19}
\end{gather*}
$$

Recall (see [3]) that

$$
\begin{equation*}
F_{3 n}\left(1,-\frac{1}{q}\right)=0, \quad F_{3 n+1}\left(1,-\frac{1}{q}\right)=(-1)^{n} q^{r(n)}, \quad F_{3 n+2}\left(1,-\frac{1}{q}\right)=(-1)^{n} q^{r(-n)} . \tag{5.20}
\end{equation*}
$$

Hence

- if $k=3 j$ then $2 k+1=6 j+1$ and $q^{k} F_{2 k+1}\left(1,-\frac{1}{q}\right)=q^{3 j} F_{6 j+1}\left(1,-\frac{1}{q}\right)=q^{2 j(3 j+1)}$.
- if $k=3 j+1$ then $2 k+1=6 j+3$ and $q^{k} F_{2 k+1}\left(1,-\frac{1}{q}\right)=0$.
- If $k=3 j+2$ then $2 k+1=6 j+5$ and $q^{k} F_{2 k+1}\left(1,-\frac{1}{q}\right)=q^{3 j+2}$.
- if $k=3 j$ then $2 k=6 j$ and $q^{k-1} F_{2 k}\left(1,-\frac{1}{q}\right)=0$.
- if $k=3 j+1$ then $2 k=6 j+2$ and $q^{k-1} F_{2 k}\left(1,-\frac{1}{q}\right)=q^{2 j(3 j+2)}$.
- If $. k=3 j+2$ then $2 k=6 j+4$ and $q^{k-1} F_{2 k}\left(1,-\frac{1}{q}\right)=-q^{(3 j+1)(2 j+2)}$.

Substituting the above values into (5.18) and (5.19) yields (5.16) and (5.17).
Finally, from (5.12) and (3.8) we derive two explicit formulae for the coefficient $c(n, k, q)$.

Proposition 15. If $k \equiv n(\bmod 2)$ then

$$
\begin{align*}
c(n, k, q) & =\sum_{m \in M(n, k)} q^{c(m)+\operatorname{cr}(m)} \\
& =(1-q)^{-\frac{n-k}{2}} \sum_{j \geq 0}\binom{n}{\frac{n-k-2 j}{2}}(-1)^{j} q^{\binom{j}{2} \frac{[k+2 j]}{[k+j]}\left[\begin{array}{c}
k+j \\
j
\end{array}\right]}  \tag{5.21}\\
& =(1-q)^{-\frac{n-k}{2}} \sum_{j \geq 0}\left(\binom{n}{\frac{n-k-2 j}{2}}-\binom{n}{\frac{n-k-2 j-2}{2}}\right)(-1)^{j} q^{\binom{j+1}{2}}\left[\begin{array}{c}
k+j \\
k
\end{array}\right] . \tag{5.22}
\end{align*}
$$

We now give a second proof of Proposition 15 using Theorem 6 and the orthogonality of the continuous $q$-Hermite polynomials.

Proof. Clearly Theorem 6 is equivalent to

$$
\begin{equation*}
x^{n}=\sum_{k \equiv n} c(n, k, q) s^{(n-k) / 2} \tilde{H}_{k}(x, s \mid q) . \tag{5.23}
\end{equation*}
$$

To compute $c(n, k, q)$ we can take $s=1$ and let $\tilde{H}_{n}(x \mid q)=\tilde{H}_{n}(x, s \mid q)$. It is known (see [9]) that the continuous $q$-Hermite polynomials $\left(\tilde{H}_{n}(x \mid q)\right)$ are orthogonal with respect to the linear functional $\varphi$ defined by

$$
\begin{equation*}
\varphi\left(x^{n}\right)=\int_{-2 / \sqrt{1-q}}^{2 / \sqrt{1-q}} x^{n} v(x, q) d x \tag{5.24}
\end{equation*}
$$

where

$$
v(x, q)=\frac{\sqrt{(1-q)}(q)_{\infty}}{\sqrt{1-(1-q) x^{2} / 4} 4 \pi} \prod_{k=0}^{\infty}\left\{1+\left(2-(1-q) x^{2}\right) q^{k}+q^{2 k}\right\}
$$

Since $\varphi\left(\left(\tilde{H}_{k}(x \mid q)\right)^{2}\right)=[k]_{q}!$, it follows from (5.23) that, for $k \equiv n(\bmod 2)$,

$$
\begin{equation*}
c(n, k, q)=\frac{1}{[k]_{q}!} \varphi\left(x^{n} \tilde{H}_{k}(x \mid q)\right) . \tag{5.25}
\end{equation*}
$$

Recall the well-known formula (see [9])

$$
\begin{equation*}
x^{2 n}=\sum_{j=-n}^{n}\binom{2 n}{n+j} T_{2 j}(x / 2) \tag{5.26}
\end{equation*}
$$

where $T_{n}(\cos \theta)=\cos (n \theta)=T_{-n}(\cos \theta)$ is the $n$th Chybyshev polynomial of the first kind. By using the Jacobi triple product formula and the terminating $q$-binomial formula, we can prove (see $[7$, p. 307]) that, for any integer $j$ and $a=\sqrt{1-q}$,

$$
\begin{equation*}
\varphi\left(T_{n-2 j}(a x / 2) \tilde{H}_{n}(x \mid q)\right)=\frac{(-1)^{n+j}}{2 a^{n}} q^{\left(n_{2}^{-j}\right)}\left\{\left(q^{-n+j+1} ; q\right)_{n}+q^{n-j}\left(q^{-n+j} ; q\right)_{n}\right\} . \tag{5.27}
\end{equation*}
$$

It follows from (5.25), (5.26) and (5.27) that

$$
\begin{aligned}
c(2 n, 2 k, q) & =\frac{a^{-2 n}}{[2 k]_{q}!} \sum_{j=-n}^{n}\binom{2 n}{n+j} \varphi\left(T_{2 j}(a x / 2) \tilde{H}_{2 k}(x \mid q)\right) \\
& =\frac{(1-q)^{-(n-k)}}{(q ; q)_{2 k}} \sum_{j=-n}^{n}\binom{2 n}{n+j} \frac{(-1)^{k+j}}{2} q^{\binom{k+j}{2}\left\{\left(q^{-k-j+1} ; q\right)_{2 k}+q^{k+j}\left(q^{-k-j} ; q\right)_{2 k}\right\} .}
\end{aligned}
$$

Since $\left(q^{-k-j+1} ; q\right)_{2 k}$ is zero if $j \neq-n, \ldots,-k$ and $j \neq k+1, \ldots, n$, and $\left(q^{-k-j} ; q\right)_{2 k}$ is zero if $j \neq-n, \ldots,-k-1$ or $j \neq k, \ldots, n$, we can split the last summation into the following four summations:

$$
\begin{aligned}
& S_{1}=\sum_{j=-n}^{-k}\binom{2 n}{n+j} \frac{(-1)^{k+j}}{2} q^{\binom{k+j}{2}}\left(q^{-k-j+1} ; q\right)_{2 k}, \\
& S_{2}=\sum_{j=k+1}^{n}\binom{2 n}{n+j} \frac{(-1)^{k+j}}{2} q^{\binom{k+j}{2}}\left(q^{-k-j+1} ; q\right)_{2 k}, \\
& S_{3}=\sum_{j=-n}^{-k-1}\binom{2 n}{n+j} \frac{(-1)^{k+j}}{2} q^{\binom{(k+j}{2}} q^{k+j}\left(q^{-k-j} ; q\right)_{2 k}, \\
& S_{4}=\sum_{j=k}^{n}\binom{2 n}{n+j} \frac{(-1)^{k+j}}{2} q^{\binom{(k+j}{2}} q^{k+j}\left(q^{-k-j} ; q\right)_{2 k} .
\end{aligned}
$$

It is readily seen, by replacing $j$ by $-j$ in $S_{1}$ and $S_{3}$, that $S_{1}=S_{4}$ and $S_{2}=S_{3}$. Therefore,

$$
\begin{align*}
c(2 n, 2 k, q) & =\frac{(1-q)^{-(n-k)}}{(q ; q)_{2 k}}\left(S_{2}+S_{4}\right) \\
& =(1-q)^{-(n-k)} \sum_{j \geq 0}\binom{2 n}{n+k+j}(-1)^{j} q^{\left(\frac{j}{2}\right)} \frac{[2 k+2 j]}{[2 k+j]}\left[\begin{array}{c}
2 k+j \\
j
\end{array}\right] . \tag{5.28}
\end{align*}
$$

This corresponds to (5.21) for even indices. To derive the formula for odd indices we can use (3.9) to get

$$
c(2 n+1,2 k+1, q)=[2 k+2]_{q} c(2 n, 2 k+2, q)+c(2 n, 2 k, q),
$$

and then apply (5.28).
Some remarks about the above formula are in order.
(a) Formula (5.22) has been obtained by different means by Josuat-Vergès [10, Proposition 12 ] and is also used in [5]. It is easy to see that (5.21) and (5.22) are equal by writing

$$
\frac{[k+2 j]}{[k+j]}=q^{j}+\frac{[j]}{[k+j]} .
$$

(b) When $k=0$, we recover a formula of Touchard-Riordan (see $[2,9,14]$ ):

$$
\begin{equation*}
c(2 n, 0, q)=\sum_{m \in M(2 n, 0)} q^{\operatorname{cr}(m)}=\frac{1}{(1-q)^{n}} \sum_{j=-n}^{n}\binom{2 n}{n+j}(-1)^{j} q^{\binom{j}{2} .} \tag{5.29}
\end{equation*}
$$

(c) Notice that $H_{2 n}(0,-1 \mid q)=c(2 n, 0, q)$ and $H_{2 n+1}(0,-1 \mid q)=c(2 n+1,0, q)=0$. Hence

$$
\sum_{n \geq 0} c(n, 0, q) t^{n}=\frac{1}{1-\frac{t^{2}}{1-\frac{[2]_{q} t^{2}}{1-\frac{[3]_{q} t^{2}}{1-\cdots}}}}
$$

We derive a known result (see [9]): the coefficient $c(n, 0, q)$ coincides with the $n$-th moment of the continuous $q$-Hermite polynomials $\tilde{H}(x, 1 \mid q)$, i.e.,

$$
\mathcal{F}\left(z^{n}\right)=c(n, 0, q),
$$

where $\mathcal{F}$ is the linear functional acting on the polynomials in $z$ defined by $\mathcal{F}\left(\tilde{H}_{n}(z, 1 \mid q)\right)=$ $\delta_{n, 0}$.
As in [11] we can derive another double sum expression for $H_{n}(x, s \mid q)$. The proof is omitted.
Proposition 16. We have

$$
\begin{align*}
& H_{n}(x, s \mid q)=\sum_{k=0}^{n}(-1)^{k} q^{-\binom{k}{2}} \sum_{i=0}^{k}\left(\frac{s}{x(q-1)} q^{-i}+x q^{i}\right)^{n} \\
& \times \prod_{j=0, j \neq i}^{k} \frac{1}{q^{-i}-q^{-j}+x^{2} \frac{q-1}{s}\left(q^{i}-q^{j}\right)} . \tag{5.30}
\end{align*}
$$

Acknowledgement. The authors thank the three anonymous referees for useful comments on a previous version of this paper. The second author is supported by the project PhysComb under the grant ANR-08-BLAN-0243-CSD1.

## References

[1] G. Andrews, R. Askey, R. Roy, Special Functions, Encyclopedia of Mathematics and Its Applications, 71, Cambridge University Press, Cambridge, 1999.
[2] M. Aigner, A course in enumeration, Graduate texts in Mathematics 238, Springer, 2007.
3] J. Cigler, A new class of $q$-Fibonacci polynomials, Electr. J. Comb. 10(2003), \#R19.
4. J. Cigler, $q$-Lucas polynomials and associated Rogers-Ramanujan type identities, arXiv:0907.0165.
[5] S. Corteel, M. Josuat-Vergès, T. Prellberg, M. Rubey, Matrix Ansatz, lattice paths and rook placements, FPSAC 2009, Hagenberg, Austria, DMTCS proc. AK, 2009, 313-324.
[6] G. Gasper, M. Rahman, Basic Hypergeometric Series, Second Edition, Encyclopedia of Mathematics and Its Applications, Vol. 96, Cambridge University Press, Cambridge, 2004.
[7] M. E. H. Ismail, Classical and quantum orthogonal polynomials in one variable, Encyclopedia of Mathematics and its Applications, 98. Cambridge University Press, Cambridge, 2005.
[8] M. E. H. Ismail, D. Stanton, More orthogonal polynomials as moments, Mathematical essays in honor of Gian-Carlo Rota (Cambridge, MA, 1996), 377-396, Progr. Math., 161, Birkhäuser Boston, Boston, MA, 1998.
[9] M. E. H. Ismail, D. Stanton, X. G. Viennot, The combinatorics of $q$-Hermite polynomials and the Askey-Wilson integral, European J. Combin. 8 (1987), 379-392.
[10] M. Josuat-Vergès, Rook placements in Young diagrams and permutation enumeration, arXiv:0811.0524v2, to appear in Adv. Appl. Math.
[11] A. Kasraoui, D. Stanton, J. Zeng, The Combinatorics of Al-Salam-Chihara $q$-Laguerre polynomials, arXiv:0810.3232, to appear in Adv. Appl. Math.
[12] D. S. Kim, J. Zeng, On a continued fraction formula of Wall, Ramanujan J. 4 (2000), 421-427.
[13] R. Koekoek and R. Swarttouw, The Askey scheme of hypergeometric orthogonal polynomials and its q-analogue, Report 98-17, TU Delft.
[14] J. G. Penaud, Une preuve bijective d'une formule de Touchard-Riordan, Discrete Math., 139 (1995), 347-360.
[15] J. Riordan, Combinatorial identities, John Wiley \& Sons, Inc., 1968.
[16] A. Varvak, Rook numbers and the normal ordering problem, J. Combin. Theory Ser. A 112 (2005), 292-307.
[17] X. G. Viennot, Une théorie combinatoire de polynômes orthogonaux, Lecture Notes, Université du Québec à Montréal, 1984.
[18] H. S. Wall, Analytical theory of continued fractions, Chelsea, New York, 1967.
19] J. Zeng, The $q$-Stirling numbers, continued fractions and the $q$-Charlier and $q$-Laguerre polynomials, J. Comput. Appl. Math. 57 (1995), no. 3, 413-424.

Institut für Mathematik, Universität Wien, A-1090 Wien, Osterreich
E-mail address: johann.cigler@univie.ac.at
Université de Lyon, Université Lyon 1, Institut Camille Jordan, UMR 5208 du CNRS, 43, boulevard du 11 novembre 1918, F-69622 Villeurbanne Cedex, France

E-mail address: zeng@math.univ-lyon1.fr


[^0]:    2000 Mathematics Subject Classification. Primary 05A05, 05A15, 33C45; Secondary 05A10, 05A18, 34B24.
    Key words and phrases. Hermite polynomials, $q$-Hermite polynomials, Al-Salam-Chihara polynomials, Hankel determinants, Catalan numbers, matchings, Touchard-Riordan formula.

    August 26, 2010.

