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Abstract

The moments of the Lucas polynomials and of the Chebyshev polynomials of the first kind
are (multiples of) central binomial coefficients and the moments of the Fibonacci

polynomials and of the Chebyshev polynomials of the second kind are Catalan numbers. In
this survey paper we present some generalizations of these results together with various q—

analogues.

0. Introduction
The moments of the Fibonacci polynomials and of the Chebyshev polynomials of the second

n+1
polynomials or equivalently of the Chebyshev polynomials of the first kind are (multiples of)

n
kind are (multiples of) the Catalan numbers C, :i[ R J and the moments of the Lucas

2n
the central binomial coefficients B, :[
n

various q— analogues. The most natural gq— analogues of the monic Chebyshev polynomials
(cf. [11] or [12]) are orthogonal polynomials and their moments are multiples of
1
[n+1]
(cf. [8]) of non-orthogonal q— Fibonacci and q— Lucas polynomials, whereas the moments
C.(q) of the Carlitz q— Fibonacci polynomials - which are orthogonal - do not have explicit

j. We show first how these facts generalize to

2n 2n
c,(q) = [ R } and b, (q) :{ R } respectively. The same fact holds for a curious class

expressions. But the generating function C, (u) = ZCn (q)u" has a simple representation as

n>0

Cq (U) — E(—qU)
E(-u)
results can be extended to q— analogues of generalized Fibonacci polynomials f ™ (x)

for some q— analogue E(u) of the exponential series. Some of these

: . 1 mn
whose moments are multiples of generalized Catalan numbers C™ = ———— and to
(m=Dn+1{ n

q— analogues of generalized Lucas polynomials whose moments are related to generalized

mn
central binomial coefficients [ j
n

For the convenience of the reader | first recall some well-known background material about
Fibonacci and Lucas polynomials and their generalizations f ™ (x)and 1{™ (x) and state some

basic facts about q— identities.



1. Background material

1.1. Let the special Fibonacci polynomials f,(x) be defined by
2l

k

f (0= (”;kj(—l)kx“k. (L1)

0

They satisfy the recurrence relation

f.(x)=xf ,(X)—f _,(x) (1.2)
with initial values f,(x) =1 and f,(x)=x and are orthogonal with respect to the linear
functional A, defined by A, ( f,(x))=[n=0]. More precisely we have

A (£,00,00)=[n=m]. (13)

The moments A, (x")can easily be deduced from the formula

X" = %((EJ—@(”J) £ (0. (1.4)

This gives A, (X"*)=0 and

A (X¥M)=C,, (1.5)
2n 2n 1 (2n) .
where C, = - =— is a Catalan number.
n n-1) n+1{n
The moment generating function is
YA (X" )u" =C(u) Vit (1.6)
n>0 2u
and satisfies
C(u) =1+uC(u)>. (1.7)
Equivalently we have
1 u
C =1. 1.8
1+u ((1+u)2j (18)
/ 2 _ /2 _
If we set :% and ﬁ=¥, then " =xa"" —a"* and

B"=xB"" - " Notethat o+ f=x and af =1.

n+l _ pn+l
Since o -p satisfies recursion (1.2) and the initial values we get the Binet formulae
a f—
n+1 n+1
=P (1.9)
a-p



1.2. Let us also consider a variant | (x) of the Lucas polynomials defined by

2l(n-k
|n(X)=Z(nk ]ﬁ(—l)kxn2k (1.10)

k=0

1,(x) =1.

The polynomials | (x) satisfy the recurrence relation

LX) =x1_,(X)= 4, ,l. ,(X) (1.11)
with 4, =2 and 4, =1 for n>0.
We have | (x)=f (x)—f _,(x) forn>2 and | (x) = f, (x) for n=0,1.
This implies for n >0 the Binet formulae

L,(X)=a"+ " (1.12)

The polynomials 1. (x) are orthogonal with respect to the linear functional A, defined by
A, (1,(x)) =[n=0]. More precisely

A (1,001, (x))=2[n=m] (1.13)
for n>0 and A, (I,(x)°)=1.
From the representation
B
X = (kjln—Zk (X) (1.14)
k=0
we deduce that the moments A, (x") are A, (x*"*)=0 and
2n
A (X")=B, :[ j (1.15)
n
2n) . . . .
where B, = q is a central binomial coefficient.
The moment generating function is
1
A (XM )u" =B(u) = : 1.16
2 A () =B) == (1.16)
Equivalently
3B, — 1 (1.17)

" (14u)? iU



1.3. Let us note some generalizations of the foregoing situation.
Let m>1 and let

&
() - Z[” - 1)kj(—l)kx””"k. (118)
These polynomials satisfy
f ™)) = %, (x) = £ (%) (1.19)

for n>0 with initial values f(™(x)=1and f(x)=0 for 0<n<m. This implies
f™(x)=x" for 0<n<m,

We have

@
X :kﬂ j (m— 1)[k Jjﬂ ) (X) (1.20)

and therefore the linear functional A ,, defined by A, ( fn““)(x)) =[n=0] gives as

moments the m— Catalan numbers

nm) _ nm _ _ nm _ 1 nm _m
A (X )—(nj (m 1)[n_1j——(m_1)n+1[nj—cn . (1.21)

For some special cases cf. [14], OEIS A000108, A001764, A002293, A009294.

The generating function satisfies @, (u)=> C{"u" =1+ud, (u)".

n>0

The most natural generalization of the Lucas polynomials are the polynomials 1™ (x) which
satisfy 1™ (x) = x1I (x) = 4, 1{™ (x) with initial values 1{™(x) = x" for 0<n<m and

mnm

A =m and 4, =1 for n>0.

This gives for n>0

- -1
1 (x) = Z(n (rE )J m O™, (1.22)
It is easily verified that
1M (x) = f ™ (x)—(m-1) f ™ (x) (1.23)

for n>0.



Here we have

,_
3=
=

X" = ( Jl(m)k(x) (1.24)

and thus for the linear functional A, defined by A, (I (x))=[n=0]

Ao (x“’“):(nm]. (1.25)

n

mn
The generating function lI’m(u):Z( ] }J” satisfies

n=0

1
1-mud, (u)™*

¥, (u)=

It seems that these polynomials do not have interesting q— analogues. Therefore we consider
another generalization L™ (x) of the Lucas polynomials which satisfy

L™ (x) = xL™ (x) = 4,_,L'™ (x) with initial values L™ (x) = x" for 0O<n<m and 4, =2 and
A, =1 for n>0.

Here we get for n>0

&
Moy N _\k —(M-Dk\n-(m-2)k ,
u(w—g(n( R e (1.26)
which implies that
L (x) = £ (x) = £ (%) (1.27)

for n>0.

For this is trivially true for 1<n<m-1 since in this case L™ (x) = x" = x" —0. Itis also true
for n=m, for in this case we have

L& (x) = XLY, () = 25" (x) = x™ =2 = (X" =1) =1= £ (x) = £{™(x).

For n>m both sides satisfy the same recurrence relation.

If we define the linear functional A ., by A (Lf{“)(x)) =[n=0] we get in this case

:kzo(( j (m— Z)Z( Dunmiﬂk (1.28)

,_
3>
| I



and thus

A (X™) = (nm—(m—z)g(n}n} (1.29)

1.4. Let us now state some well-known notations and results for g— identities which will be
needed later (cf. e.g. [5]).

We always assume that 0 < g <1. Let (x;q) =(1- x)(l—qx)---(l—q”’lx) and

(xa), =TT(1-a'x).

>0
_q" nl
Let [n]=[n]q:11 _qq and {k -

= for 0<k<n.
k], (@0) (@),

The q— binomial coefficients satisfy
n] . [n-1 s n-1 and n] [n-1 L n-1
70k Tleen) B kT kY ke

Let &£ be the operator & f (x) = f (gx).

{n‘ (9:9),

F0)- F(@)

Let D, be the q— differentiation operator defined by D, f (x) = ——

Then & =1+(q-1)xD, since (1+(q-1)xD,)X" = x"+(q" ~1)x" =q"x" = X",

A simple g— analogue of the binomial theorem is the fact that the so called Rogers-Szego
nin

polynomials r,(x,s) = Z[k}xks”k can be represented as r (x,s) = (x+s&)"1. This follows
k=0

by induction because

n n
(X+S€)§k:|:E:|XkSn—k — Ek:|:2:| Xk+lSn—k +§k:Lr::|qukSn+l—k zzk:[|:k_l:|+qk |:k:|j XkSn+1—k
_ n+1 Kk an+1-k
= Ek { K }X S .

Note also that D,r, (x,s) =[n]r,_,(x,s) because

D, (x,5) = Zm D,x*s"™* =Zqux“s”k - [n]z{: :ﬂ XI5 =] (x,5)

Therefore the Rogers-Szegd polynomials satisfy the recursion

N (X,8) = (X+s+(q-1)sxD,)r, (x,8) = (X +8)r,(x,8) +(q" —=1)xsr,_,(X,s). (1.30)



We shall also need the following q — hypergeometric version of the binomial theorem (cf. e.g.
[3D).

(a:9), « _(ax9), (1.31)

< (9:9), (x;0),

for |x| <1.

As special cases we will need the following g— analogues of the exponential series

X" 1
= 1.32
;(QQQ)H (X;Q)w ( )

and

(;] n
;—q(q;(;;() =(x9), (1.33)

and the simplest binomial theorems
k

) mq@xk ~(xq), (134

and

n+k-1} 1
kZ;{ ) }x _(X;q)n. (1.35)

1.5. Notes
The polynomials f,(x) are the special case f,(x)=Fib,,(x,—1) of the bivariate Fibonacci
n-1
: : LZJ n-k-1 k ,n—1-2k : :
polynomials Fib (x,s) = Z ‘ S X which satisfy
k=0
Fib,(x,s) = xFib, ,(x,s)+sFib, ,(x,s) with initial values Fib,(x,s)=0 and Fib,(x,s)=1.

For n>0 the polynomials | (x) are the special case | (x) = Luc,(x,—1) of the bivariate
He

Lucas polynomials which satisfy Luc, (x,s) = P
k=o N—

-k
(n ) jskx”2k for n>0 and

Luc,(x,s) =2.

There is also a close connection with the Chebyshev polynomials in the usual form.
The Chebyshev polynomials of the first kind T, (x) satisfy T (x) =2xT_,(x)-T. ,(x) with
initial values T,(x) =1 and T,(x)=x and T, (x) = 2""Luc, (x,—%) :w_

The monic Chebyshev polynomials of the first kind
7



B _ k
t(x) = L(” kj(-ij X2 (1.36)

for n>0 and t,(x) =1 satisfy t,(x) =xt, ,(X)— 4, ,t, ,(X) with 4, =% and A, =%.

The Chebyshev polynomials of the second kind U, (x) satisfy U, (x) =2xU ,(x)-U, ,(X)

with initial values U,(x) =1 and U,(x) =2x and U (x) = Fib,,(2x,-1) = 2" Fibnﬂ(x,—%j.

The monic Chebyshev polynomials of the second kind

H. k
un(x):Z(nkkj(—%J X2 (1.37)

k=0

satisfy u,(x) = xu,_,(X) —%unz (x).

Identities (1.4), (1.14), (1.20), (1.24) and (1.28) are special cases of the following situation:
Let p,(x) be polynomials satisfying
pn (X) = Xpn—l(x) - ﬂ“n pn—m (X) (138)

for some integer m>1 and initial values p,(x)=x" for 0<n<m.

Then there are uniquely determined coefficients c(n,k) such that

n

X" =>"c(n, k) p, (x). (1.39)

k=0

This implies
2.c(n,k)p, () =xD_c(n=1,k) p (x) = D (N =L K) (Pss () + A1 P mea (X))
k k k
=> P (c(h-Lk-1)+ A c(n-Lk+m-1))
k
Therefore we get
c(n,k)=c(n-Lk-1)+A4c(n-Lk+m-1) (1.40)
with initial values c¢(0,k) =[k =0] and boundary values c(n,-1) =0.
If we apply the linear functional A we get
A(X")=c(n,0). (1.41)



Let us recall a well-known combinatorial interpretation of (1.40):

The number c(n, k) is the weight of all lattice paths in N* which initial point (0,0) and
endpoint (n,k), where each step is either an up-step ( j,¢) — (j+1,¢+1) or a down-step
(j,£+m-1)—(j+1¢). The weight of an up-step is 1 and the weight of a down-step with
endpoint (k) is 4. The weight of a path is the product of the weights of its steps. The
weight of a set of paths is the sum of their weights. The trivial path (0,0) —(0,0) has by
definition weight 1.

It is then clear that ¢c(mn+k +i,k) =0 for 0<i<m. Therefore (1.39) can also be written in
the form

X" =>"c(n,n—km)p, ., (X). (1.42)
k=0
Let d(u) = Zc(mn,O)un be the generating function of the moments. Each nontrivial path has
a unique decomposition of the following form: For each i with 1<i<m-1 there is an up-

step from height i—1 to height i followed by a maximal path which ends at height 1 and
never falls below height i, and finally a down-step which ends on height 0 followed by a

non-negative path which ends on height 0.
Therefore we get

®(u) =1+ L,Uud(u)d, (U)D,(u)--- D, ,(u) (1.43)

where @, (u) denotes the generating function of the moments if in (1.38) A, is replaced by
A

n+i®

For m=2 we get
n-1
c(2n,0)= 4, > b(2k,0)c(2n-2-2k,0), (1.44)
k=0

where b(n,m) is the corresponding weight when A, is replaced by 4, ;.

Let d(u)=> c(2n,0u" and ¥(u)=> b(2n,0)u".

Then (1.44) is equivalent with
®(u) =1+ A,ud(u) ¥ (u). (1.45)

For the polynomials f, (x) we have 4 =1 and therefore (1.45) reduces to (1.7).



2n+k
1 and c(2n+k +1,k) =0.

. . . . 2n+k
Identity (1.4) is equivalent with c(2n+k,k) = 0

The corresponding matrix (c(n,k)) is known as Catalan triangle (cf. [14], OEIS, A053121).

For the polynomials I (x) we have 4, =2 and A, =1. Therefore W (u) =C(u) and

1 1

®(u) =1+ 2ud(u)C(u), which gives CI)(u):1 2uC(u):\/1 "
- —4u

Formula (1.24) is easily proved by induction. It is trivially true for n<m. For n=m we have

1
1M (x) = x™ —m and (1.24) reduces to Z(k}(m)k(x) =™ (x)+mI™ (x) = X"

m
k=0

If it is true for n—1>m then

w( jka() g( j"gm)k(”%( ]'f@k() g( j('(m)k(x)wmg"‘mk(x))

k=0

:Z[n; jxl(i‘f_ (X)) = X"

From (1.23) we get (1.20) and from (1.27) we deduce (1.28).

2. The simplest g-analogues

3>

{ J n—(m-1)k

The simplest q— analogues of (™ (x) = )
k=0

](—1)k x"™ are the polynomials

) o e (me
ma -3t Ve, 1
which satisfy
£ (x, ) = xF P (x,q)-a"" 7 (x,0) (2.2)

with initial values f™(x,q)=1 and f™(x,q)=0 for O<n<m.

For m=2 these are orthogonal polynomials which are closely related to Carlitz’s q—
Fibonacci polynomials.

What can be said about the moments of these polynomials?

Denote the moments by C{™(q). The generating function C{™ (u)=> C™(q)u" satisfies

n>0

C{M(u)=1+uC{™)C™ (qu)---C{™ (g™ ). (2.3)

10



These q— Catalan numbers have no simple closed formula, but their generating function can
be represented (cf. [9]) as

(m)(_
cgm)(u)=—EE(m)((_quu)) (2.4)
with
EMuy =S ? " 25
(u) g(q;q)n (2.5)

For E™ (u)-E™(qu)=>_ q (1-g"u" :UZLU”‘lzuE(m’(qmu) implies (2.3).

S (9:9), =0 (0:),

For m=2 the generating function C, (u) = ZCn (q)u" satisfies

C,(u)=1+uC, (u)C,(qu). (2.6)

Comparing coefficients this gives

n-1
C,(@)=>.9"C,(9)C,, (a) with C,(q) =1. Further properties can be found in [13].
k=0

From (2.1) we see that

0= Af<m)'q ( fn([]:n)(x,q)) = iqm&]{

k=0
c{™(q).

nm—(m-21)k

) }(—1)"C§Tg (q). This can be used to compute

In [6] a shorter algorithm to compute these numbers has been given. We have

n 25 Tn+1-k
Z(—l)kq@[“k }cnk(q)=o @7
and more generally
0 a5 [l M- -K)]
;(—1) q { ) }Cn_k(Q)—O- (2.8)

Identity (2.7) follows immediately from orthogonality because

n $I[n+1-k
Z(_l)k q [2] |:n +k j|Cn—k (q) = Af(m)yq (anl fn(+21) (X! q)) =0.

11



Identity (2.8) is equivalent with

Ao (XD (x,0)) =0

Let r(n,k)=A (x i (x,q)).

mn—k
By (2.2) r(n,k) is a linear combination of r(n,k—-1) and r(n—-1,k-1).
Therefore r(n,n—1) is a linear combination of r(n,n—2) and r(n-1,n-2)
and therefore a linear combination of r(n,n—3), r(n—-1,n-3) and r(n—2,n-3) and thus a
linear combination of r(n—i,0) for 0<i<n-1.But r(n-i,00=A , (£l (x,q))=0

m(n—i)

As q— analogue of (1.8) we get (cf. [13])

>a U—ncn<q)=1. 9
n=0 ( ’q )2n+1

To prove this observe that by (1.35) ) —Z{nﬂ( }x and that

. 2@ 2n-k K @

2.4 o |V Ci@=A e (£ (xa))=[n=0]

Therefore we get
j

Zqz[gﬁcj(q) =Zq2[2jc,-(q)><‘2{2jk+ k} R

=0 j20 k=0

-y 3 [0 -Zk“cn_k(q)qz[2)(-1)k:zx“q2[2]"q(]{z” Jeve @

j+k=n k=

In the same way we see that

qu(zJ ﬁcém) (q) = zqm[zjcrsm) (q)xj Z|:mj + k:| ) (_X)k

i=0 k>0 K

-2 Z{ } arcm@a ey - Yq "qu[z){znk }( cla) =L

j+k=n K=

and therefore

qu[;] X ()=t (2.10)



It seems that there are no q— analogues of 1{™ (x) with simple recurrence relations. But there
is a rather curious class of polynomials which satisfies an operator recurrence relation.

3. Some curious g-analogues

3.1. Let us consider the polynomials (cf. [8])
{EJ k+1 n— k
F.(x,q)= Zq[ ’ ]{ " }(—Dkx“k. (3.1)
k=0

They are not only q— analogues of f, (x) in the sense that Iin] F,(x,q) = f,(x) butcan be
q-—.

obtained from f (x) by first computing the operator f (x+(1-q)D,) and then applying it to
the constant polynomial 1.

Thus
F.(x,q) = f (x+@-q)D,)1. (3.2)
They satisfy the recurrence relation
F,(x,0) =(x+{1-a)D, ) F,,(x,0)— F,_,(x,0) (3.3)

with initial values F;(x,q) =1 and F,(x,q) =x.

They also satisfy
F.(x,0) = XF,_,(x,0) = q""xF,;(x,a) + 9" 'F,_,(x,q). (3.4)

Let A.,(F,(x,0))=[n=0].
The polynomials F, (x,q) are not orthogonal. For example A, (xF;(x,9))=(q -1g* #0.

Nevertheless there a very nice q—analogue of (1.4):

dimyrn
e$TH) Feo o

This implies that the moments A, (in) are

Apg(X7)= qznn}{nzflﬂ —qc, (1), (3.6)

2n
where ¢, (n) :L is a explicit g— analogue of the Catalan numbers.
[n+1]]| n

13



I do not know a simple q— analogue of the generating function (1.7), but we have instead

> ¢, (a)g U(qj—ﬂ (3.7)

n>0

which isa g— analogue of (1.8).

3.2. Let now
l,(x,0) =F,(x,0) - F,_,(x,0) (3.8)
for n>2 and I,(x,q)=1 and I,(x,q) =x.
Then
5] [k
l,(x,0) = Z( Dq n _k]{ }X (3.9)

for n>0 and I,(x,q) =1.
The polynomials 1. (x,q) satisfy

1, (%,) = (Xx+ =)Dy )1, 4 (6, 8) = 4, o1, ,(x,9) (3.10)
with initial values 1,(x,q) =1 and I,(x,q) =x. Here 4, =2 and A4 =1 for n>0.

This can also be written as

l,(x,q) =1, (x+ (1-q)D,)1. (3.11)
The polynomials 1 (X, q) are not orthogonal.
The identity
Bl
X = |:k:||n—2k(xiq) (3.12)
k=0
implies that
. 2n
Mg (X ){ ) } (3.13)

if we define the linear functional A, , by A, (1,(x,q))=[n=0].

2n
I do not know a simple ¢ — analogue of (1.16) for b, (u) = Z{ R }u”

n>0

Instead of this

Z{Zn}q[ 2 ] En _ zq[ 2 ]un (3.14)

u” 1
isa q— analogue of )
q g ;( j (1+ u)2n+l 1 u

14



3.3. Proofs and remarks
The polynomials F, (x,q) and I (x,q) have been systematically studied in [8]. To prove
(3.1) it suffices to compare coefficients in (3.3).

Since these polynomials are not orthogonal and thus do not satisfy a 3— term recurrence of
the form (1.38) the above combinatorial interpretation fails.

But formula (3.3) implies Binet-type formulae for these polynomials:

Let A be the operator A=x+(1-q)D,. For each polynomial p(x) in x we define
@ (p(x))=p(A)lL.

an+l _ ﬂn+1

ThusF, (x,q) =®(f,(x))= CD( j and analogously

L(xq)=®(1,(x)=d(a"+ ")
for n>0.
This is an exact version of a symbolic method which I used in [10].

cp[ n makﬁ"-k}x". (3.15)

From (1.30) we get Zn:{ﬂak,b’”‘k = xZ{ngl}akﬂ”_k +(q"* —1)2{”;2}0('%”_".

k=0 k

This implies

Since these are by induction polynomials in x we get again by induction

q)(i[:}akﬂn—k] _ AXn—1+(qn—l_1) Xn—2 —x"

k=0

To prove (3.12) observe that for odd n

I I

k=0 k=0

k=0

gl

If n=2m then

m 2 2 m-1 2 2m 2
kz_;[ iin}lm_z,((x,q):{ r:]}ﬂl{kz_;{ :‘}(amﬂ +ﬂ2mzk)J:®(§{ :]j|akﬂ2mk]:)(2m'

Since I (x,q) =F,(x,q)—F, ,(x,q) we also get (3.5).

15



Comparing coefficients we see that (3.7) is equivalent with
n j .
5] , 2n— |
q(ZJZ<—1)Jcn_,-(q>q[2][ J. }[n:m.
j=0
But this is clear since

n ' j n_ i n . j+1 M- i '
an(—l)'cnj(Q)q[zJ{ nj J}AF{Z(—l)‘q(ZJ{ nj J}x?“l]AFq(an(x,q))[n0].

i~ J k=0

- u”zn:(_l)k [Zgiik}[znk—k q‘( 2 ]_(n—k)k :Zunq‘( 2 ji(_l)kq[ ) ][an_k}[zziik}

n>0

[Zn}q(“ﬁ( nul”) :z"z-j}q[J;l]ujz{zj;k}(_l)kqjkuk

g

2
Since F,(x,q)=1(x,09)+F, ,(x,q) weget F (x,q)=) |, (X,q). Thisimplies
=0

A (an (X, Q)) =1

3.4. The polynomials F, (x,q) can be generalized to

n

{EJ k+1 _ _
Fn(m) (X, q) — Z (_1)k q[ 2 ] {n (n; l)k:| Xn—mk (316)

which satisfy
F™ (x,0) = XFP (x,0) + (1-a)D,F."., (x, @) = F" (x, 9).
Note that the operator (1—q)D, is applied to F"  (x,q).

k+1
This follows since the coefficient of (—1)kq[ 2 ]x”‘"‘k of the right-hand side is

16



n-1-(m-Dk | _ [n-(m-1k ke | n=(m=Dk-1
SR i el B

o I n=1-(m-=-1k n—1-(m-1)k L | n=(m-=1)k
SRC R s il B
L fn-m-Dk| . \[n-(m-Dk] [n-(m-Dk
T e

For m =1 this reduces to

FY(x,0) :i<—1)kq[ ’ jmw =(x-g)(x=g*)-(x—-q").
Let
™ (@) = A, (X™). (3.17)

Note that ¢?(q) = q"c, ().

If we apply A, , t0 F{™(x,q) we get a recurrence for c¢!™(q).

jiGJY ( ]{mn ﬁ? Dk} ™ (q) = 0. (3.18)
The numbers c¢{™ (q) satisfy
Zc(m) (Q)q [ ] ( T inq) _=1. (3.19)

For the left-hand side is

Zcﬁ””)(q)q[ ]X’Z{ } X)q =Y x" Z( )" c"“&(q)q[ ]k(nk){mn_(:]_l)k}

>0 k>0 n>0

=Zx“q[2]i(—1)kq[ | {mn ‘. Dk} () = qu[ W o o (Far (x,0)) =1

n=0 k n>0

In the same way the polynomials | (x,q) = L (x,q) can be generalized to

n

B -
(m) (m=Dk |[n—(m-2)k] Lk
)= Z( b { k Ln (m- 1)k]

17



which satisfy
Ly (x, @) = XLy (%, ) + (1= 4) Dy L 1 (%, 0) = 2, L, (%, Q) (3.20)
with 4, =2 and A4, =1.
As above we have
L (x,@) = ™ (x, )~ F70 (%, 0). (3.21)
Let
b\ (@) = A, (x™). (3.22)
Then we get the recurrence

n U mn—(m -1k |[mn - (m - 2)k], )
2V [ : Lmn TR . -

Generalizing (3.14) we get

zb(m) (@) [MJ Z“ q [Mlj (3.24)

n=0 ( q ’q)mm—l n=0

n

Since by (3.21) we have F™(x,q) = ZL‘"‘) (x,q) wehave A, (F™(xq))=L.

Thus we get

Zb““’(q)q[ ]—( Tua) Zb“‘”(q)q_[ ) Z{ }( g u*

k>0

_Zu Z( 1)"b™ (g {mn—(m—l)k}q[ B ]—(n—k)k

n>0 k

=Zu”q[2]k2”;(—1)kq[ j{m” (m- Dk}bﬁz(q)zzwq[2]AM(Fni"‘;(x,q))zzwq[2].

n>0 k n>0 n>0

n-1
For m=1 we get L9 (x,q) = (x-1-q")[ ] (x-q’)

j=1

for n>1.
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4. g-Chebyshev polynomials

Now we come to a class of orthogonal polynomials where almost all facts from the classical
case have simple counterparts.

4.1. The polynomials

n-2k

2k
) =Z[n k }qkz e (-a;9) )E—q”“‘k;q) D

k=0 K

will be called special q— Chebyshev polynomials of the second kind.
They satisfy the recurrence relation

n-1

q
1+q”’1)(1+q”)

with initial values u,(x,q) =1 and u,(x,q) = X.

Uy (X,Q) = Xun—l(x’q)_ ( U,_» (X'q) (42)

The polynomials u,(x,q) are orthogonal with respect to the linear functional defined by
A4, (x,9)) =[n=0]. (4.3)

More precisely we have

)

Ay (U, (6, QU (X, 0) = ————[n=m]. (8.4)
(-a:a), (-a%a)

The identity

Uy (66 = X° (45)
a),

gives the moments

n

2n 1 2n q n ~n’
A = =(-1 1
oa(X7) [Mll{n}(—q;Q)n(—qz;q)n @ r

where C,(q) isa q— Catalan number in the sense of Andrews [2].

1
2 | =C,(a (46)
+
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2
As q-— analogue of C Gj :1+%C (%) we get for the generating function

C(u,q)=>.C, (qu"

n>0

C(u,q) +aC(qu,q) _,, Qqu

>C(u,q)C(qu,q).

1+q @+q)
(war), —
Let h(u) :=-——<-. Thisisa q— analogue of v1-u since h(u)h(qu) =
(qu;a?) (q%u
The formula
1-h(u
Cu.) = L+ g) =

isa q— analogue of ZC—:u” _plzvizu
u

n>0

4.2. The special q— Chebyshev polynomials of the first kind are the polynomials

2

2 [n] n—k 1 n—2k

t,(xa) = (-D*q" —{ — .
Zﬁ [n-KkIL k J(-a:q),(-a"*q),

The polynomials t, (x,q) satisfy the recurrence relation

t, () =xt,_, (X, 9) = 4, ()t _,(x,9)

with ﬂo(q):% and 4,(q) = (1+qn(;(1+qn+l) for n>0.

It is easy to verify that t,(X,q) =u,(x,q) =1 t,(x,q)=u,(x,q)=x and for n>2

t,(x,q) =u,(x,q) - (1+ qnfl)(l_i_ qn) Uy (X, Q).

The polynomials t, (x,q) are orthogonal with respect to the linear functional A,

Ayq(t,(x,9))=[n=0].

{3
(-a:9), ,(-a:a),

More precisely we have for n>0

At,q (tn (X! q)tm(xl Q)) = [n = m].

20

(usq L
u;

(4.8)

(4.9)

(4.10)

(4.11)

defined by
(4.12)

(4.13)



The identity ([11], Theorem 4.3)

=2 ; thaic (X, 4.14
" k=o|:kj|(_q;q)k (_qn—2k+1;q)k n—2k (X, 0) (4.14)

implies the moments

A, (x“){zn} P (4.15)

Let
G(u.0) =Y (D ut = (uq?)

k>0 (qz;qz)k

(4.16)

By the q— binomial theorem

_G(qu,q)  «|2n
9 =5uq ‘Z{ n}

(_q%q)z n (4.17)

Note that g(u) isa q— analogue of since G(u,q) =(u;q°)_implies

1
v1-u

g(u)g(qu) = % The generating function of the moments is
—u

200 G(q’u,q)
;Anq(x )U :g(qU):W:q)' (4.18)

Notes
In [11] we introduced bivariate q— Chebyshev polynomials T, (x,s,q) of the first kind

by T,(x,s,0) =(1+0"*)xT, ,(x,5,0) +9"'sT, ,(x,5,0)
with initial values T,(x,s,q) =1 and T,(x,s,q) = X

and bivariate q— Chebyshev polynomials U (x,s,q) of the second kind

by U, (x,5,0) =(1+0") XU, (x,5,0)+q"'sU, ,(x,5,0)
with initial values U,(x,s,q) =1 and U,(x,s,q) = (1+q)x.

We then have
T.(x,-10q)

(_q;q)n—l

t.(x,q) = (4.19)

for n>0 and
U,(x,-1,0)

4.20
(-a:a), (420)

u,(x,q) =

21



Similar polynomials have also appeared in other publications, cf. [11] or [12] and the

literature cited there. They are related to the Al-Salam and Ismail polynomials introduced in

[1].

The recurrence relations can be easily verified by comparing coefficients. Proofs for (4.5) and

(4.14) can be found in [11].

Formula (4.8) follows from the g— binomial theorem (1.31) since

h(U): (U,q )oo _Z(q_ ’q ) (q_ ’q )n+1 n+l

— n (qu)n :1+ qn+l—u
). wee), " B (@),
u 1 [2n q" u
—1- u"=1-——3"C,(q)u".
1+qnz>(;[n+1]{ n}(—q;q)n(—qz;q)n 1+q§1
2
(4.8) implies qc(é’l'fgfz(q“’q) = (1-h(@)) (1-h(@) = 7 (C0.0) +4C(au. )~
and thus (4.7).
The q— binomial theorem gives
(a%u;0?) (a:0%) 2k] g
(qu) = e < (qu) - { }—uk.
(), &), &Lk [ Caa
1 u*

Note that the binomial theorem gives

G(u.a) (ug?), =kz>(;(q2;q2)k'

Thus by comparison of coefficients (4.17) is equivalent with the well-known formula
o[
j=0 J n|

5. A slight extension.
k+1

5.1. Consider the orthogonal polynomials (1.38) with 4, =4 (z,q) = g

Calling them f (x,z,q) we get

22

(4.21)
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{EJ n k k
_ k? - (_1) n—2k
f.(x,2,q)= k=0q [ " }(z;q)k(q”‘kz;q)k X", (5.1)

Note that f (x,—q,q)=u,(x,q).

These polynomials are also related to the Al-Salam and Ismail polynomials (cf. [1,[11] or [12]
and the literature cited there).

By (1.45) we get for the generating functions @, (u,z,q) = Zc(Zn,O, z,q)u" and

¥ (u,z,9)=> b(2n,0,z,q)u"

_ qu
@, (uz,q)=1+ ) @, (u,z,q)¥;(u,z,0).
Since 4,,(z,0) = - qk+1g)(+1— D a4, (qz,q) we have ¥ (u,z,q) = (qu,qz,q).

Therefore @ (u,z,q) satisfies

qu

<Df(u,z,q)=1+m®f(u,z,q)CDf(qu,qz,q)- (5.2)
For q — 1 this gives CI)f(u,z,l):l+%<I>f (u,z,1)* and thus
u
CDf(u,Z,l):C[Wj. (53)

In the general case there are no simple formulae for ¢(2n,0, z,q), but there is a simple
representation for their generating functions.

Let
2 l,In
Gu,z,9)=>q" "—-—— (5.4)
2 (z.0), (o),
which is a g —analogue of the exponential series zl'(llj :
n>0 n. - Z
Then
G(qu,qz,q)
u,z,q)=———= 5.5
w(u,z,q) cU.2,0) (5.5)
satisfies
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y(u,2,9)=1- (U, z,q)y(qu,az,q). (5.6)

_u
-2)-q2)"

Therefore we get

G(-9°u,qz,q)

C Uz Q) =y =" (5.7)
This follows from
2 qnun u”
G(qu,9z,9)-G(u,z,q) = -
(.06l = 20 [(qz;Q)n(q:Q)n (Z:Q)n(q;q)nJ
o e U (qn(l— z)—(1—q“z) o u o q>"u"
_Zn:q (z,0),.,(%:9), (1—2)(1—C12)Zn:q (a°z:q) (o),
u 2, 2
:_me(q u,9°2,q)
which implies
_G(uazq) . u  G(dqug’za)
v(u.z.q)-1= G(u,z,q) 1= 1-2)1-gz) G(u,z,q)
B u  G(q’ud’za)G(quaza)  u
© (-2@-02) G(aqu.qz.q) G(uzg) g v iauaza)
It is clear that ¥ (u,z,q) =w(uz,z,q) which satisfies
. 4 uz - .
w(u,z,0)=1 —(l_z)(l_qz)w(u,z,q)w(u,qz,q) (5:8)
is equivalent with
~ _ G(-quz,qz,q)
P 2,0) == 2 (5.9)
5.2. If we choose
_ g
Zo(zaQ)—E
" (5.10)
A(z,q) =
B i)
we get the polynomials
) n-k| ., |n-k-1
W )%( e R N A 5.1
X,z,q)=> (- X" :
n q v q (Z;q)k(qn—l—kz;q)k
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Note that t,(x,q) =1 (X,—0d,q).

For the generating function we get

cpl(u,z,q)=1+%q>,(u,z,q)\y,(u,z,q) (5.12)
and
2
u
\Pl(u,Z,q):1+mqjl(u,Z,q)\Pl(qu,qZ,q). (513)
This implies
G(-a'u,qz,9
\Pl(u’z’q)ZCDf(qu’z’qz’q):G((Tuzq))' (5.14)
Since
2 uk qk -1
G(qu,z,q)—G(u,z,q):Zk:q" "‘W
! k ! k
u K2k (9%u)" u 2
=———2.4 =- G(q°u,qz,q
1—2; (az;a), (4:q), 1-z ( )
G(-9%u,2,q)
we get for y(u,z,0)=————=
G(-qu,z,q)
G(-9°u,z, G(-q’u,qz, G(-9’u,qz,9) G(-q°u, z,
2020 (—q q):l+ qu G(-a%u.q q)=1+ qu G(-¢%u,qz,9) G(-q’u,z,q)

G(-qu,z,q) 1-z G(-qu,z,q) 1-2 G(—qzu,z,q) G(-qu,z,q)

:1+%\P, (u,2,0) 7(u,2,0).

(5.12) implies ®,(u,z,q) = x(u,z,q).

Thus
G(-9%u,z,
CD.(u,z,q)=M- (5.15)
G(-qu,z,9)
G(-o’u-gq,q) .
For the special case t, (x,q) =1 (x,—q,q) we get ®,(u,—q,q) = & (qu,—q q) which is the

same as (4.18).
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5.3.
Consider the series

n

Fuzgq)=y —— 5.16
R XTI &0
and let
_F(uqz,9)
p(u,z,9) = FU2) (5.17)
Then
uz
(D(UvZ'CI)=1—m¢(U,ZvQ)¢’(U7qZ7Q)- (5.18)
This follows from
F(u,qz,q)—F(u,z,q) 1 1 n n
y Ly -1= = 1 1-— —(1-
P2, F(u.z,0) Feen S, e, ()0d7)
. —w F(udza)
TU-2@-q2) F(uzq) (-2)0-q) #(U.2,0)p(u.2.9)
Comparing (5.18) and (5.8) we that
F(u,qz,q) _ G(quz,qz,q) (5.19)

F(u,z,q  G(uz,z,q)
In fact we have more precisely

anZ;q
F(u,0z,9)G(uz,z,q) = F(u,z,q)G(quz,qz,q):Z(Z.q)((qzq))zq.q) u".  (5.20)

Comparing coefficients this is equivalent with

imqkzzk (z:9), (gz:9), ‘imqkzkzk (z9),(9z;9), _(q'2%5q)

Sk]" " (za),, (aza), =k (az:0),, (z:0), “

This follows e.g. from the q— Zeilberger algorithm. We use the Mathematica implementation
of PeterPaule and Axel Riese [15]:

gZeil[g”™ (k~2) z~k / gPochhammer [z, g, n - k] gBinomial [n, k, g] gPochhammer [z, g, n]
gPochhammer[q z, g, n] /gPochhammer[q z, g, k], {k, 0, n}, n, 1]
(1 _ q—2+2n ZZ> <l _ q—1+2n 22) SUM[-1 + n]

SUM [n] = 1- q71+n 22

and
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gzZeil[g™ (k~2 - k) z~k / gPochhammer [q z, g, n - k] gBinomial [n, k, q] gPochhammer[z, g, n]
gPochhammer[q z, g, n] /gPochhammer|[ z, q, k], {k, 0, n}, n, 1]

(1_q72+2n22> <l_q—l+2n22) SUM[—l*—nJ
1_q—1+n 22

SUM[N] =

By (5.19) we can express the generating function @, (u, z,q) also using F(u,z,q).

Fl-% )
®,(U,2,0) = ( . ) _stauaa) (5.21)
e F( Qu , ’qj G(-qu.z,q) | '
z

For the special case z=—q we get another representation of the generating function of the
Andrews gq— Catalan numbers:

Fu—0".0) _ G(-g’u,-a",a) (5.22)
F(u-9,9)  G(-qu,—q,q) '
Since by (1.32) and (1.33) F(u,—q—-q)G(-u,—q,q) =1 this can be written as

. q" " (-u)’ q'u’ 9" (-u)’
C(q) Z( Z( ) Z( 2. 42 Z(z

-q%0°) 4 (-a%a) (a:q),

C(u,q) =@ (u,—0,q)=

qq)

This is equivalent with the following two (different) expressions for C_(q).

l+q n- k (nzkj n 1 _
)n Z( 1) |:k:|q2 1 k+1 _Cn (q):

+q
(q 4 (5.23)
(1+9)9" < k2| N 1
(-Dq — =G, ().
(qz:qz)n; ko 140"
Remark
In their paper [4] M. J. Cantero and A. Iserles prove that the rational functions a, (z,q)
defined by a,(z,q)=1 and
Z": an J(Z o _ q" (5.24)
= (®9);(za); (@09),(za),
for n >0 satisfy
] ] Zn—l
lima, (z,q) =(-1) C.Hm- (5.25)

This result also follows from our considerations.
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For the equations (5.24) are equivalent with
1 , 1
a(z,ufy ———u' =) ———(qu)" (5.26)
é ‘ = (z;0),(0;0), = (za),(0;0),
and thus with
F(qu,z,q)
a (z,quf =———,
gf; ‘ F(u,z,q9)
From
qnun un un
F(qu,z,9)-F(u,z,q) = -
2, (@), (), @), EEa, @),
u u" u
=- =-——F(u,0z,0)
1—znZ:;(qz;q)n(0|;q)n 1-z
follows

F(qu,z,q) u F(u,qz,9) u
F(u,z,q) =1 1-z F(u,z,q) l_1—2(/)(u’z’q)' (5:27)

uz
1-2)

By (5.18) ¢(u,z,1) = 1—(1_ % o(U,z2,1)° = (—

ZJ which implies (5.25).

Final remarks

Some results hold also in a slightly more general version by introducing a third parameter s.
The polynomials f ™ (x,q,s) which satisfy f™(x,q,s)=xf P (x,q,s)-q""sf ™ (x,q,s) are

al [j{n (m-1)k

given by the formulae f™(x,q,5)=> q )
k=0

and the coefficients are given by closed formulae. For m=1 we also have a nice product
representation f®(x,q) = (x—s)(Xx—Qs)--- ( X — qn-ls)_

}( s)“x"™. Both the recurrences

As already mentioned there is no interesting q— analogue of 1{™ (x) with simple recurrences
whose coefficients are given by a closed formula. But if we define

1™ (x,q,8) = f™(x,0,8)— f™(x,0,9™"s) then we get at least a nice formula for the
polynomials

EJ ‘

o) - (m—2)K1 [~ (m-1k

YO Bl L 2)k]{n (m-1) }(_s)kxn_mk.
e [n—(m-2)k] k

For m =2 these polynomials reduce to the Carlitz g— Lucas polynomials

ot g

i [n-K]
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n

" k+1
- —(m-=-Dk

The polynomials Fn(m)(x,q)=2(_1)kq[2][n (m-1)
k=0

}x”m" and
k

n

a9
(m) N k2 —(M-Dk |[n-(M-2)K] .
I-n (Xiq) - ;( 1) q |: k :| [n _—(m_]_)k] X

have closed formulae for the coefficients and curious q— analogues of the recurrence
relations.
For m =2 they have moreover simple closed formulae for the moments.

The most important special cases are the monic q— Chebyshev polynomials which are

orthogonal, have simple recurrence relations and closed formulae for both their coefficients
and for the moments. It would be interesting if there exist m—extensions of these formulae.

Finally we have considered the polynomials f (x,z,q) and | (x,z,q) which also have closed
formulae for their coefficients and which for z = —q reduce to special Chebyshev
polynomials and for z =0 to the Carlitz q— Fibonacci polynomials f®(x,q,q). Their

_ A2
generating functions can be expressed as @, (u,z,q) = G(=qu.qz,9) and

G(-qu,z,q)
G(—qzu,z,q) ) u"
® (u,z,q) =—— = respectively if G(u,z,q)= > q" "——+——.
2D za) 29 ), @),
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