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Abstract 
 
In this overview paper a direct approach to q Chebyshev polynomials and their elementary 
properties is given. Special emphasis is placed on analogies with the classical case. There are 
also some connections with q  tangent and q Genocchi numbers. 
 
0. Introduction 
 
Waleed  A. Al Salam and Mourad E.H. Ismail [1] found a class of polynomials which can be 
interpreted as q  analogues of the bivariate  Chebyshev polynomials of the second kind. 
These are essentially the polynomials  ( , , )nU x s q  which will be introduced in (2.12).  In [11] 

I also considered  corresponding  q Chebyshev polynomials  ( , , )nT x s q  of the first kind 

which will be defined in (2.6). Together these polynomials satisfy many q  analogues of 
well-known identities for the classical Chebyshev polynomials ( ) ( , 1,1)n nT x T x   and 

( ) ( , 1,1).n nU x U x   For some of them it is essential that our polynomials depend on two 

independent parameters. This is especially true for  (2.36) which generalizes the defining 

property  2 2
11 ( ) ( ) 1

n

n nx x T x U x x    
  

of the classical Chebyshev polynomials.  

Another approach to univariate q  analogues of Chebyshev polynomials has been proposed 
by Natig Atakishiyev et al.  in [2], (5.3) and (5.4). In our terminology they considered the monic 

versions of the polynomials 
1

, ,nT x q
q

 
 

 
 and   , , .nU x q q  Since 

2( , , ) ,1,n
n n

x
U x s q s U q

s
   
 

 and 2( , , ) ,1,n
n n

x
T x s q s T q

s
   
 

 their definition also leads to the 

same bivariate polynomials ( , , )nT x s q  and ( , , ).nU x s q  

Without recognizing them as q  analogues of Chebyshev polynomials some of these 
polynomials also appeared in the course of computing Hankel determinants as in [7] and [13]. 
 
The purpose of this paper is to give a direct approach to these polynomials and their simplest 
properties.  
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1. Some well-known facts about the classical Chebyshev polynomials 
 
Let me first state some well-known facts about those aspects of the classical Chebyshev 
polynomials  (cf. e.g. [15]) and their bivariate versions for which we will give q  analogues. 
 
 
The (classical) Chebyshev polynomials of the first kind ( )nT x  satisfy the recurrence  
 
 1 2( ) 2 ( ) ( )n n nT x xT x T x    (1.1) 

 
with initial values 0 ( ) 1T x   and 1( ) .T x x  

For 1x   this reduces to 
 
 (1) 1.nT   (1.2) 

 
 
The (classical) Chebyshev polynomials of the second kind ( )nU x  satisfy the same recurrence  

 
 1 2( ) 2 ( ) ( )n n nU x xU x U x    (1.3) 

 
but with initial values 1( ) 0U x   and 0 ( ) 1,U x   which gives 1( ) 2 .U x x  

As special values we note that  
 (1) 1.nU n   (1.4) 

 
These polynomials are related by the identity 
  

  2 2
11 ( ) ( ) 1,

n

n nx x T x U x x      (1.5) 

 
which in turn implies 
 2 2 2

1( ) ( 1) ( ) 1.n nT x x U x    (1.6) 

 
Remark 1.1 
 
For cosx    identity (1.5)  becomes 

    1cos sin cos sin cos (cos )sin
n

n nn i n i T iU            

or equivalently 
 

 

(cos ) cos

sin( 1)
(cos ) .

sin

n

n

T n

n
U

 








 (1.7) 

 
This is the usual approach to the Chebyshev polynomials. Identity (1.6) reduces to 
 
 2 2cos sin 1.n n    (1.8) 
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Unfortunately it seems that this aspect of the Chebyshev polynomials has no simple q 
analogue. 
  
The Chebyshev polynomials are orthogonal polynomials.  As is well-known (cf. e.g. [4])  a 
sequence  

0
( )n n

p x


 of polynomials with 0( ) 1p x   and  deg np n  is called orthogonal with 

respect to a linear functional  on the vector space of polynomials if    0m np p   for 

.m n  The linear functional is uniquely determined by   [ 0].np n  
 
Here [ ]P   denotes 

the Iverson symbol defined by [ ] 1P   if property P  is true and [ ] 0P   otherwise. 

The values ( )nx  are called moments of .  
Let ( )nP x  denote the monic polynomials corresponding to ( )np x  and ( , )a n k  be the uniquely 

determined coefficients in  

 
0

( , ) ( ) .
n

n
k

k

a n k P x x


  (1.9) 

Then ( ,0) ( )na n x   and more generally 2

( ( ))
( , ) .

( ( ) )

n
k

k

x P x
a n k

P x





 

 
By Favard’s theorem there exist numbers ( ), ( )s n t n  such that the three-term recurrence 
 
  
 1 2( ) ( ( 1)) ( ) ( 2) ( )n n nP x x s n P x t n P x       (1.10) 

 
holds. 
 
Therefore the coefficients ( , )a n k satisfy 
 

 

(0, ) [ 0]

( ,0) (0) ( 1,0) (0) ( 1,1)

( , ) ( 1, 1) ( ) ( 1, ) ( ) ( 1, 1).

a j j

a n s a n t a n

a n j a n j s j a n j t j a n j

 
   
       

 (1.11) 

 
This can be used to compute the moments ( ,0) ( ).na n x   
If the moments are known then the corresponding orthogonal polynomials  ( )nP x  are given 

by 
 

 

     
     
     

     

0 1 1

1 2

2 3 1 2
1

, 0

1 2 1

1

1
( ) det .

det( ( ))

n

n

n
n i j n

i j

n n n n

x x x

x x x x

P x x x x x
x

x x x x




 



 

   
 
   
 

      
 
     







 



 (1.12) 

 
So the knowledge of the polynomials ( )nP x  is equivalent with the knowledge of ( )s n  and 

( )t n  and this is again equivalent with the knowledge of the moments. 
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Since 
1

2
1 0

1 ( ) 1
cos( ) [ 0]

1
nT x

dx n d n
x



 
 

  
   for the polynomials ( )nT x  the corresponding 

linear functional L  is given by the integral  

  
1

2
1

1 ( )
( )

1

p x
L p x dx

x 


  (1.13) 

and
 

  
1 2

2

2
1

1    if   0
1 ( )

1
   if  0 1

2

n
n

n
T x

L T dx
nx 


  

 
  (1.14) 

 
The corresponding moments are  
 

 
1 2

2
22

1

21 1
( )

21

n
n

n

nx
L x

nx 

 
   

  
  (1.15) 

 
and 2 1( ) 0.nL x    
 
 
For the polynomials ( )nU x  we get from 

1
2

1 0

2 2
( ) 1 sin(( 1) )sin [ 0]nU x x dx n d n



  
 

       

that the corresponding linear functional M  satisfies 
 

 
1

2

1

2
( ) ( ) 1nM p p x x dx

 

   (1.16) 

  
and 

  
1

2 2 2

1

2
( ) 1 1.n nM U U x x dx

 

    (1.17) 

 
The corresponding moments are  
 

 
1

2 2 2
2

1

22 1 1
( ) 1

2 1
n n

n

n
M x x x dx

nn 

 
      

  (1.18) 

 
and 2 1( ) 0.nM x    
 
 
As already mentioned in the introduction for our q  analogues we need bivariate Chebyshev 
polynomials. 
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The bivariate Chebyshev polynomials  ( , )nT x s  of the first kind  satisfy the recurrence 
 
 1 2( , ) 2 ( , ) ( , )n n nT x s xT x s sT x s    (1.19) 

 
with initial values 0 ( , ) 1T x s   and 1( , ) .T x s x  

Of course ( ) ( , 1).n nT x T x   

 
They have the determinant representation 
 

 

0 0 0

1 2 0 0

0 1 2 0 0
( , ) det .

0 0 0 2

0 0 0 1 2

n

x s

x s

x
T x s

x s

x

 
  
 

  
 
 
 

 





     



 (1.20) 

 
The bivariate Chebyshev polynomials of the second kind ( , )nU x s   satisfy the same recurrence 

 
 1 2( , ) 2 ( , ) ( , )n n nU x s xU x s sU x s    (1.21) 

 
 but with initial values 0( , ) 1U x s   and 1( , ) 2 .U x s x  

 
Their determinant representation is  

 

2 0 0 0

1 2 0 0

0 1 2 0 0
( , ) det .

0 0 0 2

0 0 0 1 2

n

x s

x s

x
U x s

x s

x

 
  
 

  
 
 
 

 





     



 (1.22) 

 
These polynomials are connected via  
 

  2 2
1( , ) ( , ) .

n

n nx x s T x s U x s x s      (1.23) 

 This also implies 
 
 2 2 2

1( , ) ( ) ( , ) ( ) .n
n nT x s x s U x s s     (1.24) 

 
The  Chebyshev polynomials are intimately related with Fibonacci and Lucas polynomials  
 

  
2

2
1

0

,

n

k n k
n

k

n k
F x s s x

k

 
  






 
  

 
  (1.25) 
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and 
  

  
2

2
1 1

0

, ( , ) ( , )

n

k n k
n n n

k

n kn
L x s F x s sF x s s x

kn k

 
  


 



 
      

  (1.26) 

 
for 0n   (cf. e.g. [10]).  Here as usual 0 ( , ) 2.L x s   

 

More precisely the monic polynomials  0 ( , ) 1T x s   and   
1

( , )

2
n

n

T x s
  for 0n   coincide with the 

modified  Lucas polynomials  

 
*

*(2 , )
, .

2 4
n

nn

L x s s
L x   
 

 (1.27) 

 
They are defined by * ( , ) ( , )n nL x s L x s  for 0n   and *

0 ( , ) 1L x s    and satisfy a three-term 

recurrence with ( ) 0s n  , (0)
2

s
t   and ( )

4

s
t n   for 0.n    

 
 
The moments can be obtained from the formula 
 

 
2

*
2

0

( ) ( , ) .

n

k n
n k

k

n
s L x s x

k

 
  




 
  

 
  (1.28) 

 
 

The monic polynomials 
( , )

2
n

n

U x s
  are Fibonacci polynomials   

 

 1
1

( , ) (2 , )
, .

2 2 4
n n

nn n

U x s F x s s
F x


    
 

 (1.29) 

 

In this case the corresponding numbers ( )s n  and ( )t n  are ( ) 0s n   and ( ) .
4

s
t n   

 
Here the moments can be obtained from 
 

 

1

2

1 2
0

( ) ( , ) .
1

n

k n
n k

k

n n
s F x s x

k k

 
  

 


    
          

  (1.30) 

 
We shall also give q  analogues of the following identities  which express  Chebyshev 
polynomials of odd order in terms of Chebyshev polynomials of even order: 
 

 2 1 2
2 1 2 2 1 2

0

2 1
( ) ( 1) ( )

2

n
n k n k

n n k k
k

n
T x t x T x

k
  

  


 
  

 
  (1.31) 
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and 

 2 2
2 1 2 2 2 2

0

2 2 1
( ) ( 1) (2 ) ( ).

2 2 1

n
n k n k

n n k k
k

n
U x G x U x

k k
 

  


 
    
  (1.32) 

 
Here the tangent numbers    2 1 0

1,2,16,272,7936,n n
t  

   and the Genocchi numbers  

   2 0
0,1,1,3,17,155,2073,n n

G

   are given by their generating functions 

 

 2 12 1

0

( 1)
(2 1)!

z z
n nn

z z
n

e e t
z

e e n








 

   (1.33) 

and 
 
 

 1 2 1 22

0

( 1) 2 .
(2 )!

z z
n n nn

z z
n

e e G
z z

e e n


 





 

   (1.34) 

 
Note that  
 

 
2

2 2
2 1

2
.

1

n
n

n

G
t

n


 


 (1.35) 

 
 

2. q-analogues 
 

We assume that 1q    is a real number. All q   identities in this paper reduce to known 
identities when q  tends to 1.  We assume that the reader is familiar with the most elementary 
notions of q  analysis (cf. e.g. [5]). The q  binomial coefficients 

[1][2] [ ]

[1] [ ] [1] [ ]

n n

k k n k

 
    


 

 with 1[ ] 1 nn q q      satisfy the recurrences  

 
 

 
1 1 1 1

.
1 1

k n kn n n n n
q q

k k k k k
            

                      
 (2.1) 

If we want to stress the dependence on q  we write [ ]qn  and 
q

n

k

 
 
 

 respectively. 

 
We also need the q  Pochhammer symbol 1( ; ) (1 )(1 ) (1 )n

nx q x qx q x     and the q 
binomial theorem in the form 

 2

0

( ; ) ( 1)
k

n
k k

n
k

n
x q q x

k

 
 
 



 
   

 
  (2.2) 

or equivalently 

 21

0

( , ) ( )( ) ( ) .
k

n
n k n k

n
k

n
p x y x y qx y q x y q x y

k

 
   



 
      

 
  (2.3) 
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We denote by 
0

( ) ( , )
[ ]!

n

n

z
e z e z q

n

   the q  exponential function. It satisfies 

2

0

1
.

( ) [ ]!

n n

n

z
q

e z n

 
 
 




   

 
 
Since the Chebyshev polynomials are special cases of Fibonacci and Lucas polynomials it 
would be tempting to look for q  analogues related to the simplest q  analogues of 
Fibonacci and Lucas polynomials (cf. e.g. [10]) 

2
2

2
1

0

( , , )

n

k k n k
n

k

n k
F x s q q s x

k

 
  






 
  

 
  , 

2
2

2
1 1

0

[ ]
( , , ) ( , , ) ( , , ) ,

[ ]

n

k k k n k
n n n

k

n kn
L x s q F x s q sF x qs q q s x

kn k

 
  

 
 



 
      

   

12
2 2

1
0

( , , )

n
k

k n k
n

k

n k
Fib x s q q s x

k

 
       




 
  

 
  and 

 
2

2 2
1 1

0

[ ]
( , , ) ( , , ) ( , , ) .

[ ]

n
k

k n k
n n n

k

n kn
Luc x s q Fib x s q sFib x s q q s x

kn k

 
       

 


 
      


 
 

 
But here we have no success. Though the polynomials 1( , , )nF x s q  are orthogonal there are no 

closed forms for their moments.  None of the other classes of polynomials satisfies a 3-term 
recurrence. So they cannot be orthogonal.   
 
But it is interesting that for 1( , , )nFib x s q  and ( , , )nLuc x s q   the following analogues of (1.28) 

and (1.30) 
 

 
2

*
2

0

( ) ( , , )

n

k n
n k

k

n
s Luc x s q x

k

 
  




 
  

 
  (2.4) 

and 
 

 

1

2

1 2
0

( ) ( , , )
1

n

k n
n k

k

n n
s Fib x s q x

k k

 
  

 


    
          

  (2.5) 

 
hold (cf. [8], (3.1) and (3.2)). 
Notice that 0 ( , , ) 2Luc x s q   and *

0 ( , , ) 1,Luc x s q   whereas *( , , ) ( , , )n nLuc x s q Luc x s q  for 

0.n   
 
 
Fortunately there do exist q  analogues of the recurrences (1.19) and (1.21) which possess 
many of the looked for properties. 
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Definition 2.1 
 
The q Chebyshev polynomials of the first kind are defined by the recurrence 
 
 1 1

1 2( , , ) (1 ) ( , , ) ( , , )n n
n n nT x s q q xT x s q q sT x s q 

     (2.6) 

 
with initial values 0 ( , , ) 1T x s q   and 1( , , ) .T x s q x  

 
 
The first terms are 2 31, ,[2] ,[4] [3] ,x x qs x q sx   . 
 
Some simple q  analogues of (1) 1nT   are  
 
 (1, 1, ) 1,nT q   (2.7) 

 
 

 21
1, , ,

n

nT q q
q

 
 
  

  
 

 (2.8) 

 
 

 

1
2

2 2

0

(1, , ) (1 )
n k

n
n

n
k

T q q q q q
      

   



      (2.9) 

 
and 
 
 2 1(1, , ) [ ] [ 1].n

nT q q n q n     (2.10) 

 
 
It is easily verified that 

 
2

, ,
1

, , .
n

n n

s
T x q

q
T x s

q
q
 
 
 

 
     

 
 (2.11) 

 
 
For 1q    we get 2 2( , , 1) ( , , 1)n nT x s sT x s     and 

2 1 2 2 1( , , 1) 2 ( , , 1) ( , , 1).n n nT x s xT x s sT x s       

This gives the trivial sequence    2 2 3 3

0
( , , ) 1, , , , , , , , .n n

T x s q x s xs s s x s xs


        This is 

the reason for excluding 1.q    
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Proposition 2.1 
 
The q Chebyshev polynomials of the first kind satisfy 
 

2

2

2 1

1

0 0 0

1 (1 ) 0 0

0 1 (1 ) 0 0
( , , ) det .

0 0 0 (1 )

0 0 0 1 (1 )

n

n n

n

x qs

q x q s

q x
T x s q

q x q s

q x

 



 
   
  

  
 
 
 

  





     



 

 
 
This is easily seen by expanding this determinant with respect to the last column. 
 
Definition 2.2 
 
The q Chebyshev polynomials of the second kind are defined by the recurrence 
  
 1

1 2( , , ) (1 ) ( , , ) ( , , )n n
n n nU x s q q xU x s q q sU x s q

     (2.12) 

  
with initial values 0 ( , , ) 1U x s q   and 1( , , ) 0.U x s q      

 
 
The first terms are 2 3 31,[2] ,[4] ,[4](1 ) [4] , .x x qs q x q sx     
 
Some simple q  analogues of (1.4) are 
 
  

 21
1, , [ 1],

n

nU q q n
q

 
 
  

   
 

 (2.13) 

 

1

2

1
0 2

1
(1, 1, ) .

n
n

n k
k

U q q

q

 
 
 

 
 
 

    (2.14) 

 

 

1

2

0

(1, , )
k

n

n
k

U q q q
 

 
 



    (2.15) 

and 
 

 
2(1, , ) [ 1].nU q q n    (2.16) 

 
It is easily verified that  

 1

2

1 ( , , )
, , .n

n n

U x qs q
U s x

q
q

 
 
 

 
 

 
 (2.17) 
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For 1q    we would have 2 ( , , 1) ( )n
nU x s s    and 2 1( , , 1) 0.nU x s    

 
 
Proposition 2.2 
 
The q Chebyshev polynomials of the second kind satisfy 
 

2 2

3

1 1

(1 ) 0 0 0

1 (1 ) 0 0

0 1 (1 ) 0 0
( , , ) det .

0 0 0 (1 )

0 0 0 1 (1 )

n

n n

n

q x qs

q x q s

q x
U x s q

q x q s

q x

 

 
   
  

  
 
 
 

  





     



 

 
 
In [3] and [16] a tiling interpretation of the classical Chebyshev polynomials has been given. 
This can easily be extended to the q  case.   
 
As in the classical case it is easier to begin with polynomials of the second kind.  
 
We consider an 1n   rectangle (called n  board) where the n  cells of the board are 
numbered 1 to .n  As in [3] and [16] we consider tilings with two sorts of squares, say white 
and black squares, and dominoes (which cover two adjacent cells of the board). 
 
Definition 2.3 
 
To each tiling of a board we assign a weight  w   in the following way: Each white square has 
weight x . A black square at position i  has weight iq x  and a domino which covers positions 

1,i i  has weight 1 .iq s  The weight of a tiling is the product of its elements. 
The weight of a set of tilings is the sum of their weights. 
 
Each tiling can be represented by a word in the letters { , , }.a b dd  Here a denotes a white 
square, b  a black square and dd  a domino. 
For example the word abbddaddaab  represents the tiling with white squares at positions 
1,6,9,10,  black squares at 2,3,11 and dominoes at  4,5  and  7,8 .  Its weight is 

2 3 4 7 11 27 2 7x q x q x q s x q s x x q x q s x         . 
 
Theorem 2.1 
 
The weight ( )nw V   of the set nV   of all tilings of an n  board is ( ) ( , , ).n nw V U x s q  

 
Proof 
This holds for 1n   and 2.n   E ach n   tiling  nu  has one of the following  forms: 

1 1 2, , .n n nu a u b u dd     

Therefore 
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1 1 1 1 2 2

1
1 1 2

1
1 2

( ) ( ) ( ) ( ) ( )

( ) 1 ( )

n n n n n n n n

n n
n n n n n

u V u V u V u V

n n
n n

w V w u w u x w u q x w u q s

w V q x w V q s

     


  

   


 

   

  

   
 

which implies  Theorem 2.1. 
 
Remark 2.1 
If we more generally consider the weight rw  which coincides with w  except that a black 

square at position i  has weight iq rx  we get in the same way that ( ) ( , , ) ( )r
n r nU x s q w V

satisfies  

 ( ) ( ) 1 ( )
1 2( , , ) 1 ( , , ) ( , , )r n r n r

n n nU x s q q r xU x s q q sU x s q
      

with initial values ( )
0 ( , , ) 1rU x s q   and ( )

1 ( , , ) (1 ) .rU x s q qr x    

In this case we get more generally 
1( ) ( ) ( ) ( ) ( ) 1

1 1( , , ) ( , , ) ( , , ) ( , , ) ( , , ).
m mr r q r m m r q r m

m n m n m nU x s q U x s q U x q s q q sU x s q U x q s q
 

     

The second term occurs when positions ( , 1)m m   are covered by a domino and the first term 
in the other cases.  
 
 
The same reasoning as above gives 
 
Proposition 2.3 
Let ( , , , )u n k s r  be the rw  weight of all tilings on {1, , }n  with exactly k  dominoes. 

Then  
 
 1( , , , ) ( 1, , , )(1 ) ( 2, 1, , )n nu n k s r u n k s r q r x u n k s r q s       (2.18) 

with initial values 
2( ,0, , ) (1 )(1 ) (1 ) ,n nu n s r qr q r q r x     

   
(1,0, , ) (1 )u s r qr x   and (1, , , ) 0u k s r   for 0.k   

 
 
It is now easy to verify  
 
Theorem 2.2 
 
The rw  weight ( , , , )u n k s r of the set of all tilings on {1, , }n  with exactly k dominoes is 
  

 

2 1 2( , , , ) (1 ) (1 )k k n k k n kn k
u n k s r q q r q r s x

k
   

   
 

  (2.19) 

for 0
2

n
k      

 and ( , , , ) 0u n k s r   for .
2

n
k     
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Proof 
 
The initial values coincide and by induction 
 

2

2

2

1 1 1 2

( 1) 1 1 2

1 1 2

1
( 1, , , )(1 ) ( 2, 1, , ) (1 ) (1 )(1 )

1
(1 ) (1 )

1

1 1
(1 ) (1 ) (1 )

n n k k n k n k n k

k k n k n k n k

k k n k k n k n

n k
u n k s r q r x u n k s r q s q q r q r q r s x

k

n k
q q r q r q s x

k

n k n k
q q r q r s x q r

k

    

    

   

  
         

 
  

    
    

     
 





 2 (1 )
1

n k kq q r
k

  
    

 
 

2

2

1 1 2 2

1 1 2

1 1 1 1
(1 ) (1 )

1 1

(1 ) (1 ) (1 ) .

k k n k k n k n k n k k

k k n k k n k n k

n k n k n k n k
q q r q r s x q q r q

k k k k

n k
q q r q r s x q r

k

     

    

                  
                             

  
     

  





 
Here we used the recurrence relations  (2.1) for the q  binomial coefficients. 
 
 
Remark 2.2 

Formula (2.19) is the product of  
2 2k k n kn k

q s x
k

 
 
 

 and 

 
2

21 ( 1)

0

2
(1 ) (1 ) .

n k
k n k kn k

q r q r q r q
       



 
    

 









 

Ilse Fischer [12] has found a combinatorial reason for this product representation.   
 
Let  ( , , , )v n k x  be the rw  weight of all  tilings with k  dominoes and  black squares. Then 

 
2

1

22 2
( , , , ) ( , ,0,1) ( 2 ,0, , ).k k n k k kn k n k

v n k x q s r x q q q v n k v n k x
k

 
   

    
     

   


   


 (2.20) 

  
In order to give a combinatorial interpretation of this formula we observe that the weight can 
also be obtained from the following properties. 
 
The fact that the weight of a domino at  , 1i i   is iq s  is equivalent with 

 
a) each white square that appears before this domino contributes a ,q  
b) each black square that appears before this domino contributes a ,q  

c) each domino that appears before this domino contributes 2q   
d) and the domino itself  contributes .qs  
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The fact that the weight of a black square at i  is iq xr  is equivalent with  
e)  each white square that appears before this black square contributes a ,q   
f) each black square that appears before this black square contributes a ,q   

g) each domino that appears before this black square contributes a 2q   
h) and the black square itself contributes .qxr  

 
This can also be reformulated in the following way: 
 

1) Each black square contributes ,qxr  
2) each unordered pair of distinct black squares contributes a ,q  
3) each white square before a black square contributes a ,q  
4) each domino contributes ,qs  

5) each unordered pair of distinct dominoes contributes 2,q  
6) each white square before a domino contributes a ,q  
7) each pair of a domino and a black square, where the order is irrelevant, contributes a 

,q  
8) each domino before a black square contributes a .q  

 
For b) and g) is equivalent with 7) and 8). 
 
Now consider the right-hand side of (2.20). 
 
Observe that ( ,0, , )v n x  is determined by 1), 2) and 3); ( , ,0, )v n k x is determined by 4), 5) 

and 6);  and 7) gives .kq      
 
We first distribute the dominoes on the n  board and let each unoccupied cell have weight 1.  
Then we distribute the white and black squares on the unoccupied cells. Their weight is 

( 2 ,0, , ).v n k x   The total weight of the configuration is  ( , ,0,1) ( 2 ,0, , )v n k v n k x   if each 
black square before a domino contributes a .q  For then 6) is satisfied for the computation of 

( , ,0,1)v n k  since all squares contribute a q  (and thus behave as white squares in this context).  
 
Thus the right-hand side of (2.20) satisfies 1) to 7), but instead of 8) we have 
8´): each black square before a domino contributes a .q  
Thus we must reverse the order of the dominoes and black squares to obtain (2.20). 
 
An equivalent form is 
 
Proposition 2.4 
 
Let t  be a tiling of an n  board with k dominoes and  black squares. Reverse the order of 
the dominoes and black squares in t  and obtain a tiling .T  Denote by A  the tiling obtained 
by replacing in T  each  square with a colourless square c   with weight 1 and let B  be the 
tiling obtained by deleting all dominoes of .T  
Then 
 ( ) ( ) ( ).k

r r rw t q w A w B   (2.21) 

 
 



15 
 

Example 
Consider the tiling t abbddaddaab  with ( , , ) (11,2,3)n k     weight 27 2 3 7.q s r x  

Then T abddddabaab  and A ccddddccccc  with 8 2( )rw A q s  and B ababaab  with 
13 3 7( ) .rw B ababaab q r x   

This gives    2 3 8 2 13 7( ) .rw t q q s q x   

Theorem 2.2 implies for 1r   
  
Theorem 2.3 
 

 
2

2
1 2

0

( , , ) (1 ) (1 ) .

n

k k n k k n k
n

k

n k
U x s q q q q s x

k

 
  

  



 
   

 
   (2.22) 

 
 
For the q Chebyshev polynomials of the first kind the situation is somewhat more 
complicated.  Here we get 
 
 
Theorem 2.4 
 

( , , )nT x s q  is the weight  of the subset of all  tilings of {1, , }n  where the last block is either a 

white square or a domino. 
Therefore for 0n   
 
 1

1 2( , , ) ( , , ) ( , , ).n
n n nT x s q xU x s q q sU x s q

    (2.23) 

 
 
Proof 
It suffices to prove that the right-hand side satisfies the initial values and the recurrence (2.6). 
 

     

 

1 2
1 2 2 3

2 2 1 2 1
1 1 2 2

2 2 2
2 3

1
1 2

1 ( , , ) ( , , ) ( , , ) ( , , )

( , , ) ( , , ) ( , , ) ( , , )

( , , ) ( , , )

1 ( , , ) ( ,

n n n n
n n n n

n n n
n n n n

n n
n n

n n
n n

q x xU x s q q sU x s q q s xU x s q q sU x s q

x U x s q q x U x s q q sxU x s q q sxU x s q

q sxU x s q q s U x s q

x q xU x s q q sU x

 
   

 
   


 


 

   

   

 

   
  1 2

2 4

1

, )

1 ( , , ) ( , , )

( , , ) ( , , ).

n n n
n n

n
n n

s q

q s q xU x s q q sU x s q

xU x s q q sU x s q
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Theorem 2.5 
 
The q Chebyshev polynomials of the first kind are given by 
 

 
 

 

2

2 2

12
2

1
0

1

2
1 1 2

0

1 (1 ) [ ]
( , , )

1 (1 ) (1 ) (1 ) [ ]

[ ]
1 (1 ) [ 0mod 2] .

[ ]

n
n

k k n k
n k n k n

k

n

k k n k k n k n n

k

n kq q n
T x s q q s x

kq q q q n k

n kn
q q q s x n q s

kn k

 
   


 



 
  

   



   
         

 
       






 



 (2.24) 

 
  
Proof  
 
Consider the subset of all tilings  of an n  board whose last block is not a black square. Let 
( , , )t n k s  be the weight of all these tilings with exactly k  dominoes.   

Then 
 1( , , ) ( 1, , ) ( 2, 1) .nt n k s u n k s x u n k q s      (2.25) 

 
We  show that  

 

 
 

2
1

2
1

1 (1 ) [ ]
( , , ) .

1 (1 ) (1 ) (1 ) [ ]

n
k k n k

k n k n

n kq q n
t n k s q s x

kq q q q n k




 

   
         


 

 (2.26) 

 
This is true for 1n   and 2.n   By induction we get for 2 1k n   
 

 

 

2

2

1

1 1 2

1 2 1 1 2

( , , ) ( 1, , ) ( 2, 1)

1
1 (1 )

1
1 (1 )

1

n

k k n k k n k

n k k k n k k n k

t n k s u n k s x u n k q s

n k
q q q s x

k

n k
q q q q s x

k



   

     

    

  
   

 
  

    





 

 

   

 

 

2

2

2

1 1 2 2

1 1 2

1 1 2

1 1
1 (1 ) 1

1

1
1 (1 )

1

[ ]
1 (1 )

[ ]

k k n k k n k k n k

k k n k n k k n k

k k n k k n k

n k n k
q q q q q s x

k k

n k n k
q q q q s x

k k

n kn
q q q s x

kn k

    

    

   

       
            

      
           

 
      







 

 
and for 2 2k n  
 

2 2

2 1

2 1 2 1

(2 , , ) (2 1, , ) (2 2, 1)

1
.

1

n

n n n n n n

t n n s u n n s x u n n q s

n
q q s q s

n
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For 1q   the polynomial ( , )nT x s can also be interpreted as the weight of the set nT  of all 

tilings which begin with a domino or with a white square since in this case the weights of  the 
words 1 nc c  and 1nc c   coincide.   

In the general case this is not true. For example for 2n    the set  2 , ,T aa ab dd  has weight 
2 2 2 2 2

2 2( ) ( , , ) .w T x q x qs T x s q x qx qs         

 
But we have 
 
Theorem 2.6 
 

 2 2
1 2( , , ) ( , , ) ( , , ).n n nT x s q xU x q s q qsU x q s q    (2.27) 

Proof 
 
It suffices to show that the right-hand side satisfies recurrence (2.6). 
 

     

 

1 2 2 1 2 2
2 3 3 4

2 2 1 2 2 2 2
2 2 3 3

1 2 2 2
3 4

1 2
2

1 ( , , ) ( , , ) ( , , ) ( , , )

( , , ) ( , , ) ( , , ) ( , , )

( , , ) ( , , )

1 ( ,

n n
n n n n

n n
n n n n

n n
n n

n
n

q x xU x q s q qsU x q s q q s xU x q s q qsU x q s q

x U x q s q q x U x q s q qsxU x q s q q sxU x q s q

q sxU x q s q q s U x q s q

x q xU x q

 
   


   


 




   

   

 

  
  

2 2 2
3

2 2 3 2 2
3 4

2 2
1 2

, ) ( , , )

1 ( , , ) ( , , )

( , , ) ( , , ).

n
n

n n
n n

n n

s q q q sU x q s q

qs q xU x q s q q q sU x q s q

xU x q s q qsU x q s q




 
 

 



  

 

 

 
Theorem 2.6 has the following tiling interpretation: 
 
Define another weight W  such that each white square has weight ,x  each black square at 
position i  has weight iq x  and each domino at position ( 1, )i i  has weight 1iq s  if .i n  But 
a domino at position ( 1, )n n  has weight .qs   
If we join the ends of the board to a circle such that the position after n  is 1this can also be 
formulated as: If ( 1, , )i i j  are consecutive points then a domino at position ( 1, )i i  has 

weight .jq s    Then ( , , )nT x s q  is the weight of all such tilings which have no black square at 

position .n  (Note that on the circle there are no dominoes at position ( ,1).n ) 
 
 
In order to find a q  analogue  of (1.23) let us first consider  this identity in more detail. 

 2 2
1( , ) ( , )

n

n nx x s T x s U x s x s       

is equivalent with 

    
  

   

1
2 2 2 2

1

2 2
1

2 2
1 1

( , ) ( , )

( , ) ( , )

( , ) ( , ) ( , ) ( , ) .

n n

n n

n n

n n n n

T x s U x s x s x x s x x s x x s

x x s T x s U x s x s

T x s x x s U x s T x s U x s x x s
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Therefore (1.23) is equivalent with both identities 
 

  2
1 1( , ) ( , ) ( , )n n nT x s T x s x x s U x s     (2.28) 

and 
 1( , ) ( , ) ( , ) .n n nU x s T x s U x s x   (2.29) 

 
To prove identity (2.28) observe that for 1q   a tiling of an ( 1)n   board which does not  
end with a black square either ends with two white squares aa  or with a domino and a white 
square .dda  The weight w  of these tilings is ( , ) .nT x s x  Or it ends with ba  or .dd  Their 

weight is 2
1( ) ( , ).nx s U x s  

Identity (2.29) simply means that an arbitrary tiling either ends with a black square which 
gives the weight 1( , )nU x s x  or does not end with a black square which gives ( , ).nT x s  

 
For arbitrary q   this classification of the tilings implies the identities 
 
 2

1 1( , , ) ( , , ) ( ) ( , , )n
n n nT x s q xT x s q q x s U x s q     (2.30) 

 
and 
 
 1( , , ) ( , , ) ( , , ).n

n n nU x s q T x s q q xU x s q   (2.31) 

 
But there is also another  q  analogue of (2.28): 
 
 2 2

1 1( , , ) ( , , ) ( ) ( , , ).n
n n nT x s q q xT x s q x qs U x q s q     (2.32) 

 
 
By (2.27) we have 2 2

1 1( , , ) ( , , ) ( , , ).n n nT x s q xU x q s q qsU x q s q    

Therefore by (2.12) 
 

 
2 2 2 1 2

1 1 2

2 2
1 2

( , , ) ( , , ) ( , , ) ( , , )

( , , ) ( , , ) ( , , ).

n n
n n n n

n n
n n n

U x q s q xU x q s q q xU x q s q q sU x q s q

q xU x q s q qsU x q s q q T x s q


  

 

  

  
 

 
Thus 
 
 2 2

1( , , ) ( , , ) ( , , )n
n n nU x q s q q T x s q xU x q s q   (2.33) 

 
and  (2.27) implies (2.32). 
 
As q  analogue of (2.28) and (2.29) we can now choose the identities (2.31) and (2.32) which 
we write in the form 
 

 
2 2

1 1

1

( , , ) ( , , ) ( ) ( , , )

( , , ) ( , , ) ( , , ).

n
n n n

n
n n n

T x s q q xT x s q x qs U x s q

U x s q T x s q q xU x s q

 



  

 
 (2.34) 

 
Here   denotes the linear operator on the polynomials in s  defined by ( ) ( ).p s p qs   
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To stress the analogy with (1.23) we introduce a formal square root 2 2( )A x s    which 

commutes with x  and real or complex numbers and satisfies 2 2 2( )A x qs    and write  
(2.34) in the form 
 
 1 1( , , ) ( , , ) ( )( ( , , ) ( , , )).n

n n n nT x s q AU x s q q x A T x s q AU x s q      (2.35) 

 
 
Since  ( )( ) ( )( )i j j iq x A q x A q x A q x A      using the q  binomial theorem (2.3) we get as 
analogue of (1.23) 

      1
1( , ) ( , , ) ( , , ).n

n n np x A x A qx A q x A T x s q AU x s q
       (2.36) 

 
This gives 
 
Theorem 2.7 
 
For the q Chebyshev polynomials the following formulae hold: 

  
22 1

2 2 2 2 1

0 0

( , ) ( , )
( , , ) 1

22

n
n k

k
n k jn n

n
k j

np x A p x A
T x s q q x x q s

k

 
         

 

  
   

 
   (2.37) 

 
and 
 

  
22 1

2 2 2 2 11 1

0 0

1( , ) ( , )
( , , ) 1 .

2 12

n
n k

k
n k jn n

n
k j

np x A p x A
U x s q q x x q s

kA

 
           

 

  
    

   (2.38) 

 
 
 
Proof 

This follows from (2.3) and the observation that  
1

2 2 2 2 2 1 2

0

( ) ( ) .
kkk j k

j

A x qs x q s 






     

 
 

If we expand   2

2

1
2 2 1 2 2

0 0

k k
j j j k j

j j q

k
x q s q s x

j


 

 

 
   

 
   

we get by comparing coefficients in (2.37) and (2.38) 
 
Theorem 2.8 
 
For j n  the identities  
 

 
 

 2

2 12
2

1
0

[ ]1 (1 )

2 1 (1 ) (1 ) (1 ) [ ]

n
n k n

q

j n j n
k qq q q

n k n jnq q
q

k j jq q q q n j

 
      

 
 



      
               




 
 (2.39) 

and 
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2

22
2 1

0

1
(1 ) (1 )

2 1

n
n k

j n j

k q q q

n k n j
q q q

k j j

 
        



      
            

   (2.40) 

hold. 
 
 
 
Remark 2.3 
 
It would be nice to find a combinatorial interpretation of these identities. 
For 1q   we get from (1.23) 

2 2 2
1( , ) ( ) ( , ) ( ) .n

n nT x s x s U x s s     

Since A  does not commute with polynomials in s  we cannot deduce a  q  analogue of this 
formula from (2.36). 
 
But we can instead consider the matrices 
 

 
2(

.
1

n

n n

x q x s
A

q x

 
  
 

 (2.41) 

We then get  

Theorem 2.9 

 

2
1

1 2 0

1

( , , ) ( ) ( , , )

.
( , , ) , ,

n n

n n

n n

T x s q x s U x qs q

A A As
U x s q T x q

q



 


 
    

    

  (2.42) 

 
Proof 
 
We must show that 
 

2 2
1 12

1 1

( , , ) ( ) ( , , ) ( , , ) ( ) ( , , )
(

( , , ) , , ( , , ) , ,1

n n n nn

n
n n n n

T x s q x s U x qs q T x s q x s U x qs q
x q x s

s s
U x s q T x q U x s q T x qq x

q q

 

 

    
           
             

 

 
or equivalently   
 

2
1 1( , , ) ( , , ) ( ) ( , , ),n

n n nT x s q xT x s q q x s U x s q     

 

1( , , ) ( , , ) ( , , ),n
n n nU x s q T x s q q xU x s q   

 
 2 2

1( , , ) , , ( , , ),n
n n nU x q s q q T x s q xU x q s q   

 
    2 2

1 1, , , , ( ) ( , , ).n
n n nT x s q q xT x s q x qs U x q s q     

 
This follows from the recurrences (2.30), (2.31), (2.32) and (2.33). 
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If we take determinants in (2.42) we get the desired q  analogue of 
2 2 2

1( , ) ( ) ( , ) ( ) .n
n nT x s x s U x s s     

 
 
Theorem 2.10 
 

 

1

22 2
1 1( , , ) ( , , ) ( ) ( , , ) ( , , ) ( ) .

n

n
n n n nT x s q T x qs q x qs U x qs q U x q s q q s

 
 
 

      (2.43) 

 
For example for ( , ) (1, 1)x s    this reduces to 
 

1

2 2 2

1 1

(1, , ) (1 ) [ ] (1, , ) (1 ) .
k k n

n n
n

n n
k k

T q q q q n T q q q q q
     

     
     

 

           

 
 
In [11]  many other identities occur. These follow in an easy manner from the identities 
obtained above.  
 
Since the q Chebyshev polynomials satisfy a three-term recurrence they are orthogonal with 
respect to some linear functionals, i.e. ( ( , , ) ( , , )) 0n mL T x s q T x s q   and 

( ( , , ) ( , , )) 0n mM U x s q U x s q   for .n m  

These linear functionals are uniquely determined by 
 ( , , ) [ 0]nL T x s q n   and  ( , , ) [ 0].nM U x s q n   

 
These linear functionals are closely related.  From (2.30) we get  

2
1 1( , , ) ( , , ) ( ) ( , , ).n

n n nT x s q xT x s q q x s U x s q      

By (2.6) we have 1 1( , , ) ( , , )
( , , )

1

n
n n

n n

T x s q q sT x s q
xT x s q

q
 




 

and therefore we obtain  
 
 2

1 1 1( , , ) ( , , ) (1 )( ) ( , , ).n
n n nT x s q sT x s q q x s U x s q       (2.44) 

 
If we apply the linear functional L  to this identity we deduce that 
 

  
2

(1 ) 1 ( , , ) [ 0] ( , , ) .n n

x
q L U x s q n M U x s q

s

  
      

  
 (2.45) 

 
By linearity we obtain 

  
2

(1 ) 1 ( ) ( )
x

q L p x M p x
s

  
    

  
 (2.46) 

 
for all polynomials ( ).p x  
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As q  analogue of (1.14) we get 
 

   12
2

1                 if  0

( )
if  0

1

n

nn

n

n

L T
q s

n
q

 
 
 


   



 (2.47) 

 

This follows by applying L  to (2.6) which gives    1
11

n
n n

n nn

q s
L x T L x T

q


 


 and therefore 

 

 
1

2

2
( ) .

(1 )(1 ) (1 )

n

n n
n n

q
L x T s

q q q

 
 
 

 
  

 

 

Now observe that    2 1(1 ) (1 ) .n n
n nL T L q q x T    

 
Of special interest are the moments of these linear functionals, i.e. the values ( )nL x  and 

( ).nM x  To find these values it suffices to find the uniquely determined representation of nx  
as a linear combination of the q Chebyshev polynomials. 
These have been calculated in [11] for the corresponding monic polynomials.  Therefore I 
only state the results in the present notation: 
 
 
For the q Chebyshev polynomials of the first kind we have 
 

 
2

2 2

0

( , , )
(1 [2 ])( ) .

(1 ) (1 )(1 ) (1 )

n

n n k k n k
k n k

k

n T x s q
x q k n qs

k q q q q

 
  

 




 
         
  

 (2.48) 

 
 
 
This gives as q  analogue of (1.15) 
 

  2

2

1

2 ( )

(1 )

n
n

n
j

j

n qs
L x

n
q



  
  
  

 (2.49) 

and 2 1( ) 0.nL x    

For the monic polynomials we get the three-term recurrence with ( ) 0s n  ,  (0)
1

qs
t

q



 and 

1

1
( ) .

(1 )(1 )

n

n n

q s
t n

q q
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For the q Chebyshev polynomials of the second kind the corresponding formulae are 
 

 

1

22
1

1
( ) ( )

1

n

n
n n

q
M U s q

q

 
 
 




 


 (2.50) 

as q  analogue of (1.17) and 
 

 
2 12

21
0

1 1

1
( ) ( , , )

1 (1 ) (1 )

n
n k

n k
n kk n k

j jk

j j

n n q
x s U x s q

k k q q

 
    

 


 

     
            


 
 (2.51) 

and therefore 
 

 2
1

2

1

21 1 ( )
( )

[ 1] 1 (1 )

n
n

nn
j

j

n q qs
M x

nn q q




   
     

 (2.52) 

and 2 1( ) 0.nM x    
Of course (2.52) also follows directly from (2.49) and (2.46). 
 
The parameters for the three-term recurrence of the monic polynomials are ( ) 0s n   and 

1

1 2
( ) .

(1 )(1 )

n

n n

q s
t n

q q



 
 

  

 
 
Remark 2.4 
 
The q Chebyshev polynomials have also appeared, partly implicitly and without recognizing 
them as q  analogues of the Chebyshev polynomials,  in [6], [7] and [13] in the course of  

computing  Hankel determinants of 
2

( ; )
,

( ; )
n

n
n

aq q

abq q
   which are the moments of the little q 

Jacobi polynomials ( ; , | )np x a b q  (cf. [14]). Note that 
2

2
2 2

( ; )
( ) ( )

( ; )
n nn

n

q q
L x qs

q q
   and 

2 2
2

4 2

( ; )
( ) ( ) .

( ; )
n nn

n

q q
M x qs

q q
      

 
 
 
3. Some further properties 

 
The q Chebyshev polynomials 2 2 1(1, , ), (1, , ),n nT s q T s q  2 (1, , )nU s q  and  2 1(1, , )nU s q  are 

polynomials in s  of degree .n  
Therefore there exist unique representations 

 2 1 2
0

(1, , ) ( , , ) (1, , )
n

n k
k

T s q a n k q T s q


   (3.1) 

and 
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 2 1 2
0

(1, , ) ( , , ) (1, , ).
n

n k
k

U s q b n k q U s q


   (3.2) 

 
To obtain these representations we need q  analogues of the tangent and Genocchi numbers.  
The q  tangent numbers 2 1( )nt q are well-known objects  defined by the generating function 

 

 2 12 1

0

( ) ( ) ( 1) ( )
.

( ) ( ) [2 1]!

n
nn

n

e z e z t q
z

e z e z n




  


    (3.3) 

 
 
Theorem 3.1 
 

 2 1 2
2 1 2 2 1 2

0

2 1
( , , ) ( 1) ( ) ( , , ).

2

n
n k n k

n n k k
k

n
T x s q t q x T x s q

k
  

  


 
  

 
  (3.4) 

 
Proof 

In  (2.37) we have seen that 
22

2 3 2 1

0

(1, , ) (1 )(1 ) (1 ).
2

n
n k

k
n

k

n
T s q q qs q s q s

k

 
       



 
    

 
   

 
This implies that  

 
0

(1, , )
( , , )

[ ]!
nn

n

T s q
T z s q z

n

   (3.5) 

satisfies 

 
2

3 2 1

0

1
( , , ) (1 )(1 ) (1 ) .

( ) [2 ]!

n
n

n

z
T z s q qs q s q s

e z n




   
    (3.6) 

 
Therefore ( ) ( , , ) ( ) ( , , )e z T z s q e z T z s q    and  

       ( ) ( ) ( , , ) ( , , ) ( ) ( ) ( , , ) ( , , )e z e z T z s q T z s q e z e z T z s q T z s q          

or 

 

2 12 1

2 12 10

22 0

0

(1, , )
( ) ( ) ( 1) ( )[2 1]! .

(1, , ) ( ) ( ) [2 1]!
[2 ]!

nn
n

nnn

nn n

n

T s q
z

e z e z t qn z
T s q e z e z nz

n









    
  





 (3.7) 

 
Note that the left-hand side does not depend on .s  If we choose 0s   we get that 
 

 

 

 

2 12

0

22 1

1

;

( ) ( )[2 1]!
.

; ( ) ( )
1

[2 ]!

nn

n

nn

n

q q
z

e z e zn
q q e z e z

z
n










  

  





 (3.8) 

 
 
 
(3.7) implies 
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2 1 2 1 22 1 2 1 2

0 0 0

(1, , ) ( 1) ( ) (1, , )

[2 1]! [2 1]! [2 ]!

n
n n nn n n

n n n

T s q t q T s q
z z z

n n n
  

  




     

 
which gives by comparing coefficients  
 

 2 1 2 2 1 2
0

2 1
(1, , ) ( 1) ( ) (1, , )

2

n
n k

n n k k
k

n
T s q t q T s q

k


  


 
  

 
  (3.9) 

 
and therefore also (3.4). 
 
For 1q   the Chebyshev polynomials satisfy 
 

 2
0

( 2 ) ( , ) ( , )
n

j n
n m j m

j

n
x T x s s T x s

j  


 
  

 
  (3.10) 

and 

 2 1
0

( 2 ) ( , ) ( , ).
n

j n
n m j m

j

n
x U x s s U x s

j   


 
  

 
  (3.11) 

 
For these identities are equivalent with 
 

   2 2
2 2

0

( 2 )
n n m j n m j

j n

j

n
x x x s s x x s

j

   



 
      

 
  

 
which in turn reduces to the trivial identity 

           2 2 2 2 2 22 .
n m n m n n m

nx x s x x s x x x s x s x x s x s x x s


              

 
 
In order to simplify the exposition we let 1x   and prove as q  analogue of (3.10)  

Theorem 3.2 
 

 
22

2
0 1

( 1) (1 ) (1, , ) (1, , ).
j

n n m
j i n mn n

n m j m
j i n m j

n
q q T s q q s T s q

j

     
 

    

 
   

 
   (3.12) 

Proof 
 
Let .m  We consider the following matrix   , 0

( , , )
n k

a n k m


 with 

( , , ) (1, , )k
n k ma n k m s T s q   for 0 k n   and ( , , ) 0a n k m   for .k n  The first terms are 
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1
2

2 1
2 3

3 2 1

(1, , )

(1, , ) (1, , )

(1, , ) (1, , ) (1, , )

(1, , ) (1, , ) (1, , ) (1, , )

m

m m

m m m

m m m m

T s q

T s q sT s q

T s q sT s q s T s q

T s q sT s q s T s q s T s q



 

  

 
 
 
 
 
 
 
     

. 

 
The recurrence for (1, , )nT s q  gives 

 
1

1

( 1, 1, ) (1 ) ( , 1, )
( , , ) .

n m k

n m k

a n k m q a n k m
a n k m

q

  

  

    
  

 
This implies that 

2

( )
0 1

1
( , , ) ( 1) (1 ) (1, , ).

j
k n m

j i
n m k jk n m

j i n m j

k
a n k m q q T s q

jq

   
 

  
    

 
   

 
   

This is true for 0.k   
If it holds for 1k   then 
 

1

1

1 1
2

1 ( 1)( 1)
0 2

1
21

1 ( 1)( )
0

( 1, 1, ) (1 ) ( , 1, )
( , , )

11 1
( 1) (1 ) (1, , )

1 1
(1 ) ( 1)

n m k

n m k

j
k n m

j i
n m k jn m k k n m

j i n m j

j
k

n m k j
n m k k n m

j

a n k m q a n k m
a n k m

q

k
q q T s q

jq q

k
q q

q q

  

  

    
 

       
    

       
    



    


 
   

 


  

 

 1
1

1 1
2

( )
0 2

11
21

( )
1 2

1
(1 ) (1, , )

11
( 1) (1 ) (1, , )

1
(1 ) ( 1) (1 )

1

n m
i

n m k j
i n m j

j
k n m

j i
n m k jk n m

j i n m j

jk k n m
n m k j i

n mk n m
j i n m j

q T s q
j

k
q q T s q

jq

kq
q q q T

jq



   
   

    
 

  
    

       


    

 
 

 

 
   

 

 
     



 

 

2 1 1
( )

0 2

2

( )
0 1

(1, , )

1 11
( 1) (1 ) (1, , ) (1 ) (1 )

1

1
( 1) (1 ) (1, , ).

k j

j
k n m

j i n m k j n m k
n m k jk n m

j i n m j

j
k n m

j i
n m k jk n m

j i n m j

s q

k k
q q T s q q q q

j jq

k
q q T s q

jq

 

          
  

    

   
 

  
    

     
             

 
   

 

 

 
 
This gives (3.12). 
 
As special cases we get for 0m   and 1m   

22
2

0 1

( 1) (1 ) (1, , )
j

n n
j i n n

n j
j i n j

n
q q T s q q s

j

 
 
 


   

 
   

 
   

and 
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2
1

2
2 1

0 2

( 1) (1 ) (1, , ) .
j

n n
j i n n n

n j
j i n j

n
q q T s q q s

j

     
 

   

 
   

 
   

 
This implies 

1
1

21
2 1

1 2

1 1
2

2 1 2 1
1 2

( 1) (1 ) (1, , )
1

( 1) (1 ) (1, , ) (1, , )

j
n n

n j i
n j

j i n j

j
n n

j i
n j n

j i n j

n
q q q T s q

j

n
q q T s q T s q

j

     
 

   

   
 

  
   

 
   

 
    

 

 

 
 

 
or 
 
 

 
1

21 1
2 1 2 1

1 2

1
( 1) (1 ) (1, , ) (1, , ).

j
n n

j i n
n j n

j i n j

n n
q q q T s q T s q

j j

     
  

   

    
       

    
   (3.13) 

 

Of course we could also replace 11 nn n
q

j j
   

   
   

 by 
1 [2 2 2 ]

.
2 [ 1]

n n j

j n

   
   

 

 
Define now a linear functional  on the polynomials in s  by  2 (1, , ) [ 1].nT s q n    Then 

by (3.9)   2 1 2 1(1, , ) ( 1) ( ).n
n nT s q t q     

 
Thus we get the following identities for the q  tangent numbers 
 

 

1
22
21

2 1 2 1 2
1 2 2

1 [2 2 2 ]
( ) ( 1) (1 ) ( ).

2 [ 1]

n
j

n
j i

n n j
j i n j

n n j
t q q q t q

j n

 
       

  
   

   
      
   (3.14) 

 
For 1q   this reduces to 

 

1

2
1 2

2 1
1

1 1
( 1) 2 .

2 1

n

j j
n

j

n n j
t

j n

 
  






   
     
  (3.15) 

The first identities are 
 

3 1 5 3 7 5 3 9 7 5 11 9 7 52 ,   8 ,   18 8 ,   32 48 ,   50 160 32 .t t t t t t t t t t t t t t          

 
What at first glance appears as a new identity turns out to be an old acquaintance if we use 
(1.35) and write (3.15) in terms of Genocchi numbers. For then we get 
  

 2 2
0

( 1) 0.
2

n
j

n j
j

n
G

j 


 
  

 
  (3.16) 

 
This is Seidel’s identity for the Genocchi numbers. 
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To obtain the expansion (3.2) we define q Genocchi numbers  2 ( )nG q   by the generating 

function 

 
 1

2 22 1

0

( 1) ( ) ;( ) ( )
.

( ) ( ) [2 ]!

n
n nn

n

G q q qe z e z
z z

e z e z n






  


    (3.17) 

 
This implies that 

 
 2 2 2 1

2 1

( ) ;
( ) .

[2 2]
n n

n

G q q q
t q

n
 







 (3.18) 

 
(Observe that this q  analogue of the Genocchi numbers does not coincide with the q 
Genocchi numbers introduced by J. Zeng and J. Zhou which have been studied in [9]). 
 
The first terms of the sequence  2 1

( )n n
G q


 are 

 

2

4 3

2 2
2

6 4 5

2 2 2 3 4 5 6 7 8

3
8 5 6 7

( ) 1,

1
( ) ,

1

(1 )(1 )(1 )
( ) ,

(1 )(1 )

(1 ) (1 ) 1 3 2 3 2 3
( ) .

(1 )(1 )(1 )

G q

q
G q q

q

q q q q
G q q

q q

q q q q q q q q q q
G q q

q q q







   


 

         


  

 

 
 
 
Theorem 3.3 
 

  2 1 2
2 1 2 2 2 22 2 1

0

2 2 1
( , , ) ; ( 1) ( ) ( , , ).

2 [2 1]

n
n k n k

n n k kn k
k

n
U x s q q q G q x U x s q

k k
  

   


 
     
  (3.19) 

 
  
 
Proof 
 

In (2.38) we have seen that 
22

2 3 2 1

0

1
(1, , ) (1 )(1 ) (1 ).

2 1

n
n k

k
n

k

n
U s q q qs q s q s

k

 
       



 
     
   

 
By comparing coefficients this is equivalent with 
 

 
2 1

3 2 1 1

0 1

1 (1, , )
(1 )(1 ) (1 ) .

( ) [2 1]! [ ]!

n
n nn

n n

z U s q
qs q s q s z

e z n n


 

 

   
    (3.20) 

 
Let now  

 1

1

(1, , )
( , , ) .

[ ]!
nn

n

U s q
U z s q z

n




   (3.21) 

We then get 



29 
 

 
2 1

3 2 1

0

( ) ( , , ) (1 )(1 ) (1 ) ( ) ( , , ).
[2 1]!

n
n

n

z
e z U z s q qs q s q s e z U z s q

n






       
   

This implies 
( ( ) ( ))( ( , , ) ( , , )) ( ) ( , , ) ( ) ( , , ) ( ) ( , , )

( ) ( , , ) ( ) ( , , ) ( ) ( , , ) ( ( ) ( ))( ( , , ) ( , , )).

e z e z U z s q U z s q e z U z s q e z U z s q e z U z s q

e z U z s q e z U z s q e z U z s q e z e z U z s q U z s q

         
           

 

Since 22 1

1

(1, , )
( , , ) ( , , ) 2

[2 ]!
nn

n

U s q
U z s q U z s q z

n




     and 

2 12

0

(1, , )
( , , ) ( , , ) 2

[2 1]!
nn

n

U s q
U z s q U z s q z

n




  
  

we see that 
 

 

22 1

1

2 12

0

(1, , )
( ) ( )[2 ]! .

(1, , ) ( ) ( )
[2 1]!

nn

n

nn

n

U s q
z

e z e zn
U s q e z e zz

n









 


 





 (3.22) 

 
Again the left-hand side does not depend on .s  So we can e.g. choose 0s   and get that 

 

22 1

1

2 12

0

( ; )
( ) ( )[2 ]! .

( ; ) ( ) ( )
[2 1]!

nn

n

nn

n

q q
z

e z e zn
q q e z e zz
n










 


  






 (3.23) 

 
 
If we write (3.22) in the form 
 

2 22 1 2

1 0

(1, , ) ( ) ( ) (1, , )

[2 ]! ( ) ( ) [2 1]!
n nn n

n n

U s q e z e z U s q
z z z

n e z e z n


 

 


     

 
and compare coefficients we get 
 

  1
2 1 2 2 22 2 1

0

2 1
(1, , ) ; ( 1) ( ) (1, , ).

2 [2 1]

n
n k

n n k kn k
k

n
U s q q q G q U s q

k k
 

  


 
     
  

 
This immediately implies  Theorem 3.3. 
 
 

Since the left-hand side of (3.17) and 2 1( ; )

[2 ]!
nq q

n


 are invariant under 
1

q
q

  we see that 

 

 2 2

1
( ).n nG G q

q

 
 

 
 (3.24) 

 
 
Now we prove a q  analogue of (3.11): 
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Theorem 3.4 
 
The q Chebyshev polynomials (1, , )nU s q  satisfy the identity 
 
 

 
22

2 1 1
0 1

( 1) (1 ) (1, , ) (1, , ).
k

n n m
k j n n mn n

n m k m
k j n m k

n
q q U s q q s U s q

k

      
   

    

 
   

 
   (3.25) 

  

Proof 

 

Let 

 

2
2 1

0 1

( , , , ) ( 1) (1 ) (1, , ).
k

n n m
k j

n m k
k j n m k

n
W n m s q q q U s q

k

   
 

  
    

 
   

 
   (3.26) 

 
 
We want to show that 

 
2

1( , , , ) (1, , ).n n mn n
mW n m s q q s U s q 
  (3.27) 

 
We prove this identity with induction. 
For 0n   it is the trivial identity 1 1(1, , ) (1, , ).m mU s q U s q   

For 1n   it reduces to 1
1 1(1, , ) (1 ) (1, , ) (1, , ).m m

m m mU s q q U s q q sU s q
     

By definition of the polynomials this is true for all non-negative .m  
 
In general we have 
 
 1 1( , , , ) ( 1, 2, , ) (1 ) ( 1, 1, , ).n mW n m s q W n m s q q q W n m s q         (3.28) 

 
Observing  that   

 

1 1

1 1

1 1
(1 ) (1 )

1

1 1 1 1

1 1
1

n m n k m

n k m n k k m n k

n n
q q q

k k

n n n n
q q q

k k k k

n
q

k

   

      

    
        

               
                             




 

we get 
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1 1

1 1 1
1 12 2

2 1 2 2

0 2 0 1

2

( 1, 2, , ) (1 ) ( 1, 1, , )

1 1
( 1) (1 ) (1, , ) (1 ) ( 1) (1 ) (1, , )

( 1)

n m

k k
n n m n n m

k j n m k j

n m k n m k

k j n m k k j n m k

k

k

W n m s q q q W n m s q

n n
q q U s q q q q q U s q

k k

q

 

    
 

     
         

   
   
   




     

 
      

 

   
      

   
1

1 1
1 1 1 2

2 1 2 1

0 2 1 2

1
2

2 1 2

1 2

1 1
(1 ) (1, , ) (1 ) ( 1) (1 ) (1, , )

1

(1, , ) ( 1) (1 )

k
n n m n n m

j n m k j

n m k n m k

k j n m k k j n m k

k
n n m

k j

n m n

k j n m k

n n
q U s q q q q q U s q

k k

U s q q q U


   

  

     
         

 

 
    

  
   
  

 
 
 

 
    



   

   
      

   

  1 1 1 1

1

1

1 1 2

1

2

2

2 1

0 1

1 1
(1, , ) (1 ) (1 )

1

(1 )( 1) (1 ) (1, , )

( 1) (1 ) (1, , ) ( , , , ).

n m n k m

m k

n
n m

n m n j

n m

j m

k
n n m

k j

n m k

k j n m k

n n
s q q q q

k k

q q q q U s q

n
q q U s q W n m s q

k

     

  




 

 

 



  
    

 
 
 

 
 
 

 
  



   

   

    
        

 
  



 
 
By induction (3.28) implies 
 

 

2 2

2 2

1 1

( 1) 1 ( 1) 1 1
1

( 1) 1 1
1 1

( , , , ) ( 1, 2, , ) (1 ) ( 1, 1, , )

(1, , ) (1 ) (1, , )

(1, , ) (1 ) (1, , ) (1, , ).

n m

n n n m n n n n m n m
m m

n n n m n m n n nm n
m m m

W n m s q W n m s q q q W n m s q

q s U s q q s q U s q

q s U s q q U s q q s U s q

 

        


      
 

      

  

   

 

 
For 0m   we get  

 2
2 1

0 1

( 1) (1 ) (1, , ) 0.
k

n n
k j

n k
k j n k

n
q q U s q

k

 
 
 

 
   

 
   

 
   (3.29) 

 
 
 
An easy consequence is a q  analogue of the Seidel identity for the Genocchi numbers which 
gives an easy way to calculate the q Genocchi numbers and shows that 

1
1 2( ; ) ( ) [ ]n

n nq q G q q
   is a polynomial with integer coefficients.  

 
 
Theorem 3.5 (q-Seidel formula) 
 

 
 
 

2 2 12
2 2

2 22 2
0

2

;
( 1) ( ) [ 1].

2 ;

n
k n k

k k
n kn k

k
k

q qn
q G q n

k q q

 
      

 




 
     

  (3.30) 

Proof 
 
Since the set of polynomials  2 0

(1, , )n n
U s q


 is a basis for the vector space of polynomials in 

s  we can define a linear functional   by  
 

  2 (1, , ) [ 0].nU s q n    (3.31) 

 
By (3.19) this implies  
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    1
2 1 22 1

(1, , ) ( 1) ; ( ).n
n nn

U s q q q G q 
 

    (3.32) 

 
If we apply this to  (3.29)  we get for 1n   

2 2
2 1 2 1

0 1 0 1

22 2 1 2
2 1

0 1 1

0 ( 1) (1 ) (1, , ) ( 1) (1 ) ( (1, , ))

(1 ) (1 )( 1)
2

k k
n n n n

k j k j
n k n k

k j n k k j n k

n
k

n n k
j j n k

k j n k j

n n
q q U s q q q U s q

k k

n
q q q G

k

 
   
   
   

   
       

 
          

    

                  

 
   

 

   

   2 2 ( ).n k q

 
Dividing by  

2 1
;

n
q q


  we get (3.30). 

 
It should be noted that just as for 1q   (3.30) is in fact the same formula as (3.14). We need 
only use (3.18) to translate one formulation  into the other. 
 
 
Finally we want to show how to derive a Seidel triangle for the q Genocchi numbers. We 
construct the following triangle consisting of numbers ( , , )a n k q  with 0,1,2,n  and 

0 1 .
2

n
k       

 

Let 1
2 2(2 , , ) ( 1) (1, , )n n k

ka n k q s U s q 
   and 1

2 1(2 1, , ) ( 1) (1, , ).n n k
ka n k q s U s q 
    

 
The first terms are (if we delete the column 0k  )  
 
 

0

1

0 2

1 3
2

0 2 4
2

1 3 5
3 2

0 2 4 6

(1, , )

(1, , )

(1, , ) (1, , )

(1, , ) (1, , )

(1, , ) (1, , ) (1, , )

(1, , ) (1, , ) (1, , )

(1, , ) (1, , ) (1, , ) (1, , )

U s q

U s q

sU s q U s q

sU s q U s q

s U s q sU s q U s q

s U s q sU s q U s q

s U s q s U s q sU s q U s q

 
 

  
   

 

 
Then  

2 2 2 1(2 1, , ) (2 1, 1, ) (1 ) (2 , , )k ka n k q q a n k q q a n k q        
for 1,2, , 1.k n    
 
On the other hand 

 1 2 2(2 , , ) (2 , 1, ) (1 ) (2 1, , )k ka n k q q a n k q q a n k q      

for 1,2, , .k n   
For 1k n   we get 2(2 , 1, ) (1, , ).na n n q U s q   
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If we apply the linear functional   and let ( , , ) ( ( , , ))b n k q a n k q  then (2 , 1, ) 0b n n q   

and therefore we have  1 2 2(2 , 1, ) (2 , 2, ) (1 ) (2 1, 1, ) 0.k kb n n q q b n n q q b n n q         

 
Thus we get 
 
Theorem 3.6 (q-Genocchi triangle) 

Define a triangle  ( , , )b n k q for n  and 0 1
2

n
k       

by 

 
 2 2 2 1(2 1, , ) (2 1, 1, ) (1 ) (2 , , )k kb n k q q b n k q q b n k q        (3.33) 

and 

  1 2 2(2 , , ) (2 , 1, ) (1 ) (2 1, , )k kb n k q q b n k q q b n k q      (3.34) 

for 1 1k n   with initial values (0,1, ) 1b q   and (1,1, ) 1 .b q q   
Then  
 

    1
2 1 22 1

(2 1, ) ( 1) (1, , ) ; ( ).n
n nn

b n n U s q q q G q 
 

      (3.35) 

 
This is another simple method to compute the q Genocchi numbers. 
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