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Abstract

In this overview paper a direct approach to q— Chebyshev polynomials and their elementary

properties is given. Special emphasis is placed on analogies with the classical case. There are
also some connections with q—tangent and q— Genocchi numbers.

0. Introduction

Waleed A. Al Salam and Mourad E.H. Ismail [1] found a class of polynomials which can be
interpreted as q—analogues of the bivariate Chebyshev polynomials of the second kind.

These are essentially the polynomials U (x,s,q) which will be introduced in (2.12). In [11]
I also considered corresponding g— Chebyshev polynomials T, (x,s,q) of the first kind
which will be defined in (2.6). Together these polynomials satisfy many g —analogues of
well-known identities for the classical Chebyshev polynomials T, (x) =T, (x,-1,1) and

U, (x) =U,(x,-11). For some of them it is essential that our polynomials depend on two
independent parameters. This is especially true for (2.36) which generalizes the defining

property(x FXE - 1) =T (X)+U,_(X)vx* =1 of the classical Chebyshev polynomials.

Another approach to univariate q—analogues of Chebyshev polynomials has been proposed
by Natig Atakishiyev et al. in [2], (5.3) and (5.4). In our terminology they considered the monic

versions of the polynomials Tn[x \/1_ jand U ( \/_q) Since
q

U, (x,s*q)=s"U, (é,l,qj and T (x,s%,q) =s"T, (%,1,qj their definition also leads to the

same bivariate polynomials T, (x,s,q) and U (x,s,q).
Without recognizing them as q—analogues of Chebyshev polynomials some of these
polynomials also appeared in the course of computing Hankel determinants as in [7] and [13].

The purpose of this paper is to give a direct approach to these polynomials and their simplest
properties.
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1. Some well-known facts about the classical Chebyshev polynomials

Let me first state some well-known facts about those aspects of the classical Chebyshev

polynomials (cf. e.g. [15]) and their bivariate versions for which we will give g—analogues.

The (classical) Chebyshev polynomials of the first kind T, (x) satisfy the recurrence

Tn(x) = 2XTn—1(X) _Tn—Z(X)

with initial values T,(x) =1 and T,(x) = x.
For x =1 this reduces to

T (1) =1.

(1.1)

(1.2)

The (classical) Chebyshev polynomials of the second kind U (x) satisfy the same recurrence

Un(x) = 2XUn—l(X) _Un—z(x)

but with initial values U ,(x) =0 and U (x) =1, which gives U (x) = 2x.

As special values we note that
U,@=n+1

These polynomials are related by the identity
(x /X% - 1)n =T (x)+U,__,(x)Vx* -1,

which in turn implies
T, (¥)? = (X* =1V, (x)* =1.

Remark 1.1

For x =cos4 identity (1.5) becomes
cosng+isinng = (cos$+ising)" =T, (cos &) +iU, ,(cos )sin I
or equivalently

T,(cos¥) =cosnd
sin(n +1)9

U, (cos ) = SN g

This is the usual approach to the Chebyshev polynomials. Identity (1.6) reduces to

cos’nd +sin’ng =1.

(1.3)

(1.4)

(1.5)

(1.6)

(1.7)

(1.8)



Unfortunately it seems that this aspect of the Chebyshev polynomials has no simple q—
analogue.

The Chebyshev polynomials are orthogonal polynomials. As is well-known (cf. e.g. [4]) a
sequence (pn(x))nZo of polynomials with p,(x) =1 and deg p, =n is called orthogonal with

respect to a linear functional A on the vector space of polynomials if A(p,p,)=0 for

m = n. The linear functional is uniquely determined by A (p,)=[n=0]. Here [P] denotes
the Iverson symbol defined by [P]=1 if property P is true and [P]=0 otherwise.

The values A(x") are called moments of A.

Let P,(x) denote the monic polynomials corresponding to p,(x) and a(n,k) be the uniquely
determined coefficients in

ia(n’k)Pk(X) =x". (1.9)
Then a(n,0) = A(x") and more generally a(n,k) :%_

By Favard’s theorem there exist numbers s(n),t(n) such that the three-term recurrence

P.(X) = (x=s(n=1))P,(x) —t(n—2)P,_,(x) (1.10)
holds.

Therefore the coefficients a(n, k) satisfy

a0, j)=[j=0]
a(n,0)=s(0)a(n-1,0)+t(0)a(n-1,1) (1.11)
a(n, j)=a(n-1,j-D+s(j)a(n-1, j)+t(ja(n-1, j+1).

This can be used to compute the moments a(n,0) = A(x").
If the moments are known then the corresponding orthogonal polynomials P, (x) are given

by

A(x") A(xl) A(x“‘l) 1
A(xl) A(xz) A(x”) X
1 2 3 n+l 2
P G M) AGE) A | e
A(Xn) A(Xn+l) A(X2n—1) X"

So the knowledge of the polynomials P,(x) is equivalent with the knowledge of s(n) and
t(n) and this is again equivalent with the knowledge of the moments.



Since — I L) dx = jcos(n&)ds =[n = 0] for the polynomials T (x) the corresponding
0

N

linear functional L is given by the integral

1t p(x)
L(p(x))== dx (1.13)
(p(x)) e
and
1 if n=0
L(T2)= 100 g (1.14)
I B e R |
1 X 2

The corresponding moments are

L(x“):i[ 1 [an (1.15)

and L(x*"") =0.

For the polynomials U (x) we get from

1 Vs
EIUn(x)\/l— x2dx :gjsin((n +1)9)sin 9d g = [n = 0]
4 -1 T 0

that the corresponding linear functional M satisfies

M(pn):ij p(x)V1-x?dx (1.16)
and
2):£IUn(x)2\/l—x2dx:l. (1.17)
T4

The corresponding moments are

2
M(x*") == j X*"\1-x*dx = = [nj (1.18)
2 n+1
and M (x*"") =0.

As already mentioned in the introduction for our g—analogues we need bivariate Chebyshev
polynomials.



The bivariate Chebyshev polynomials T, (x,s) of the first kind satisfy the recurrence
T.(x,8) =2xT, ,(X,S)+ ST, ,(X,S) (1.19)

with initial values T,(x,s) =1 and T,(x,s) = X.
Of course T, (x) =T, (x,-1).

They have the determinant representation

X s 0 0 0
-1 2x s 0 O
0 -1 2x 0 0
T.(x,s) = det C (1.20)
0 0 0 - 2x s
0 0 0 - -1 2x

The bivariate Chebyshev polynomials of the second kind U (x,s) satisfy the same recurrence
U,(x,s)=2xU, ,(x,8)+sU, ,(x,s) (1.22)
but with initial values U,(x,s) =1 and U,(x,s) = 2x.

Their determinant representation is

2x s 0 0 O
-1 2x s 0 O
0 -1 2x 0 O
U, (x,s) =det ) : (1.22)
0O 0O O 2X S
0O 0 O -1 2x

These polynomials are connected via

(x+\/x2+s)n =T (%,8)+U, (X, S)VX* +s. (1.23)

This also implies
T (X,8)" = (x> +s)U,_,(x,8)* = (=s)". (1.24)

The Chebyshev polynomials are intimately related with Fibonacci and Lucas polynomials

Fra(xs)= En_kJSkX”‘Zk (1.25)



and

{

-
L, (x,8) = F,.1(x,8) +sF, 1(x,8) = konnfk(n ) jst”‘Zk (1.26)

NS

for n>0 (cf. e.g. [10]). Here as usual L,(x,s)=2.

More precisely the monic polynomials T,(x,s)=1 and T”Z(s(’ls) for n>0 coincide with the
modified Lucas polynomials
L@xs) - (x,ij. (1.27)
2" 4

They are defined by L (x,s) =L (x,s) for n>0 and Lj(x,s) =1 and satisfy a three-term

recurrence with s(n) =0, t(0) =§ and t(n) :% for n>0.

The moments can be obtained from the formula

By
Z(kj(—s) Lo (X,8) = X". (1.28)

k=0

U, (x,9)

The monic polynomials — are Fibonacci polynomials
2n

U,(x,5) _ Fou(2x) _ Fnﬂ(x, ij_ (1.29)

2" 2"
In this case the corresponding numbers s(n) and t(n) are s(n) =0 and t(n) :%.

Here the moments can be obtained from

2 n n
2 (@_ {k _1D ) Fraat9) =" (1.30)

We shall also give q—analogues of the following identities which express Chebyshev
polynomials of odd order in terms of Chebyshev polynomials of even order:

n(2n+1
T2n+1(x) = Z( 2k

k=0

J(—l)”‘kt2n_2k+1x2”+1‘2kT2k (X) (1.31)

6



and

2n+2
Uy (X) = Z( jm( 1) Gy_pir2 (2X) 72U, (X). (1.32)
k=0

Here the tangent numbers (t,,.,) _, =(1,2,16,272,7936,---) and the Genocchi numbers
(Gyn),.0 =(0,1,1,3,17,155,2073,---) are given by their generating functions

— 2n+1 2n+1 133
e’ +e” g(;( D’ (2n+1)' (1:33)
and
_Z( [t —2n Cun_gn (1.34)
e +e?t = (2n)!
Note that
2°G
o =T f{*z : (1.35)

2. g-analogues

We assume that q = —1 is a real number. All q— identities in this paper reduce to known
identities when g tends to 1. We assume that the reader is familiar with the most elementary
notions of g —analysis (cf. e.g. [5]). The q—binomial coefficients

H: [112]--[n]
k] T[] [ In K]

NI R b

i n :
If we want to stress the dependence on g we write [n], and LJ respectively.
q

with [n]=1+q+---+q"" satisfy the recurrences

We also need the q—Pochhammer symbol (x;q), = (1- x)(1-gx)---(1-q"*x) and the q—
binomial theorem in the form

(%9), = i(—l)kq[zj ka (22)
or equivalently
P, (X%, y) = (x+y)(@x+y)-- (@' x+y) = iq@ m X<y, (2.3)



We denote by e(z) =e(z,q) = Z[i]l the q—exponential function. It satisfies
n>0 .

1 _ Zq@i

e(-z) = [n]!

Since the Chebyshev polynomials are special cases of Fibonacci and Lucas polynomials it
would be tempting to look for g—analogues related to the simplest q—analogues of

Fibonacci and Lucas polynomials (cf. e.g. [10])

HEN
: 2 { ) ki|skxn—2k ’
H

qk
0
2 -k
Ln(X! S’ q) = Fn+l(X1 S’ q) + SFn—l(X’ qs’ q) = zqk B ﬂ|:n i|skxn—2k1
i [n-=Kk]| k

Fn+1(X’ S, q) =

k

L*J k+1 _
Fib ,(x,s,0) = iq[ ? ]{n y k}skx”‘2k and
k=0

n

i - et [k
LUCn(X’Siq)_Flbm—l(X’S’q)+SF|bn—l(X’S’q)_kzz(;q [n—k]|: k :|S " .

But here we have no success. Though the polynomials F, ,(x,s,q) are orthogonal there are no

closed forms for their moments. None of the other classes of polynomials satisfies a 3-term
recurrence. So they cannot be orthogonal.

But it is interesting that for Fib,_,(x,s,q) and Luc,(x,s,q) the following analogues of (1.28)
and (1.30)

,_
NS

|

=0

oot csnr

F

and

n+l

{TJ n n K —: n
k=0 qk} _{k —1D (=s)" Fib,.; 5 (X,5,0) = x 25)

hold (cf. [8], (3.1) and (3.2)).
Notice that Luc,(x,s,q) =2 and Luc,(x,s,q) =1, whereas Luc,(x,s,q) = Luc,(x,s,q) for

n> 0.

Fortunately there do exist g —analogues of the recurrences (1.19) and (1.21) which possess
many of the looked for properties.



Definition 2.1

The q— Chebyshev polynomials of the first kind are defined by the recurrence
T.(x,5,0)=@+q")XT_,(%5s,9)+9""'sT _,(x,s,q) (2.6)

with initial values T,(x,s,q) =1 and T,(x,s,q) = X.

The first terms are 1, x,[2]x* + gs, [4]x® + q[3]sX, --- .

Some simple q—analogues of T, (1) =1 are

Tn (1!_11q) =1, (27)
T, (1,—1&1) = q@, (2.8)
q

(ZJ n_2 (k;—l]

T,L-9.9)=q"+@1-9")2.q (2.9)
k=0
and

T,(L-9%0)=[n]-q"*[n-1]. (2.10)

It is easily verified that

T, (x,s,qj
1 q
Tn(X,S,—}—- (2.11)

For g =-1 we get T,,(x,s,-1) = —sT, ,(x,s,-1) and
Ty (X,8,=1) = 2xT, (X, 5,-1) +sT,, ,(X,s,-1).
This gives the trivial sequence (T,(x,s,-0)) , = (1, x,—s,—xs,sz,szx,—s3,—xs3,---). This is

the reason for excluding g = -1.



Proposition 2.1

The q— Chebyshev polynomials of the first kind satisfy

X gs 0 0 0

-1 (A+g)x o°s .- 0 0

0 -1 1+Q°)X - 0 0
T.(X,s,q) =det| . : ( +? )X : . :

0 0 0 o @A+g"Hx g''s

0 o0 0 - 1 (1+gHx

This is easily seen by expanding this determinant with respect to the last column.
Definition 2.2

The g- Chebyshev polynomials of the second kind are defined by the recurrence
U,(x,5,0)=(1+q")xU, ,(x,5,0)+9""sU, ,(x,s,0) (2.12)

with initial values U,(x,s,q)=1 and U _,(x,s,q) = 0.

The first terms are 1,[2]x,[4]x* + gs,[4](1+ 9°) x® + q[4]sx, - --.

Some simple g—analogues of (1.4) are

Un(li—%,Q}Q[Zj[n +1], (2.13)
U.(1,-109) =q( 2 ]z f}ﬂ . (2.14)
&1
q
k+1
U,1-0q,0) = Zq( ? J (2.15)
k=0
and
U,(@-9%q)=[n+1]. (2.16)
It is easily verified that
U, (s, X,EJ :—U”(Xﬂs’q). (2.17)
o) 7

q
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For g =-1 we would have U,, (x,s,-1) = (-s)" and U,, ,(x,s,-1) =0.

Proposition 2.2

The g— Chebyshev polynomials of the second kind satisfy

(1+q)x gs 0 0 0
-1 (@+g)x  0o’s 0 0
0 -1 1+q° 0 0
U.(X,s,q) =det : : ( +:q X : )
0 0 0 (1+9"Hx  q"'s
0 0 0 -1 (1+qg")x

In [3] and [16] a tiling interpretation of the classical Chebyshev polynomials has been given.
This can easily be extended to the q— case.

As in the classical case it is easier to begin with polynomials of the second kind.

We consider an nx1—rectangle (called n—board) where the n cells of the board are
numbered 1 to n. Asin [3] and [16] we consider tilings with two sorts of squares, say white
and black squares, and dominoes (which cover two adjacent cells of the board).

Definition 2.3

To each tiling of a board we assign a weight w in the following way: Each white square has
weight x. A black square at position i has weight g'x and a domino which covers positions
i—1,i has weight g'*s. The weight of a tiling is the product of its elements.

The weight of a set of tilings is the sum of their weights.

Each tiling can be represented by a word in the letters {a,b,dd}. Here a denotes a white

square, b a black square and dd a domino.
For example the word abbddaddaab represents the tiling with white squares at positions

1,6,9,10, black squares at 2,3,11 and dominoes at {4,5} and {7,8}. Its weight is

27SZX7 ]

X-0°X-0°x-q*s-x-q's-x-x-g"*x =q
Theorem 2.1

The weight w(V,) of the set V. of all tilings of an n—board is w(V,) =U, (x,s,q).

Proof
This holds for n=1 and n=2. E ach n— tiling u, has one of the following forms:

u,.a,u, ,b,u ,dd.
Therefore

11



W(Vn): zw(un): z W(un—l)x+ Z W(un—l)qnx+ z W(un—z)qn_ls

Un eVn lJn—le\/n—l un—levn—l unfzevn—z

= W(Vn—l) (1+ qn ) X+ W(Vn—z)qn_ls
which implies Theorem 2.1.

Remark 2.1
If we more generally consider the weight w, which coincides with w except that a black

square at position i has weight g'rx we get in the same way that U " (x,s,q) = w,(V,)
satisfies

UD(x,s,0) = (1+0"r)xU 5 (x,5,0) +9" U (x,5,0)

with initial values U{"(x,s,q) =1 and U\”(x,s,q) = (1L +qr)x.

In this case we get more generally

U, (x5,a) =U0(x,5,qU ™ (x,q"s,q) +g"sU L (x, s, UL 7 (x,9™s, ).

m+n

The second term occurs when positions (m,m +1) are covered by a domino and the first term
in the other cases.

The same reasoning as above gives

Proposition 2.3
Let u(n,k,s,r) be the w,—weight of all tilings on {1,---,n} with exactly k dominoes.

Then

u(n,k,s,r)=u(n-21k,s,r)(A+9g"r)x+u(n-2,k-1,5,r)q"'s (2.18)
with initial values
u(n,0,s,r)=1+qr)@+9°r)---(L+q"r)x",

u(1,0,s,r)=(1+qr)x and u(d,k,s,r)=0 for k >0.

It is now easy to verify
Theorem 2.2

The w, —weight u(n,k,s,r) of the set of all tilings on {1,---,n} with exactly k dominoes is

.| n—Kk
u(n,k,s,r)=q" {nk }(1+qk+1r)--~(1+ q"*r)skx" 2 (2.19)

for OSkSEJ and u(n,k,s,r)=0 for k>EJ.

12



Proof

The initial values coincide and by induction

2 [n—k-1
un-1k,s,n)(1+qg"rx+u(n-2,k-1,s,r)q"'s=q"* {n ) }(1+q"*1r)---(1+q”klr)(l+q”r)s"x”2"

+¢kw{n—k—1

k 1 :|(1+qkr).“(1+qnklr)qnlstnZK

k-1

2 n-k-1 n-k-1 n-k-1 n-k-1
— k 1 k+1 . 1 n—-k-1 k , n—2k n-2k n-k k
v e e ([T e [ e )

2 -k
— qk (1+ qk+lr).“(1+ qnfkflr)skxn72k (|:n k :|(l+ anr)].

2 -k-1 -
— qk (l+qk+lr).“(l+ qnfkflr)skxn—Zk (|:n k :|(1+ an)+|:n :|qn2k (1+qkr)]

Here we used the recurrence relations (2.1) for the q—binomial coefficients.

Remark 2.2

[ n—k
Formula (2.19) is the product of g ) }skx”‘Zk and

B - ¢
(1+ qk+1r)___(l+ qn—kr) _ zzlk|:n ;Zk (q(k+1)r)f q[Z]

/=0
Ilse Fischer [12] has found a combinatorial reason for this product representation.

Let v(n,k,?,x) bethe w, —weight of all tilings with k dominoes and ¢ black squares. Then

, n=k7 [Sn-2k
v(n,k, 2, x) = q“s*r'x"%q" {nk }q[zj[n , }:q”v(n,k,O,l)v(n—2k,0,€,x). (2.20)

In order to give a combinatorial interpretation of this formula we observe that the weight can
also be obtained from the following properties.

The fact that the weight of a domino at {i,i+1} is g's is equivalent with

a) each white square that appears before this domino contributes a q,
b) each black square that appears before this domino contributes a q,
c) each domino that appears before this domino contributes g?

d) and the domino itself contributes gs.

13



The fact that the weight of a black square at i is q'xr is equivalent with
e) each white square that appears before this black square contributes a q,
f) each black square that appears before this black square contributes a q,
g) each domino that appears before this black square contributes a g°
h) and the black square itself contributes gxr.

This can also be reformulated in the following way:

1) Each black square contributes gxr,

2) each unordered pair of distinct black squares contributes a g,
3) each white square before a black square contributes a g,

4) each domino contributes gs,

5) each unordered pair of distinct dominoes contributes g,

6) each white square before a domino contributes a q,

7) each pair of a domino and a black square, where the order is irrelevant, contributes a
q,
8) each domino before a black square contributes a g.

For b) and g) is equivalent with 7) and 8).
Now consider the right-hand side of (2.20).

Observe that v(n,0, 7, x) is determined by 1), 2) and 3); v(n,k,0, x) is determined by 4), 5)
and 6); and 7) gives q“'.

We first distribute the dominoes on the n—board and let each unoccupied cell have weight 1.
Then we distribute the white and black squares on the unoccupied cells. Their weight is
v(n—2k,0,7,x). The total weight of the configuration is v(n,k,0,1)v(n - 2k,0,,x) if each
black square before a domino contributes a g. For then 6) is satisfied for the computation of
v(n,k,0,1) since all squares contribute a g (and thus behave as white squares in this context).

Thus the right-hand side of (2.20) satisfies 1) to 7), but instead of 8) we have
8"): each black square before a domino contributes a g.

Thus we must reverse the order of the dominoes and black squares to obtain (2.20).
An equivalent form is
Proposition 2.4

Let t be a tiling of an n—board with k dominoes and ¢ black squares. Reverse the order of
the dominoes and black squares in t and obtain a tiling T. Denote by A the tiling obtained
by replacing in T each square with a colourless square ¢ with weight 1 and let B be the
tiling obtained by deleting all dominoes of T.
Then

w,(t) = 4“'w, (A)w, (B). (2.21)

14



Example

Consider the tiling t = abbddaddaab with (n,k,¢)=(11,2,3) weight g*'s’r*x’.

Then T =abddddabaab and A= ccddddcccee with w, (A) = g°s* and B = ababaab with
w, (B) = ababaab = q"°r®x’.

This gives w, (t) = ¢*°(¢°s*)(g™*x").

Theorem 2.2 implies for r =1

Theorem 2.3

EJ 2| n—=k .
U, (xs,a)=24 { ) }(1+q”)---(1+q”k)sk><”2k- (2.22)

k

For the q— Chebyshev polynomials of the first kind the situation is somewhat more
complicated. Here we get

Theorem 2.4

T,(x,s,q) is the weight of the subset of all tilings of {1,---,n} where the last block is either a

white square or a domino.
Therefore for n>0

T (%,8,0)=xU, ,(X,5,0)+q"'sU,_,(X,s,0q). (2.23)

Proof
It suffices to prove that the right-hand side satisfies the initial values and the recurrence (2.6).

(1+0a")x(xU, 4(x,5,9)+9"'sU, ,(x,5,0))+9"s (XU, ,(x,5,0)+q"?sU, ;(x,5,0))
=xU,,(x,5,0)+9"xU,_,(x5,9) +q"'sxU, _,(x,s,q) +q*"sxU, ,(X,s,q)
+q"sxU,,,(x,8,0) + 4™ *sU, 4(x,5,q)

=x((1+9")xU, 1 (x,5,0) +q""sU, ,(x,5,9))

+0"s((1+9™) XU, ,(x,5,0) +9"?sU, ,(x,5,0) )
=xU,(x,5,9)+q"sU,_(x,s,q).

15



Theorem 2.5

The g— Chebyshev polynomials of the first kind are given by

H (1+ "t

~ 2 y q)(1+q ) [n] n-k k -2k
T“*&”‘;;‘(uq»~a+¢ya+qHy~a+q“)m—H{ k}sx
2

(2.24)

2 _k 2
q“ (1+9*)-(L+ q”_k_l)—[n[n]k] {n ) }skx”‘2k +[n=0mod2]q"s".

=

Proof

Consider the subset of all tilings of an n—board whose last block is not a black square. Let
t(n,k,s) be the weight of all these tilings with exactly k dominoes.
Then

t(n,k,s) =u(n-1,k,s)x+u(n-2,k —1)g""s. (2.25)

We show that
) n-1 —k
t(n,k,S):qk (1+q) (1+q ) [n] |:n :| k\,n-2k

S X . 2.26
(1+q)--@0+95)- @A+ q" ) (1+q ) [n—k]| k (2.26)
This is true for n=1 and n = 2. By induction we get for 2k <n—1
t(n,k,s) =u(n-1,k,s)x+u(n—2,k -1)g"'s
eln-k-1 " e
= 1 (1 skx
q{ ) }(+q)(+q )

n-1.k2-2k+1 {n —-1-k

+q q k _1 :|(1+qk)’.'(1+qnlk)skxn2k

2 -k-1 -1-k

=qk (1+qk+l).__(1+qn—k—1)[|:n ) :|+(1+qk)qn—2k |:nk . j|]skxn—2k
2 -k -1-k

:qk (1+qk+l).__(1+qn—k—1)[|:nk :|+qn—k |:nk . :Dskxn—Zk

2 -k
— g (1+ qk+l).__(1+ g [n[i]k] [n . j|skxn2k

and for 2k =2n
t(2n,n,s) =u(2n-1,n,s)x+u(2n-2,n-1)g*"'s

2n-1,n%-2n+1 n _1 n n?.n
q"""q {n_l} q
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For g =1 the polynomial T (x,s) can also be interpreted as the weight of the set T, of all

tilings which begin with a domino or with a white square since in this case the weights of the
words c,---c, and c,---c, coincide.

In the general case this is not true. For example for n=2 the set T, = {aa,ab,dd} has weight

W(T,) = X* +0°x* +0s = T,(X,s,0) = X* + qx° +gs.
But we have

Theorem 2.6

T,(x,5,0) = XU, (x,0%,9) + gsU, _,(x, 6%, q). (2.27)
Proof

It suffices to show that the right-hand side satisfies recurrence (2.6).

(1+9"")x(xU,,(x,0%,0) + gsU,_4(x,0°,0)) + 4" s (xU, ;(x,0%s,0) + gsU,_,(x,°s,0))
=xU,,(X,9°s,0)+q"'x°U, ,(X,0%s,q) + qsxU, ,(x,9%s,q) +q"sxU, ,(X,9°s,q)
+0"'sxU, ,(x,9°s,9) +q"s’U, _,(x,9%s,q)

- x((1+ q"*)xU,,(x,0%s,q) +q"*g’sU,, 4(x,0’s, q))

+0s((1+9"2) XU, (.07, 0) + 4" *0’sU , (x,47s,0)

=xU, ,(x,9°s,q) +qsU, _,(x,9°s,q).

Theorem 2.6 has the following tiling interpretation:

Define another weight W such that each white square has weight X, each black square at
position i has weight g'x and each domino at position (i —1,i) has weight g'*'s if i <n. But
a domino at position (n—-1,n) has weight gs.

If we join the ends of the board to a circle such that the position after n is 1this can also be
formulated as: If (i—1,i, j) are consecutive points then a domino at position (i —1,i) has

weight g's.  Then T, (x,s,q) is the weight of all such tilings which have no black square at
position n. (Note that on the circle there are no dominoes at position (n,1).)

In order to find a g—analogue of (1.23) let us first consider this identity in more detail.

(x+\/x2 +s) =T (X,8)+U,__(X,5)VX* +5
is equivalent with

T . (X8)+U, (X,s)VX* +5 = (x+\/x2 +s)n+l = (x+\/x2 +s)(x+\/x2 +s)n
= (x+x/x2 + s)(Tn(x,s) +U_ (X S)VXE+ s)
=T, (%,8)x+(X* +5)U, 1 (X,5) +(T,(%,5) +U, ;(X,5)X)VX* +5.

17



Therefore (1.23) is equivalent with both identities

Toa(%,8) =T, (X, 8)x+(x* +5)U, ,(x,5) (2.28)

and
U,(x,8)=T,(x,8)+U, ,(X,S)x. (2.29)

To prove identity (2.28) observe that for q =1 a tiling of an (n +1) — board which does not

end with a black square either ends with two white squares aa or with a domino and a white
square dda. The weight w of these tilings is T.(x,s)x. Or it ends with ba or dd. Their

weight is (x> +s)U, ,(X,s).
Identity (2.29) simply means that an arbitrary tiling either ends with a black square which
gives the weight U ,(x,s)x or does not end with a black square which gives T, (x,s).
For arbitrary g this classification of the tilings implies the identities
T,..(%,5,0) = XT,(x,5,9) +q"(x* +s)U, , (X,5,0) (2.30)
and
U,(x,s,0) =T,(x,s,0) +q"xU,,(X,s,0). (2.31)

But there is also another q—analogue of (2.28):

T,.1(X,5,0) = q"XT,(x,s,9) + (X* + qs)U,, (X, 9°s, q). (2.32)

By (2.27) we have T, (x,s,q) = xU_(x,q9%s,q) +gsU, ,(x,g%s,q).
Therefore by (2.12)

U, (x,0%s,0) - xU, ,(x,0%s,0) = q"xU,,(X,q%s,q) + q""'sU, ,(x,q°s,q)
=" (XU, (%, 0%, 0) +qsU, ,(x,6%,0)) = 4T, (x,5,0).

Thus
U, (x,9°5,0)=q"T,(x,s,9) + XU, ,(X,9°s,q) (2.33)
and (2.27) implies (2.32).

As q-—analogue of (2.28) and (2.29) we can now choose the identities (2.31) and (2.32) which
we write in the form

T ..(%,50)=q"xT, (X,5,q) + (x* +gs)n°U,_,(x,5,Q)

(2.34)
U.(x,5,9) =T (x,5,0) +9"xU, ,(x,s,0).

Here n denotes the linear operator on the polynomials in s defined by np(s) = p(qs).
18



To stress the analogy with (1.23) we introduce a formal square root A= /(x*+s);° which

commutes with x and real or complex numbers and satisfies A? = (x* + gs)z* and write
(2.34) in the form

Tra(X,8,0) + AU, (X,5,0) = (q"x+ A)(T, (x,5,0) + AU, , (X,5,0)). (2.35)

Since (q'x+ A)(q'x+ A) = (gq’x+ A)(g'x + A) using the g—binomial theorem (2.3) we get as
analogue of (1.23)
P, (X, A) = (x+ A)(gx+ A)-+(q" "X + A) =T, (x,5,0) + AU, (X,,0). (2.36)

This gives
Theorem 2.7

For the gq— Chebyshev polynomials the following formulae hold:

{EJ n—2k
T (x5,0) = P, (X, A)+ p,(X, A)1 zq( ]{ n} W ZkH(X T g2is ) (2.37)

2 P 2k =0
and
A~ DA, & o7 [0+t
U, (x,s,q) =0 2An+1 ; {2k+1} X" ZKH(X +0*%s). (2.38)
Proof
This follows from (2.3) and the observation that A* = ((x +0s)7° ) 11 (x* +g* 1),

i=0

If we expand H(X +q21+1) zk:qus{ﬂ w22
j=0

2

q

we get by comparing coefficients in (2.37) and (2.38)
Theorem 2.8

For j<n the identities

H " Zk]{ Hk} B (1+q)---(A+q"") [n], {”—J}
g | = . — - e (2.39)
= 2k, [ile (+a)-@+a)-@+q"")-@Q+a" )=l | T ]

and
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NS

H ["fk} n+17 [k » n=]
q { }H =(1+9")---(L+q ’){ j } (2.40)

s 2k+1], [ ],
hold.

Remark 2.3

It would be nice to find a combinatorial interpretation of these identities.
For g =1 we get from (1.23)

T (X,8)* = (x*+s)U,_,(x,8)" = (-s)".
Since A does not commute with polynomials in s we cannot deduce a g—analogue of this
formula from (2.36).

But we can instead consider the matrices

n 2
A, =(X q"(x +le -
1 q"x
We then get
Theorem 2.9
T (x50 (X*+s)U,,(x0s,q)
- A 2.42
U, (xs,0) T, (X,E1qj AaA A (2.42)
Proof

We must show that

q"(x*+s

T..(%s0) (X*+s)U,(x,0s,q)
X
[1 q"x

T.(x,5,9) (X +s)U,,(x,0s,q)
U, (x,5.q) Tm(x,i,qj ) j
q

U, ,(x,s,0) Tn[x,i,qj
q

or equivalently

T...(%,5,0) = XxT,(x,5,0) +9"(x* + s)U, ,(X,s,q),

U,(xs,9)=T,(x5s,9)+09"xU, ,(x,5s,0),

U,(x.0%,0) =q'T, (x,5,9) + XU, (x,q°s,q),

T, (%5,0)=9"XT, (x,5,9) + (x* +gs)U, ,(x,9°s,q).

This follows from the recurrences (2.30), (2.31), (2.32) and (2.33).
20



If we take determinants in (2.42) we get the desired q—analogue of
T.(X,8)° = (X* +s)U,_,(x,8)* = (-s)".

Theorem 2.10

T,(%,5,Q)T,(%,0s,0) = (X* + as)U, (X, s, U, (X, 9°s,q) = q[ ? J (-9)". (2.43)

For example for (x,s) = (1,—1) this reduces to
T,(1,-0,9) - (1~ q)iq(Zj[n] =T,(1,-9,9) - (1~ q”)Zr;q(Zj = q[ i ]

In [11] many other identities occur. These follow in an easy manner from the identities
obtained above.

Since the q— Chebyshev polynomials satisfy a three-term recurrence they are orthogonal with
respect to some linear functionals, i.e. L(T,(x,s,q)T,,(x,s,q)) =0 and

MU, (x,s,q)U,(xs,q)) =0 for n=m.

These linear functionals are uniquely determined by

L(T,(x,5,9))=[n=0] and M (U, (x,s,q))=[n=0].

These linear functionals are closely related. From (2.30) we get
T (%,8,0) = XT, (%,5,0) = 4" (X" + 8)U, 4, (X,5,0).

By (2.6) we have XT (x,s,q) = T”H(X’S’q)l_ qq:Tn_l(x,s,q)
+

and therefore we obtain
Tn+l(xl S, q) + STn—l(X! S! q) = (1+ qn)(x2 + S)Un—l(xi S’ q) (244)

If we apply the linear functional L to this identity we deduce that
2
1+ q)L((1+X—)Un(x, s, q)] =[n=0]=M (U,(x,5,9)). (2.45)
S

By linearity we obtain

S

L+ q)L((ler—j p(x)j= M (p(x)) (2.46)

for all polynomials p(x).
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As gq-—analogue of (1.14) we get

1 if n=0

2\ n+l
1+q"

n

q's
1+q

This follows by applying L to (2.6) which gives L(X”Tn)z -

&

@+ a)A+g?)--(1+g")

L(x"T,.,) and therefore

n

L(x"T,)=(-s)"
Now observe that L(T,?)=L((1+q)---(L+q"")x"T,).

Of special interest are the moments of these linear functionals, i.e. the values L(x") and
M (x"). To find these values it suffices to find the uniquely determined representation of x"
as a linear combination of the q— Chebyshev polynomials.

These have been calculated in [11] for the corresponding monic polynomials. Therefore |
only state the results in the present notation:

For the g— Chebyshev polynomials of the first kind we have

|

"= n n-2k TN T, .(%5,Q)
X —kzoMmq [2k  n])(-qs) v )@ )t Q) Ar g (2.48)

,_
NS

This gives as q—analogue of (1.15)

2 _ n
L(x*") :[ n}& (2.49)
"Ta+qy
j=1
and L(x*"") =0.
For the monic polynomials we get the three-term recurrence with s(n) =0, t(0) = % and
+
n+l
() =
1+9")1+9q™)
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For the q— Chebyshev polynomials of the second kind the corresponding formulae are

n+1

2 n 2 1
M(U,?) = (-s) q( jqu‘il (2.50)

as g—analogue of (1.17) and

e

n n v 1+ qn—2k+1
ﬂk}_{k—lD(_s) X L ksl _ U, o (X,5.0) (2.51)
k=0 H(1+qJ)H(1+q,)

NS

X

and therefore

“[n+1]| n o

M (") = 1 [Zn} 1+q  (-qs)" 252)
1+q V2
1+q’)
1

and M (x*"") =0.
Of course (2.52) also follows directly from (2.49) and (2.46).

The parameters for the three-term recurrence of the monic polynomials are s(n) =0 and

n+1

t(n)=——9 >
@+9™)2+9™)

Remark 2.4

The q—Chebyshev polynomials have also appeared, partly implicitly and without recognizing
them as g—analogues of the Chebyshev polynomials, in [6], [7] and [13] in the course of

computing Hankel determinants of :%, which are the moments of the little q—
: : any _ (@40°) ’
Jacobi polynomials p,(x;a,b|q) (cf. [14]). Note that L(X ):W(—qs) and

M) = e (-as)”

3. Some further properties

The g— Chebyshev polynomials T, (1,s,q),T,,..(s,q), U,,(s,q) and U, ,(15,q) are

polynomials in s of degree n.
Therefore there exist unique representations

T2n+l(1!s’q) = Za(n’k’q)TZk (113’Q) (31)

k=0
and
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Uypa(L5,q) = 3 b(n,k, U, (1,5,).

k=0

(3.2)

To obtain these representations we need q— analogues of the tangent and Genocchi numbers.
The g—tangent numbers t,. . (q)are well-known objects defined by the generating function

e(z)—e(=2) _ D (_1)nt2n+l(q)22n+l
e(2)+e(-2) & [2n+]]! '

Theorem 3.1

Tona(%.8,0) = Z{ }( D" g (D)X Ty (x,5,0).
k=0

Proof

g

In (2.37) we have seen that T, (1,s,q) = Z{an} [ ](1+qs)(1+q 39)..(1+ g*ls),

k=0

This implies that

T(z,5,9) :Z%Zn

satisfies
2n

2n-1g z
T(zs, q)—e—z);(l+qs)(1+q 91+ a7 o
Therefore e(-2)T (z,s,q) =e(z)T(-z,s,q) and
(e(z)—e(-2))(T(z,5,0)+T(-z,5,0)) = (e(z) +e(-2))(T(z,5,9) - T (-2,5,9))
or

Z T2n+l(1! Sv q) ZZr‘H—l

n>0 [Zn + 1]' — E(Z) B e(—Z) — Z (_1)nt2n+1(q)22n+1
ZTZn(l’qu)ZZn e(z)+e(-z) & [2n+1]! '
o [2n]!

Note that the left-hand side does not depend on s. If we choose s=0 we get that

3 (G 2n

= [2n +1]I _e(z)—e(-2)
~0:0), o e(z)+e(-z)
“é [2n]!

(3.7) implies
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(3.4)

(3.5)

(3.6)

(3.7)

(3.8)



2n+1(1 S q) 2n+1 ( 1) t2n+1(q) 2n+1 TZn(l,S,Q) 2n
Z.: [2n +1]! ‘§ [2n +1]! Zo [2n]! ‘

which gives by comparing coefficients

Tona(l8,0) = Z{ }( D"ty pea (AT (1,5,0) (3.9)

and therefore also (3.4).

For g =1 the Chebyshev polynomials satisfy

i(rﬂ(_zx)j%m_] (x,5) =s"T, (x,5) (3.10)
j=0
and
i(?j(_zx)jUZMm—l—j(x’s) = SnUm(X’S)' (311)
j=0

For these identities are equivalent with

Zn:(r;j(—Zx)j (X+M)2n+m—j g (X+m)zn+m_1

j=0

which in turn reduces to the trivial identity

(x+\/m>n+m(x+M—2x)n :(x+\/x2+s)m (x/x2+s+x)n (M—x)n =s“(x+ﬁ)m.

In order to simplify the exposition we let x =1 and prove as q—analogue of (3.10)

Theorem 3.2
Z( 1)] qU[ } [T @+dMm @s.a)=a""™s"T, (Ls,q). (3.12)
i=n+m+1-j
Proof

Let m e N. We consider the following matrix (a(n,k,m))  _ with

n,k>0
a(n,k,m)=s*T .. (Ls,q) for 0<k <n and a(n,k,m) =0 for k >n. The first terms are
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T,(1s,0)

T.as,9)  sT,(Ls,9)

To2(L8,0) sT,.(Lsq) sT,(Lsq)

T.s1s,q) sT,,(@As,q) sT,.,(Lsq) s°T,(1s,0)

The recurrence for T, (1,s,q) gives

a(n+1k-1,m)—(1+g"™* )a(n,k —1,m)

a(n’ k’ m) = qn+m+1—k

This implies that

n+m

K Ik _
a(nlkim)zﬁZ(_l)Jq[zj[} H (1+ql)Tn+m+kfj(1is!q)'

i=n+m+1-j
This is true for k =0.
If it holds for k —1 then

a(n+Lk-1,m)—(1+g™™* a(n,k —1,m)

a(n'k’m) - CIn+m+1—k
1 1 k-1 j [;] k -1 n+m+1 i
= n+m+1-K ~(k-1)(n+m+1) Z(_]‘) q - H (1+ q )Tn+m+k—j (11 S, Q)
q q j=0 J i=n+m+2—j
n+m+1- 1 1 = i ; k-1 dall i
_(1+ q . k) n+m+l—k ~(k-1)(n+m) Z(_l)J q[zj |: . :| H (1+ q )Tn+m+k—1—j (la S, q)
q q j=0 J i=n+m+1-j
1 k-1 j (;j k — n+m+1 i
= e D' T [ @+ T s0)
q j=0 J i=n+m+2—j
ko [(PMk-1] e .
+(1+ qn+m+l_k) kq(m_m) Z(_l)J q[ ? J |: - j| H (1+ ql)Tn+m+k—j (1’ Sv q)
q =1 J- 1 i=n+m+2—-j
1 k . j n+m , k —l - - N k —l
= k(n+m) z(_l)Jq[zj H (1+q )Tn+m+k—j(lislq) |: . :|(1+q l)+qk J(l+q . k)|: . :|
q =0 i=nm+2- j J j—1
1 [ . i k n+m i
= WZ(—D'Q@ { } [T @+a)T e @s.a).
j=0 i=n+m+1-j

This gives (3.12).
As special cases we get for m=0 and m=1

i(—l)"q@ HH W+ a )T, LsQ)=q"s"

and
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n+1

_Zn:(—l)"<1(zj {n} [T @+d)T, Lsa)=g""s"

i=n+2—j
This implies

q"niH)“q[Zj jn_J [T @+ @50)

i=n+2—]j

—“Z“( 1)) q[j{ TT @ a) o (15.0)+ Ty (L5,)

_| n+2—j

or

n+l

Z(—l)jfl (] H @+q' )[|: . 1:|+qn+1|:?:|]-|—2n+1j(l,S,q):TZnﬂ(l,S,q). (3.13)

i=n+2-j

n} by {n+l}[2n+2—2j].

n+
Of course we could also replace { . } q’”{ .
] J 2] [n+1]

Define now a linear functional 4« on the polynomials in s by x(T,,(1,s,q))=[n=1]. Then
by 3.9) £(Tnia(L5,)) = (=1)"t,,.1(0).

Thus we get the following identities for the q—tangent numbers

n+l

o [“] n [n+1[2n+2-2j]
tna(0) = Z( 1 i nl;[2j(1+q ){ 2] }WthH—Zj(q)' (3.14)

For g =1 this reduces to

(3.15)

) (n+1jn+1-j

~1)72% :
2n+1 Z( ) 2] n+1

The first identities are
t,=2t, t.=8t, t =18t —8t,, t, =32t —48t, t, =50t —160t, +32t,.

What at first glance appears as a new identity turns out to be an old acquaintance if we use
(1.35) and write (3.15) in terms of Genocchi numbers. For then we get

Z( 1)1( ) an-2j =0. (3.16)

This is Seidel’s identity for the Genocchi numbers.
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To obtain the expansion (3.2) we define q— Genocchi numbers G, (q) by the generating
function
,e@=eD) 5 (D) Gy (A) (=9 Ay o0
e(z)+e(-2) % [2n]!

(3.17)

This implies that

G,n2(@) (-0;0),,.,,
[2n+2] '

£ (0) = (3.18)

(Observe that this q—analogue of the Genocchi numbers does not coincide with the q—
Genocchi numbers introduced by J. Zeng and J. Zhou which have been studied in [9]).

The first terms of the sequence (G,,(q)) , are
G,(a) =1,

q

+q°

Gy (@) = za+®ﬂ+q)a+q+q)
1+9)1+0°)

(1+q) (1+9°)(1+9+39 +29°+3q* +29° +39° + +q)
(1+0”)A+0°)1+0")

Gg(q) =

Theorem 3.3

2n+2 1 e el
U, (X,8,0) = Z (=0:9),, e D" Gy e (XU, (X,5,0). (3.19)
= [2k +1]

Proof

{HJ n-2k
In (2.38) we have seen that U, (1,s,q) = Z{Zkﬂl} [ 2 ](1+ as)(1+9%)---(1+g*'s).

k=0

By comparing coefficients this is equivalent with

1 2™ P 3 2n-1 U,.(1s,q)
1 1 1 n = A AT n. 3.20
e(_z)§[2n+1]!\ +0s)(1+9°s)---(1+9”"s) Zl T (3.20)
Let now
U(z,s,q) = ZMZ". (3.21)
n>1 [n]!
We then get
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2n+l

e(-2)U(z,s,q) = Z (1+09s)(1+0%)---(L+9*"'s) = —e(z)U(~z,s,Q).

io [2n +1]!
This implies
(E(Z) - e(—Z))(U (Z’ S, q) -U (_Z’ S, q)) = _e(Z)U (—Z, S, q) - e(_Z)U (Z! S, Q) + e(Z)U (Z! S, q)
+e(-2)U(-z,s,9) =e(z)U(z,s,q) +e(-2)U(-z,s,q) = (e(z) +e(-2))(U(z,s,q) +U (-z,5,q)).
U —1(1!s!q)22n

Si U(z,s, U(-z,55,0) =2 20
ince U(z,s,q) +U(~2,5,q) ; on!

U (1!s!q) 2n+1
U 19 _U T 6y 9, :2 e —
(z,5,0)-U(-z,5,0) nzol [2n 1] z

and

we see that

U2n—1(1’siq) 2n
2 " L elw-e() 0)
ZUZH(l,s,q)ZM e(z)+e(-2)° ‘
~ [2n+1]!

Again the left-hand side does not depend on s. So we can e.g. choose s=0 and get that

Z( 05 A)zn-1 20

= [2n]t  _e(z)-e(-2) (3.23)
z%zzml e(z)+e(-z2) '
= [2n+1]!

If we write (3.22) in the form

UZn—l(l’qu) 2n _ e(Z)—e(—Z) U2n(13 q) 2n
Z‘ 2l - Ze(z)+e(—z)nz>;‘ [2n +1]!

and compare coefficients we get

U,,.(L8,0) = ZLJ[Zkl 1]( 09),, s D" Gy (A (L5, 0).

This immediately implies Theorem 3.3.

Since the left-hand side of (3.17) and % are invariant under q —>% we see that
1
GZn (aj = GZn (q) (324)

Now we prove a q-—analogue of (3.11):
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Theorem 3.4

The gq—Chebyshev polynomials U (1,s,q) satisfy the identity

i(_l)k q(zj [E} ﬁ (l+ qj)U2n+m—l—k (l’ S, q) = qnz—n+mnSnU m—l(li S, q)

j=n+m+1-k

Proof

Let

W (n,m,s.q) =i(—1)kq@[”} [T Q+q' Vs @5.0).

k j=n+m+1-k

We want to show that
W(n,m,s,q) ==q" "™s'U, (1s,q).

We prove this identity with induction.
For n=0 itis the trivial identity U ,(1,5,9)=U_ ,(1,5s,9).

For n=1itreducesto U_(L5s,q)—(1+q""U, (Ls,q)=q"sU,,(Ls,q).
By definition of the polynomials this is true for all non-negative m.

In general we have

W(n,m,s,q)=W(nh-1m+2,5,q) -9 1+g" W (n-1,m+1s,q).

Observing that

n-1 (l+ n+m+l)+ n—k(1+ m+l) n-1 _
K q q q k-1l

s P R (TR B RS e W

we get
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(3.25)

(3.26)

(3.27)

(3.28)



Wh-1m+2,:59) -9 1+q")W((n-1,m+1s,q)

n-1 k n _1 n+m+1 n-1 k n-— 1 n+m 7
=Z(—1)kq(2){ ) } 11 (1+q’)u2n+m1k(1,s,q)—q"1(1+qm”)2(—1)*q(2j{ ) } T a+d'w,,..,.@s.q)

j=n+m+1-k
n-1 K n-1 n+m+1 n K n-1 n+m 7
= Z(—l)kqo { ) } [T a+a'v,...@sa-a 0+ qm”)Z(—l)“q( ) [k J IT a+a'v,, .. .@s)
j=n+m-k+2 k=1 - j=n+m+2-k
k
=U,, s 0)+ 20 (1) q(J
k=1

()

s i n-1 neml ne1-k+1 m+l n-1
I1 a+d'v,.. . @sa) @+q"") + g @+ g™
j=n+m-k+2 k k - 1

[Ta+a'v,.. . @sa)

j=m+2

n k n+m . n
= Z:(—l)kq(2j H 1+ q‘)[k}uzm_l_k (4,5,9) =W(n,m,s,q).

j=n+m-k+1

+0"1+9"")(-1)"q

By induction (3.28) implies

W(n,m,s,q)=W(n-1m+2,s,q)-q" ' L+g" YW ((n-1,m+1,s,q)
_ qnz—n+(n—1)msn—1U m+1(l’ s, q) _ qnz—n+(n—l)msn—l(1+ qm+l)Um (l, s, q)
_ qn2_n+(n—1)msn—1 (U m+1(17 S, q) . (1_|_ qm+1)Um(1’ S, q)) _ qn2_n+nmsnu mil(l, S, q)

For m=0 we get

n

i(—l)kq@m IT @a+a' W, (@s,)=0. (3.29)

j=n—-k+1

An easy consequence is a g —analogue of the Seidel identity for the Genocchi numbers which
gives an easy way to calculate the q— Genocchi numbers and shows that

(-9"*;0),,G,, (q) € Z[q] is a polynomial with integer coefficients.
Theorem 3.5 (g-Seidel formula)

q[ ? ] |: " }(‘Dk %GM—N () =[n=1]. (3.30)
(_q ’q)zk

Proof

Since the set of polynomials {U,,(1,s,q)} , Is a basis for the vector space of polynomials in

ni

s we can define a linear functional A4 by
A(U,,(Ls,q))=[n=0]. (3.31)

By (3.19) this implies
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AUz 1L s,0) = (=)™ (-0:0),,, G, (0). (3.32)
If we apply thisto (3.29) we get for n>1

OA[i(—l)kq@{”} I (1+q")u2nlk(1,s,q>]i(—l)kq@m [T @+ @)Uz 15,00

k=0 k j=n—k+1 k=0 j=n—k+1

k=0

NS

q[ZJ[ZnJ H (1+q’) nH (1+0")(-1)" "Gy, (a)-

j=n—-k+1
Dividing by (-g;q), , we get (3.30).

It should be noted that just as for q =1 (3.30) is in fact the same formula as (3.14). We need
only use (3.18) to translate one formulation into the other.

Finally we want to show how to derive a Seidel triangle for the g— Genocchi numbers. We
construct the following triangle consisting of numbers a(n,k,q) with n=0,12,---and

ngsl+PJ.
2

Let a(2n,k,q) = (-1)"s""**U,,_,(1,s,q) and a(2n+1,k,q) = (-1)"s"**U,, ,(1,s,q).

The first terms are (if we delete the column k =0)

Uo(1,s,0)

U,(Ls.q)

—sUy(Ls,q)  -U,(1s,0)

-sU,(1s,0)  -U,(Ls,q)

sU,(Ls,q)  sU,(Ls,q)  U,(Ls,q)
sU,(Ls,q)  sU,(Ls,q)  Us(Ls,)
-sU,(L,s,0) —sU,(Ls,0) —sU,(Ls,q) Ug(Ls,q)

Then
a(2n+1k,q)=qg*%a@2n+1k -1,q9)+(1+g*"a(2n,k,q)
for k=1,2,---,n+1.

On the other hand
a(2n,k,q) =g * (a(2n,k +1,0) + (L+g*)a(2n -1k, q))

for k=12,---,n.
For k=n+1 we get a(2n,n+1,q) =U,,(Ls,q).
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If we apply the linear functional A and let b(n,k,q) = A(a(n,k,q)) then b(2n,n+1,q)=0
and therefore we have b(2n,n+1,q) =g"* (b(2n,n+2,q) + (1+g™*)b(2n -1, +1,)) =0.

Thus we get

Theorem 3.6 (g-Genocchi triangle)
Define a triangle (b(n,k,q))for ne N and 0<k s1+EJ by

b(2n+1,k,q) =g**b(2n+1,k -1,q9) + (1+g*")b(2n,k,q) (3.33)
and
b(2n,k,q) = g"* (b(2n,k +1,0) + (L+ g*)b(2n -1k, q)) (3.34)
for 1<k <n+1with initial values b(0,1,q) =1 and b(1,1,q) =1+q.
Then
b(2n—1,n) = A((-1)"'U,,(L5,9)) = (-0 ),, , Gy (a)- (3.35)

This is another simple method to compute the g — Genocchi numbers.
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