q-Chebyshev polynomials

Johann Cigler
Fakultät für Mathematik, Universität Wien
johann.cigler@univie.ac.at

Abstract

In this overview paper a direct approach to q-Chebyshev polynomials and their elementary properties is given. Special emphasis is placed on analogies with the classical case. There are also some connections with q-tangent and q-Genocchi numbers.

0. Introduction

Waleed A. Al Salam and Mourad E.H. Ismail [1] found a class of polynomials which can be interpreted as q - analogues of the bivariate Chebyshev polynomials of the second kind. These are essentially the polynomials $U_{n}(x, s, q)$ which will be introduced in (2.12). In [11] I also considered corresponding q-Chebyshev polynomials $T_{n}(x, s, q)$ of the first kind which will be defined in (2.6). Together these polynomials satisfy many q - analogues of well-known identities for the classical Chebyshev polynomials $T_{n}(x)=T_{n}(x,-1,1)$ and $U_{n}(x)=U_{n}(x,-1,1)$. For some of them it is essential that our polynomials depend on two independent parameters. This is especially true for (2.36) which generalizes the defining property $\left(x+\sqrt{x^{2}-1}\right)^{n}=T_{n}(x)+U_{n-1}(x) \sqrt{x^{2}-1}$ of the classical Chebyshev polynomials. Another approach to univariate q-analogues of Chebyshev polynomials has been proposed by Natig Atakishiyev et al. in [2], (5.3) and (5.4). In our terminology they considered the monic versions of the polynomials $T_{n}\left(x,-\frac{1}{\sqrt{q}}, q\right)$ and $U_{n}(x,-\sqrt{q}, q)$. Since $U_{n}\left(x, s^{2}, q\right)=s^{n} U_{n}\left(\frac{x}{s}, 1, q\right)$ and $T_{n}\left(x, s^{2}, q\right)=s^{n} T_{n}\left(\frac{x}{s}, 1, q\right)$ their definition also leads to the same bivariate polynomials $T_{n}(x, s, q)$ and $U_{n}(x, s, q)$.
Without recognizing them as q-analogues of Chebyshev polynomials some of these polynomials also appeared in the course of computing Hankel determinants as in [7] and [13].

The purpose of this paper is to give a direct approach to these polynomials and their simplest properties.

2010 Mathematics Subject Classification: Primary 05A30; Secondary 11B83, 33C47
Key words and phrases: Chebyshev polynomials, q-tangent numbers, q-Genocchi numbers, orthogonal polynomials, Hankel determinants.

1. Some well-known facts about the classical Chebyshev polynomials

Let me first state some well-known facts about those aspects of the classical Chebyshev polynomials (cf. e.g. [15]) and their bivariate versions for which we will give q - analogues.

The (classical) Chebyshev polynomials of the first kind $T_{n}(x)$ satisfy the recurrence

$$
\begin{equation*}
T_{n}(x)=2 x T_{n-1}(x)-T_{n-2}(x) \tag{1.1}
\end{equation*}
$$

with initial values $T_{0}(x)=1$ and $T_{1}(x)=x$.
For $x=1$ this reduces to

$$
\begin{equation*}
T_{n}(1)=1 . \tag{1.2}
\end{equation*}
$$

The (classical) Chebyshev polynomials of the second kind $U_{n}(x)$ satisfy the same recurrence

$$
\begin{equation*}
U_{n}(x)=2 x U_{n-1}(x)-U_{n-2}(x) \tag{1.3}
\end{equation*}
$$

but with initial values $U_{-1}(x)=0$ and $U_{0}(x)=1$, which gives $U_{1}(x)=2 x$.
As special values we note that

$$
\begin{equation*}
U_{n}(1)=n+1 . \tag{1.4}
\end{equation*}
$$

These polynomials are related by the identity

$$
\begin{equation*}
\left(x+\sqrt{x^{2}-1}\right)^{n}=T_{n}(x)+U_{n-1}(x) \sqrt{x^{2}-1} \tag{1.5}
\end{equation*}
$$

which in turn implies

$$
\begin{equation*}
T_{n}(x)^{2}-\left(x^{2}-1\right) U_{n-1}(x)^{2}=1 . \tag{1.6}
\end{equation*}
$$

Remark 1.1

For $x=\cos \vartheta$ identity (1.5) becomes
$\cos n \vartheta+i \sin n \vartheta=(\cos \vartheta+i \sin \vartheta)^{n}=T_{n}(\cos \vartheta)+i U_{n-1}(\cos \vartheta) \sin \vartheta$
or equivalently

$$
\begin{align*}
& T_{n}(\cos \vartheta)=\cos n \vartheta \\
& U_{n}(\cos \vartheta)=\frac{\sin (n+1) \vartheta}{\sin \vartheta} . \tag{1.7}
\end{align*}
$$

This is the usual approach to the Chebyshev polynomials. Identity (1.6) reduces to

$$
\begin{equation*}
\cos ^{2} n \vartheta+\sin ^{2} n \vartheta=1 \tag{1.8}
\end{equation*}
$$

Unfortunately it seems that this aspect of the Chebyshev polynomials has no simple q analogue.

The Chebyshev polynomials are orthogonal polynomials. As is well-known (cf. e.g. [4]) a sequence $\left(p_{n}(x)\right)_{n \geq 0}$ of polynomials with $p_{0}(x)=1$ and $\operatorname{deg} p_{n}=n$ is called orthogonal with respect to a linear functional Λ on the vector space of polynomials if $\Lambda\left(p_{m} p_{n}\right)=0$ for $m \neq n$. The linear functional is uniquely determined by $\Lambda\left(p_{n}\right)=[n=0]$. Here [P] denotes the Iverson symbol defined by $[P]=1$ if property P is true and $[P]=0$ otherwise.
The values $\Lambda\left(x^{n}\right)$ are called moments of Λ.
Let $P_{n}(x)$ denote the monic polynomials corresponding to $p_{n}(x)$ and $a(n, k)$ be the uniquely determined coefficients in

$$
\begin{equation*}
\sum_{k=0}^{n} a(n, k) P_{k}(x)=x^{n} \tag{1.9}
\end{equation*}
$$

Then $a(n, 0)=\Lambda\left(x^{n}\right)$ and more generally $a(n, k)=\frac{\Lambda\left(x^{n} P_{k}(x)\right)}{\Lambda\left(P_{k}(x)^{2}\right)}$.
By Favard's theorem there exist numbers $s(n), t(n)$ such that the three-term recurrence

$$
\begin{equation*}
P_{n}(x)=(x-s(n-1)) P_{n-1}(x)-t(n-2) P_{n-2}(x) \tag{1.10}
\end{equation*}
$$

holds.
Therefore the coefficients $a(n, k)$ satisfy

$$
\begin{align*}
& a(0, j)=[j=0] \\
& a(n, 0)=s(0) a(n-1,0)+t(0) a(n-1,1) \tag{1.11}\\
& a(n, j)=a(n-1, j-1)+s(j) a(n-1, j)+t(j) a(n-1, j+1) .
\end{align*}
$$

This can be used to compute the moments $a(n, 0)=\Lambda\left(x^{n}\right)$.
If the moments are known then the corresponding orthogonal polynomials $P_{n}(x)$ are given by

$$
P_{n}(x)=\frac{1}{\operatorname{det}\left(\Lambda\left(x^{i+j}\right)\right)_{i, j=0}^{n-1}} \operatorname{det}\left(\begin{array}{ccccc}
\Lambda\left(x^{0}\right) & \Lambda\left(x^{1}\right) & \cdots & \Lambda\left(x^{n-1}\right) & 1 \tag{1.12}\\
\Lambda\left(x^{1}\right) & \Lambda\left(x^{2}\right) & \cdots & \Lambda\left(x^{n}\right) & x \\
\Lambda\left(x^{2}\right) & \Lambda\left(x^{3}\right) & \cdots & \Lambda\left(x^{n+1}\right) & x^{2} \\
\vdots & & & & \vdots \\
\Lambda\left(x^{n}\right) & \Lambda\left(x^{n+1}\right) & \cdots & \Lambda\left(x^{2 n-1}\right) & x^{n}
\end{array}\right) .
$$

So the knowledge of the polynomials $P_{n}(x)$ is equivalent with the knowledge of $s(n)$ and $t(n)$ and this is again equivalent with the knowledge of the moments.

Since $\frac{1}{\pi} \int_{-1}^{1} \frac{T_{n}(x)}{\sqrt{1-x^{2}}} d x=\frac{1}{\pi} \int_{0}^{\pi} \cos (n \vartheta) d \vartheta=[n=0]$ for the polynomials $T_{n}(x)$ the corresponding linear functional L is given by the integral

$$
\begin{equation*}
L(p(x))=\frac{1}{\pi} \int_{-1}^{1} \frac{p(x)}{\sqrt{1-x^{2}}} d x \tag{1.13}
\end{equation*}
$$

and

$$
L\left(T_{n}^{2}\right)=\frac{1}{\pi} \int_{-1}^{1} \frac{T_{n}(x)^{2}}{\sqrt{1-x^{2}}} d x= \begin{cases}1 & \text { if } n=0 \tag{1.14}\\ \frac{1}{2} & \text { if } n>0\end{cases}
$$

The corresponding moments are

$$
\begin{equation*}
L\left(x^{2 n}\right)=\frac{1}{\pi} \int_{-1}^{1} \frac{x^{2 n}}{\sqrt{1-x^{2}}}=\frac{1}{2^{2 n}}\binom{2 n}{n} \tag{1.15}
\end{equation*}
$$

and $L\left(x^{2 n+1}\right)=0$.

For the polynomials $U_{n}(x)$ we get from
$\frac{2}{\pi} \int_{-1}^{1} U_{n}(x) \sqrt{1-x^{2}} d x=\frac{2}{\pi} \int_{0}^{\pi} \sin ((n+1) \vartheta) \sin \vartheta d \vartheta=[n=0]$
that the corresponding linear functional M satisfies

$$
\begin{equation*}
M\left(p_{n}\right)=\frac{2}{\pi} \int_{-1}^{1} p(x) \sqrt{1-x^{2}} d x \tag{1.16}
\end{equation*}
$$

and

$$
\begin{equation*}
M\left(U_{n}^{2}\right)=\frac{2}{\pi} \int_{-1}^{1} U_{n}(x)^{2} \sqrt{1-x^{2}} d x=1 \tag{1.17}
\end{equation*}
$$

The corresponding moments are

$$
\begin{equation*}
M\left(x^{2 n}\right)=\frac{2}{\pi} \int_{-1}^{1} x^{2 n} \sqrt{1-x^{2}} d x=\frac{1}{2^{2 n}} \frac{1}{n+1}\binom{2 n}{n} \tag{1.18}
\end{equation*}
$$

and $M\left(x^{2 n+1}\right)=0$.

As already mentioned in the introduction for our q - analogues we need bivariate Chebyshev polynomials.

The bivariate Chebyshev polynomials $T_{n}(x, s)$ of the first kind satisfy the recurrence

$$
\begin{equation*}
T_{n}(x, s)=2 x T_{n-1}(x, s)+s T_{n-2}(x, s) \tag{1.19}
\end{equation*}
$$

with initial values $T_{0}(x, s)=1$ and $T_{1}(x, s)=x$.
Of course $T_{n}(x)=T_{n}(x,-1)$.

They have the determinant representation

$$
T_{n}(x, s)=\operatorname{det}\left(\begin{array}{cccccc}
x & s & 0 & \cdots & 0 & 0 \tag{1.20}\\
-1 & 2 x & s & \cdots & 0 & 0 \\
0 & -1 & 2 x & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 2 x & s \\
0 & 0 & 0 & \cdots & -1 & 2 x
\end{array}\right) .
$$

The bivariate Chebyshev polynomials of the second kind $U_{n}(x, s)$ satisfy the same recurrence

$$
\begin{equation*}
U_{n}(x, s)=2 x U_{n-1}(x, s)+s U_{n-2}(x, s) \tag{1.21}
\end{equation*}
$$

but with initial values $U_{0}(x, s)=1$ and $U_{1}(x, s)=2 x$.

Their determinant representation is

$$
U_{n}(x, s)=\operatorname{det}\left(\begin{array}{cccccc}
2 x & s & 0 & \cdots & 0 & 0 \tag{1.22}\\
-1 & 2 x & s & \cdots & 0 & 0 \\
0 & -1 & 2 x & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 2 x & s \\
0 & 0 & 0 & \cdots & -1 & 2 x
\end{array}\right) .
$$

These polynomials are connected via

$$
\begin{equation*}
\left(x+\sqrt{x^{2}+s}\right)^{n}=T_{n}(x, s)+U_{n-1}(x, s) \sqrt{x^{2}+s} . \tag{1.23}
\end{equation*}
$$

This also implies

$$
\begin{equation*}
T_{n}(x, s)^{2}-\left(x^{2}+s\right) U_{n-1}(x, s)^{2}=(-s)^{n} . \tag{1.24}
\end{equation*}
$$

The Chebyshev polynomials are intimately related with Fibonacci and Lucas polynomials

$$
\begin{equation*}
F_{n+1}(x, s)=\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor}\binom{n-k}{k} s^{k} x^{n-2 k} \tag{1.25}
\end{equation*}
$$

and

$$
\begin{equation*}
L_{n}(x, s)=F_{n+1}(x, s)+s F_{n-1}(x, s)=\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor} \frac{n}{n-k}\binom{n-k}{k} s^{k} x^{n-2 k} \tag{1.26}
\end{equation*}
$$

for $n>0$ (cf. e.g. [10]). Here as usual $L_{0}(x, s)=2$.

More precisely the monic polynomials $T_{0}(x, s)=1$ and $\frac{T_{n}(x, s)}{2^{n-1}}$ for $n>0$ coincide with the modified Lucas polynomials

$$
\begin{equation*}
\frac{L_{n}^{*}(2 x, s)}{2^{n}}=L_{n}^{*}\left(x, \frac{s}{4}\right) \tag{1.27}
\end{equation*}
$$

They are defined by $L_{n}^{*}(x, s)=L_{n}(x, s)$ for $n>0$ and $L_{0}^{*}(x, s)=1$ and satisfy a three-term recurrence with $s(n)=0, t(0)=\frac{s}{2}$ and $t(n)=\frac{s}{4}$ for $n>0$.

The moments can be obtained from the formula

$$
\begin{equation*}
\sum_{k=0}^{\left\lvert\, \frac{n}{2}\right.} \left\lvert\,\binom{ n}{k}(-s)^{k} L_{n-2 k}^{*}(x, s)=x^{n}\right. \tag{1.28}
\end{equation*}
$$

The monic polynomials $\frac{U_{n}(x, s)}{2^{n}}$ are Fibonacci polynomials

$$
\begin{equation*}
\frac{U_{n}(x, s)}{2^{n}}=\frac{F_{n+1}(2 x, s)}{2^{n}}=F_{n+1}\left(x, \frac{s}{4}\right) . \tag{1.29}
\end{equation*}
$$

In this case the corresponding numbers $s(n)$ and $t(n)$ are $s(n)=0$ and $t(n)=\frac{s}{4}$.
Here the moments can be obtained from

$$
\begin{equation*}
\sum_{k=0}^{\left\lfloor\frac{n+1}{2}\right\rfloor}\left(\binom{n}{k}-\binom{n}{k-1}\right)(-s)^{k} F_{n+1-2 k}(x, s)=x^{n} \tag{1.30}
\end{equation*}
$$

We shall also give q-analogues of the following identities which express Chebyshev polynomials of odd order in terms of Chebyshev polynomials of even order:

$$
\begin{equation*}
T_{2 n+1}(x)=\sum_{k=0}^{n}\binom{2 n+1}{2 k}(-1)^{n-k} t_{2 n-2 k+1} x^{2 n+1-2 k} T_{2 k}(x) \tag{1.31}
\end{equation*}
$$

and

$$
\begin{equation*}
U_{2 n+1}(x)=\sum_{k=0}^{n}\binom{2 n+2}{2 k} \frac{1}{2 k+1}(-1)^{n-k} G_{2 n-2 k+2}(2 x)^{2 n-2 k} U_{2 k}(x) . \tag{1.32}
\end{equation*}
$$

Here the tangent numbers $\left(t_{2 n+1}\right)_{n \geq 0}=(1,2,16,272,7936, \cdots)$ and the Genocchi numbers $\left(G_{2 n}\right)_{n \geq 0}=(0,1,1,3,17,155,2073, \cdots)$ are given by their generating functions

$$
\begin{equation*}
\frac{e^{z}-e^{-z}}{e^{z}+e^{-z}}=\sum_{n \geq 0}(-1)^{n} \frac{t_{2 n+1}}{(2 n+1)!} z^{2 n+1} \tag{1.33}
\end{equation*}
$$

and

$$
\begin{equation*}
z \frac{e^{z}-e^{-z}}{e^{z}+e^{-z}}=\sum_{n \geq 0}(-1)^{n-1} 2^{2 n-1} \frac{G_{2 n}}{(2 n)!} z^{2 n} . \tag{1.34}
\end{equation*}
$$

Note that

$$
\begin{equation*}
t_{2 n+1}=\frac{2^{2 n} G_{2 n+2}}{n+1} . \tag{1.35}
\end{equation*}
$$

2. q-analogues

We assume that $q \neq-1$ is a real number. All q - identities in this paper reduce to known identities when q tends to 1 . We assume that the reader is familiar with the most elementary notions of q-analysis (cf. e.g. [5]). The q-binomial coefficients $\left[\begin{array}{l}n \\ k\end{array}\right]=\frac{[1][2] \cdots[n]}{[1] \cdots[k] \cdot[1] \cdots[n-k]}$ with $[n]=1+q+\cdots+q^{n-1}$ satisfy the recurrences

$$
\left[\begin{array}{l}
n \tag{2.1}\\
k
\end{array}\right]=q^{k}\left[\begin{array}{c}
n-1 \\
k
\end{array}\right]+\left[\begin{array}{l}
n-1 \\
k-1
\end{array}\right]=\left[\begin{array}{c}
n-1 \\
k
\end{array}\right]+q^{n-k}\left[\begin{array}{l}
n-1 \\
k-1
\end{array}\right] .
$$

If we want to stress the dependence on q we write $[n]_{q}$ and $\left[\begin{array}{l}n \\ k\end{array}\right]_{q}$ respectively.

We also need the q-Pochhammer symbol $(x ; q)_{n}=(1-x)(1-q x) \cdots\left(1-q^{n-1} x\right)$ and the $q-$ binomial theorem in the form

$$
(x ; q)_{n}=\sum_{k=0}^{n}(-1)^{k} q^{\binom{k}{2}}\left[\begin{array}{l}
n \tag{2.2}\\
k
\end{array}\right] x^{k}
$$

or equivalently

$$
p_{n}(x, y)=(x+y)(q x+y) \cdots\left(q^{n-1} x+y\right)=\sum_{k=0}^{n} q^{\binom{k}{2}}\left[\begin{array}{l}
n \tag{2.3}\\
k
\end{array}\right] x^{k} y^{n-k}
$$

We denote by $e(z)=e(z, q)=\sum_{n \geq 0} \frac{z^{n}}{[n]!}$ the $q-$ exponential function. It satisfies $\frac{1}{e(-z)}=\sum_{n \geq 0} q^{\binom{n}{2}} \frac{z^{n}}{[n]!}$.

Since the Chebyshev polynomials are special cases of Fibonacci and Lucas polynomials it would be tempting to look for q-analogues related to the simplest q-analogues of Fibonacci and Lucas polynomials (cf. e.g. [10])

$$
\begin{aligned}
& F_{n+1}(x, s, q)=\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor} q^{k^{2}}\left[\begin{array}{c}
n-k \\
k
\end{array}\right] s^{k} x^{n-2 k}, \\
& L_{n}(x, s, q)=F_{n+1}(x, s, q)+s F_{n-1}(x, q s, q)=\sum_{k=0}^{\left.\frac{n}{2}\right\rfloor} q^{k^{2}-k} \frac{[n]}{[n-k]}\left[\begin{array}{c}
n-k \\
k
\end{array}\right] s^{k} x^{n-2 k}, \\
& \operatorname{Fib}_{n+1}(x, s, q)=\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor} q^{k+1}\left(\begin{array}{c}
\left(\begin{array}{l}
2
\end{array}\right) \\
n-k \\
k
\end{array}\right] s^{k} x^{n-2 k} \text { and } \\
& \operatorname{Luc}_{n}(x, s, q)=\operatorname{Fib}_{n+1}(x, s, q)+s F i b_{n-1}(x, s, q)=\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor} q^{k} \begin{array}{c}
k \\
2
\end{array} \frac{[n]}{[n-k]}\left[\begin{array}{c}
n-k \\
k
\end{array}\right] s^{k} x^{n-2 k} .
\end{aligned}
$$

But here we have no success. Though the polynomials $F_{n+1}(x, s, q)$ are orthogonal there are no closed forms for their moments. None of the other classes of polynomials satisfies a 3-term recurrence. So they cannot be orthogonal.

But it is interesting that for $\operatorname{Fib}_{n+1}(x, s, q)$ and $L u c_{n}(x, s, q)$ the following analogues of (1.28) and (1.30)

$$
\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor}\left[\begin{array}{l}
n \tag{2.4}\\
k
\end{array}\right](-s)^{k} L u c_{n-2 k}^{*}(x, s, q)=x^{n}
$$

and

$$
\sum_{k=0}^{\left\lfloor\frac{n+1}{2}\right\rfloor}\left(\left[\begin{array}{l}
n \tag{2.5}\\
k
\end{array}\right]-\left[\begin{array}{c}
n \\
k-1
\end{array}\right]\right)(-s)^{k} F i b_{n+1-2 k}(x, s, q)=x^{n}
$$

hold (cf. [8], (3.1) and (3.2)).
Notice that $\operatorname{Luc}_{0}(x, s, q)=2$ and $\operatorname{Luc}_{0}^{*}(x, s, q)=1$, whereas $\operatorname{Luc}_{n}(x, s, q)=\operatorname{Luc} c_{n}^{*}(x, s, q)$ for $n>0$.

Fortunately there do exist q-analogues of the recurrences (1.19) and (1.21) which possess many of the looked for properties.

Definition 2.1

The q-Chebyshev polynomials of the first kind are defined by the recurrence

$$
\begin{equation*}
T_{n}(x, s, q)=\left(1+q^{n-1}\right) x T_{n-1}(x, s, q)+q^{n-1} s T_{n-2}(x, s, q) \tag{2.6}
\end{equation*}
$$

with initial values $T_{0}(x, s, q)=1$ and $T_{1}(x, s, q)=x$.

The first terms are $1, x,[2] x^{2}+q s,[4] x^{3}+q[3] s x, \cdots$.
Some simple q-analogues of $T_{n}(1)=1$ are

$$
\begin{gather*}
T_{n}(1,-1, q)=1, \tag{2.7}\\
T_{n}\left(1,-\frac{1}{q}, q\right)=q^{\binom{n}{2}}, \tag{2.8}\\
T_{n}(1,-q, q)=q^{\binom{n}{2}}+\left(1-q^{n}\right) \sum_{k=0}^{n-2} q^{\binom{k+1}{2}} \tag{2.9}
\end{gather*}
$$

and

$$
\begin{equation*}
T_{n}\left(1,-q^{2}, q\right)=[n]-q^{n+1}[n-1] . \tag{2.10}
\end{equation*}
$$

It is easily verified that

$$
\begin{equation*}
T_{n}\left(x, s, \frac{1}{q}\right)=\frac{T_{n}\left(x, \frac{s}{q}, q\right)}{q^{\binom{n}{2}}} . \tag{2.11}
\end{equation*}
$$

For $q=-1$ we get $T_{2 n}(x, s,-1)=-s T_{n-2}(x, s,-1)$ and $T_{2 n+1}(x, s,-1)=2 x T_{2 n}(x, s,-1)+s T_{2 n-1}(x, s,-1)$.
This gives the trivial sequence $\left(T_{n}(x, s,-q)\right)_{n \geq 0}=\left(1, x,-s,-x s, s^{2}, s^{2} x,-s^{3},-x s^{3}, \cdots\right)$. This is the reason for excluding $q=-1$.

Proposition 2.1

The q-Chebyshev polynomials of the first kind satisfy
$T_{n}(x, s, q)=\operatorname{det}\left(\begin{array}{cccccc}x & q s & 0 & \cdots & 0 & 0 \\ -1 & (1+q) x & q^{2} s & \cdots & 0 & 0 \\ 0 & -1 & \left(1+q^{2}\right) x & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \left(1+q^{n-2}\right) x & q^{n-1} s \\ 0 & 0 & 0 & \cdots & -1 & \left(1+q^{n-1}\right) x\end{array}\right)$.

This is easily seen by expanding this determinant with respect to the last column.

Definition 2.2

The q-Chebyshev polynomials of the second kind are defined by the recurrence

$$
\begin{equation*}
U_{n}(x, s, q)=\left(1+q^{n}\right) x U_{n-1}(x, s, q)+q^{n-1} s U_{n-2}(x, s, q) \tag{2.12}
\end{equation*}
$$

with initial values $U_{0}(x, s, q)=1$ and $U_{-1}(x, s, q)=0$.

The first terms are $1,[2] x,[4] x^{2}+q s,[4]\left(1+q^{3}\right) x^{3}+q[4] s x, \cdots$.
Some simple q-analogues of (1.4) are

$$
\begin{gather*}
U_{n}\left(1,-\frac{1}{q}, q\right)=q^{\binom{n}{2}}[n+1], \tag{2.13}\\
U_{n}(1,-1, q)=q^{\binom{n+1}{2}} \sum_{k=0}^{n} \frac{1}{\left.q^{k+1}\right)^{2}} . \tag{2.14}\\
U_{n}(1,-q, q)=\sum_{k=0}^{n} q^{\binom{k+1}{2}} \tag{2.15}
\end{gather*}
$$

and

$$
\begin{equation*}
U_{n}\left(1,-q^{2}, q\right)=[n+1] . \tag{2.16}
\end{equation*}
$$

It is easily verified that

$$
\begin{equation*}
U_{n}\left(s, x, \frac{1}{q}\right)=\frac{U_{n}(x, q s, q)}{q^{\binom{n+1}{2}}} \tag{2.17}
\end{equation*}
$$

For $q=-1$ we would have $U_{2 n}(x, s,-1)=(-s)^{n}$ and $U_{2 n+1}(x, s,-1)=0$.

Proposition 2.2

The q-Chebyshev polynomials of the second kind satisfy
$U_{n}(x, s, q)=\operatorname{det}\left(\begin{array}{cccccc}(1+q) x & q s & 0 & \cdots & 0 & 0 \\ -1 & \left(1+q^{2}\right) x & q^{2} s & \cdots & 0 & 0 \\ 0 & -1 & \left(1+q^{3}\right) x & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \left(1+q^{n-1}\right) x & q^{n-1} s \\ 0 & 0 & 0 & \cdots & -1 & \left(1+q^{n}\right) x\end{array}\right)$.

In [3] and [16] a tiling interpretation of the classical Chebyshev polynomials has been given. This can easily be extended to the q - case.

As in the classical case it is easier to begin with polynomials of the second kind.
We consider an $n \times 1$-rectangle (called n-board) where the n cells of the board are numbered 1 to n. As in [3] and [16] we consider tilings with two sorts of squares, say white and black squares, and dominoes (which cover two adjacent cells of the board).

Definition 2.3

To each tiling of a board we assign a weight w in the following way: Each white square has weight x. A black square at position i has weight $q^{i} x$ and a domino which covers positions $i-1, i$ has weight q^{i-1} s. The weight of a tiling is the product of its elements.
The weight of a set of tilings is the sum of their weights.
Each tiling can be represented by a word in the letters $\{a, b, d d\}$. Here a denotes a white square, b a black square and $d d$ a domino.
For example the word $a b b d d a d d a a b$ represents the tiling with white squares at positions $1,6,9,10$, black squares at $2,3,11$ and dominoes at $\{4,5\}$ and $\{7,8\}$. Its weight is $x \cdot q^{2} x \cdot q^{3} x \cdot q^{4} s \cdot x \cdot q^{7} s \cdot x \cdot x \cdot q^{11} x=q^{27} s^{2} x^{7}$.

Theorem 2.1

The weight $w\left(V_{n}\right)$ of the set V_{n} of all tilings of an n-board is $w\left(V_{n}\right)=U_{n}(x, s, q)$.

Proof

This holds for $n=1$ and $n=2$. E ach n - tiling u_{n} has one of the following forms: $u_{n-1} a, u_{n-1} b, u_{n-2} d d$.
Therefore
$w\left(V_{n}\right)=\sum_{u_{n} \in V_{n}} w\left(u_{n}\right)=\sum_{u_{n-1} \in V_{n-1}} w\left(u_{n-1}\right) x+\sum_{u_{n-1} \in V_{n-1}} w\left(u_{n-1}\right) q^{n} x+\sum_{u_{n-2} \in V_{n-2}} w\left(u_{n-2}\right) q^{n-1} s$
$=w\left(V_{n-1}\right)\left(1+q^{n}\right) x+w\left(V_{n-2}\right) q^{n-1} s$
which implies Theorem 2.1.

Remark 2.1

If we more generally consider the weight w_{r} which coincides with w except that a black square at position i has weight $q^{i} r x$ we get in the same way that $U_{n}^{(r)}(x, s, q)=w_{r}\left(V_{n}\right)$ satisfies
$U_{n}^{(r)}(x, s, q)=\left(1+q^{n} r\right) x U_{n-1}^{(r)}(x, s, q)+q^{n-1} s U_{n-2}^{(r)}(x, s, q)$
with initial values $U_{0}^{(r)}(x, s, q)=1$ and $U_{1}^{(r)}(x, s, q)=(1+q r) x$.
In this case we get more generally
$U_{m+n}^{(r)}(x, s, q)=U_{m}^{(r)}(x, s, q) U_{n}^{\left(q^{m} r\right)}\left(x, q^{m} s, q\right)+q^{m} s U_{m-1}^{(r)}(x, s, q) U_{n-1}^{\left(q^{m+1} r\right)}\left(x, q^{m+1} s, q\right)$.
The second term occurs when positions $(m, m+1)$ are covered by a domino and the first term in the other cases.

The same reasoning as above gives

Proposition 2.3

Let $u(n, k, s, r)$ be the w_{r}-weight of all tilings on $\{1, \cdots, n\}$ with exactly k dominoes. Then

$$
\begin{equation*}
u(n, k, s, r)=u(n-1, k, s, r)\left(1+q^{n} r\right) x+u(n-2, k-1, s, r) q^{n-1} s \tag{2.18}
\end{equation*}
$$

with initial values
$u(n, 0, s, r)=(1+q r)\left(1+q^{2} r\right) \cdots\left(1+q^{n} r\right) x^{n}$,
$u(1,0, s, r)=(1+q r) x$ and $u(1, k, s, r)=0$ for $k>0$.

It is now easy to verify

Theorem 2.2

The w_{r}-weight $u(n, k, s, r)$ of the set of all tilings on $\{1, \cdots, n\}$ with exactly k dominoes is

$$
u(n, k, s, r)=q^{k^{2}}\left[\begin{array}{c}
n-k \tag{2.19}\\
k
\end{array}\right]\left(1+q^{k+1} r\right) \cdots\left(1+q^{n-k} r\right) s^{k} x^{n-2 k}
$$

for $0 \leq k \leq\left\lfloor\frac{n}{2}\right\rfloor$ and $u(n, k, s, r)=0$ for $k>\left\lfloor\frac{n}{2}\right\rfloor$.

Proof

The initial values coincide and by induction

$$
\begin{aligned}
& u(n-1, k, s, r)\left(1+q^{n} r\right) x+u(n-2, k-1, s, r) q^{n-1} s=q^{k^{2}}\left[\begin{array}{c}
n-k-1 \\
k
\end{array}\right]\left(1+q^{k+1} r\right) \cdots\left(1+q^{n-k-1} r\right)\left(1+q^{n} r\right) s^{k} x^{n-2 k} \\
& +q^{(k-1)^{2}}\left[\begin{array}{c}
n-k-1 \\
k-1
\end{array}\right]\left(1+q^{k} r\right) \cdots\left(1+q^{n-k-1} r\right) q^{n-1} s^{k} x^{n-2 k} \\
& =q^{k^{2}}\left(1+q^{k+1} r\right) \cdots\left(1+q^{n-k-1} r\right) s^{k} x^{n-2 k}\left(\left[\begin{array}{c}
n-k-1 \\
k
\end{array}\right]\left(1+q^{n} r\right)+\left[\begin{array}{c}
n-k-1 \\
k-1
\end{array}\right] q^{n-2 k}\left(1+q^{k} r\right)\right) \\
& =q^{k^{2}}\left(1+q^{k+1} r\right) \cdots\left(1+q^{n-k-1} r\right) s^{k} x^{n-2 k}\left(\left(\left[\begin{array}{c}
n-k-1 \\
k
\end{array}\right]+q^{n-2 k}\left[\begin{array}{c}
n-k-1 \\
k-1
\end{array}\right]\right)+q^{n-k} r\left(q^{k}\left[\begin{array}{c}
n-k-1 \\
k
\end{array}\right]+\left[\begin{array}{c}
n-k-1 \\
k-1
\end{array}\right]\right)\right) \\
& =q^{k^{2}}\left(1+q^{k+1} r\right) \cdots\left(1+q^{n-k-1} r\right) s^{k} x^{n-2 k}\left(\left[\begin{array}{c}
n-k \\
k
\end{array}\right]\left(1+q^{n-k} r\right)\right) .
\end{aligned}
$$

Here we used the recurrence relations (2.1) for the q-binomial coefficients.

Remark 2.2

Formula (2.19) is the product of $q^{k^{2}}\left[\begin{array}{c}n-k \\ k\end{array}\right] s^{k} x^{n-2 k}$ and
$\left(1+q^{k+1} r\right) \cdots\left(1+q^{n-k} r\right)=\sum_{\ell=0}^{n-2 k}\left[\begin{array}{c}n-2 k \\ \ell\end{array}\right]\left(q^{(k+1)} r\right)^{\ell} q^{\binom{\ell}{2}}$.
Ilse Fischer [12] has found a combinatorial reason for this product representation.
Let $v(n, k, \ell, x)$ be the w_{r} - weight of all tilings with k dominoes and ℓ black squares. Then

$$
v(n, k, \ell, x)=q^{k \ell} s^{k} r^{\ell} x^{n-2 k} q^{k^{2}}\left[\begin{array}{c}
n-k \tag{2.20}\\
k
\end{array}\right] q^{\binom{\ell+1}{2}}\left[\begin{array}{c}
n-2 k \\
\ell
\end{array}\right]=q^{k \ell} v(n, k, 0,1) v(n-2 k, 0, \ell, x) .
$$

In order to give a combinatorial interpretation of this formula we observe that the weight can also be obtained from the following properties.

The fact that the weight of a domino at $\{i, i+1\}$ is $q^{i} s$ is equivalent with
a) each white square that appears before this domino contributes a q,
b) each black square that appears before this domino contributes a q,
c) each domino that appears before this domino contributes q^{2}
d) and the domino itself contributes $q s$.

The fact that the weight of a black square at i is $q^{i} x r$ is equivalent with
e) each white square that appears before this black square contributes a q,
f) each black square that appears before this black square contributes a q,
g) each domino that appears before this black square contributes a q^{2}
h) and the black square itself contributes $q x r$.

This can also be reformulated in the following way:

1) Each black square contributes $q x r$,
2) each unordered pair of distinct black squares contributes a q,
3) each white square before a black square contributes a q,
4) each domino contributes $q s$,
5) each unordered pair of distinct dominoes contributes q^{2},
6) each white square before a domino contributes a q,
7) each pair of a domino and a black square, where the order is irrelevant, contributes a q,
8) each domino before a black square contributes a q.

For b) and g) is equivalent with 7) and 8).
Now consider the right-hand side of (2.20).
Observe that $v(n, 0, \ell, x)$ is determined by 1$), 2$) and 3); $v(n, k, 0, x)$ is determined by 4$), 5)$ and 6); and 7) gives $q^{k \ell}$.

We first distribute the dominoes on the n-board and let each unoccupied cell have weight 1 . Then we distribute the white and black squares on the unoccupied cells. Their weight is $v(n-2 k, 0, \ell, x)$. The total weight of the configuration is $v(n, k, 0,1) v(n-2 k, 0, \ell, x)$ if each black square before a domino contributes a q. For then 6) is satisfied for the computation of $v(n, k, 0,1)$ since all squares contribute a q (and thus behave as white squares in this context).

Thus the right-hand side of (2.20) satisfies 1) to 7), but instead of 8) we have
8^{\prime}): each black square before a domino contributes a q.
Thus we must reverse the order of the dominoes and black squares to obtain (2.20).
An equivalent form is

Proposition 2.4

Let t be a tiling of an n-board with k dominoes and ℓ black squares. Reverse the order of the dominoes and black squares in t and obtain a tiling T. Denote by A the tiling obtained by replacing in T each square with a colourless square c with weight 1 and let B be the tiling obtained by deleting all dominoes of T.
Then

$$
\begin{equation*}
w_{r}(t)=q^{k \ell} w_{r}(A) w_{r}(B) . \tag{2.21}
\end{equation*}
$$

Example

Consider the tiling $t=a b b d d a d d a a b$ with $(n, k, \ell)=(11,2,3)$ weight $q^{27} s^{2} r^{3} x^{7}$.
Then $T=a b d d d d a b a a b$ and $A=c c d d d d c c c c c$ with $w_{r}(A)=q^{8} s^{2}$ and $B=a b a b a a b$ with $w_{r}(B)=a b a b a a b=q^{13} r^{3} x^{7}$.
This gives $w_{r}(t)=q^{2 \cdot 3}\left(q^{8} s^{2}\right)\left(q^{13} x^{7}\right)$.
Theorem 2.2 implies for $r=1$

Theorem 2.3

$$
U_{n}(x, s, q)=\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor} q^{k^{2}}\left[\begin{array}{c}
n-k \tag{2.22}\\
k
\end{array}\right]\left(1+q^{k+1}\right) \cdots\left(1+q^{n-k}\right) s^{k} x^{n-2 k}
$$

For the q-Chebyshev polynomials of the first kind the situation is somewhat more complicated. Here we get

Theorem 2.4

$T_{n}(x, s, q)$ is the weight of the subset of all tilings of $\{1, \cdots, n\}$ where the last block is either a white square or a domino.
Therefore for $n>0$

$$
\begin{equation*}
T_{n}(x, s, q)=x U_{n-1}(x, s, q)+q^{n-1} s U_{n-2}(x, s, q) . \tag{2.23}
\end{equation*}
$$

Proof

It suffices to prove that the right-hand side satisfies the initial values and the recurrence (2.6).

$$
\begin{aligned}
& \left(1+q^{n}\right) x\left(x U_{n-1}(x, s, q)+q^{n-1} s U_{n-2}(x, s, q)\right)+q^{n} s\left(x U_{n-2}(x, s, q)+q^{n-2} s U_{n-3}(x, s, q)\right) \\
& =x^{2} U_{n-1}(x, s, q)+q^{n} x^{2} U_{n-1}(x, s, q)+q^{n-1} s x U_{n-2}(x, s, q)+q^{2 n-1} s x U_{n-2}(x, s, q) \\
& +q^{n} s x U_{n-2}(x, s, q)+q^{2 n-2} s^{2} U_{n-3}(x, s, q) \\
& =x\left(\left(1+q^{n}\right) x U_{n-1}(x, s, q)+q^{n-1} s U_{n-2}(x, s, q)\right) \\
& +q^{n} s\left(\left(1+q^{n-1}\right) x U_{n-2}(x, s, q)+q^{n-2} s U_{n-4}(x, s, q)\right) \\
& =x U_{n}(x, s, q)+q^{n} s U_{n-1}(x, s, q) .
\end{aligned}
$$

Theorem 2.5

The q-Chebyshev polynomials of the first kind are given by
$T_{n}(x, s, q)=\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor} q^{k^{2}} \frac{(1+q) \cdots\left(1+q^{n-1}\right)}{(1+q) \cdots\left(1+q^{k}\right) \cdot\left(1+q^{n-k}\right) \cdots\left(1+q^{n-1}\right)} \frac{[n]}{[n-k]}\left[\begin{array}{c}n-k \\ k\end{array}\right] s^{k} x^{n-2 k}$
$=\sum_{k=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor} q^{k^{2}}\left(1+q^{k+1}\right) \cdots\left(1+q^{n-k-1}\right) \frac{[n]}{[n-k]}\left[\begin{array}{c}n-k \\ k\end{array}\right] s^{k} x^{n-2 k}+[n \equiv 0 \bmod 2] q^{n^{2}} s^{n}$.

Proof

Consider the subset of all tilings of an n-board whose last block is not a black square. Let $t(n, k, s)$ be the weight of all these tilings with exactly k dominoes.
Then

$$
\begin{equation*}
t(n, k, s)=u(n-1, k, s) x+u(n-2, k-1) q^{n-1} s . \tag{2.25}
\end{equation*}
$$

We show that

$$
t(n, k, s)=q^{k^{2}} \frac{(1+q) \cdots\left(1+q^{n-1}\right)}{(1+q) \cdots\left(1+q^{k}\right) \cdot\left(1+q^{n-k}\right) \cdots\left(1+q^{n-1}\right)} \frac{[n]}{[n-k]}\left[\begin{array}{c}
n-k \tag{2.26}\\
k
\end{array}\right] s^{k} x^{n-2 k} .
$$

This is true for $n=1$ and $n=2$. By induction we get for $2 k \leq n-1$

$$
\begin{aligned}
& t(n, k, s)=u(n-1, k, s) x+u(n-2, k-1) q^{n-1} s \\
& =q^{k^{2}}\left[\begin{array}{c}
n-k-1 \\
k
\end{array}\right]\left(1+q^{k+1}\right) \cdots\left(1+q^{n-k-1}\right) s^{k} x^{n-2 k} \\
& +q^{n-1} q^{k^{2}-2 k+1}\left[\begin{array}{c}
n-1-k \\
k-1
\end{array}\right]\left(1+q^{k}\right) \cdots\left(1+q^{n-1-k}\right) s^{k} x^{n-2 k} \\
& =q^{k^{2}}\left(1+q^{k+1}\right) \cdots\left(1+q^{n-k-1}\right)\left(\left[\begin{array}{c}
n-k-1 \\
k
\end{array}\right]+\left(1+q^{k}\right) q^{n-2 k}\left[\begin{array}{c}
n-1-k \\
k-1
\end{array}\right]\right) s^{k} x^{n-2 k} \\
& =q^{k^{2}}\left(1+q^{k+1}\right) \cdots\left(1+q^{n-k-1}\right)\left(\left[\begin{array}{c}
n-k \\
k
\end{array}\right]+q^{n-k}\left[\begin{array}{c}
n-1-k \\
k-1
\end{array}\right]\right) s^{k} x^{n-2 k} \\
& =q^{k^{2}}\left(1+q^{k+1}\right) \cdots\left(1+q^{n-k-1}\right) \frac{[n]}{[n-k]}\left[\begin{array}{c}
n-k \\
k
\end{array}\right] s^{k} x^{n-2 k}
\end{aligned}
$$

and for $2 k=2 n$

$$
\begin{aligned}
& t(2 n, n, s)=u(2 n-1, n, s) x+u(2 n-2, n-1) q^{2 n-1} s \\
& =q^{2 n-1} q^{n^{2}-2 n+1}\left[\begin{array}{l}
n-1 \\
n-1
\end{array}\right] s^{n}=q^{n^{2}} s^{n} .
\end{aligned}
$$

For $q=1$ the polynomial $T_{n}(x, s)$ can also be interpreted as the weight of the set T_{n} of all tilings which begin with a domino or with a white square since in this case the weights of the words $c_{1} \cdots c_{n}$ and $c_{n} \cdots c_{1}$ coincide.
In the general case this is not true. For example for $n=2$ the set $T_{2}=\{a a, a b, d d\}$ has weight $w\left(T_{2}\right)=x^{2}+q^{2} x^{2}+q s \neq T_{2}(x, s, q)=x^{2}+q x^{2}+q s$.

But we have
Theorem 2.6

$$
\begin{equation*}
T_{n}(x, s, q)=x U_{n-1}\left(x, q^{2} s, q\right)+q s U_{n-2}\left(x, q^{2} s, q\right) . \tag{2.27}
\end{equation*}
$$

Proof

It suffices to show that the right-hand side satisfies recurrence (2.6).
$\left(1+q^{n-1}\right) x\left(x U_{n-2}\left(x, q^{2} s, q\right)+q s U_{n-3}\left(x, q^{2} s, q\right)\right)+q^{n-1} s\left(x U_{n-3}\left(x, q^{2} s, q\right)+q s U_{n-4}\left(x, q^{2} s, q\right)\right)$
$=x^{2} U_{n-2}\left(x, q^{2} s, q\right)+q^{n-1} x^{2} U_{n-2}\left(x, q^{2} s, q\right)+q s x U_{n-3}\left(x, q^{2} s, q\right)+q^{n} s x U_{n-3}\left(x, q^{2} s, q\right)$
$+q^{n-1} s x U_{n-3}\left(x, q^{2} s, q\right)+q^{n} s^{2} U_{n-4}\left(x, q^{2} s, q\right)$
$=x\left(\left(1+q^{n-1}\right) x U_{n-2}\left(x, q^{2} s, q\right)+q^{n-2} q^{2} s U_{n-3}\left(x, q^{2} s, q\right)\right)$
$+q s\left(\left(1+q^{n-2}\right) x U_{n-3}\left(x, q^{2} s, q\right)+q^{n-3} q^{2} s U_{n-4}\left(x, q^{2} s, q\right)\right)$
$=x U_{n-1}\left(x, q^{2} s, q\right)+q s U_{n-2}\left(x, q^{2} s, q\right)$.
Theorem 2.6 has the following tiling interpretation:
Define another weight W such that each white square has weight x, each black square at position i has weight $q^{i} x$ and each domino at position ($i-1, i$) has weight $q^{i+1} s$ if $i<n$. But a domino at position ($n-1, n$) has weight q s.
If we join the ends of the board to a circle such that the position after n is 1 this can also be formulated as: If ($i-1, i, j$) are consecutive points then a domino at position ($i-1, i$) has weight $q^{j} s$. Then $T_{n}(x, s, q)$ is the weight of all such tilings which have no black square at position n. (Note that on the circle there are no dominoes at position $(n, 1)$.)

In order to find a q-analogue of (1.23) let us first consider this identity in more detail.

$$
\left(x+\sqrt{x^{2}+s}\right)^{n}=T_{n}(x, s)+U_{n-1}(x, s) \sqrt{x^{2}+s}
$$

is equivalent with

$$
\begin{aligned}
& T_{n+1}(x, s)+U_{n}(x, s) \sqrt{x^{2}+s}=\left(x+\sqrt{x^{2}+s}\right)^{n+1}=\left(x+\sqrt{x^{2}+s}\right)\left(x+\sqrt{x^{2}+s}\right)^{n} \\
& =\left(x+\sqrt{x^{2}+s}\right)\left(T_{n}(x, s)+U_{n-1}(x, s) \sqrt{x^{2}+s}\right) \\
& =T_{n}(x, s) x+\left(x^{2}+s\right) U_{n-1}(x, s)+\left(T_{n}(x, s)+U_{n-1}(x, s) x\right) \sqrt{x^{2}+s} .
\end{aligned}
$$

Therefore (1.23) is equivalent with both identities

$$
\begin{equation*}
T_{n+1}(x, s)=T_{n}(x, s) x+\left(x^{2}+s\right) U_{n-1}(x, s) \tag{2.28}
\end{equation*}
$$

and

$$
\begin{equation*}
U_{n}(x, s)=T_{n}(x, s)+U_{n-1}(x, s) x . \tag{2.29}
\end{equation*}
$$

To prove identity (2.28) observe that for $q=1$ a tiling of an $(n+1)$ - board which does not end with a black square either ends with two white squares $a a$ or with a domino and a white square $d d a$. The weight w of these tilings is $T_{n}(x, s) x$. Or it ends with ba or $d d$. Their weight is $\left(x^{2}+s\right) U_{n-1}(x, s)$.
Identity (2.29) simply means that an arbitrary tiling either ends with a black square which gives the weight $U_{n-1}(x, s) x$ or does not end with a black square which gives $T_{n}(x, s)$.

For arbitrary q this classification of the tilings implies the identities

$$
\begin{equation*}
T_{n+1}(x, s, q)=x T_{n}(x, s, q)+q^{n}\left(x^{2}+s\right) U_{n-1}(x, s, q) \tag{2.30}
\end{equation*}
$$

and

$$
\begin{equation*}
U_{n}(x, s, q)=T_{n}(x, s, q)+q^{n} x U_{n-1}(x, s, q) . \tag{2.31}
\end{equation*}
$$

But there is also another q-analogue of (2.28):

$$
\begin{equation*}
T_{n+1}(x, s, q)=q^{n} x T_{n}(x, s, q)+\left(x^{2}+q s\right) U_{n-1}\left(x, q^{2} s, q\right) . \tag{2.32}
\end{equation*}
$$

By (2.27) we have $T_{n+1}(x, s, q)=x U_{n}\left(x, q^{2} s, q\right)+q s U_{n-1}\left(x, q^{2} s, q\right)$.
Therefore by (2.12)
$U_{n}\left(x, q^{2} s, q\right)-x U_{n-1}\left(x, q^{2} s, q\right)=q^{n} x U_{n-1}\left(x, q^{2} s, q\right)+q^{n+1} s U_{n-2}\left(x, q^{2} s, q\right)$
$=q^{n}\left(x U_{n-1}\left(x, q^{2} s, q\right)+q s U_{n-2}\left(x, q^{2} s, q\right)\right)=q^{n} T_{n}(x, s, q)$.

Thus

$$
\begin{equation*}
U_{n}\left(x, q^{2} s, q\right)=q^{n} T_{n}(x, s, q)+x U_{n-1}\left(x, q^{2} s, q\right) \tag{2.33}
\end{equation*}
$$

and (2.27) implies (2.32).
As q - analogue of (2.28) and (2.29) we can now choose the identities (2.31) and (2.32) which we write in the form

$$
\begin{align*}
& T_{n+1}(x, s, q)=q^{n} x T_{n}(x, s, q)+\left(x^{2}+q s\right) \eta^{2} U_{n-1}(x, s, q) \tag{2.34}\\
& U_{n}(x, s, q)=T_{n}(x, s, q)+q^{n} x U_{n-1}(x, s, q) .
\end{align*}
$$

Here η denotes the linear operator on the polynomials in s defined by $\eta p(s)=p(q s)$.

To stress the analogy with (1.23) we introduce a formal square root $A=\sqrt{\left(x^{2}+s\right) \eta^{2}}$ which commutes with x and real or complex numbers and satisfies $A^{2}=\left(x^{2}+q s\right) \eta^{2}$ and write (2.34) in the form

$$
\begin{equation*}
T_{n+1}(x, s, q)+A U_{n}(x, s, q)=\left(q^{n} x+A\right)\left(T_{n}(x, s, q)+A U_{n-1}(x, s, q)\right) . \tag{2.35}
\end{equation*}
$$

Since $\left(q^{i} x+A\right)\left(q^{j} x+A\right)=\left(q^{j} x+A\right)\left(q^{i} x+A\right)$ using the q-binomial theorem (2.3) we get as analogue of (1.23)

$$
\begin{equation*}
p_{n}(x, A)=(x+A)(q x+A) \cdots\left(q^{n-1} x+A\right)=T_{n}(x, s, q)+A U_{n-1}(x, s, q) . \tag{2.36}
\end{equation*}
$$

This gives

Theorem 2.7

For the q-Chebyshev polynomials the following formulae hold:

$$
T_{n}(x, s, q)=\frac{p_{n}(x, A)+p_{n}(x,-A)}{2} 1=\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor} q^{\binom{n-2 k}{2}}\left[\begin{array}{c}
n \tag{2.37}\\
2 k
\end{array}\right] x^{n-2 k} \prod_{j=0}^{k-1}\left(x^{2}+q^{2 j+1} s\right)
$$

and

$$
U_{n}(x, s, q)=\frac{p_{n+1}(x, A)-p_{n+1}(x,-A)}{2 A} 1=\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor} q^{\binom{n-2 k}{2}}\left[\begin{array}{c}
n+1 \tag{2.38}\\
2 k+1
\end{array}\right] x^{n-2 k} \prod_{j=0}^{k-1}\left(x^{2}+q^{2 j+1} s\right) .
$$

Proof

This follows from (2.3) and the observation that $A^{2 k}=\left(\left(x^{2}+q s\right) \eta^{2}\right)^{k}=\prod_{j=0}^{k-1}\left(x^{2}+q^{2 j+1} s\right) \eta^{2 k}$.

If we expand $\prod_{j=0}^{k-1}\left(x^{2}+q^{2 j+1} s\right)=\sum_{j=0}^{k} q^{j^{2}} s^{j}\left[\begin{array}{l}k \\ j\end{array}\right]_{q^{2}} x^{2 k-2 j}$
we get by comparing coefficients in (2.37) and (2.38)

Theorem 2.8

For $j \leq n$ the identities

$$
\left.\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor} q^{n-2 k}{ }^{n}\right)\left[\begin{array}{c}
n \tag{2.39}\\
2 k
\end{array}\right]_{q}\left[\begin{array}{c}
k \\
j
\end{array}\right]_{q^{2}}=\frac{(1+q) \cdots\left(1+q^{n-1}\right)}{(1+q) \cdots\left(1+q^{j}\right) \cdot\left(1+q^{n-j}\right) \cdots\left(1+q^{n-1}\right)} \frac{[n]_{q}}{[n-j]_{q}}\left[\begin{array}{c}
n-j \\
j
\end{array}\right]_{q}
$$

and

$$
\sum_{k=0}^{\left\lfloor\frac{n}{2}\right.} q^{\binom{n-2 k}{2}}\left[\begin{array}{c}
n+1 \tag{2.40}\\
2 k+1
\end{array}\right]_{q}\left[\begin{array}{c}
k \\
j
\end{array}\right]_{q^{2}}=\left(1+q^{j+1}\right) \cdots\left(1+q^{n-j}\right)\left[\begin{array}{c}
n-j \\
j
\end{array}\right]_{q}
$$

hold.

Remark 2.3

It would be nice to find a combinatorial interpretation of these identities.
For $q=1$ we get from (1.23)
$T_{n}(x, s)^{2}-\left(x^{2}+s\right) U_{n-1}(x, s)^{2}=(-s)^{n}$.
Since A does not commute with polynomials in s we cannot deduce a q-analogue of this formula from (2.36).

But we can instead consider the matrices

$$
A_{n}=\left(\begin{array}{cc}
x & q^{n}\left(x^{2}+s\right. \tag{2.41}\\
1 & q^{n} x
\end{array}\right)
$$

We then get
Theorem 2.9

$$
\left(\begin{array}{cc}
T_{n}(x, s, q) & \left(x^{2}+s\right) U_{n-1}(x, q s, q) \tag{2.42}\\
U_{n-1}(x, s, q) & T_{n}\left(x, \frac{s}{q}, q\right)
\end{array}\right)=A_{n-1} A_{n-2} \cdots A_{0}
$$

Proof

We must show that
$\left(\begin{array}{cc}T_{n+1}(x, s, q) & \left(x^{2}+s\right) U_{n}(x, q s, q) \\ U_{n}(x, s, q) & T_{n+1}\left(x, \frac{s}{q}, q\right)\end{array}\right)=\left(\begin{array}{cc}x & q^{n}\left(x^{2}+s\right. \\ 1 & q^{n} x\end{array}\right)\left(\begin{array}{cc}T_{n}(x, s, q) & \left(x^{2}+s\right) U_{n-1}(x, q s, q) \\ U_{n-1}(x, s, q) & T_{n}\left(x, \frac{s}{q}, q\right)\end{array}\right)$
or equivalently
$T_{n+1}(x, s, q)=x T_{n}(x, s, q)+q^{n}\left(x^{2}+s\right) U_{n-1}(x, s, q)$,
$U_{n}(x, s, q)=T_{n}(x, s, q)+q^{n} x U_{n-1}(x, s, q)$,
$U_{n}\left(x, q^{2} s, q\right)=q^{n} T_{n}(x, s, q)+x U_{n-1}\left(x, q^{2} s, q\right)$,
$T_{n+1}(x, s, q)=q^{n} x T_{n}(x, s, q)+\left(x^{2}+q s\right) U_{n-1}\left(x, q^{2} s, q\right)$.
This follows from the recurrences (2.30), (2.31), (2.32) and (2.33).

If we take determinants in (2.42) we get the desired q-analogue of $T_{n}(x, s)^{2}-\left(x^{2}+s\right) U_{n-1}(x, s)^{2}=(-s)^{n}$.

Theorem 2.10

$$
\begin{equation*}
T_{n}(x, s, q) T_{n}(x, q s, q)-\left(x^{2}+q s\right) U_{n-1}(x, q s, q) U_{n-1}\left(x, q^{2} s, q\right)=q^{\binom{n+1}{2}}(-s)^{n} . \tag{2.43}
\end{equation*}
$$

For example for $(x, s)=(1,-1)$ this reduces to
$T_{n}(1,-q, q)-(1-q) \sum_{k=1}^{n} q^{\binom{k}{2}}[n]=T_{n}(1,-q, q)-\left(1-q^{n}\right) \sum_{k=1}^{n} q^{\binom{k}{2}}=q^{\binom{n+1}{2}}$.

In [11] many other identities occur. These follow in an easy manner from the identities obtained above.

Since the q-Chebyshev polynomials satisfy a three-term recurrence they are orthogonal with respect to some linear functionals, i.e. $L\left(T_{n}(x, s, q) T_{m}(x, s, q)\right)=0$ and $M\left(U_{n}(x, s, q) U_{m}(x, s, q)\right)=0$ for $n \neq m$.
These linear functionals are uniquely determined by
$L\left(T_{n}(x, s, q)\right)=[n=0]$ and $M\left(U_{n}(x, s, q)\right)=[n=0]$.
These linear functionals are closely related. From (2.30) we get $T_{n+1}(x, s, q)-x T_{n}(x, s, q)=q^{n}\left(x^{2}+s\right) U_{n-1}(x, s, q)$.
By (2.6) we have $x T_{n}(x, s, q)=\frac{T_{n+1}(x, s, q)-q^{n} s T_{n-1}(x, s, q)}{1+q^{n}}$
and therefore we obtain

$$
\begin{equation*}
T_{n+1}(x, s, q)+s T_{n-1}(x, s, q)=\left(1+q^{n}\right)\left(x^{2}+s\right) U_{n-1}(x, s, q) . \tag{2.44}
\end{equation*}
$$

If we apply the linear functional L to this identity we deduce that

$$
\begin{equation*}
(1+q) L\left(\left(1+\frac{x^{2}}{s}\right) U_{n}(x, s, q)\right)=[n=0]=M\left(U_{n}(x, s, q)\right) . \tag{2.45}
\end{equation*}
$$

By linearity we obtain

$$
\begin{equation*}
(1+q) L\left(\left(1+\frac{x^{2}}{s}\right) p(x)\right)=M(p(x)) \tag{2.46}
\end{equation*}
$$

for all polynomials $p(x)$.

As q - analogue of (1.14) we get

$$
L\left(T_{n}^{2}\right)= \begin{cases}1 & \text { if } n=0 \tag{2.47}\\
\frac{q^{n+1}\left(\begin{array}{c}
2
\end{array}\right)}{1+q^{n}} & \text { if } n>0\end{cases}
$$

This follows by applying L to (2.6) which gives $L\left(x^{n} T_{n}\right)=-\frac{q^{n} s}{1+q^{n}} L\left(x^{n-1} T_{n-1}\right)$ and therefore

$$
L\left(x^{n} T_{n}\right)=(-s)^{n} \frac{q^{\binom{n+1}{2}}}{(1+q)\left(1+q^{2}\right) \cdots\left(1+q^{n}\right)}
$$

Now observe that $L\left(T_{n}^{2}\right)=L\left((1+q) \cdots\left(1+q^{n-1}\right) x^{n} T_{n}\right)$.
Of special interest are the moments of these linear functionals, i.e. the values $L\left(x^{n}\right)$ and $M\left(x^{n}\right)$. To find these values it suffices to find the uniquely determined representation of x^{n} as a linear combination of the q-Chebyshev polynomials.
These have been calculated in [11] for the corresponding monic polynomials. Therefore I only state the results in the present notation:

For the q-Chebyshev polynomials of the first kind we have

$$
x^{n}=\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor}\left[\begin{array}{l}
n \tag{2.48}\\
k
\end{array}\right]\left(1+q^{n-2 k}[2 k \neq n]\right)(-q s)^{k} \frac{T_{n-2 k}(x, s, q)}{(1+q) \cdots\left(1+q^{k}\right)(1+q) \cdots\left(1+q^{n-k}\right)} .
$$

This gives as q-analogue of (1.15)

$$
L\left(x^{2 n}\right)=\left[\begin{array}{c}
2 n \tag{2.49}\\
n
\end{array}\right] \frac{(-q s)^{n}}{\prod_{j=1}^{n}\left(1+q^{j}\right)^{2}}
$$

and $L\left(x^{2 n+1}\right)=0$.
For the monic polynomials we get the three-term recurrence with $s(n)=0, t(0)=\frac{q s}{1+q}$ and $t(n)=\frac{q^{n+1} s}{\left(1+q^{n}\right)\left(1+q^{n+1}\right)}$.

For the q-Chebyshev polynomials of the second kind the corresponding formulae are

$$
\begin{equation*}
M\left(U_{n}{ }^{2}\right)=(-s)^{n} q^{\binom{n+1}{2}} \frac{1+q}{1+q^{n+1}} \tag{2.50}
\end{equation*}
$$

as q - analogue of (1.17) and

$$
x^{n}=\sum_{k=0}^{\left\lfloor\frac{n}{2}\right.}\left(\left[\begin{array}{l}
n \tag{2.51}\\
k
\end{array}\right]-\left[\begin{array}{c}
n \\
k-1
\end{array}\right]\right)(-s)^{k} \frac{1+q^{n-2 k+1}}{\prod_{j=1}^{k}\left(1+q^{j}\right) \prod_{j=1}^{n-k+1}\left(1+q^{j}\right)} U_{n-2 k}(x, s, q)
$$

and therefore

$$
M\left(x^{2 n}\right)=\frac{1}{[n+1]}\left[\begin{array}{c}
2 n \tag{2.52}\\
n
\end{array}\right] \frac{1+q}{1+q^{n+1}} \frac{(-q s)^{n}}{\prod_{j=1}^{n}\left(1+q^{j}\right)^{2}}
$$

and $M\left(x^{2 n+1}\right)=0$.
Of course (2.52) also follows directly from (2.49) and (2.46).
The parameters for the three-term recurrence of the monic polynomials are $s(n)=0$ and $t(n)=\frac{q^{n+1} s}{\left(1+q^{n+1}\right)\left(1+q^{n+2}\right)}$.

Remark 2.4

The q-Chebyshev polynomials have also appeared, partly implicitly and without recognizing them as q-analogues of the Chebyshev polynomials, in [6], [7] and [13] in the course of computing Hankel determinants of $\mu_{n}=\frac{(a q ; q)_{n}}{\left(a b q^{2} ; q\right)_{n}}$, which are the moments of the little q Jacobi polynomials $p_{n}(x ; a, b \mid q)$ (cf. [14]). Note that $L\left(x^{2 n}\right)=\frac{\left(q ; q^{2}\right)_{n}}{\left(q^{2} ; q^{2}\right)_{n}}(-q s)^{n}$ and $M\left(x^{2 n}\right)=\frac{\left(q^{2} ; q^{2}\right)_{n}}{\left(q^{4} ; q^{2}\right)_{n}}(-q s)^{n}$.

3. Some further properties

The q-Chebyshev polynomials $T_{2 n}(1, s, q), T_{2 n+1}(1, s, q), U_{2 n}(1, s, q)$ and $U_{2 n+1}(1, s, q)$ are polynomials in s of degree n.
Therefore there exist unique representations

$$
\begin{equation*}
T_{2 n+1}(1, s, q)=\sum_{k=0}^{n} a(n, k, q) T_{2 k}(1, s, q) \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
U_{2 n+1}(1, s, q)=\sum_{k=0}^{n} b(n, k, q) U_{2 k}(1, s, q) . \tag{3.2}
\end{equation*}
$$

To obtain these representations we need q-analogues of the tangent and Genocchi numbers. The q-tangent numbers $t_{2 n+1}(q)$ are well-known objects defined by the generating function

$$
\begin{equation*}
\frac{e(z)-e(-z)}{e(z)+e(-z)}=\sum_{n \geq 0} \frac{(-1)^{n} t_{2 n+1}(q)}{[2 n+1]!} z^{2 n+1} . \tag{3.3}
\end{equation*}
$$

Theorem 3.1

$$
T_{2 n+1}(x, s, q)=\sum_{k=0}^{n}\left[\begin{array}{c}
2 n+1 \tag{3.4}\\
2 k
\end{array}\right](-1)^{n-k} t_{2 n-2 k+1}(q) x^{2 n+1-2 k} T_{2 k}(x, s, q) .
$$

Proof

In (2.37) we have seen that $T_{n}(1, s, q)=\sum_{k=0}^{\left\lvert\, \frac{n}{2}\right.}\left[\begin{array}{c}n \\ 2 k\end{array}\right] q^{\binom{n-2 k}{2}}(1+q s)\left(1+q^{3} s\right) \cdots\left(1+q^{2 k-1} s\right)$.
This implies that

$$
\begin{equation*}
T(z, s, q)=\sum_{n \geq 0} \frac{T_{n}(1, s, q)}{[n]!} z^{n} \tag{3.5}
\end{equation*}
$$

satisfies

$$
\begin{equation*}
T(z, s, q)=\frac{1}{e(-z)} \sum_{n \geq 0}(1+q s)\left(1+q^{3} s\right) \cdots\left(1+q^{2 n-1} s\right) \frac{z^{2 n}}{[2 n]!} \tag{3.6}
\end{equation*}
$$

Therefore $e(-z) T(z, s, q)=e(z) T(-z, s, q)$ and $(e(z)-e(-z))(T(z, s, q)+T(-z, s, q))=(e(z)+e(-z))(T(z, s, q)-T(-z, s, q))$ or

$$
\begin{equation*}
\frac{\sum_{n \geq 0} \frac{T_{2 n+1}(1, s, q)}{[2 n+1]!} z^{2 n+1}}{\sum_{n \geq 0} \frac{T_{2 n}(1, s, q)}{[2 n]!} z^{2 n}}=\frac{e(z)-e(-z)}{e(z)+e(-z)}=\sum_{n \geq 0} \frac{(-1)^{n} t_{2 n+1}(q)}{[2 n+1]!} z^{2 n+1} \tag{3.7}
\end{equation*}
$$

Note that the left-hand side does not depend on s. If we choose $s=0$ we get that

$$
\begin{equation*}
\frac{\sum_{n \geq 0} \frac{(-q ; q)_{2 n}}{[2 n+1]!} z^{2 n+1}}{1+\sum_{n \geq 1} \frac{(-q ; q)_{2 n-1}^{2 n}}{[2 n]!} z^{2 n}}=\frac{e(z)-e(-z)}{e(z)+e(-z)} \tag{3.8}
\end{equation*}
$$

(3.7) implies

$$
\sum_{n \geq 0} \frac{T_{2 n+1}(1, s, q)}{[2 n+1]!} z^{2 n+1}=\sum_{n \geq 0} \frac{(-1)^{n} t_{2 n+1}(q)}{[2 n+1]!} z^{2 n+1} \sum_{n \geq 0} \frac{T_{2 n}(1, s, q)}{[2 n]!} z^{2 n}
$$

which gives by comparing coefficients

$$
T_{2 n+1}(1, s, q)=\sum_{k=0}^{n}\left[\begin{array}{c}
2 n+1 \tag{3.9}\\
2 k
\end{array}\right](-1)^{n-k} t_{2 n-2 k+1}(q) T_{2 k}(1, s, q)
$$

and therefore also (3.4).
For $q=1$ the Chebyshev polynomials satisfy

$$
\begin{equation*}
\sum_{j=0}^{n}\binom{n}{j}(-2 x)^{j} T_{2 n+m-j}(x, s)=s^{n} T_{m}(x, s) \tag{3.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{j=0}^{n}\binom{n}{j}(-2 x)^{j} U_{2 n+m-1-j}(x, s)=s^{n} U_{m}(x, s) . \tag{3.11}
\end{equation*}
$$

For these identities are equivalent with

$$
\sum_{j=0}^{n}\binom{n}{j}(-2 x)^{j}\left(x+\sqrt{x^{2}+s}\right)^{2 n+m-j}=s^{n}\left(x+\sqrt{x^{2}+s}\right)^{2 n+m-j}
$$

which in turn reduces to the trivial identity

$$
\left(x+\sqrt{x^{2}+s}\right)^{n+m}\left(x+\sqrt{x^{2}+s}-2 x\right)^{n}=\left(x+\sqrt{x^{2}+s}\right)^{m}\left(\sqrt{x^{2}+s}+x\right)^{n}\left(\sqrt{x^{2}+s}-x\right)^{n}=s^{n}\left(x+\sqrt{x^{2}+s}\right)^{m} .
$$

In order to simplify the exposition we let $x=1$ and prove as q - analogue of (3.10)

Theorem 3.2

$$
\sum_{j=0}^{n}(-1)^{j} q^{\binom{j}{2}}\left[\begin{array}{l}
n \tag{3.12}\\
j
\end{array}\right] \prod_{i=n+m+1-j}^{n+m}\left(1+q^{i}\right) T_{2 n+m-j}(1, s, q)=q^{n^{2}+m n} s^{n} T_{m}(1, s, q) .
$$

Proof

Let $m \in \mathbb{N}$. We consider the following matrix $(a(n, k, m))_{n, k \geq 0}$ with $a(n, k, m)=s^{k} T_{n-k+m}(1, s, q)$ for $0 \leq k \leq n$ and $a(n, k, m)=0$ for $k>n$. The first terms are

$$
\left(\begin{array}{ccccc}
T_{m}(1, s, q) & & & & \\
T_{m+1}(1, s, q) & s T_{m}(1, s, q) & & & \\
T_{m+2}(1, s, q) & s T_{m+1}(1, s, q) & s^{2} T_{m}(1, s, q) & & \\
T_{m+3}(1, s, q) & s T_{m+2}(1, s, q) & s^{2} T_{m+1}(1, s, q) & s^{3} T_{m}(1, s, q) & \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right) .
$$

The recurrence for $T_{n}(1, s, q)$ gives
$a(n, k, m)=\frac{a(n+1, k-1, m)-\left(1+q^{n+m+1-k}\right) a(n, k-1, m)}{q^{n+m+1-k}}$.
This implies that
$a(n, k, m)=\frac{1}{q^{k(n+m)}} \sum_{j=0}^{k}(-1)^{j} q^{\binom{j}{2}}\left[\begin{array}{c}k \\ j\end{array}\right] \prod_{i=n+m+1-j}^{n+m}\left(1+q^{i}\right) T_{n+m+k-j}(1, s, q)$.
This is true for $k=0$.
If it holds for $k-1$ then
$a(n, k, m)=\frac{a(n+1, k-1, m)-\left(1+q^{n+m-1-k}\right) a(n, k-1, m)}{q^{n+m+1-k}}$
$=\frac{1}{q^{n+m+1-k}} \frac{1}{q^{(k-1)(n+m+1)}} \sum_{j=0}^{k-1}(-1)^{j} q^{\binom{j}{2}}\left[\begin{array}{c}k-1 \\ j\end{array}\right] \prod_{i=n+m+2-j}^{n+m+1}\left(1+q^{i}\right) T_{n+m+k-j}(1, s, q)$
$-\left(1+q^{n+m+1-k}\right) \frac{1}{q^{n+m+1-k}} \frac{1}{q^{(k-1)(n+m)}} \sum_{j=0}^{k-1}(-1)^{j} q^{\binom{j}{2}\left[\begin{array}{c}k-1 \\ j\end{array}\right] \prod_{i=n+m+1-j}^{n+m}\left(1+q^{i}\right) T_{n+m+k-1-j}(1, s, q), ~(k)}$
$=\frac{1}{q^{k(n+m)}} \sum_{j=0}^{k-1}(-1)^{j} q^{\binom{j}{2}}\left[\begin{array}{c}k-1 \\ j\end{array}\right] \prod_{i=n+m+2-j}^{n+m+1}\left(1+q^{i}\right) T_{n+m+k-j}(1, s, q)$
$+\left(1+q^{n+m+1-k}\right) \frac{q^{k-1}}{q^{k(n+m)}} \sum_{j=1}^{k}(-1)^{j} q^{\binom{j-1}{2}}\left[\begin{array}{c}k-1 \\ j-1\end{array}\right] \prod_{i=n+m+2-j}^{n+m}\left(1+q^{i}\right) T_{n+m+k-j}(1, s, q)$
$=\frac{1}{q^{k(n+m)}} \sum_{j=0}^{k}(-1)^{j} q^{\binom{j}{2}} \prod_{i=n+m+2-j}^{n+m}\left(1+q^{i}\right) T_{n+m+k-j}(1, s, q)\left(\left[\begin{array}{c}k-1 \\ j\end{array}\right]\left(1+q^{n+m+1}\right)+q^{k-j}\left(1+q^{n+m+1-k}\right)\left[\begin{array}{c}k-1 \\ j-1\end{array}\right]\right)$
$=\frac{1}{q^{k(n+m)}} \sum_{j=0}^{k}(-1)^{j} q^{\binom{j}{2}}\left[\begin{array}{c}k \\ j\end{array}\right] \prod_{i=n+m+1-j}^{n+m}\left(1+q^{i}\right) T_{n+m+k-j}(1, s, q)$.
This gives (3.12).
As special cases we get for $m=0$ and $m=1$

and

$$
\sum_{j=0}^{n}(-1)^{j} q^{(2)}\left[\begin{array}{l}
n \\
j
\end{array}\right] \prod_{i=n+2-j}^{n+j}\left(1+q^{i}\right) T_{2 n+1-j}(1, s, q)=q^{n^{2}+n} s^{n} .
$$

This implies
$q^{n} \sum_{j=1}^{n+1}(-1)^{j-1} q^{\binom{j-1}{2}}\left[\begin{array}{c}n \\ j-1\end{array}\right] \prod_{i=n+2-j}^{n}\left(1+q^{i}\right) T_{2 n+1-j}(1, s, q)$
$=\sum_{j=1}^{n+1}(-1)^{j} q^{\binom{j}{2}\left[\begin{array}{l}n \\ j\end{array}\right] \prod_{i=n+2-j}^{n+1}\left(1+q^{i}\right) T_{2 n+1-j}(1, s, q)+T_{2 n+1}(1, s, q), ~(1)}$
or

$$
\sum_{j=1}^{n+1}(-1)^{j-1} q^{\binom{j}{2}} \prod_{i=n+2-j}^{n}\left(1+q^{i}\right)\left(\left[\begin{array}{c}
n+1 \tag{3.13}\\
j
\end{array}\right]+q^{n+1}\left[\begin{array}{c}
n \\
j
\end{array}\right]\right) T_{2 n+1-j}(1, s, q)=T_{2 n+1}(1, s, q) .
$$

Of course we could also replace $\left[\begin{array}{c}n+1 \\ j\end{array}\right]+q^{n+1}\left[\begin{array}{l}n \\ j\end{array}\right]$ by $\left[\begin{array}{c}n+1 \\ 2 j\end{array}\right] \frac{[2 n+2-2 j]}{[n+1]}$.
Define now a linear functional μ on the polynomials in s by $\mu\left(T_{2 n}(1, s, q)\right)=[n=1]$. Then by (3.9) $\mu\left(T_{2 n+1}(1, s, q)\right)=(-1)^{n} t_{2 n+1}(q)$.

Thus we get the following identities for the q-tangent numbers

$$
t_{2 n+1}(q)=\sum_{j=1}^{\left\lfloor\frac{n+1}{2}\right\rfloor}(-1)^{j-1} q^{\binom{2 j}{2}} \prod_{i=n+2-2 j}^{n}\left(1+q^{i}\right)\left[\begin{array}{c}
n+1 \tag{3.14}\\
2 j
\end{array}\right] \frac{[2 n+2-2 j]}{[n+1]} t_{2 n+1-2 j}(q)
$$

For $q=1$ this reduces to

$$
\begin{equation*}
t_{2 n+1}=\sum_{j=1}^{\left.\frac{n+1}{2}\right\rfloor}(-1)^{j-1} 2^{2 j}\binom{n+1}{2 j} \frac{n+1-j}{n+1} . \tag{3.15}
\end{equation*}
$$

The first identities are
$t_{3}=2 t_{1}, \quad t_{5}=8 t_{3}, t_{7}=18 t_{5}-8 t_{3}, t_{9}=32 t_{7}-48 t_{5}, \quad t_{11}=50 t_{9}-160 t_{7}+32 t_{5}$.
What at first glance appears as a new identity turns out to be an old acquaintance if we use (1.35) and write (3.15) in terms of Genocchi numbers. For then we get

$$
\begin{equation*}
\sum_{j=0}^{n}(-1)^{j}\binom{n}{2 j} G_{2 n-2 j}=0 \tag{3.16}
\end{equation*}
$$

This is Seidel's identity for the Genocchi numbers.

To obtain the expansion (3.2) we define q-Genocchi numbers $G_{2 n}(q)$ by the generating function

$$
\begin{equation*}
z \frac{e(z)-e(-z)}{e(z)+e(-z)}=\sum_{n \geq 0} \frac{(-1)^{n-1} G_{2 n}(q)(-q ; q)_{2 n-1} z^{2 n} .}{[2 n]!} \tag{3.17}
\end{equation*}
$$

This implies that

$$
\begin{equation*}
t_{2 n+1}(q)=\frac{G_{2 n+2}(q)(-q ; q)_{2 n+1}}{[2 n+2]} \tag{3.1}
\end{equation*}
$$

(Observe that this q-analogue of the Genocchi numbers does not coincide with the q Genocchi numbers introduced by J. Zeng and J. Zhou which have been studied in [9]).

The first terms of the sequence $\left(G_{2 n}(q)\right)_{n \geq 1}$ are

$$
G_{2}(q)=1,
$$

$G_{4}(q)=q \frac{1+q}{1+q^{3}}$,
$G_{6}(q)=q^{2} \frac{(1+q)\left(1+q^{2}\right)\left(1+q+q^{2}\right)}{\left(1+q^{4}\right)\left(1+q^{5}\right)}$,
$G_{8}(q)=q^{3} \frac{(1+q)^{2}\left(1+q^{2}\right)\left(1+q+3 q^{2}+2 q^{3}+3 q^{4}+2 q^{5}+3 q^{6}+q^{7}+q^{8}\right)}{\left(1+q^{5}\right)\left(1+q^{6}\right)\left(1+q^{7}\right)}$.

Theorem 3.3

$$
U_{2 n+1}(x, s, q)=\sum_{k=0}^{n}\left[\begin{array}{c}
2 n+2 \tag{3.19}\\
2 k
\end{array}\right] \frac{1}{[2 k+1]}(-q ; q)_{2 n-2 k+1}(-1)^{n-k} G_{2 n-2 k+2}(q) x^{2 n+1-2 k} U_{2 k}(x, s, q)
$$

Proof

In (2.38) we have seen that $U_{n}(1, s, q)=\sum_{k=0}^{\left|\frac{n}{2}\right|}\left[\begin{array}{c}n+1 \\ 2 k+1\end{array}\right]^{\binom{n-2 k}{2}}(1+q s)\left(1+q^{3} s\right) \cdots\left(1+q^{2 k-1} s\right)$.
By comparing coefficients this is equivalent with

$$
\begin{equation*}
\frac{1}{e(-z)} \sum_{n \geq 0} \frac{z^{2 n+1}}{[2 n+1]!}(1+q s)\left(1+q^{3} s\right) \cdots\left(1+q^{2 n-1} s\right)=\sum_{n \geq 1} \frac{U_{n-1}(1, s, q)}{[n]!} z^{n} \tag{3.20}
\end{equation*}
$$

Let now

$$
\begin{equation*}
U(z, s, q)=\sum_{n \geq 1} \frac{U_{n-1}(1, s, q)}{[n]!} z^{n} . \tag{3.21}
\end{equation*}
$$

We then get
$e(-z) U(z, s, q)=\sum_{n \geq 0} \frac{z^{2 n+1}}{[2 n+1]!}(1+q s)\left(1+q^{3} s\right) \cdots\left(1+q^{2 n-1} s\right)=-e(z) U(-z, s, q)$.
This implies
$(e(z)-e(-z))(U(z, s, q)-U(-z, s, q))=-e(z) U(-z, s, q)-e(-z) U(z, s, q)+e(z) U(z, s, q)$
$+e(-z) U(-z, s, q)=e(z) U(z, s, q)+e(-z) U(-z, s, q)=(e(z)+e(-z))(U(z, s, q)+U(-z, s, q))$.
Since $U(z, s, q)+U(-z, s, q)=2 \sum_{n \geq 1} \frac{U_{2 n-1}(1, s, q)}{[2 n]!} z^{2 n}$ and
$U(z, s, q)-U(-z, s, q)=2 \sum_{n \geq 0} \frac{U_{2 n}(1, s, q)}{[2 n+1]!} z^{2 n+1}$
we see that

$$
\begin{equation*}
\frac{\sum_{n \geq 1} \frac{U_{2 n-1}(1, s, q)}{[2 n]!} z^{2 n}}{\sum_{n \geq 0} \frac{U_{2 n}(1, s, q)}{[2 n+1]!} z^{2 n+1}}=\frac{e(z)-e(-z)}{e(z)+e(-z)} \tag{3.22}
\end{equation*}
$$

Again the left-hand side does not depend on s. So we can e.g. choose $s=0$ and get that

$$
\begin{equation*}
\frac{\sum_{n \geq 1} \frac{(-q ; q)_{2 n-1} z^{2 n}}{[2 n]!}}{\sum_{n \geq 0} \frac{(-q ; q)_{2 n}}{[2 n+1]!} z^{2 n+1}}=\frac{e(z)-e(-z)}{e(z)+e(-z)} \tag{3.23}
\end{equation*}
$$

If we write (3.22) in the form
$\sum_{n \geq 1} \frac{U_{2 n-1}(1, s, q)}{[2 n]!} z^{2 n}=z \frac{e(z)-e(-z)}{e(z)+e(-z)} \sum_{n \geq 0} \frac{U_{2 n}(1, s, q)}{[2 n+1]!} z^{2 n}$
and compare coefficients we get
$U_{2 n-1}(1, s, q)=\sum_{k=0}^{n}\left[\begin{array}{l}2 n \\ 2 k\end{array}\right] \frac{1}{[2 k+1]}(-q ; q)_{2 n-2 k-1}(-1)^{n-k-1} G_{2 n-2 k}(q) U_{2 k}(1, s, q)$.
This immediately implies Theorem 3.3.

Since the left-hand side of (3.17) and $\frac{(-q ; q)_{2 n-1}}{[2 n]!}$ are invariant under $q \rightarrow \frac{1}{q}$ we see that

$$
\begin{equation*}
G_{2 n}\left(\frac{1}{q}\right)=G_{2 n}(q) . \tag{3.24}
\end{equation*}
$$

Now we prove a q - analogue of (3.11):

Theorem 3.4

The q-Chebyshev polynomials $U_{n}(1, s, q)$ satisfy the identity

$$
\sum_{k=0}^{n}(-1)^{k} q^{k}\left(\begin{array}{l}
k \tag{3.25}\\
2
\end{array}\right]\left[\begin{array}{l}
n \\
k
\end{array}\right] \prod_{j=n+m+1-k}^{n+m}\left(1+q^{j}\right) U_{2 n+m-1-k}(1, s, q)=q^{n^{2}-n+m n} s^{n} U_{m-1}(1, s, q)
$$

Proof

Let

$$
W(n, m, s, q)=\sum_{k=0}^{n}(-1)^{k} q^{k}\binom{k}{2}\left[\begin{array}{l}
n \tag{3.26}\\
k
\end{array}\right] \prod_{j=n+m+1-k}^{n+m}\left(1+q^{j}\right) U_{2 n+m-1-k}(1, s, q) .
$$

We want to show that

$$
\begin{equation*}
W(n, m, s, q)==q^{n^{2}-n+m n} s^{n} U_{m-1}(1, s, q) . \tag{3.27}
\end{equation*}
$$

We prove this identity with induction.
For $n=0$ it is the trivial identity $U_{m-1}(1, s, q)=U_{m-1}(1, s, q)$.
For $n=1$ it reduces to $U_{m+1}(1, s, q)-\left(1+q^{m+1}\right) U_{m}(1, s, q)=q^{m} s U_{m-1}(1, s, q)$.
By definition of the polynomials this is true for all non-negative m.
In general we have

$$
\begin{equation*}
W(n, m, s, q)=W(n-1, m+2, s, q)-q^{n-1}\left(1+q^{m+1}\right) W(n-1, m+1, s, q) . \tag{3.28}
\end{equation*}
$$

Observing that
$\left[\begin{array}{c}n-1 \\ k\end{array}\right]\left(1+q^{n+m+1}\right)+q^{n-k}\left(1+q^{m+1}\right)\left[\begin{array}{l}n-1 \\ k-1\end{array}\right]=$
$=\left(\left[\begin{array}{c}n-1 \\ k\end{array}\right]+q^{n-k}\left[\begin{array}{l}n-1 \\ k-1\end{array}\right]\right)+q^{m+n+1-k}\left(\left[\begin{array}{l}n-1 \\ k-1\end{array}\right]+q^{k}\left[\begin{array}{c}n-1 \\ k\end{array}\right]\right)=\left(1+q^{m+n+1-k}\right)\left[\begin{array}{l}n \\ k\end{array}\right]$
we get

$$
\begin{aligned}
& W(n-1, m+2, s, q)-q^{n-1}\left(1+q^{m+1}\right) W(n-1, m+1, s, q) \\
& =\sum_{k=0}^{n-1}(-1)^{k} q^{\binom{k}{2}}\left[\begin{array}{c}
n-1 \\
k
\end{array}\right] \prod_{j=n+m-k+2}^{n+m+1}\left(1+q^{j}\right) U_{2 n+m-1-k}(1, s, q)-q^{n-1}\left(1+q^{m+1}\right) \sum_{k=0}^{n-1}(-1)^{k} q^{\binom{k}{2}}\left[\begin{array}{c}
n-1 \\
k
\end{array}\right] \prod_{j=n+m+1-k}^{n+m}\left(1+q^{j}\right) U_{2 n+m-2-k}(1, s, q) \\
& =\sum_{k=0}^{n-1}(-1)^{k} q^{\binom{k}{2}}\left[\begin{array}{c}
n-1 \\
k
\end{array}\right] \prod_{j=n+m-k+2}^{n+m+1}\left(1+q^{j}\right) U_{2 n+m-1-k}(1, s, q)-q^{n-1}\left(1+q^{m+1}\right) \sum_{k=1}^{n}(-1)^{k-1} q^{\binom{k-1}{2}}\left[\begin{array}{c}
n-1 \\
k-1
\end{array}\right] \prod_{j=n+m+2-k}^{n+m}\left(1+q^{j}\right) U_{2 n+m-1-k}(1, s, q) \\
& =U_{2 n+m-1}(1, s, q)+\sum_{k=1}^{n-1}(-1)^{k} q^{\binom{k}{2}} \prod_{j=n+m-k+2}^{n+m}\left(1+q^{j}\right) U_{2 n+m-1-k}(1, s, q)\left(\left[\begin{array}{c}
n-1 \\
k
\end{array}\right]\left(1+q^{n+m+1}\right)+q^{n-1-k+1}\left(1+q^{m+1}\right)\left[\begin{array}{c}
n-1 \\
k-1
\end{array}\right]\right) \\
& +q^{n-1}\left(1+q^{m+1}\right)(-1)^{n} q^{\binom{n-1}{2}} \prod_{j=m+2}^{n+m}\left(1+q^{j}\right) U_{n+m-1}(1, s, q) \\
& =\sum_{k=0}^{n}(-1)^{k} q^{\binom{k}{2}} \prod_{j=n+m-k+1}^{n+m}\left(1+q^{j}\right)\left[\begin{array}{l}
n \\
k
\end{array}\right] U_{2 n+m-1-k}(1, s, q)=W(n, m, s, q) .
\end{aligned}
$$

By induction (3.28) implies
$W(n, m, s, q)=W(n-1, m+2, s, q)-q^{n-1}\left(1+q^{m+1}\right) W(n-1, m+1, s, q)$
$=q^{n^{2}-n+(n-1) m} s^{n-1} U_{m+1}(1, s, q)-q^{n^{2}-n+(n-1) m} s^{n-1}\left(1+q^{m+1}\right) U_{m}(1, s, q)$
$=q^{n^{2}-n+(n-1) m} s^{n-1}\left(U_{m+1}(1, s, q)-\left(1+q^{m+1}\right) U_{m}(1, s, q)\right)=q^{n^{2}-n+n m} s^{n} U_{m-1}(1, s, q)$.

For $m=0$ we get

$$
\sum_{k=0}^{n}(-1)^{k} q^{\binom{k}{2}}\left[\begin{array}{l}
n \tag{3.29}\\
k
\end{array}\right] \prod_{j=n-k+1}^{n}\left(1+q^{j}\right) U_{2 n-1-k}(1, s, q)=0
$$

An easy consequence is a q - analogue of the Seidel identity for the Genocchi numbers which gives an easy way to calculate the q-Genocchi numbers and shows that $\left(-q^{n+1} ; q\right)_{n-1} G_{2 n}(q) \in \mathbb{Z}[q]$ is a polynomial with integer coefficients.

Theorem 3.5 (q-Seidel formula)

$$
\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor} q^{\binom{2 k}{2}}\left[\begin{array}{c}
n \tag{3.30}\\
2 k
\end{array}\right](-1)^{k} \frac{\left(-q^{n-2 k+1} ; q\right)_{2 k}}{\left(-q^{2 n-2 k} ; q\right)_{2 k}} G_{2 n-2 k}(q)=[n=1]
$$

Proof

Since the set of polynomials $\left\{U_{2 n}(1, s, q)\right\}_{n \geq 0}$ is a basis for the vector space of polynomials in s we can define a linear functional λ by

$$
\begin{equation*}
\lambda\left(U_{2 n}(1, s, q)\right)=[n=0] \tag{3.31}
\end{equation*}
$$

By (3.19) this implies

$$
\begin{equation*}
\lambda\left(U_{2 n-1}(1, s, q)\right)=(-1)^{n-1}(-q ; q)_{2 n-1} G_{2 n}(q) . \tag{3.32}
\end{equation*}
$$

If we apply this to (3.29) we get for $n>1$
$\left.\left.0=\lambda\left(\sum_{k=0}^{n}(-1)^{k} q^{k} \begin{array}{l}k \\ 2\end{array}\right]\left[\begin{array}{l}n \\ k\end{array}\right] \prod_{j=n-k+1}^{n}\left(1+q^{j}\right) U_{2 n-1-k}(1, s, q)\right)=\sum_{k=0}^{n}(-1)^{k} q^{k}\left(\begin{array}{l}k \\ 2\end{array}\right] \begin{array}{l}n \\ k\end{array}\right] \prod_{j=n-k+1}^{n}\left(1+q^{j}\right) \lambda\left(U_{2 n-1-k}(1, s, q)\right)$
$\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor} q^{\binom{2 k}{2}}\left[\begin{array}{c}n \\ 2 k\end{array}\right] \prod_{j=n-k+1}^{n}\left(1+q^{j}\right) \prod_{j=1}^{2 n-1-2 k}\left(1+q^{j}\right)(-1)^{n-k-1} G_{2 n-2 k}(q)$.
Dividing by $(-q ; q)_{2 n-1}$ we get (3.30).
It should be noted that just as for $q=1$ (3.30) is in fact the same formula as (3.14). We need only use (3.18) to translate one formulation into the other.

Finally we want to show how to derive a Seidel triangle for the q-Genocchi numbers. We construct the following triangle consisting of numbers $a(n, k, q)$ with $n=0,1,2, \cdots$ and $0 \leq k \leq 1+\left\lfloor\frac{n}{2}\right\rfloor$.
Let $a(2 n, k, q)=(-1)^{n} s^{n+1-k} U_{2 k-2}(1, s, q)$ and $a(2 n+1, k, q)=(-1)^{n} s^{n+1-k} U_{2 k-1}(1, s, q)$.
The first terms are (if we delete the column $k=0$)

$$
\begin{array}{cccc}
U_{0}(1, s, q) & & & \\
U_{1}(1, s, q) & & & \\
-s U_{0}(1, s, q) & -U_{2}(1, s, q) & & \\
-s U_{1}(1, s, q) & -U_{3}(1, s, q) & & \\
s^{2} U_{0}(1, s, q) & s U_{2}(1, s, q) & U_{4}(1, s, q) \\
s^{2} U_{1}(1, s, q) & s U_{3}(1, s, q) & U_{5}(1, s, q) & \\
-s^{3} U_{0}(1, s, q) & -s^{2} U_{2}(1, s, q) & -s U_{4}(1, s, q) & U_{6}(1, s, q)
\end{array}
$$

Then
$a(2 n+1, k, q)=q^{2 k-2} a(2 n+1, k-1, q)+\left(1+q^{2 k-1}\right) a(2 n, k, q)$
for $k=1,2, \cdots, n+1$.
On the other hand
$a(2 n, k, q)=q^{1-2 k}\left(a(2 n, k+1, q)+\left(1+q^{2 k}\right) a(2 n-1, k, q)\right)$
for $k=1,2, \cdots, n$.
For $k=n+1$ we get $a(2 n, n+1, q)=U_{2 n}(1, s, q)$.

If we apply the linear functional λ and let $b(n, k, q)=\lambda(a(n, k, q))$ then $b(2 n, n+1, q)=0$ and therefore we have $b(2 n, n+1, q)=q^{1-2 k}\left(b(2 n, n+2, q)+\left(1+q^{2 k}\right) b(2 n-1, n+1, q)\right)=0$. Thus we get

Theorem 3.6 (q-Genocchi triangle)

Define a triangle $(b(n, k, q))$ for $n \in \mathbb{N}$ and $0 \leq k \leq 1+\left\lfloor\frac{n}{2}\right\rfloor$ by

$$
\begin{equation*}
b(2 n+1, k, q)=q^{2 k-2} b(2 n+1, k-1, q)+\left(1+q^{2 k-1}\right) b(2 n, k, q) \tag{3.33}
\end{equation*}
$$

and

$$
\begin{equation*}
b(2 n, k, q)=q^{1-2 k}\left(b(2 n, k+1, q)+\left(1+q^{2 k}\right) b(2 n-1, k, q)\right) \tag{3.34}
\end{equation*}
$$

for $1 \leq k \leq n+1$ with initial values $b(0,1, q)=1$ and $b(1,1, q)=1+q$.
Then

$$
\begin{equation*}
b(2 n-1, n)=\lambda\left((-1)^{n-1} U_{2 n-1}(1, s, q)\right)=(-q ; q)_{2 n-1} G_{2 n}(q) . \tag{3.35}
\end{equation*}
$$

This is another simple method to compute the q-Genocchi numbers.

References

[1] Waleed A. Al-Salam and Mourad E.H. Ismail, Orthogonal polynomials associated with the Rogers-Ramanujan continued fraction, Pacific J. Math. 104 (1983), 269-283
[2] Natig Atakishiyev, Pedro Franco, Decio Levi and Orlando Ragnisco, On Fourier integral transforms for q-Fibonacci and q-Lucas polynomials,
J.Phys.A:Math.Theor.,Vol.45,No.19,Art.No.195206,11 pages, 2012.
[3] Arthur T. Benjamin and Daniel Walton, Counting on Chebyshev polynomials, Math. Mag. 82 (2), (2009), 117-126,
[4] T. S. Chihara, An introduction to orthogonal polynomials, Gordon and Breach 1978
[5] Johann Cigler, Elementare q-Identitäten, Sém. Lotharingien Comb. B05a (1981)
[6] Johann Cigler, A simple approach to some Hankel determinants, arXiv: 0902.1650
[7] Johann Cigler, How to guess and prove explicit formulas for some Hankel determinants, 2010, http://homepage.univie.ac.at/johann.cigler/prepr.html
[8] Johann Cigler, q-Lucas polynomials and associated Rogers-Ramanujan identities, arXiv:0907.0165
[9] Johann Cigler, q-Fibonacci polynomials and q-Genocchi numbers, arXiv:0908.1219
[10] Johann Cigler, Some beautiful q-analogues of Fibonacci and Lucas polynomials, arXiv:1104.2699
[11] Johann Cigler, A simple approach to q-Chebyshev polynomials, arXiv: 1201.4703
[12] Ilse Fischer, Personal communication, 26-06-2012
[13] Masao Ishikawa, Hiroyuki Tagawa and Jiang Zeng, A q-analogue of Catalan Hankel determinants, arXiv:1009.2004
[14] R. Koekoek, P.A. Lesky and R.F. Swarttouw, Hypergeometric orthogonal polynomials and their q- analogues, Springer Monographs in Mathematics 2010
[15] Theodore J. Rivlin, The Chebyshev polynomials, Wiley 1974
[16] Daniel Walton, A tiling approach to Chebyshev polynomials, Thesis 2007

