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An interesting class of Hankel determinants

Johann Cigler∗ & Mike Tyson†

Abstract

For small r the Hankel determinants dr(n) of the sequence
((

2n+r

n

))

n≥0
are

easy to guess and show an interesting modular pattern. For arbitrary r and n

no closed formulae are known, but for each positive integer r the special values
dr(rn), dr(rn + 1), and dr(rn + ⌊ r+1

2
⌋) have nice values which will be proved

in this paper.

0 Introduction

Let (an)n≥0 be a sequence of real numbers with a0 = 1. For each n consider the
Hankel determinant

Hn = det(ai+j)
n−1
i,j=0. (1)

We are interested in the sequence (Hn)n≥0 for the sequences an,r =
(2n+r

n

)

for some
r ∈ N. For n = 0 we let H0 = 1.

Let

dr(n) = det

((

2i+ 2j + r

i+ j

))n−1

i,j=0

. (2)

For r = 0 and r = 1 these determinants are well known and satisfy d0(n) = 2n−1

and d1(n) = 1 for n > 0. Egecioglu, Redmond, and Ryavec [3] computed d2(n) and
d3(n) and stated some conjectures for r > 3.

Many of these determinants are easy to guess and show an interesting modular
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†Email: mgtyson66@gmail.com
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pattern. For example

(d0(n))n≥0 = (1, 1, 2, 22 , 23, . . . ), (3)

(d1(n))n≥0 = (1, 1, 1, 1, 1, . . . ), (4)

(d2(n))n≥0 = (1, 1,−1,−1,1, 1,−1,−1, . . . ), (5)

(d3(n))n≥0 = (1, 1,−4, 3, 3,−8,5, 5,−12, 7, 7,−16, . . . ), (6)

(d4(n))n≥0 = (1, 1,−8, 8, 1, 1,−16, 16,1, 1,−24, 24, . . . ), (7)

(d5(n))n≥0 = (1, 1,−13,−16, 61, 9, 9,−178,−64, 370,25, 25,−695,−144, 1127, . . . )
(8)

These and other computations suggest the following facts:

d2k+1((2k + 1)n) = d2k+1((2k + 1)n + 1) = (2n+ 1)k, (9)

d2k+1((2k + 1)n+ k + 1) = (−1)(
k+1

2 )4k(n+ 1)k, (10)

d2k(2kn) = d2k(2kn + 1) = (−1)kn, (11)

d2k(2kn + k) = −d2k(2kn + k + 1) = (−1)kn+(
k

2)4k−1(n + 1)k−1. (12)

The purpose of this paper is to prove these conjectures. These methods seem to

extend to the Hankel determinants of the sequences
(

(2n+r
n−s

)

)

n≥0
, but we do not

compute these here.
In Sections 1 and 2 we review some well-known facts from the theory of Hankel

determinants. In particular we compute d1(n). In Sections 3 and 4 we introduce
the matrices γ(i), αn, and βn, which serve as the basis of our method. In Section 5
we relate these matrices to dr(n), and in Sections 6 and 7 we use this information
to compute dr(n) in the aforementioned seven cases.

1 Some background material

Let us first recall some well-known facts about Hankel determinants (cf. e.g. [1]).
If dn = det(ai+j)

n−1
i,j=0 6= 0 for each n we can define the polynomials

pn(x) =
1

dn
det























a0 a1 · · · an−1 1

a1 a2 · · · an x

a2 a3 · · · an+1 x2

...
...

an an+1 · · · a2n−1 xn























. (13)

If we define a linear functional L on the polynomials by L(xn) = an then
L(pnpm) = 0 for n 6= m and L(p2n) 6= 0 (orthogonality).
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By Favard’s Theorem there exist sn and tn such that

pn(x) = (x− sn−1)pn−1(x)− tn−2pn−2(x). (14)

For arbitrary sn and tn define numbers an(j) by

a0(j) = [j = 0],

an(0) = s0an−1(0) + t0an−1(1), (15)

an(j) = an−1(j − 1) + sjan−1(j) + tjan−1(j + 1).

These numbers satisfy
n
∑

j=0

an(j)pj(x) = xn. (16)

Let An = (ai(j))
n−1
i,j=0 and Dn be the diagonal matrix with entries d(i, i) =

∏i−1
j=0 tj. Then we get

(ai+j(0))
n−1
i,j=0 = AnDnA

⊤
n (17)

and

det (ai+j(0))
n−1
i,j=0 =

n−1
∏

i=1

i−1
∏

j=0

tj. (18)

If we start with the sequence (an)n≥0 and guess sn and tn and if we also can
guess an(j) and show that an(0) = an then all our guesses are correct and the Hankel
determinant is given by the above formula.

There is a well-known equivalence with continued fractions, so-called J-fractions:

∑

n≥0

anx
n =

1

1− s0x−
t0x

2

1− s1x−
t1x

2

1− . . .

. (19)

For some sequences this gives a simpler approach to Hankel determinants.
As is well known Hankel determinants are intimately connected with the Catalan

numbers Cn = 1
n+1

(

2n
n

)

. Consider for example the aerated sequence of Catalan
numbers (cn) = (1, 0, 1, 0, 2, 0, 5, 0, 14, 0, . . . ) defined by c2n = Cn and c2n+1 = 0.
Since the generating function of the Catalan numbers

C(x) =
∑

n≥0

Cnx
n =

1−
√
1− 4x

2x
(20)

satisfies
C(x) = 1 + xC(x)2, (21)
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we get

C(x) =
1

1− xC(x)
(22)

and

C(x2) =
1

1− x2C(x2)
=

1

1−
x2

1−
x2

1− . . .

(23)

and therefore
det(ci+j)

n−1
i,j=0 = 1. (24)

From C(x) = 1 + xC(x)2 we get C(x)2 = 1 + 2xC(x)2 + x2C(x)4 or

C(x)2 =
1

1− 2x− x2C(x)2
=

1

1− 2x−
x2

1− 2x−
x2

1− 2x− . . .

. (25)

The generating function of the central binomial coefficients Bn =
(2n
n

)

is

B(x) =
∑

n≥0

Bnx
n =

1√
1− 4x

=
1

1− 2xC(x)
=

1

1− 2x− 2x2C(x)2
. (26)

Therefore by (25) we get the J-fraction

B(x) =
1

1− 2x− 2x2C(x)2
=

1

1− 2x−
2x2

1− 2x−
x2

1− 2x−
x2

1− 2x− . . .

. (27)

Thus the corresponding numbers tn are given by t0 = 2 and tn = 1 for n > 0 which
implies d0(n) = 2n−1 for n ≥ 1.

Let us also consider the aerated sequence (bn) with b2n = Bn and b2n+1 = 0.
Here we get

b(x) = B(x2) =
1

1− 2x2C(x)2
=

1

1−
2x2

1−
x2

1−
x2

1− . . .

. (28)
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In this case sn = 0, t0 = 2, and tn = 1 for n > 0. Here we also get det(bi+j)
n−1
i,j=0 =

2n−1 for n > 0. The corresponding orthogonal polynomials satisfy p0(x) = 1,
p1(x) = x, p2(x) = xp1(x)− 2 and pn(x) = xpn−1(x)− pn−2(x) for n > 2. The first
terms are 1, x, x2 − 2, x3 − 3x, . . . .

Now recall that the Lucas polynomials

Ln(x) =

⌊n

2
⌋

∑

k=0

(−1)k
(

n− k

k

)

n

n− k
xn−2k (29)

for n > 0 satisfy Ln(x) = xLn−1(x) − Ln−2(x) with initial values L0(x) = 2 and
L1(x) = x. The first terms are 2, x, x2 − 2, x3 − 3x, . . . . Thus pn(x) = L̄n(x), where
L̄n(x) = Ln(x) for n > 0 and L̄0(x) = 1.

For the numbers an(j) we get

a2n(2j) =

(

2n

n− j

)

, (30)

a2n+1(2j + 1) =

(

2n+ 1

n− j

)

, (31)

and an(j) = 0 else. Equivalently an(n− 2j) =
(

n
j

)

and an(k) = 0 else.
For the proof it suffices to verify (15) which reduces to the trivial identities

(2n
n

)

= 2
(2n−1
n−1

)

,
( 2n
n−j

)

=
(2n−1
n−j

)

+
( 2n−1
n−1−j

)

, and
(2n+1
n−j

)

=
( 2n
n−j

)

+
( 2n
n−1−j

)

. Identity
(16) reduces to

⌊n

2
⌋

∑

k=0

(

n

k

)

L̄n−2k = xn. (32)

2 Some well-known applications of these methods

Now let us consider

d1(n) = det

(

2i+ 2j + 1

i+ j

)

. (33)

The generating function of the sequence
(2n+1

n

)

is

∑

n≥0

(

2n+ 1

n

)

xn =
1

2

∑

n≥0

(

2n+ 2

n+ 1

)

xn =
1

2x

(

1√
1− 4x

− 1

)

=
C(x)√
1− 4x

. (34)

Now we have

√
1− 4x = 1− 2xC(x) = (C(x)− xC(x)2)− 2xC(x) = C(x)(1− 2x− xC(x))

= C(x)(1− 2x− x(1 + xC(x)2)) = C(x)(1− 3x− x2C(x)2). (35)
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Therefore

C(x)√
1− 4x

=
1

1− 3x− x2C(x)2
=

1

1− 3x−
x2

1− 2x−
x2

1− 2x−
x2

1− 2x− . . .

. (36)

The corresponding sequences sn, tn are s0 = 3, sn = 2 for n > 0 and tn = 1. Thus
d1(n) = 1. The corresponding ai(j) are ai(j) =

(2i+1
i−j

)

.
To prove this we must verify (15) which reduces to

(

1

−j

)

= [j = 0], (37)

(

2n+ 1

n

)

= 3

(

2n− 1

n− 1

)

+

(

2n − 1

n− 2

)

, (38)

(

2n+ 1

n− j

)

=

(

2n − 1

n− j

)

+ 2

(

2n − 1

n− 1− j

)

+

(

2n − 1

n− 2− j

)

. (39)

The first line is clear. The right-hand side of the second line gives

3

(

2n− 1

n− 1

)

+

(

2n− 1

n− 2

)

= 2

(

2n− 1

n− 1

)

+

(

2n

n− 1

)

(40)

=

(

2n

n

)

+

(

2n

n− 1

)

=

(

2n+ 1

n

)

.

For the third line we get

(

2n− 1

n− j

)

+ 2

(

2n− 1

n− 1− j

)

+

(

2n− 1

n− 2− j

)

=

(

2n

n− j

)

+

(

2n

n− j − 1

)

=

(

2n+ 1

n− j

)

.

(41)
By (17) we see that with

A(n) =

((

2i+ 1

i− j

))n−1

i,j=0

(42)

we get

A(n)A(n)⊤ =

((

2i+ 2j + 1

i+ j

))n−1

i,j=0

. (43)

Let us give a direct proof of (43). Observe first that

n−1
∑

l=0

(

2i+ 1

i− l

)(

2j + 1

j − l

)

=
i
∑

l=0

(

2i+ 1

i− l

)(

2j + 1

j − l

)

=

j
∑

l=0

(

2i+ 1

i− l

)(

2j + 1

j − l

)

(44)
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and that

i
∑

l=0

(

2i+ 1

i− l

)(

2j + 1

j − l

)

=

i
∑

l=0

(

2i+ 1

i− l

)(

2j + 1

j + 1 + l

)

(45)

=

i+j+1
∑

k=j+1

(

2i+ 1

i+ j + 1− k

)(

2j + 1

k

)

and

j
∑

l=0

(

2i+ 1

i− l

)(

2j + 1

j − l

)

=

j
∑

l=0

(

2i+ 1

i+ 1 + l

)(

2j + 1

j + 1 + l

)

(46)

=

j
∑

k=0

(

2i+ 1

i+ j + 1− k

)(

2j + 1

k

)

.

Therefore

2

n−1
∑

l=0

(

2i+ 1

i− l

)(

2j + 1

j − l

)

=

j
∑

k=0

(

2i+ 1

i+ j + 1− k

)(

2j + 1

k

)

+

i+j+1
∑

k=j+1

(

2i+ 1

i+ j + 1− k

)(

2j + 1

k

)

(47)

=

i+j+1
∑

k=0

(

2i+ 1

i+ j + 1− k

)(

2j + 1

k

)

=

(

2i+ 2j + 2

i+ j + 1

)

= 2

(

2i+ 2j + 1

i+ j

)

.

Since A(n) is a triangle matrix whose diagonal elements are
(

2i+1
i−i

)

= 1 we get

det(A(n)A(n)⊤) = 1.

3 A new method

Let us consider the determinants of the Hankel matrices B(n, k) =
(

(

2i+2j+2
i+j+1−k

)

)n−1

i,j=0
.

These have already been computed in [2], Theorem 21. There it is shown that

det(B(i+ j, k))km−1
i,j=0 = (−1)(

m

2 )k+m(k2) (48)

and det(B(i+ j), k)n−1
i,j=0 = 0 else.

Definition 3.1. Let γ(k) = (c(i, j, k))i,j≥0 be the infinite matrix with c(i, j, k) = 1 if

|i− j| = k or i+ j = k− 1. Let us also consider the finite truncations γ(k)|n, where
A|n denotes the submatrix consisting of the first n rows and columns of a matrix A.

We shall also write γ(1) = γ and γ(k)|n = γ
(k)
n .
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Theorem 3.2.

A(n)γ(k)n A(n)⊤ = B(n, k). (49)

Proof. Computer experiments suggested that

A(n)−1B(n, k)(A(n)⊤)−1 = γ(k)n = (c(i, j, k))n−1
i,j=0. (50)

For example γ
(1)
5 and γ

(2)
5 are the following matrices:

γ
(1)
5 =























1 1 0 0 0

1 0 1 0 0

0 1 0 1 0

0 0 1 0 1

0 0 0 1 0























γ
(2)
5 =























0 1 1 0 0

1 0 0 1 0

1 0 0 0 1

0 1 0 0 0

0 0 1 0 0























(51)

If we set B(n, 0) = 2In, where In denotes the n×n-identity matrix, then we already
know that (49) holds for k = 0.

In the general case we have

∑

0≤r,s≤n−1

A(n)(i, r)c(r, s, k)A(n)⊤(s, j) =
∑

0≤r,s≤n−1

(

2i+ 1

i− r

)

c(r, s, k)

(

2j + 1

j − s

)

=
n−k−1
∑

s=0

(

2i+ 1

i− (s + k)

)(

2j + 1

j − s

)

+
n−1
∑

s=k

(

2i+ 1

i− (s− k)

)(

2j + 1

j − s

)

+

k−1
∑

s=0

(

2i+ 1

i− (k − 1− s)

)(

2j + 1

j − s

)

=
i−k
∑

s=0

(

2i+ 1

i− s− k

)(

2j + 1

j + 1 + s

)

+

j
∑

s=k

(

2i+ 1

i− k + s+ 1

)(

2j + 1

j − s

)

(52)

+

k−1
∑

s=0

(

2i+ 1

i− k + 1 + s

)(

2j + 1

j − s

)

=

i+j+1−k
∑

s=j+1

(

2i+ 1

i+ j − k − s+ 1

)(

2j + 1

s

)

+

j−k
∑

s=0

(

2i+ 1

i+ j − k − s+ 1

)(

2j + 1

s

)

+

j
∑

s=j−k+1

(

2i+ 1

i+ j − k + 1− s

)(

2j + 1

s

)

=

i+j+1−k
∑

s=0

(

2i+ 1

i+ j − k + 1− s

)(

2j + 1

s

)

=

(

2i+ 2j + 2

i+ j + 1− k

)

.

The last identity follows from the Chu-Vandermonde formula.
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Lemma 3.3.

det(γ
(k)
2kn) = (−1)kn (53)

det(γ
(k)
2kn+k

) = (−1)kn+(
k

2) (54)

and all other determinants det(γ
(k)
n ) vanish.

Proof. By the definition of a determinant we have

det(ai,j)
n−1
i,j=0 =

∑

π

sgn(π)a0,π(0)a1,π(1) · · · an−1,π(n−1) (55)

where π runs over all permutations of the set {0, 1, . . . , n− 1}. The determinants of

the matrices γ
(k)
n either vanish or the sum over all permutations reduces to a single

term sgnπnc(0, πn(0), k)c(1, πn(1), k) · · · c(n − 1, πn(n− 1), k).

Let us first consider k = 1. The last row of γ
(1)
n has only one non-vanishing

element c(n−1, n−2, 1). Thus each π which occurs in the determinant must satisfy
π(n − 1) = n − 2. The next row from below contains two non-vanishing elements
c(n − 2, n− 3, 1) and c(n − 2, n− 1, 1). The last element is the only element of the
last column. Therefore we must have π(n − 2) = n − 1. The next row from below
contains again two non-vanishing elements, c(n− 3, n− 4) and c(n− 3, n− 2). But
since n− 2 already occurs as image of π we must have π(n− 3) = n− 4. Thus the

situation has been reduced to γ
(1)
n−2. In order to apply induction we need the two

initial cases γ
(1)
1 and γ

(1)
2 .

For n = 1 we get π(0) = 0 and for n = 2 π(0) = 1 and π(1) = 0 since

γ
(1)
2 =





1 1

1 0



 . (56)

If we write π = π(0) · · · π(n − 1) we get in this way π1 = 0, π2 = 10, π3 = 021,

π4 = 1032,. . . . This gives sgnπn = −sgnπn−2 and thus by induction det γ
(1)
n =

(−1)(
n

2), which agrees with (48).
For general k the situation is analogous. The last k rows and columns contain

only one non-vanishing element. This implies π(n−j) = n−j−k and π(n−j−k) =
n − j for 1 ≤ j ≤ k. Now π(n − 2k − 1) = n − 3k − 1 since n − k − 1 occurs

already as image of π. Thus the determinant can be reduced to γ
(k)
n−2k and we get

det γ
(k)
n = (−1)k det γ

(k)
n−2k if n ≥ 2k.

For n = k γ
(k)
k

reduces to the anti-diagonal and thus det γ
(k)
k

= (−1)(
k

2). For

0 < n < k the first row of γ
(k)
n vanishes and thus det γ

(k)
n = 0. For k < n < 2k

there are two identical rows because c(k−1, 0, k) = c(k, 0, k) = 1 and c(k−1, j, k) =

9



c(k, j, k) = 0 for 0 < j < n. Thus we see by induction that

det(γ
(k)
2kn) = (−1)kn (57)

det(γ
(k)
2kn+k) = (−1)kn+(

k

2
) (58)

and all other determinants vanish. This is the same as (48) because (−1)(
2n

2 )k+2n(k2) =

(−1)kn and (−1)(
2n+1

2 )k+(2n+1)(k2) = (−1)kn+(
k

2).

Theorem 3.4. The matrices γ(k) satisfy γ(k) = γ ·γ(k−1)−γ(k−2) with initial values

γ(1) = γ and γ(0) = 2I∞.

Proof. If a = (a(i)) is an arbitrary column vector then (γ · a)(0) = a0 + a1 and
(γ · a)(i) = ai−1 + ai+1 for i ≥ 1. And (γ(k) · a)(i) = ak−1−i + ak+i for 0 ≤ i ≤ k− 1
and (γ(k) · a)(i) = ai−k + ai+k for i ≥ k. This implies

(γ · γ(k) · a)(0) = ak−2 + ak−1 + ak + ak+1 (2 ≤ i ≤ k − 2), (59)

(γ · γ(k) · a)(1) = ak−3 + ak−1 + ak + ak+2, (60)

(γ · γ(k) · a)(i) = ak−2−i + ak−i + ak+1−i + ak+i+1, (61)

(γ · γ(k) · a)(k − 1) = a0 + a1 + a2k−2 + a2k, (62)

(γ · γ(k) · a)(k) = a0 + a1 + a2k−1 + a2k+1, (63)

(γ · γ(k) · a)(i) = ai−k−1 + ai−k+1 + ak+i−1 + ak+i+1 (i ≥ k + 1). (64)

Now observe that (γ(k−1) · a)(i) = ak−2−i + ak+i−1 for 0 ≤ i ≤ k − 2 and
(γ(k+1) · a)(i) = ak−i + ak+i+1 for 0 ≤ i ≤ k. Therefore we have

(γ · γ(k) · a)(i) = (γ(k−1) · a)(i) + (γ(k+1) · a)(i) (65)

for 0 ≤ i ≤ k − 2. For i = k − 1 we get (γ(k−1) · a)(k − 1) = a0 + a2k−2 and
(γ(k+1) · a)(k − 1) = a1 + a2k. For i = k we get (γ(k−1) · a)(k) = a1 + a2k−1 and
(γ(k+1) ·a)(k) = a0+a2k+1, and for i ≥ k+1 we have (γ(k−1) ·a)(i) = ai−k+1+ai+k−1

and (γ(k+1) · a)(i) = ai−k−1 + ai+k+1 and thus in all cases

(γ · γ(k) · a)(i) = (γ(k−1) · a)(i) + (γ(k+1) · a)(i). (66)

By induction we see that each γ(n) is a polynomial in γ. Therefore all γ(k)

commute. Theorem 3.4 shows that the matrices γ(k) are Lucas polynomials in γ.
More precisely

γ(k) = Lk(γ). (67)

Therefore we can apply some theorems about Lucas polynomials to γ(k).
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We have already mentioned the inversion theorem (32). In order to apply this let
us define γ̄(k) = γ(k) for k > 0 and γ̄(0) = I. Let Φ be the algebra isomorphism from
the polynomials in x to the polynomials in the matrix γ defined by Φ(p(x)) = p(γ).
Then we get Φ(L̄n(x)) = L̄n(γ) = γ̄(n) and

⌊n

2
⌋

∑

k=0

(

n

k

)

γ̄(n−2k) = γn. (68)

Thus we have e.g. γ(2) = γ ·γ(1)−γ(0) = γ2−2I and γ2 =
(2
0

)

γ̄(2)+
(2
1

)

γ̄(0) = γ(2)+2I.

Lemma 3.5. For i ≥ n we have γn(i, j) = 0 for j ≤ i− n− 1 and

γn(i, i − n+ 2s) =

(

n

s

)

, (69)

γn(i, i − n+ 2s+ 1) = 0. (70)

For example,

γ512 =



































































10 10 5 5 1 1 0 0 0 0 0 0

10 5 10 1 5 0 1 0 0 0 0 0

5 10 1 10 0 5 0 1 0 0 0 0

5 1 10 0 10 0 5 0 1 0 0 0

1 5 0 10 0 10 0 5 0 1 0 0

1 0 5 0 10 0 10 0 5 0 1 0

0 1 0 5 0 10 0 10 0 5 0 1

0 0 1 0 5 0 10 0 10 0 5 0

0 0 0 1 0 5 0 10 0 10 0 4

0 0 0 0 1 0 5 0 10 0 9 0

0 0 0 0 0 1 0 5 0 9 0 5

0 0 0 0 0 0 1 0 4 0 5 0



































































. (71)

A curious observation:

The Lucas polynomials satisfy Lk(x)
2 −Lk−1(x)Lk+1(x) = 4−x2. Therefore we

get
(γ(k))2 − γ(k−1)γ(k+1) = 4− γ2 = 2− γ(2). (72)

The matrices 2In − γ
(2)
n satisfy det(2In − γ

(2)
n ) = n+ 1 and

A(n)(2In − γ(2)n )A(n)⊤ = (Ci+j+2)
n−1
i,j=0 (73)

where Cn = 1
n+1

(

2n
n

)

is a Catalan number.
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4 Two useful matrices

For the finite matrices γn = γ|n we have γkn 6= γk|n. In order to compute γk|n in the
realm of n× n-matrices we introduce two auxiliary matrices αn and βn.

Let vn be the column vector of length n with entries vn(i) = [i = n − 1]. Then
vnv

⊤
n is the n× n-matrix whose only nonzero entry is vnv

⊤
n (n− 1, n− 1) = 1.

Definition 4.1. Let δm,l be the m×m-matrix whose entries satisfy

δm,l(i, 2m − 1− l − i+ 2s) =

(

l

s

)

(74)

and δm,l(i, j) = 0 else.

For example,

δ6,5 =





























0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 1 0 5

0 0 1 0 5 0

0 1 0 5 0 10





























. (75)

Theorem 4.2. Let αm = γm + vmv⊤m and βm = γm − vmv⊤m. If m ≥ l then

αl
m + βl

m

2
= γl|m, (76)

αl
m − βl

m

2
= δm,l.

Proof. Observe that

αl
m − βl

m = γm(αl−1
m − βl−1

m ) + vmv⊤m(αl−1
m + βl−1

m ), (77)

αl
m + βl

m = γm(αl−1
m + βl−1

m ) + vmv⊤m(αl−1
m − βl−1

m ). (78)

Thus the theorem is equivalent with

δm,l = γmδm,l−1 + rm,l, (79)

γl|m = γmγl−1|m + sm,l

for m ≥ l, where rm,l is the matrix whose last row is (γl−1(m− 1, 0), · · · , γl−1(m−
1,m − 1)) and all other entries vanish, and sm,l is the matrix whose last row is
(δm,l−1(m− 1, 0), · · · , δm,l−1(m− 1,m− 1)) and all other entries vanish.
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We now prove (79) by induction. It clearly holds for l = 1. Now suppose that
(76) is true for l − 1.

Let us first prove the second assertion of (79). For i < m− 1 we have

∑

s≥0

γ(i, s)γl−1(s, j) =
∑

0≤s≤m−1

γm(i, s)γl−1(s, j) (80)

because γ(i, s) = 0 for s ≥ m. For i = m− 1 we get

∑

s≥0

γ(m− 1, s)γl−1(s, j) =
∑

0≤s≤m−1

γm(m− 1, s)γl−1(s, j) + γl−1(m, j). (81)

By Lemma 3.5 we know that γl−1(m,m − l + 1 + 2s) =
(

l−1
s

)

and all other entries

are 0. On the other hand the last row of δm,l−1 is δm,l−1(m − 1, j) =
(

l−1
s

)

if
j = m − l + 1 + 2s and δm,l−1(m − 1, j) = 0 else. Thus the second line of (79) is
true.

Now consider the first line. For i < m− 1 we have

∑

r

γ(i, r)δm,l−1(r, j) = δm,l(i, j). (82)

This is equivalent with δm,l−1(i − 1, j) + δm,l−1(i + 1, j) = δm,l(i, j). For (i, j) =

(i, 2m − 1− l − i+ 2s) we get
(

l−1
s

)

+
(

l−1
s−1

)

=
(

l
s

)

. For i = m− 1 we get

∑

r

γ(m− 1, r)δm,l−1(r,m− l + 2s) = δm,l−1(m− 2,m− l + 2s) =

(

l − 1

s− 1

)

. (83)

On the other hand for (γl−1(m − 1, 0), · · · , γl−1(m − 1,m − 1)) we get by Lemma
3.5 that γl−1(m− 1,m− l + 2s) =

(

l−1
s

)

. Thus also in this case (79) is proved.

5 Relating the determinant to the γ matrices

Let gn(x) = det(xI − γn) with g0(x) = 1. If we expand with respect to the last row
we get gn(x) = xgn−1(x)−gn−2(x). The initial values are g1(x) = x−1 and g2(x) =
x2 − x− 1. This gives gn(x) =

∑n
k=0(−1)kL̄n−k(x) and gn(x) + gn+1(x) = Ln+1(x).

Therefore we get

gn(γ) =
∑

(−1)kγ̄(n−k). (84)

Let bn(x) = det(xI − βn). Then we get bn(x) = gn(x) + gn−1(x) = Ln(x) by
cofactor expansion on the last row.

Note that A(n)gk(γ)A(n)
⊤ = (

(2i+2j+1
i+j−k

)

)i,j≥0. By (43) and Theorem 3.2, this

holds for k = 0 and k = 1. Since gk(γ) = Lk(γ) − gk−1(γ) = γ(k) − gk−1(γ), we get
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by induction

Agk(γ)A
⊤ = Aγ(k)A⊤ −Agk−1(γ)A

⊤ =

((

2i+ 2j + 2

i+ j + 1− k

)

−
(

2i+ 2j + 1

i+ j + 1− k

))

i,j≥0

=

((

2i+ 2j + 1

i+ j − k

))

i,j≥0

(85)

We are interested in the Hankel determinants

det

((

2i+ 2j + r

i+ j

))N

i,j=0

. (86)

By Chu-Vandermonde we have

(

2n+ r

n

)

=
∑

k

(

r − 2

k

)(

2n+ 2

n− k

)

. (87)

This implies

((

2i+ 2j + r

i+ j

))n−1

i,j=0

=
∑

k

(

r − 2

k

)((

2i+ 2j + 2

i+ j + 1− (k + 1)

))n−1

i,j=0

(88)

or
((

2i+ 2j + r

i+ j

))n−1

i,j=0

=
∑

k≥0

(

r − 2

k

)

B(n, k + 1). (89)

This again implies that

det

((

2i+ 2j + r

i+ j

))n−1

i,j=0

= det

(

∑

k

(

r − 2

k

)

γ(k+1)
n

)

. (90)

For r = 2 we get

det

((

2i+ 2j + 2

i+ j

))n−1

i,j=0

= det(γ(1)n ). (91)

There is a single 1 in the last row and column. If we expand first with respect to

one and then with respect to the other we see that det(γ
(1)
n ) = − det(γ

(1)
n−2). This

gives det(γ
(1)
n ) = (−1)(

n

2).
By (67) and (90), dr(n) = h(r)(γ)|n for the polynomial h(n) =

∑

k

(

n−2
k

)

Lk+1(x).
Let us therefore obtain more information about h(n). It satisfies h(n) = (x+2)h(n−
1)− (x+2)h(n− 2) with h(2) = x, h(3) = x2 + x− 2 = (x+2)(x− 1). This follows
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from

(x+ 2)
∑

((

n− 1

k

)

−
(

n− 2

k

))

Lk+1(x)− (x+ 2)
∑

(

n− 2

k − 1

)

Lk+1(x)

=
∑

(

n− 2

k − 1

)

(xLk+1(x) + 2Lk+1(x)) (92)

=
∑

(

n− 2

k − 1

)

(Lk+2(x) + 2Lk+1(x) + Lk(x))

=
∑

((

n− 2

k − 2

)

+ 2

(

n− 2

k − 1

)

+

(

n− 2

k

))

Lk+1(x) =
∑

(

n

k

)

Lk+1(x).

Therefore we get

h(n) = (x+ 2)h(n − 1)− (x+ 2)h(n − 2)

= (x+ 2)((x+ 2)h(n − 2)− (x+ 2)h(n − 3))− (x+ 2)h(n − 2) (93)

= (x+ 2)(x+ 1)h(n − 2)− (x+ 2)(h(n − 2) + (x+ 2)h(n − 4))

= (x+ 2)xh(n − 2)− (x+ 2)2h(n− 4).

Given the initial values h(3) = (x+2)(x− 1) and h(5) = (x+2)2(x2 − x− 1), it
follows that h(2k+1) = (x+2)kgk(x). Given that h(2) = x and h(4) = (x+2)(x2−2),
it follows that h(2k) = (x+ 2)k−1bk(x).

Combining this with (90) we get

Theorem 5.1. For r ≥ 2, let k = ⌊ r2⌋ and l = ⌊ r−1
2 ⌋, and define the functions

hr(x) =

{

gk(x) if r = 2k + 1

bk(x) if r = 2k
(94)

and qr(x) = (x+ 2)lhr(x). For N ≥ k + l, by Theorem 4.2,

dr(N) = det





∑

j≥0

(

r − 2

j

)

γ
(j+1)
N



 = det(qr(γ)|N ) = det(
1

2
(qr(αN ) + qr(βN ))).

(95)

6 Structure of the matrices

In this section we determine the structure of the matrices (βN + 2)−1, gk(αN ),
gk(βN ), bk(αN ), and bk(βN ), as well as the determinants of gk(γ)|N and bk(γ)|N .

To determine p(αN ) and p(βN ) for a polynomial p of degree less than N , we
begin by writing p(γ) as a sum of γ(k) matrices using the multiplicative formula of
Theorem 3.4. We then apply Prop 6.2 to show that p(αN ) and p(βN ) are the same
as p(γ)|N on and above the anti-diagonal. The structure of p(αN ) follows from the
symmetry of αN across its anti-diagonal. The structure of p(βN ) can be computed
from p(αN ) and p(γ)|N with Theorem 4.2.
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Proposition 6.1. The determinant of a block matrix





A B

C D



 (96)

where A and D are square and D is invertible is det(D) det(A−BD−1C).

Proof. Note that





A B

C D









I 0

−D−1C I



 =





A−BD−1C B

0 D



 , (97)

and that the determinant of a block-triangular matrix is the product of the deter-
minants of its diagonal blocks.

Proposition 6.2. Let T be a N -by-N tridiagonal matrix and let p be a polynomial of

degree d. Let v be the N -by-1 column vector with a 1 in its last entry and 0 elsewhere.

Then the (i, j) entries of p(T ) and p(T + vv⊤) agree when i+ j ≤ 2(N − 1)− d.

Proof. It suffices to prove this for p(x) = xd. Call a N -by-N matrix “k-small” iff
its entries (i, j) with i+ j ≤ 2(N − 1)− k are all 0. For instance, vv⊤ is 1-small.

Suppose a matrix M is k-small. For i+ j ≤ 2(N − 1)− k − 1, the (i, j) entry of
TM is

∑N−1
l=0 TilMlj = Ti,i−1Mi−1,j +Ti,iMi,j +Ti,i+1Mi+1,j . Since M is k-small, its

(i− 1, j), (i, j), and (i+ 1, j) entries are 0, which implies that TM is (k + 1)-small.
Similarly, MT , vv⊤M , and Mvv⊤ are (k + 1)-small.

Consider (T + vv⊤)d −T d. Expanding the binomial product yields 2d − 1 terms,
all of which are products of d T ’s and vv⊤’s and contain at least one vv⊤. It
follows from the above that each of these terms is d-small, so p(T + vv⊤)− p(T ) is
d-small.

Lemma 6.3. The inverse of (βN + 2) is (12(−1)i+j(2min{i, j} + 1))N−1
i,j=0. The

determinant of (βN + 2) is 2. For example,

(β5 + 2)−1 =
1

2























1 −1 1 −1 1

−1 3 −3 3 −3

1 −3 5 −5 5

−1 3 −5 7 −7

1 −3 5 −7 9























. (98)
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Proof. For i 6= 0, N − 1 the row i of (βN + 2) is (2δil + δi,l−1 + δi,l+1)
N−1
l=0 . The

product of this with column j of the claimed inverse is

N−1
∑

l=0

(2δil + δi,l−1 + δi,l+1)
1

2
(−1)l+j(2min{l, j} + 1)

=
1

2
(−1)i+j(4min{i, j} + 2− 2min{i+ 1, j} − 1− 2min{i− 1, j} − 1)

= (−1)i+j(2min{i, j} −min{i+ 1, j} −min{i− 1, j}).

(99)

This is 0 if i+ 1 ≤ j or i− 1 ≥ j and is 1 if i = j.
The first row of (βN + 2) is (3, 1, 0, . . . , 0), and the last row is (0, . . . , 0, 1, 1).

Column j 6= 0, N − 1 of the claimed inverse begins and ends as

1

2
((−1)j , (−1)j+13, . . . , (−1)j+N−2(2j + 1), (−1)j+N−1(2j + 1)), (100)

so it kills the first and last rows of (βN +2). Column 0 of the claimed inverse begins
and ends as 1

2(1,−1, . . . , (−1)N−2, (−1)N−1) while column N −1 begins and ends as
1
2((−1)N−1, (−1)N3, . . . ,−(2N − 3), 2N − 1). It’s easy to verify that these columns
have the correct products with rows of (βN + 2).

The determinant det(β + 2) is (−1)N bN (−2), which can be computed with re-
currence in Section 5 to be 2.

Lemma 6.4. For k < N , the (i, j) entry of gk(αN ) is (−1)i+j+k if k ≤ i + j ≤
2N−k−2 and |i−j| ≤ k and is 0 otherwise. The (i, j) entry of gk(βN ) is (−1)i+j+k

if k ≤ i+ j ≤ 2N − k − 2 and |i− j| ≤ k, is 2(−1)i+j+k if 2N − k − 1 ≤ i+ j, and

is 0 otherwise. For example,

g2(β6) =





























0 0 1 0 0 0

0 1 −1 1 0 0

1 −1 1 −1 1 0

0 1 −1 1 −1 1

0 0 1 −1 1 −2

0 0 0 1 −2 2





























. (101)

Proof. Recall that gj(γ) = γ(j)−γ(j−1)+· · ·±γ(1)∓1, by (84). Therefore 1
2 (gk(αN )+

gk(βN )) = gk(γ)|N = γ
(k)
N − γ

(k−1)
N + · · · ± γ

(1)
N ∓ 1. From the definition of the γ

(j)
N ,

the (i, j) entry of gk(γ)|N is (−1)i+j+k if k ≤ i+ j and |i− j| ≤ k and is 0 otherwise.
Note that polynomials in αN are symmetric about their anti-diagonal. Since

the degree of gk is k < N , Prop 6.2 says that gk(αN ) agrees with gk(γ)|N on
and above its anti-diagonal. Thus, the (i, j) entry of gk(αN ) is (−1)i+j+k if k ≤
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i+ j ≤ 2N − k − 2 and |i − j| ≤ k and is 0 otherwise. Similarly, the (i, j) entry of
gk(βN ) = 2gk(γ)|N − gk(αN ) is (−1)i+j+k if k ≤ i+ j ≤ 2N − k− 2 and |i− j| ≤ k,
2(−1)i+j+k if 2N − k − 1 ≤ i+ j, and 0 otherwise.

Lemma 6.5.

det gk(γ)|N =











1 if N = (2k + 1)n

(−1)(
k+1

2 ) if N = (2k + 1)n + k + 1

0 otherwise.

(102)

Proof. When N = 0 the determinant is vacuously 1. When 0 < N < k+1, the first
column is 0. When N = k + 1 the matrix is 0 above its antidiagonal and 1 on its

antidiagonal, so its determinant is (−1)(
k+1

2 ). When k + 1 < N < 2k + 1, columns
k− 1 and k+1 are equal. Thus the claim holds for all N < 2k+1. We’ll show that
for N ≥ 2k + 1, det gk(γ)|N = det gk(γ)|N−2k−1.

Fix N ≥ 2k+1 and let M = gk(γ)|N . SubdivideM into a block matrix consisting
of the leading principal order-N − 1 submatrix M11, the bottom-right entry M22,
and the remainders of the last column and row M12 and M21. The determinant of
M is det(M22) det(M

′), where M ′ is the N −1-by-N −1 matrix M11−M12M
−1
22 M21

by Proposition 6.1.
We will perform cofactor expansion in the bottom right of M ′. Since M22 =

(−1)k, the bottom right k-by-k submatrix of M ′ is the zero matrix. As a result, the
only entry in the bottom row of M ′ is the 1 at (N − 2, N − k− 2). After deleting its
row and column, the only entry in the bottom row of M ′ is the 1 at (N−3, N−k−3).
This pattern continues up to the 1 at (N−k−1, N−2k−1). Since M ′ is symmetric,
a similar sequence of lone 1’s can be removed in the last k columns.

After the last 2k rows and columns have been removed, M ′ has been reduced to
gk(γ)|N−2k−1. The 2k removed 1’s contribute a factor of (−1)k to the determinant,
which comes from the parity of the permutation (0 k)(1 k + 1) · · · (k − 1 2k). This
cancels with the sign of M22.

Lemma 6.6. For k < N , the (i, j) entry of bk(αN ) is 1 if |i− j| = k, i+ j = k− 1,
or i + j = 2(N − 1) − (k − 1) and is 0 otherwise. The (i, j) entry of bk(βN ) is 1 if

|i− j| = k or i+ j = k − 1, is −1 if i+ j = 2(N − 1)− (k − 1), and is 0 otherwise.

In particular bk(γ) = γ(k). Moreover,

det bk(γ)|N =











(−1)kn if N = 2kn

(−1)kn+(
k

2) if N = 2kn+ k

0 otherwise.

(103)

Proof. The first set of claims follow from the Lemma 6.4 and the fact that bk(x) =
gk(x) + gk−1(x). The determinant of γ(k) was calculated in Lemma 3.3.
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7 Calculation of the determinant

In this section we prove the seven formulas mentioned in the introduction. Recall
Theorem 5.1 and its notation.

Let µi =
1
2 ((αN + 2)ihr(αN ) + (βN + 2)ihr(βN )) for 0 ≤ i ≤ l. From here on

we’ll suppress the subscripts on αN and βN . By Theorem 5.1, we’re interested in
calculating dr(N) = detµl. Note that

µi+1 = µi(β + 2) + (α+ 2)ihr(α)vv
⊤. (104)

The results of the previous section give us control over µ0. We will induct on the
above equation to screw the smoothing operators α+ 2 and β + 2 into place, using
the matrix determinant lemma to keep track of the determinants. In the seven cases
proven here, the determinant or adjugate of µi is multiplied by a constant factor at
each step.

Proposition 7.1 (Matrix determinant lemma). If A is an n-by-n matrix and u and

v are n-by-1 column vectors, then

det(A+ uv⊤) = det(A) + v⊤ adj(A)u. (105)

Proof. This is a polynomial identity in the entries of A, u, and v, so it suffices to
prove it for the dense subset where A is invertible. Consider





I 0

v⊤ 1









I +A−1uv⊤ u

0 1









I 0

−v⊤ 1



 =





I u

0 1 + v⊤A−1u



 , (106)

which shows that 1 · det(I +A−1uv⊤) · 1 = det(1 + v⊤A−1u). Multiplying through
by detA yields det(A+ uv⊤) = det(A)(1 + v⊤A−1u) = det(A) + v⊤ adj(A)u.

7.1 The case that µ0 is invertible

Lemma 7.2. Suppose there is an N -dimensional column vector w such that µ0w =
hr(αN )v and that the last l − 1 entries of hr(βN )w are 0. Then

det(µl) = det(µ0)2
l
(

1 + v⊤(βN + 2)−1w
)l

. (107)

Proof. By Prop 6.2, (α+2)i and (β+2)i differ only in the last i columns. It follows
from the second hypothesis that (β + 2)ihr(β)w = (α + 2)ihr(β)w for 0 ≤ i < l.
Thus

µiw = (α+ 2)ihr(α)v (108)

and
det(µi)w = adj(µi)(α+ 2)ihr(α)v (109)
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for 0 ≤ i < l. By (104) and the matrix determinant lemma,

det(µi+1) = det(β + 2)
(

det(µi) + v⊤(β + 2)−1 adj(µi)(α+ 2)ihr(α)v
)

(110)

= det(β + 2)
(

det(µi) + v⊤(β + 2)−1 det(µi)w
)

.

Hence
det(µi+1) = 2det(µi)

(

1 + v⊤(βN + 2)−1w
)

. (111)

Theorem 7.3.

d2k+1((2k + 1)n) = (2n+ 1)k (112)

d2k+1((2k + 1)n+ k + 1) = (−1)(
k+1

2 )4k(n+ 1)k (113)

d2k(2kn) = (−1)kn (114)

d2k(2kn + k) = (−1)kn+(
k

2)4k−1(n+ 1)k−1 (115)

Proof. Given w, it is straightforward to verify the hypotheses and evaluate the final
expression of Lemma 7.2 with the lemmas of Section 6. For the first formula, take
w to be the (2k + 1)n-dimensional column vector

w1 = (−1)n−1

(

n−1
∑

m=0

(−1)me(2k+1)m −
n−1
∑

m=0

(−1)me(2k+1)m+2k

)

+ eN−1, (116)

where {ei}N−1
i=0 is the standard basis. Then gk(α)w1 = gk(β)w1 = eN−k−1.

For the second formula, take w to be the (2k + 1)n+ k + 1-dimensional column
vector

w2 = (−1)n

(

n
∑

m=0

(−1)me(2k+1)m+k−1 −
n−1
∑

m=0

(−1)me(2k+1)m+k+1

)

+ eN−1, (117)

which gives gk(α)w2 = eN−k−1 + eN−k and gk(β)w2 = eN−k−1 − eN−k.
For the third formula, take w to be the 2kn-dimensional column vector

w3 = (−1)n−1

(

n−1
∑

m=0

(−1)me2km −
n−1
∑

m=0

(−1)me2km+2k−1

)

+ eN−1, (118)

which gives bk(α)w3 = bk(β)w3 = eN−k−1 + eN−k.
For the fourth formula, take w to be the 2kn + k-dimensional column vector

w4 = (−1)n

(

n
∑

m=0

(−1)me2km+k−1 −
n−1
∑

m=0

(−1)me2km+k+1

)

+ eN−1, (119)

which gives bk(α)w4 = eN−k−1 + 3eN−k and bk(β)w4 = eN−k−1 − eN−k.
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7.2 The case that µ0 is singular

We will make use of the following fact about the adjugate matrix.

Proposition 7.4. The rank of the adjugate adj(M) of an n-by-n matrix M satisfies

rk adj(M) =











n if rkM = n

1 if rkM = n− 1

0 otherwise

(120)

Proof. Recall that adj(M) ·M = det(M)I. If rkM = n then M is invertible with
inverse 1

det(M) adj(M), which also has rank n.

If rkM = n − 1, then det(M) = 0, in which case adj(M) must send all vectors
into the kernel of M , which has rank 1. In this case M also has a nonzero order-n−1
minor, so adj(M) has rank 1.

If rkM ≤ n− 2, then all order-n− 1 minors of M are zero, so adj(M) = 0.

Lemma 7.5. Suppose there is a nonzero N -dimensional column vector w such that

det(µ0) = 0, det(µ0|N−1) 6= 0, µ0w = 0, v⊤w = 1, v⊤(β + 2)−1w 6= 0, and entries

N − k − l through N − 3 of w are 0. Then

det(µl) = det(µ0|N−1)
(

2v⊤(βN + 2)−1w
)l (

w⊤(α+ 2)l−1hr(α)v
)

. (121)

Proof. Let c = det(µ0|N−1). We will show by induction that

adj(µi) = c
(

2v⊤(βN + 2)−1w
)i

ww⊤, (122)

for 0 ≤ i < l. For the base case of i = 0, note that the first two hypotheses imply
that µ0 has rank N − 1. Since w generates the kernel and µ0 is symmetric, Lemma
7.4 implies that adj(µ0) is a constant d times ww⊤. In fact c = v⊤ adj(µ0)v =
dv⊤ww⊤v = d.

Suppose the claim holds for i. Since α + 2 is tridiagonal, the last hypothesis
combined with Lemmas 6.4 and 6.6 imply that w⊤(α+2)ihr(α)v = 0. By (104) and
the matrix determinant lemma,

det(µi+1) = det(β + 2)
(

det(µi) + v⊤(β + 2)−1 adj(µi)(α+ 2)ihr(α)v
)

(123)

= det(β + 2)

(

0 + c
(

2v⊤(βN + 2)−1w
)i

v⊤(β + 2)−1ww⊤(α+ 2)ihr(α)v

)

= 0,
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so µi+1 has rank at most n− 1. Since (α + 2)ihr(α)vv
⊤ doesn’t affect the bottom-

right cofactor,

v⊤ adj(µi+1)v = v⊤ adj
(

µi(β + 2) + (α+ 2)ihr(α)vv
⊤
)

v

= v⊤ adj (µi(β + 2)) v (124)

= cdet(β + 2)v⊤(β + 2)−1
(

2v⊤(βN + 2)−1w
)i

ww⊤v

= c(2v⊤(βN + 2)−1w)i+1.

This is nonzero by assumption, so adj(µi+1) is nonzero. By Prop 7.4, it is rank 1.
The matrix µi+1 is symmetric and w lies in its kernel:

w⊤µi+1 = w⊤µi(β + 2) + w⊤(α+ 2)ihr(α)vv
⊤ = 0 + 0, (125)

so it is of the form adj(µi+1) = c(2v⊤(βN + 2)−1w)i+1ww⊤. This completes the
induction.

The final µl has determinant

det(µl) = det(β + 2)
(

det(µl−1) + v⊤(β + 2)−1 adj(µl−1)(α+ 2)l−1hr(α)v
)

= 2
(

0 + 2l−1c(v⊤(βN + 2)−1w)lw⊤(α+ 2)l−1hr(α)v
)

(126)

= c
(

2v⊤(βN + 2)−1w
)l (

w⊤(α+ 2)l−1hr(α)v
)

.

Theorem 7.6.

d2k+1((2k + 1)n + 1) = (2n + 1)k (127)

d2k(2kn + 1) = (−1)kn (128)

d2k(2kn + k + 1) = −(−1)kn+(
k

2)4k−1(n+ 1)k−1 (129)

Proof. Given w, it is straightforward to verify the hypotheses and evaluate the final
expression of Lemma 7.5 with the lemmas of Section 6.

For the first formula, take w to be

w5 = (−1)n

(

n
∑

m=0

(−1)me(2k+1)m −
n−1
∑

m=0

(−1)me(2k+1)m+2k

)

, (130)

where {ei}N−1
i=0 is the standard basis.

For the second formula, w to be

w6 = (−1)n

(

n
∑

m=0

(−1)me2km −
n−1
∑

m=0

(−1)me2km+2k−1

)

. (131)
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For the third formula, use

w7 = (−1)n−1

(

n
∑

m=0

(−1)me2km+k−1 −
n
∑

m=0

(−1)me2km+k

)

. (132)
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