An interesting class of Hankel determinants

Johann Cigler* \& Mike Tyson ${ }^{\dagger}$

Abstract

For small r the Hankel determinants $d_{r}(n)$ of the sequence $\left(\binom{2 n+r}{n}\right)_{n \geq 0}$ are easy to guess and show an interesting modular pattern. For arbitrary r and n no closed formulae are known, but for each positive integer r the special values $d_{r}(r n), d_{r}(r n+1)$, and $d_{r}\left(r n+\left\lfloor\frac{r+1}{2}\right\rfloor\right)$ have nice values which will be proved in this paper.

0 Introduction

Let $\left(a_{n}\right)_{n \geq 0}$ be a sequence of real numbers with $a_{0}=1$. For each n consider the Hankel determinant

$$
\begin{equation*}
H_{n}=\operatorname{det}\left(a_{i+j}\right)_{i, j=0}^{n-1} . \tag{1}
\end{equation*}
$$

We are interested in the sequence $\left(H_{n}\right)_{n \geq 0}$ for the sequences $a_{n, r}=\binom{2 n+r}{n}$ for some $r \in \mathbb{N}$. For $n=0$ we let $H_{0}=1$.

Let

$$
\begin{equation*}
d_{r}(n)=\operatorname{det}\left(\binom{2 i+2 j+r}{i+j}\right)_{i, j=0}^{n-1} \tag{2}
\end{equation*}
$$

For $r=0$ and $r=1$ these determinants are well known and satisfy $d_{0}(n)=2^{n-1}$ and $d_{1}(n)=1$ for $n>0$. Egecioglu, Redmond, and Ryavec [3] computed $d_{2}(n)$ and $d_{3}(n)$ and stated some conjectures for $r>3$.

Many of these determinants are easy to guess and show an interesting modular

[^0]pattern. For example
\[

$$
\begin{align*}
\left(d_{0}(n)\right)_{n \geq 0} & =\left(1,1,2,2^{2}, 2^{3}, \ldots\right), \tag{3}\\
\left(d_{1}(n)\right)_{n \geq 0} & =(1,1,1,1,1, \ldots), \tag{4}\\
\left(d_{2}(n)\right)_{n \geq 0} & =(1,1,-1,-1,1,1,-1,-1, \ldots), \tag{5}\\
\left(d_{3}(n)\right)_{n \geq 0} & =(1,1,-4,3,3,-8,5,5,-12,7,7,-16, \ldots), \tag{6}\\
\left(d_{4}(n)\right)_{n \geq 0} & =(1,1,-8,8,1,1,-16,16,1,1,-24,24, \ldots), \tag{7}\\
\left(d_{5}(n)\right)_{n \geq 0} & =(1,1,-13,-16,61,9,9,-178,-64,370,25,25,-695,-144,1127, \ldots) \tag{8}
\end{align*}
$$
\]

These and other computations suggest the following facts:

$$
\begin{align*}
& d_{2 k+1}((2 k+1) n)=d_{2 k+1}((2 k+1) n+1)=(2 n+1)^{k}, \tag{9}\\
& \left.d_{2 k+1}((2 k+1) n+k+1)=(-1)^{\left({ }^{k+1} 2\right.} 2\right) \tag{10}\\
& d^{k}(n+1)^{k}, \tag{11}\\
& d_{2 k}(2 k n)=d_{2 k}(2 k n+1)=(-1)^{k n}, \tag{12}\\
& d_{2 k}(2 k n+k)=-d_{2 k}(2 k n+k+1)=(-1)^{k n+\binom{k}{2}} 4^{k-1}(n+1)^{k-1} .
\end{align*}
$$

The purpose of this paper is to prove these conjectures. These methods seem to extend to the Hankel determinants of the sequences $\left(\binom{2 n+r}{n-s}\right)_{n \geq 0}$, but we do not compute these here.

In Sections 1 and 2 we review some well-known facts from the theory of Hankel determinants. In particular we compute $d_{1}(n)$. In Sections 3 and 4 we introduce the matrices $\gamma^{(i)}, \alpha_{n}$, and β_{n}, which serve as the basis of our method. In Section 5 we relate these matrices to $d_{r}(n)$, and in Sections 6 and 7 we use this information to compute $d_{r}(n)$ in the aforementioned seven cases.

1 Some background material

Let us first recall some well-known facts about Hankel determinants (cf. e.g. [1). If $d_{n}=\operatorname{det}\left(a_{i+j}\right)_{i, j=0}^{n-1} \neq 0$ for each n we can define the polynomials

$$
p_{n}(x)=\frac{1}{d_{n}} \operatorname{det}\left(\begin{array}{ccccc}
a_{0} & a_{1} & \cdots & a_{n-1} & 1 \tag{13}\\
a_{1} & a_{2} & \cdots & a_{n} & x \\
a_{2} & a_{3} & \cdots & a_{n+1} & x^{2} \\
\vdots & & & & \vdots \\
a_{n} & a_{n+1} & \cdots & a_{2 n-1} & x^{n}
\end{array}\right) .
$$

If we define a linear functional L on the polynomials by $L\left(x^{n}\right)=a_{n}$ then $L\left(p_{n} p_{m}\right)=0$ for $n \neq m$ and $L\left(p_{n}^{2}\right) \neq 0$ (orthogonality).

By Favard's Theorem there exist s_{n} and t_{n} such that

$$
\begin{equation*}
p_{n}(x)=\left(x-s_{n-1}\right) p_{n-1}(x)-t_{n-2} p_{n-2}(x) . \tag{14}
\end{equation*}
$$

For arbitrary s_{n} and t_{n} define numbers $a_{n}(j)$ by

$$
\begin{align*}
a_{0}(j) & =[j=0] \\
a_{n}(0) & =s_{0} a_{n-1}(0)+t_{0} a_{n-1}(1), \tag{15}\\
a_{n}(j) & =a_{n-1}(j-1)+s_{j} a_{n-1}(j)+t_{j} a_{n-1}(j+1)
\end{align*}
$$

These numbers satisfy

$$
\begin{equation*}
\sum_{j=0}^{n} a_{n}(j) p_{j}(x)=x^{n} . \tag{16}
\end{equation*}
$$

Let $A_{n}=\left(a_{i}(j)\right)_{i, j=0}^{n-1}$ and D_{n} be the diagonal matrix with entries $d(i, i)=$ $\prod_{j=0}^{i-1} t_{j}$. Then we get

$$
\begin{equation*}
\left(a_{i+j}(0)\right)_{i, j=0}^{n-1}=A_{n} D_{n} A_{n}^{\top} \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{det}\left(a_{i+j}(0)\right)_{i, j=0}^{n-1}=\prod_{i=1}^{n-1} \prod_{j=0}^{i-1} t_{j} . \tag{18}
\end{equation*}
$$

If we start with the sequence $\left(a_{n}\right)_{n \geq 0}$ and guess s_{n} and t_{n} and if we also can guess $a_{n}(j)$ and show that $a_{n}(0)=a_{n}$ then all our guesses are correct and the Hankel determinant is given by the above formula.

There is a well-known equivalence with continued fractions, so-called J-fractions:

$$
\begin{equation*}
\sum_{n \geq 0} a_{n} x^{n}=\frac{1}{1-s_{0} x-\frac{t_{0} x^{2}}{1-s_{1} x-\frac{t_{1} x^{2}}{1-\ddots}}} \tag{19}
\end{equation*}
$$

For some sequences this gives a simpler approach to Hankel determinants.
As is well known Hankel determinants are intimately connected with the Catalan numbers $C_{n}=\frac{1}{n+1}\binom{2 n}{n}$. Consider for example the aerated sequence of Catalan numbers $\left(c_{n}\right)=(1,0,1,0,2,0,5,0,14,0, \ldots)$ defined by $c_{2 n}=C_{n}$ and $c_{2 n+1}=0$. Since the generating function of the Catalan numbers

$$
\begin{equation*}
C(x)=\sum_{n \geq 0} C_{n} x^{n}=\frac{1-\sqrt{1-4 x}}{2 x} \tag{20}
\end{equation*}
$$

satisfies

$$
\begin{equation*}
C(x)=1+x C(x)^{2} \tag{21}
\end{equation*}
$$

we get

$$
\begin{equation*}
C(x)=\frac{1}{1-x C(x)} \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
C\left(x^{2}\right)=\frac{1}{1-x^{2} C\left(x^{2}\right)}=\frac{1}{1-\frac{x^{2}}{1-\frac{x^{2}}{1-\ddots}}} \tag{23}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
\operatorname{det}\left(c_{i+j}\right)_{i, j=0}^{n-1}=1 \tag{24}
\end{equation*}
$$

From $C(x)=1+x C(x)^{2}$ we get $C(x)^{2}=1+2 x C(x)^{2}+x^{2} C(x)^{4}$ or

$$
\begin{equation*}
C(x)^{2}=\frac{1}{1-2 x-x^{2} C(x)^{2}}=\frac{1}{1-2 x-\frac{x^{2}}{1-2 x-\frac{x^{2}}{1-2 x-\ddots}}} . \tag{25}
\end{equation*}
$$

The generating function of the central binomial coefficients $B_{n}=\binom{2 n}{n}$ is

$$
\begin{equation*}
B(x)=\sum_{n \geq 0} B_{n} x^{n}=\frac{1}{\sqrt{1-4 x}}=\frac{1}{1-2 x C(x)}=\frac{1}{1-2 x-2 x^{2} C(x)^{2}} \tag{26}
\end{equation*}
$$

Therefore by (25) we get the J-fraction

$$
\begin{equation*}
B(x)=\frac{1}{1-2 x-2 x^{2} C(x)^{2}}=\frac{1}{1-2 x-\frac{2 x^{2}}{1-2 x-\frac{x^{2}}{1-2 x-\frac{x^{2}}{1-2 x-\ddots}}}} . \tag{27}
\end{equation*}
$$

Thus the corresponding numbers t_{n} are given by $t_{0}=2$ and $t_{n}=1$ for $n>0$ which implies $d_{0}(n)=2^{n-1}$ for $n \geq 1$.

Let us also consider the aerated sequence $\left(b_{n}\right)$ with $b_{2 n}=B_{n}$ and $b_{2 n+1}=0$. Here we get

$$
\begin{equation*}
b(x)=B\left(x^{2}\right)=\frac{1}{1-2 x^{2} C(x)^{2}}=\frac{1}{1-\frac{2 x^{2}}{1-\frac{x^{2}}{1-\frac{x^{2}}{1-\ddots}}}} . \tag{28}
\end{equation*}
$$

In this case $s_{n}=0, t_{0}=2$, and $t_{n}=1$ for $n>0$. Here we also get $\operatorname{det}\left(b_{i+j}\right)_{i, j=0}^{n-1}=$ 2^{n-1} for $n>0$. The corresponding orthogonal polynomials satisfy $p_{0}(x)=1$, $p_{1}(x)=x, p_{2}(x)=x p_{1}(x)-2$ and $p_{n}(x)=x p_{n-1}(x)-p_{n-2}(x)$ for $n>2$. The first terms are $1, x, x^{2}-2, x^{3}-3 x, \ldots$.

Now recall that the Lucas polynomials

$$
\begin{equation*}
L_{n}(x)=\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor}(-1)^{k}\binom{n-k}{k} \frac{n}{n-k} x^{n-2 k} \tag{29}
\end{equation*}
$$

for $n>0$ satisfy $L_{n}(x)=x L_{n-1}(x)-L_{n-2}(x)$ with initial values $L_{0}(x)=2$ and $L_{1}(x)=x$. The first terms are $2, x, x^{2}-2, x^{3}-3 x, \ldots$ Thus $p_{n}(x)=\bar{L}_{n}(x)$, where $\bar{L}_{n}(x)=L_{n}(x)$ for $n>0$ and $\bar{L}_{0}(x)=1$.

For the numbers $a_{n}(j)$ we get

$$
\begin{align*}
& a_{2 n}(2 j)=\binom{2 n}{n-j}, \tag{30}\\
& a_{2 n+1}(2 j+1)=\binom{2 n+1}{n-j}, \tag{31}
\end{align*}
$$

and $a_{n}(j)=0$ else. Equivalently $a_{n}(n-2 j)=\binom{n}{j}$ and $a_{n}(k)=0$ else.
For the proof it suffices to verify (15) which reduces to the trivial identities $\binom{2 n}{n}=2\binom{2 n-1}{n-1},\binom{2 n}{n-j}=\binom{2 n-1}{n-j}+\binom{2 n-1}{n-1-j}$, and $\binom{2 n+1}{n-j}=\binom{2 n}{n-j}+\binom{2 n}{n-1-j}$. Identity (16) reduces to

$$
\begin{equation*}
\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor}\binom{n}{k} \bar{L}_{n-2 k}=x^{n} \tag{32}
\end{equation*}
$$

2 Some well-known applications of these methods

Now let us consider

$$
\begin{equation*}
d_{1}(n)=\operatorname{det}\binom{2 i+2 j+1}{i+j} \tag{33}
\end{equation*}
$$

The generating function of the sequence $\binom{2 n+1}{n}$ is

$$
\begin{equation*}
\sum_{n \geq 0}\binom{2 n+1}{n} x^{n}=\frac{1}{2} \sum_{n \geq 0}\binom{2 n+2}{n+1} x^{n}=\frac{1}{2 x}\left(\frac{1}{\sqrt{1-4 x}}-1\right)=\frac{C(x)}{\sqrt{1-4 x}} \tag{34}
\end{equation*}
$$

Now we have

$$
\begin{align*}
\sqrt{1-4 x} & =1-2 x C(x)=\left(C(x)-x C(x)^{2}\right)-2 x C(x)=C(x)(1-2 x-x C(x)) \\
& =C(x)\left(1-2 x-x\left(1+x C(x)^{2}\right)\right)=C(x)\left(1-3 x-x^{2} C(x)^{2}\right) \tag{35}
\end{align*}
$$

Therefore

$$
\begin{equation*}
\frac{C(x)}{\sqrt{1-4 x}}=\frac{1}{1-3 x-x^{2} C(x)^{2}}=\frac{1}{1-3 x-\frac{x^{2}}{1-2 x-\frac{x^{2}}{1-2 x-\frac{x^{2}}{1-2 x-\ddots}}}} . \tag{36}
\end{equation*}
$$

The corresponding sequences s_{n}, t_{n} are $s_{0}=3, s_{n}=2$ for $n>0$ and $t_{n}=1$. Thus $d_{1}(n)=1$. The corresponding $a_{i}(j)$ are $a_{i}(j)=\binom{2 i+1}{i-j}$.

To prove this we must verify (15) which reduces to

$$
\begin{align*}
& \binom{1}{-j}=[j=0], \tag{37}\\
& \binom{2 n+1}{n}=3\binom{2 n-1}{n-1}+\binom{2 n-1}{n-2}, \tag{38}\\
& \binom{2 n+1}{n-j}=\binom{2 n-1}{n-j}+2\binom{2 n-1}{n-1-j}+\binom{2 n-1}{n-2-j} . \tag{39}
\end{align*}
$$

The first line is clear. The right-hand side of the second line gives

$$
\begin{align*}
3\binom{2 n-1}{n-1}+\binom{2 n-1}{n-2} & =2\binom{2 n-1}{n-1}+\binom{2 n}{n-1} \tag{40}\\
& =\binom{2 n}{n}+\binom{2 n}{n-1}=\binom{2 n+1}{n}
\end{align*}
$$

For the third line we get

$$
\begin{equation*}
\binom{2 n-1}{n-j}+2\binom{2 n-1}{n-1-j}+\binom{2 n-1}{n-2-j}=\binom{2 n}{n-j}+\binom{2 n}{n-j-1}=\binom{2 n+1}{n-j} . \tag{41}
\end{equation*}
$$

By (17) we see that with

$$
\begin{equation*}
A(n)=\left(\binom{2 i+1}{i-j}\right)_{i, j=0}^{n-1} \tag{42}
\end{equation*}
$$

we get

$$
\begin{equation*}
A(n) A(n)^{\top}=\left(\binom{2 i+2 j+1}{i+j}\right)_{i, j=0}^{n-1} \tag{43}
\end{equation*}
$$

Let us give a direct proof of (43). Observe first that

$$
\begin{equation*}
\sum_{l=0}^{n-1}\binom{2 i+1}{i-l}\binom{2 j+1}{j-l}=\sum_{l=0}^{i}\binom{2 i+1}{i-l}\binom{2 j+1}{j-l}=\sum_{l=0}^{j}\binom{2 i+1}{i-l}\binom{2 j+1}{j-l} \tag{44}
\end{equation*}
$$

and that

$$
\begin{align*}
\sum_{l=0}^{i}\binom{2 i+1}{i-l}\binom{2 j+1}{j-l} & =\sum_{l=0}^{i}\binom{2 i+1}{i-l}\binom{2 j+1}{j+1+l} \tag{45}\\
& =\sum_{k=j+1}^{i+j+1}\binom{2 i+1}{i+j+1-k}\binom{2 j+1}{k}
\end{align*}
$$

and

$$
\begin{align*}
\sum_{l=0}^{j}\binom{2 i+1}{i-l}\binom{2 j+1}{j-l} & =\sum_{l=0}^{j}\binom{2 i+1}{i+1+l}\binom{2 j+1}{j+1+l} \tag{46}\\
& =\sum_{k=0}^{j}\binom{2 i+1}{i+j+1-k}\binom{2 j+1}{k} .
\end{align*}
$$

Therefore

$$
\begin{align*}
& 2 \sum_{l=0}^{n-1}\binom{2 i+1}{i-l}\binom{2 j+1}{j-l} \\
& =\sum_{k=0}^{j}\binom{2 i+1}{i+j+1-k}\binom{2 j+1}{k}+\sum_{k=j+1}^{i+j+1}\binom{2 i+1}{i+j+1-k}\binom{2 j+1}{k} \tag{47}\\
& =\sum_{k=0}^{i+j+1}\binom{2 i+1}{i+j+1-k}\binom{2 j+1}{k}=\binom{2 i+2 j+2}{i+j+1}=2\binom{2 i+2 j+1}{i+j} .
\end{align*}
$$

Since $A(n)$ is a triangle matrix whose diagonal elements are $\binom{2 i+1}{i-i}=1$ we get $\operatorname{det}\left(A(n) A(n)^{\top}\right)=1$.

3 A new method

Let us consider the determinants of the Hankel matrices $B(n, k)=\left(\binom{2 i+2 j+2}{i+j+1-k}\right)_{i, j=0}^{n-1}$.
These have already been computed in [2], Theorem 21. There it is shown that

$$
\begin{equation*}
\operatorname{det}(B(i+j, k))_{i, j=0}^{k m-1}=(-1)^{\binom{m}{2} k+m\binom{k}{2}} \tag{48}
\end{equation*}
$$

and $\operatorname{det}(B(i+j), k)_{i, j=0}^{n-1}=0$ else.
Definition 3.1. Let $\gamma^{(k)}=(c(i, j, k))_{i, j \geq 0}$ be the infinite matrix with $c(i, j, k)=1$ if $|i-j|=k$ or $i+j=k-1$. Let us also consider the finite truncations $\left.\gamma^{(k)}\right|_{n}$, where $\left.A\right|_{n}$ denotes the submatrix consisting of the first n rows and columns of a matrix A. We shall also write $\gamma^{(1)}=\gamma$ and $\left.\gamma^{(k)}\right|_{n}=\gamma_{n}^{(k)}$.

Theorem 3.2.

$$
\begin{equation*}
A(n) \gamma_{n}^{(k)} A(n)^{\top}=B(n, k) . \tag{49}
\end{equation*}
$$

Proof. Computer experiments suggested that

$$
\begin{equation*}
A(n)^{-1} B(n, k)\left(A(n)^{\top}\right)^{-1}=\gamma_{n}^{(k)}=(c(i, j, k))_{i, j=0}^{n-1} . \tag{50}
\end{equation*}
$$

For example $\gamma_{5}^{(1)}$ and $\gamma_{5}^{(2)}$ are the following matrices:

$$
\gamma_{5}^{(1)}=\left(\begin{array}{ccccc}
1 & 1 & 0 & 0 & 0 \tag{51}\\
1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0
\end{array}\right) \quad \gamma_{5}^{(2)}=\left(\begin{array}{ccccc}
0 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0
\end{array}\right)
$$

If we set $B(n, 0)=2 I_{n}$, where I_{n} denotes the $n \times n$-identity matrix, then we already know that (49) holds for $k=0$.

In the general case we have

$$
\begin{align*}
& \sum_{0 \leq r, s \leq n-1} A(n)(i, r) c(r, s, k) A(n)^{\top}(s, j)=\sum_{0 \leq r, s \leq n-1}\binom{2 i+1}{i-r} c(r, s, k)\binom{2 j+1}{j-s} \\
& =\sum_{s=0}^{n-k-1}\binom{2 i+1}{i-(s+k)}\binom{2 j+1}{j-s}+\sum_{s=k}^{n-1}\binom{2 i+1}{i-(s-k)}\binom{2 j+1}{j-s} \\
& +\sum_{s=0}^{k-1}\binom{2 i+1}{i-(k-1-s)}\binom{2 j+1}{j-s} \\
& =\sum_{s=0}^{i-k}\binom{2 i+1}{i-s-k}\binom{2 j+1}{j+1+s}+\sum_{s=k}^{j}\binom{2 i+1}{i-k+s+1}\binom{2 j+1}{j-s} \tag{52}\\
& +\sum_{s=0}^{k-1}\binom{2 i+1}{i-k+1+s}\binom{2 j+1}{j-s} \\
& =\sum_{s=j+1}^{i+j+1-k}\binom{2 i+1}{i+j-k-s+1}\binom{2 j+1}{s}+\sum_{s=0}^{j-k}\binom{2 i+1}{i+j-k-s+1}\binom{2 j+1}{s} \\
& +\sum_{s=j-k+1}^{j}\binom{2 i+1}{i+j-k+1-s}\binom{2 j+1}{s} \\
& =\sum_{s=0}^{i+j+1-k}\binom{2 i+1}{i+j-k+1-s}\binom{2 j+1}{s}=\binom{2 i+2 j+2}{i+j+1-k} .
\end{align*}
$$

The last identity follows from the Chu-Vandermonde formula.

Lemma 3.3.

$$
\begin{align*}
& \operatorname{det}\left(\gamma_{2 k n}^{(k)}\right)=(-1)^{k n} \tag{53}\\
& \operatorname{det}\left(\gamma_{2 k n+k}^{(k)}\right)=(-1)^{k n+\binom{k}{2}} \tag{54}
\end{align*}
$$

and all other determinants $\operatorname{det}\left(\gamma_{n}^{(k)}\right)$ vanish.
Proof. By the definition of a determinant we have

$$
\begin{equation*}
\operatorname{det}\left(a_{i, j}\right)_{i, j=0}^{n-1}=\sum_{\pi} \operatorname{sgn}(\pi) a_{0, \pi(0)} a_{1, \pi(1)} \cdots a_{n-1, \pi(n-1)} \tag{55}
\end{equation*}
$$

where π runs over all permutations of the set $\{0,1, \ldots, n-1\}$. The determinants of the matrices $\gamma_{n}^{(k)}$ either vanish or the sum over all permutations reduces to a single term $\operatorname{sgn} \pi_{n} c\left(0, \pi_{n}(0), k\right) c\left(1, \pi_{n}(1), k\right) \cdots c\left(n-1, \pi_{n}(n-1), k\right)$.

Let us first consider $k=1$. The last row of $\gamma_{n}^{(1)}$ has only one non-vanishing element $c(n-1, n-2,1)$. Thus each π which occurs in the determinant must satisfy $\pi(n-1)=n-2$. The next row from below contains two non-vanishing elements $c(n-2, n-3,1)$ and $c(n-2, n-1,1)$. The last element is the only element of the last column. Therefore we must have $\pi(n-2)=n-1$. The next row from below contains again two non-vanishing elements, $c(n-3, n-4)$ and $c(n-3, n-2)$. But since $n-2$ already occurs as image of π we must have $\pi(n-3)=n-4$. Thus the situation has been reduced to $\gamma_{n-2}^{(1)}$. In order to apply induction we need the two initial cases $\gamma_{1}^{(1)}$ and $\gamma_{2}^{(1)}$.

For $n=1$ we get $\pi(0)=0$ and for $n=2 \pi(0)=1$ and $\pi(1)=0$ since

$$
\gamma_{2}^{(1)}=\left(\begin{array}{ll}
1 & 1 \tag{56}\\
1 & 0
\end{array}\right)
$$

If we write $\pi=\pi(0) \cdots \pi(n-1)$ we get in this way $\pi_{1}=0, \pi_{2}=10, \pi_{3}=021$, $\pi_{4}=1032, \ldots$. This gives $\operatorname{sgn} \pi_{n}=-\operatorname{sgn} \pi_{n-2}$ and thus by induction $\operatorname{det} \gamma_{n}^{(1)}=$ $(-1)^{\binom{n}{2}}$, which agrees with (48).

For general k the situation is analogous. The last k rows and columns contain only one non-vanishing element. This implies $\pi(n-j)=n-j-k$ and $\pi(n-j-k)=$ $n-j$ for $1 \leq j \leq k$. Now $\pi(n-2 k-1)=n-3 k-1$ since $n-k-1$ occurs already as image of π. Thus the determinant can be reduced to $\gamma_{n-2 k}^{(k)}$ and we get $\operatorname{det} \gamma_{n}^{(k)}=(-1)^{k} \operatorname{det} \gamma_{n-2 k}^{(k)}$ if $n \geq 2 k$.

For $n=k \gamma_{k}^{(k)}$ reduces to the anti-diagonal and thus $\operatorname{det} \gamma_{k}^{(k)}=(-1) \begin{gathered}\binom{k}{2}\end{gathered}$. For $0<n<k$ the first row of $\gamma_{n}^{(k)}$ vanishes and thus $\operatorname{det} \gamma_{n}^{(k)}=0$. For $k<n<2 k$ there are two identical rows because $c(k-1,0, k)=c(k, 0, k)=1$ and $c(k-1, j, k)=$
$c(k, j, k)=0$ for $0<j<n$. Thus we see by induction that

$$
\begin{align*}
& \operatorname{det}\left(\gamma_{2 k n}^{(k)}\right)=(-1)^{k n} \tag{57}\\
& \operatorname{det}\left(\gamma_{2 k n+k}^{(k)}\right)=(-1)^{k n+\binom{k}{2}} \tag{58}
\end{align*}
$$

and all other determinants vanish. This is the same as (48) because $(-1)^{\binom{2 n}{2} k+2 n\binom{k}{2}}=$ $(-1)^{k n}$ and $(-1)\left(\begin{array}{c}\binom{n+1}{2} k+(2 n+1)\binom{k}{2}\end{array}=(-1)^{k n+\binom{k}{2}}\right.$.
Theorem 3.4. The matrices $\gamma^{(k)}$ satisfy $\gamma^{(k)}=\gamma \cdot \gamma^{(k-1)}-\gamma^{(k-2)}$ with initial values $\gamma^{(1)}=\gamma$ and $\gamma^{(0)}=2 I_{\infty}$.

Proof. If $a=(a(i))$ is an arbitrary column vector then $(\gamma \cdot a)(0)=a_{0}+a_{1}$ and $(\gamma \cdot a)(i)=a_{i-1}+a_{i+1}$ for $i \geq 1$. And $\left(\gamma^{(k)} \cdot a\right)(i)=a_{k-1-i}+a_{k+i}$ for $0 \leq i \leq k-1$ and $\left(\gamma^{(k)} \cdot a\right)(i)=a_{i-k}+a_{i+k}$ for $i \geq k$. This implies

$$
\begin{array}{lr}
\left(\gamma \cdot \gamma^{(k)} \cdot a\right)(0)=a_{k-2}+a_{k-1}+a_{k}+a_{k+1} & (2 \leq i \leq k-2), \\
\left(\gamma \cdot \gamma^{(k)} \cdot a\right)(1)=a_{k-3}+a_{k-1}+a_{k}+a_{k+2}, \\
\left(\gamma \cdot \gamma^{(k)} \cdot a\right)(i)=a_{k-2-i}+a_{k-i}+a_{k+1-i}+a_{k+i+1}, \\
\left(\gamma \cdot \gamma^{(k)} \cdot a\right)(k-1)=a_{0}+a_{1}+a_{2 k-2}+a_{2 k}, & \\
\left(\gamma \cdot \gamma^{(k)} \cdot a\right)(k)=a_{0}+a_{1}+a_{2 k-1}+a_{2 k+1}, & \\
\left(\gamma \cdot \gamma^{(k)} \cdot a\right)(i)=a_{i-k-1}+a_{i-k+1}+a_{k+i-1}+a_{k+i+1} & (i \geq k+1) . \tag{64}
\end{array}
$$

Now observe that $\left(\gamma^{(k-1)} \cdot a\right)(i)=a_{k-2-i}+a_{k+i-1}$ for $0 \leq i \leq k-2$ and $\left(\gamma^{(k+1)} \cdot a\right)(i)=a_{k-i}+a_{k+i+1}$ for $0 \leq i \leq k$. Therefore we have

$$
\begin{equation*}
\left(\gamma \cdot \gamma^{(k)} \cdot a\right)(i)=\left(\gamma^{(k-1)} \cdot a\right)(i)+\left(\gamma^{(k+1)} \cdot a\right)(i) \tag{65}
\end{equation*}
$$

for $0 \leq i \leq k-2$. For $i=k-1$ we get $\left(\gamma^{(k-1)} \cdot a\right)(k-1)=a_{0}+a_{2 k-2}$ and $\left(\gamma^{(k+1)} \cdot a\right)(k-1)=a_{1}+a_{2 k}$. For $i=k$ we get $\left(\gamma^{(k-1)} \cdot a\right)(k)=a_{1}+a_{2 k-1}$ and $\left(\gamma^{(k+1)} \cdot a\right)(k)=a_{0}+a_{2 k+1}$, and for $i \geq k+1$ we have $\left(\gamma^{(k-1)} \cdot a\right)(i)=a_{i-k+1}+a_{i+k-1}$ and $\left(\gamma^{(k+1)} \cdot a\right)(i)=a_{i-k-1}+a_{i+k+1}$ and thus in all cases

$$
\begin{equation*}
\left(\gamma \cdot \gamma^{(k)} \cdot a\right)(i)=\left(\gamma^{(k-1)} \cdot a\right)(i)+\left(\gamma^{(k+1)} \cdot a\right)(i) . \tag{66}
\end{equation*}
$$

By induction we see that each $\gamma^{(n)}$ is a polynomial in γ. Therefore all $\gamma^{(k)}$ commute. Theorem 3.4 shows that the matrices $\gamma^{(k)}$ are Lucas polynomials in γ. More precisely

$$
\begin{equation*}
\gamma^{(k)}=L_{k}(\gamma) . \tag{67}
\end{equation*}
$$

Therefore we can apply some theorems about Lucas polynomials to $\gamma^{(k)}$.

We have already mentioned the inversion theorem (32). In order to apply this let us define $\bar{\gamma}^{(k)}=\gamma^{(k)}$ for $k>0$ and $\bar{\gamma}^{(0)}=I$. Let Φ be the algebra isomorphism from the polynomials in x to the polynomials in the matrix γ defined by $\Phi(p(x))=p(\gamma)$. Then we get $\Phi\left(\bar{L}_{n}(x)\right)=\bar{L}_{n}(\gamma)=\bar{\gamma}^{(n)}$ and

$$
\begin{equation*}
\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor}\binom{n}{k} \bar{\gamma}^{(n-2 k)}=\gamma^{n} \tag{68}
\end{equation*}
$$

Thus we have e.g. $\gamma^{(2)}=\gamma \cdot \gamma^{(1)}-\gamma^{(0)}=\gamma^{2}-2 I$ and $\gamma^{2}=\binom{2}{0} \bar{\gamma}^{(2)}+\binom{2}{1} \bar{\gamma}^{(0)}=\gamma^{(2)}+2 I$.
Lemma 3.5. For $i \geq n$ we have $\gamma^{n}(i, j)=0$ for $j \leq i-n-1$ and

$$
\begin{align*}
& \gamma^{n}(i, i-n+2 s)=\binom{n}{s}, \tag{69}\\
& \gamma^{n}(i, i-n+2 s+1)=0 \tag{70}
\end{align*}
$$

For example,

$$
\gamma_{12}^{5}=\left(\begin{array}{cccccccccccc}
10 & 10 & 5 & 5 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \tag{71}\\
10 & 5 & 10 & 1 & 5 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
5 & 10 & 1 & 10 & 0 & 5 & 0 & 1 & 0 & 0 & 0 & 0 \\
5 & 1 & 10 & 0 & 10 & 0 & 5 & 0 & 1 & 0 & 0 & 0 \\
1 & 5 & 0 & 10 & 0 & 10 & 0 & 5 & 0 & 1 & 0 & 0 \\
1 & 0 & 5 & 0 & 10 & 0 & 10 & 0 & 5 & 0 & 1 & 0 \\
0 & 1 & 0 & 5 & 0 & 10 & 0 & 10 & 0 & 5 & 0 & 1 \\
0 & 0 & 1 & 0 & 5 & 0 & 10 & 0 & 10 & 0 & 5 & 0 \\
0 & 0 & 0 & 1 & 0 & 5 & 0 & 10 & 0 & 10 & 0 & 4 \\
0 & 0 & 0 & 0 & 1 & 0 & 5 & 0 & 10 & 0 & 9 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 5 & 0 & 9 & 0 & 5 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 4 & 0 & 5 & 0
\end{array}\right) .
$$

A curious observation:

The Lucas polynomials satisfy $L_{k}(x)^{2}-L_{k-1}(x) L_{k+1}(x)=4-x^{2}$. Therefore we get

$$
\begin{equation*}
\left(\gamma^{(k)}\right)^{2}-\gamma^{(k-1)} \gamma^{(k+1)}=4-\gamma^{2}=2-\gamma^{(2)} . \tag{72}
\end{equation*}
$$

The matrices $2 I_{n}-\gamma_{n}^{(2)}$ satisfy $\operatorname{det}\left(2 I_{n}-\gamma_{n}^{(2)}\right)=n+1$ and

$$
\begin{equation*}
A(n)\left(2 I_{n}-\gamma_{n}^{(2)}\right) A(n)^{\top}=\left(C_{i+j+2}\right)_{i, j=0}^{n-1} \tag{73}
\end{equation*}
$$

where $C_{n}=\frac{1}{n+1}\binom{2 n}{n}$ is a Catalan number.

4 Two useful matrices

For the finite matrices $\gamma_{n}=\left.\gamma\right|_{n}$ we have $\gamma_{n}^{k} \neq\left.\gamma^{k}\right|_{n}$. In order to compute $\left.\gamma^{k}\right|_{n}$ in the realm of $n \times n$-matrices we introduce two auxiliary matrices α_{n} and β_{n}.

Let v_{n} be the column vector of length n with entries $v_{n}(i)=[i=n-1]$. Then $v_{n} v_{n}^{\top}$ is the $n \times n$-matrix whose only nonzero entry is $v_{n} v_{n}^{\top}(n-1, n-1)=1$.

Definition 4.1. Let $\delta_{m, l}$ be the $m \times m$-matrix whose entries satisfy

$$
\begin{equation*}
\delta_{m, l}(i, 2 m-1-l-i+2 s)=\binom{l}{s} \tag{74}
\end{equation*}
$$

and $\delta_{m, l}(i, j)=0$ else.
For example,

$$
\delta_{6,5}=\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \tag{75}\\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 5 \\
0 & 0 & 1 & 0 & 5 & 0 \\
0 & 1 & 0 & 5 & 0 & 10
\end{array}\right) .
$$

Theorem 4.2. Let $\alpha_{m}=\gamma_{m}+v_{m} v_{m}^{\top}$ and $\beta_{m}=\gamma_{m}-v_{m} v_{m}^{\top}$. If $m \geq l$ then

$$
\begin{align*}
& \frac{\alpha_{m}^{l}+\beta_{m}^{l}}{2}=\left.\gamma^{l}\right|_{m}, \tag{76}\\
& \frac{\alpha_{m}^{l}-\beta_{m}^{l}}{2}=\delta_{m, l}
\end{align*}
$$

Proof. Observe that

$$
\begin{align*}
& \alpha_{m}^{l}-\beta_{m}^{l}=\gamma_{m}\left(\alpha_{m}^{l-1}-\beta_{m}^{l-1}\right)+v_{m} v_{m}^{\top}\left(\alpha_{m}^{l-1}+\beta_{m}^{l-1}\right), \tag{77}\\
& \alpha_{m}^{l}+\beta_{m}^{l}=\gamma_{m}\left(\alpha_{m}^{l-1}+\beta_{m}^{l-1}\right)+v_{m} v_{m}^{\top}\left(\alpha_{m}^{l-1}-\beta_{m}^{l-1}\right) . \tag{78}
\end{align*}
$$

Thus the theorem is equivalent with

$$
\begin{align*}
\delta_{m, l} & =\gamma_{m} \delta_{m, l-1}+r_{m, l}, \tag{79}\\
\left.\gamma^{l}\right|_{m} & =\left.\gamma_{m} \gamma^{l-1}\right|_{m}+s_{m, l}
\end{align*}
$$

for $m \geq l$, where $r_{m, l}$ is the matrix whose last row is $\left(\gamma^{l-1}(m-1,0), \cdots, \gamma^{l-1}(m-\right.$ $1, m-1)$) and all other entries vanish, and $s_{m, l}$ is the matrix whose last row is $\left(\delta_{m, l-1}(m-1,0), \cdots, \delta^{m, l-1}(m-1, m-1)\right)$ and all other entries vanish.

We now prove (79) by induction. It clearly holds for $l=1$. Now suppose that (76) is true for $l-1$.

Let us first prove the second assertion of (79). For $i<m-1$ we have

$$
\begin{equation*}
\sum_{s \geq 0} \gamma(i, s) \gamma^{l-1}(s, j)=\sum_{0 \leq s \leq m-1} \gamma_{m}(i, s) \gamma^{l-1}(s, j) \tag{80}
\end{equation*}
$$

because $\gamma(i, s)=0$ for $s \geq m$. For $i=m-1$ we get

$$
\begin{equation*}
\sum_{s \geq 0} \gamma(m-1, s) \gamma^{l-1}(s, j)=\sum_{0 \leq s \leq m-1} \gamma_{m}(m-1, s) \gamma^{l-1}(s, j)+\gamma^{l-1}(m, j) . \tag{81}
\end{equation*}
$$

By Lemma 3.5 we know that $\gamma^{l-1}(m, m-l+1+2 s)=\binom{c-1}{s}$ and all other entries are 0 . On the other hand the last row of $\delta_{m, l-1}$ is $\delta_{m, l-1}(m-1, j)=\binom{l-1}{s}$ if $j=m-l+1+2 s$ and $\delta_{m, l-1}(m-1, j)=0$ else. Thus the second line of (79) is true.

Now consider the first line. For $i<m-1$ we have

$$
\begin{equation*}
\sum_{r} \gamma(i, r) \delta_{m, l-1}(r, j)=\delta_{m, l}(i, j) \tag{82}
\end{equation*}
$$

This is equivalent with $\delta_{m, l-1}(i-1, j)+\delta_{m, l-1}(i+1, j)=\delta_{m, l}(i, j)$. For $(i, j)=$ $(i, 2 m-1-l-i+2 s)$ we get $\binom{l-1}{s}+\binom{l-1}{s-1}=\binom{l}{s}$. For $i=m-1$ we get

$$
\begin{equation*}
\sum_{r} \gamma(m-1, r) \delta_{m, l-1}(r, m-l+2 s)=\delta_{m, l-1}(m-2, m-l+2 s)=\binom{l-1}{s-1} \tag{83}
\end{equation*}
$$

On the other hand for $\left(\gamma^{l-1}(m-1,0), \cdots, \gamma^{l-1}(m-1, m-1)\right)$ we get by Lemma 3.5 that $\gamma^{l-1}(m-1, m-l+2 s)=\binom{l-1}{s}$. Thus also in this case (79) is proved.

5 Relating the determinant to the γ matrices

Let $g_{n}(x)=\operatorname{det}\left(x I-\gamma_{n}\right)$ with $g_{0}(x)=1$. If we expand with respect to the last row we get $g_{n}(x)=x g_{n-1}(x)-g_{n-2}(x)$. The initial values are $g_{1}(x)=x-1$ and $g_{2}(x)=$ $x^{2}-x-1$. This gives $g_{n}(x)=\sum_{k=0}^{n}(-1)^{k} \bar{L}_{n-k}(x)$ and $g_{n}(x)+g_{n+1}(x)=L_{n+1}(x)$. Therefore we get

$$
\begin{equation*}
g_{n}(\gamma)=\sum(-1)^{k} \bar{\gamma}^{(n-k)} . \tag{84}
\end{equation*}
$$

Let $b_{n}(x)=\operatorname{det}\left(x I-\beta_{n}\right)$. Then we get $b_{n}(x)=g_{n}(x)+g_{n-1}(x)=L_{n}(x)$ by cofactor expansion on the last row.

Note that $A(n) g_{k}(\gamma) A(n)^{\top}=\left(\binom{2 i+2 j+1}{i+j-k}\right)_{i, j \geq 0}$. By (43) and Theorem 3.2, this holds for $k=0$ and $k=1$. Since $g_{k}(\gamma)=L_{k}(\gamma)-g_{k-1}(\gamma)=\gamma^{(k)}-g_{k-1}(\gamma)$, we get
by induction

$$
\begin{align*}
A g_{k}(\gamma) A^{\top}=A \gamma^{(k)} A^{\top}-A g_{k-1}(\gamma) A^{\top} & =\left(\binom{2 i+2 j+2}{i+j+1-k}-\binom{2 i+2 j+1}{i+j+1-k}\right)_{i, j \geq 0} \\
& =\left(\binom{2 i+2 j+1}{i+j-k}\right)_{i, j \geq 0} \tag{85}
\end{align*}
$$

We are interested in the Hankel determinants

$$
\begin{equation*}
\operatorname{det}\left(\binom{2 i+2 j+r}{i+j}\right)_{i, j=0}^{N} \tag{86}
\end{equation*}
$$

By Chu-Vandermonde we have

$$
\begin{equation*}
\binom{2 n+r}{n}=\sum_{k}\binom{r-2}{k}\binom{2 n+2}{n-k} \tag{87}
\end{equation*}
$$

This implies

$$
\begin{equation*}
\left(\binom{2 i+2 j+r}{i+j}\right)_{i, j=0}^{n-1}=\sum_{k}\binom{r-2}{k}\left(\binom{2 i+2 j+2}{i+j+1-(k+1)}\right)_{i, j=0}^{n-1} \tag{88}
\end{equation*}
$$

or

$$
\begin{equation*}
\left(\binom{2 i+2 j+r}{i+j}\right)_{i, j=0}^{n-1}=\sum_{k \geq 0}\binom{r-2}{k} B(n, k+1) \tag{89}
\end{equation*}
$$

This again implies that

$$
\begin{equation*}
\operatorname{det}\left(\binom{2 i+2 j+r}{i+j}\right)_{i, j=0}^{n-1}=\operatorname{det}\left(\sum_{k}\binom{r-2}{k} \gamma_{n}^{(k+1)}\right) \tag{90}
\end{equation*}
$$

For $r=2$ we get

$$
\begin{equation*}
\operatorname{det}\left(\binom{2 i+2 j+2}{i+j}\right)_{i, j=0}^{n-1}=\operatorname{det}\left(\gamma_{n}^{(1)}\right) \tag{91}
\end{equation*}
$$

There is a single 1 in the last row and column. If we expand first with respect to one and then with respect to the other we see that $\operatorname{det}\left(\gamma_{n}^{(1)}\right)=-\operatorname{det}\left(\gamma_{n-2}^{(1)}\right)$. This gives $\operatorname{det}\left(\gamma_{n}^{(1)}\right)=(-1)^{\binom{n}{2}}$.

By (67) and (90), $d_{r}(n)=\left.h(r)(\gamma)\right|_{n}$ for the polynomial $h(n)=\sum_{k}\binom{n-2}{k} L_{k+1}(x)$. Let us therefore obtain more information about $h(n)$. It satisfies $h(n)=(x+2) h(n-$ $1)-(x+2) h(n-2)$ with $h(2)=x, h(3)=x^{2}+x-2=(x+2)(x-1)$. This follows
from

$$
\begin{align*}
& (x+2) \sum\left(\binom{n-1}{k}-\binom{n-2}{k}\right) L_{k+1}(x)-(x+2) \sum\binom{n-2}{k-1} L_{k+1}(x) \\
& =\sum\binom{n-2}{k-1}\left(x L_{k+1}(x)+2 L_{k+1}(x)\right) \tag{92}\\
& =\sum\binom{n-2}{k-1}\left(L_{k+2}(x)+2 L_{k+1}(x)+L_{k}(x)\right) \\
& =\sum\left(\binom{n-2}{k-2}+2\binom{n-2}{k-1}+\binom{n-2}{k}\right) L_{k+1}(x)=\sum\binom{n}{k} L_{k+1}(x) .
\end{align*}
$$

Therefore we get

$$
\begin{align*}
& h(n)=(x+2) h(n-1)-(x+2) h(n-2) \\
& =(x+2)((x+2) h(n-2)-(x+2) h(n-3))-(x+2) h(n-2) \tag{93}\\
& =(x+2)(x+1) h(n-2)-(x+2)(h(n-2)+(x+2) h(n-4)) \\
& =(x+2) x h(n-2)-(x+2)^{2} h(n-4) .
\end{align*}
$$

Given the initial values $h(3)=(x+2)(x-1)$ and $h(5)=(x+2)^{2}\left(x^{2}-x-1\right)$, it follows that $h(2 k+1)=(x+2)^{k} g_{k}(x)$. Given that $h(2)=x$ and $h(4)=(x+2)\left(x^{2}-2\right)$, it follows that $h(2 k)=(x+2)^{k-1} b_{k}(x)$.

Combining this with (90) we get
Theorem 5.1. For $r \geq 2$, let $k=\left\lfloor\frac{r}{2}\right\rfloor$ and $l=\left\lfloor\frac{r-1}{2}\right\rfloor$, and define the functions

$$
h_{r}(x)= \begin{cases}g_{k}(x) & \text { if } r=2 k+1 \tag{94}\\ b_{k}(x) & \text { if } r=2 k\end{cases}
$$

and $q_{r}(x)=(x+2)^{l} h_{r}(x)$. For $N \geq k+l$, by Theorem 4.2,

$$
\begin{equation*}
d_{r}(N)=\operatorname{det}\left(\sum_{j \geq 0}\binom{r-2}{j} \gamma_{N}^{(j+1)}\right)=\operatorname{det}\left(\left.q_{r}(\gamma)\right|_{N}\right)=\operatorname{det}\left(\frac{1}{2}\left(q_{r}\left(\alpha_{N}\right)+q_{r}\left(\beta_{N}\right)\right)\right) . \tag{95}
\end{equation*}
$$

6 Structure of the matrices

In this section we determine the structure of the matrices $\left(\beta_{N}+2\right)^{-1}, g_{k}\left(\alpha_{N}\right)$, $g_{k}\left(\beta_{N}\right), b_{k}\left(\alpha_{N}\right)$, and $b_{k}\left(\beta_{N}\right)$, as well as the determinants of $\left.g_{k}(\gamma)\right|_{N}$ and $\left.b_{k}(\gamma)\right|_{N}$.

To determine $p\left(\alpha_{N}\right)$ and $p\left(\beta_{N}\right)$ for a polynomial p of degree less than N, we begin by writing $p(\gamma)$ as a sum of $\gamma^{(k)}$ matrices using the multiplicative formula of Theorem 3.4. We then apply Prop 6.2 to show that $p\left(\alpha_{N}\right)$ and $p\left(\beta_{N}\right)$ are the same as $\left.p(\gamma)\right|_{N}$ on and above the anti-diagonal. The structure of $p\left(\alpha_{N}\right)$ follows from the symmetry of α_{N} across its anti-diagonal. The structure of $p\left(\beta_{N}\right)$ can be computed from $p\left(\alpha_{N}\right)$ and $\left.p(\gamma)\right|_{N}$ with Theorem 4.2,

Proposition 6.1. The determinant of a block matrix

$$
\left(\begin{array}{ll}
A & B \tag{96}\\
C & D
\end{array}\right)
$$

where A and D are square and D is invertible is $\operatorname{det}(D) \operatorname{det}\left(A-B D^{-1} C\right)$.
Proof. Note that

$$
\left(\begin{array}{ll}
A & B \tag{97}\\
C & D
\end{array}\right)\left(\begin{array}{cc}
I & 0 \\
-D^{-1} C & I
\end{array}\right)=\left(\begin{array}{cc}
A-B D^{-1} C & B \\
0 & D
\end{array}\right),
$$

and that the determinant of a block-triangular matrix is the product of the determinants of its diagonal blocks.

Proposition 6.2. Let T be a N-by- N tridiagonal matrix and let p be a polynomial of degree d. Let v be the $N-b y-1$ column vector with a 1 in its last entry and 0 elsewhere. Then the (i, j) entries of $p(T)$ and $p\left(T+v v^{\top}\right)$ agree when $i+j \leq 2(N-1)-d$.

Proof. It suffices to prove this for $p(x)=x^{d}$. Call a N-by- N matrix " k-small" iff its entries (i, j) with $i+j \leq 2(N-1)-k$ are all 0 . For instance, $v v^{\top}$ is 1 -small.

Suppose a matrix M is k-small. For $i+j \leq 2(N-1)-k-1$, the (i, j) entry of $T M$ is $\sum_{l=0}^{N-1} T_{i l} M_{l j}=T_{i, i-1} M_{i-1, j}+T_{i, i} M_{i, j}+T_{i, i+1} M_{i+1, j}$. Since M is k-small, its $(i-1, j),(i, j)$, and $(i+1, j)$ entries are 0 , which implies that $T M$ is $(k+1)$-small. Similarly, $M T, v v^{\top} M$, and $M v v^{\top}$ are ($k+1$)-small.

Consider $\left(T+v v^{\top}\right)^{d}-T^{d}$. Expanding the binomial product yields $2^{d}-1$ terms, all of which are products of $d T$'s and $v v^{\top}$'s and contain at least one $v v^{\top}$. It follows from the above that each of these terms is d-small, so $p\left(T+v v^{\top}\right)-p(T)$ is d-small.

Lemma 6.3. The inverse of $\left(\beta_{N}+2\right)$ is $\left(\frac{1}{2}(-1)^{i+j}(2 \min \{i, j\}+1)\right)_{i, j=0}^{N-1}$. The determinant of $\left(\beta_{N}+2\right)$ is 2 . For example,

$$
\left(\beta_{5}+2\right)^{-1}=\frac{1}{2}\left(\begin{array}{rrrrr}
1 & -1 & 1 & -1 & 1 \tag{98}\\
-1 & 3 & -3 & 3 & -3 \\
1 & -3 & 5 & -5 & 5 \\
-1 & 3 & -5 & 7 & -7 \\
1 & -3 & 5 & -7 & 9
\end{array}\right)
$$

Proof. For $i \neq 0, N-1$ the row i of $\left(\beta_{N}+2\right)$ is $\left(2 \delta_{i l}+\delta_{i, l-1}+\delta_{i, l+1}\right)_{l=0}^{N-1}$. The product of this with column j of the claimed inverse is

$$
\begin{align*}
& \sum_{l=0}^{N-1}\left(2 \delta_{i l}+\delta_{i, l-1}+\delta_{i, l+1}\right) \frac{1}{2}(-1)^{l+j}(2 \min \{l, j\}+1) \\
& =\frac{1}{2}(-1)^{i+j}(4 \min \{i, j\}+2-2 \min \{i+1, j\}-1-2 \min \{i-1, j\}-1) \tag{99}\\
& =(-1)^{i+j}(2 \min \{i, j\}-\min \{i+1, j\}-\min \{i-1, j\})
\end{align*}
$$

This is 0 if $i+1 \leq j$ or $i-1 \geq j$ and is 1 if $i=j$.
The first row of $\left(\beta_{N}+2\right)$ is $(3,1,0, \ldots, 0)$, and the last row is $(0, \ldots, 0,1,1)$. Column $j \neq 0, N-1$ of the claimed inverse begins and ends as

$$
\begin{equation*}
\frac{1}{2}\left((-1)^{j},(-1)^{j+1} 3, \ldots,(-1)^{j+N-2}(2 j+1),(-1)^{j+N-1}(2 j+1)\right) \tag{100}
\end{equation*}
$$

so it kills the first and last rows of $\left(\beta_{N}+2\right)$. Column 0 of the claimed inverse begins and ends as $\frac{1}{2}\left(1,-1, \ldots,(-1)^{N-2},(-1)^{N-1}\right)$ while column $N-1$ begins and ends as $\frac{1}{2}\left((-1)^{N-1},(-1)^{N} 3, \ldots,-(2 N-3), 2 N-1\right)$. It's easy to verify that these columns have the correct products with rows of $\left(\beta_{N}+2\right)$.

The determinant $\operatorname{det}(\beta+2)$ is $(-1)^{N} b_{N}(-2)$, which can be computed with recurrence in Section 5 to be 2 .

Lemma 6.4. For $k<N$, the (i, j) entry of $g_{k}\left(\alpha_{N}\right)$ is $(-1)^{i+j+k}$ if $k \leq i+j \leq$ $2 N-k-2$ and $|i-j| \leq k$ and is 0 otherwise. The (i, j) entry of $g_{k}\left(\beta_{N}\right)$ is $(-1)^{i+j+k}$ if $k \leq i+j \leq 2 N-k-2$ and $|i-j| \leq k$, is $2(-1)^{i+j+k}$ if $2 N-k-1 \leq i+j$, and is 0 otherwise. For example,

$$
g_{2}\left(\beta_{6}\right)=\left(\begin{array}{rrrrrr}
0 & 0 & 1 & 0 & 0 & 0 \tag{101}\\
0 & 1 & -1 & 1 & 0 & 0 \\
1 & -1 & 1 & -1 & 1 & 0 \\
0 & 1 & -1 & 1 & -1 & 1 \\
0 & 0 & 1 & -1 & 1 & -2 \\
0 & 0 & 0 & 1 & -2 & 2
\end{array}\right)
$$

Proof. Recall that $g_{j}(\gamma)=\gamma^{(j)}-\gamma^{(j-1)}+\cdots \pm \gamma^{(1)} \mp 1$, by (84). Therefore $\frac{1}{2}\left(g_{k}\left(\alpha_{N}\right)+\right.$ $\left.g_{k}\left(\beta_{N}\right)\right)=\left.g_{k}(\gamma)\right|_{N}=\gamma_{N}^{(k)}-\gamma_{N}^{(k-1)}+\cdots \pm \gamma_{N}^{(1)} \mp 1$. From the definition of the $\gamma_{N}^{(j)}$, the (i, j) entry of $\left.g_{k}(\gamma)\right|_{N}$ is $(-1)^{i+j+k}$ if $k \leq i+j$ and $|i-j| \leq k$ and is 0 otherwise.

Note that polynomials in α_{N} are symmetric about their anti-diagonal. Since the degree of g_{k} is $k<N$, Prop 6.2 says that $g_{k}\left(\alpha_{N}\right)$ agrees with $\left.g_{k}(\gamma)\right|_{N}$ on and above its anti-diagonal. Thus, the (i, j) entry of $g_{k}\left(\alpha_{N}\right)$ is $(-1)^{i+j+k}$ if $k \leq$
$i+j \leq 2 N-k-2$ and $|i-j| \leq k$ and is 0 otherwise. Similarly, the (i, j) entry of $g_{k}\left(\beta_{N}\right)=\left.2 g_{k}(\gamma)\right|_{N}-g_{k}\left(\alpha_{N}\right)$ is $(-1)^{i+j+k}$ if $k \leq i+j \leq 2 N-k-2$ and $|i-j| \leq k$, $2(-1)^{i+j+k}$ if $2 N-k-1 \leq i+j$, and 0 otherwise.

Lemma 6.5.

$$
\left.\operatorname{det} g_{k}(\gamma)\right|_{N}= \begin{cases}1 & \text { if } N=(2 k+1) n \tag{102}\\ \left.(-1)^{(k+1} 2\right) & \text { if } N=(2 k+1) n+k+1 \\ 0 & \text { otherwise }\end{cases}
$$

Proof. When $N=0$ the determinant is vacuously 1. When $0<N<k+1$, the first column is 0 . When $N=k+1$ the matrix is 0 above its antidiagonal and 1 on its antidiagonal, so its determinant is $(-1)\binom{k+1}{2}$. When $k+1<N<2 k+1$, columns $k-1$ and $k+1$ are equal. Thus the claim holds for all $N<2 k+1$. We'll show that for $N \geq 2 k+1$, $\left.\operatorname{det} g_{k}(\gamma)\right|_{N}=\left.\operatorname{det} g_{k}(\gamma)\right|_{N-2 k-1}$.

Fix $N \geq 2 k+1$ and let $M=\left.g_{k}(\gamma)\right|_{N}$. Subdivide M into a block matrix consisting of the leading principal order- $N-1$ submatrix M_{11}, the bottom-right entry M_{22}, and the remainders of the last column and row M_{12} and M_{21}. The determinant of M is $\operatorname{det}\left(M_{22}\right) \operatorname{det}\left(M^{\prime}\right)$, where M^{\prime} is the $N-1$-by- $N-1$ matrix $M_{11}-M_{12} M_{22}^{-1} M_{21}$ by Proposition 6.1.

We will perform cofactor expansion in the bottom right of M^{\prime}. Since $M_{22}=$ $(-1)^{k}$, the bottom right k-by- k submatrix of M^{\prime} is the zero matrix. As a result, the only entry in the bottom row of M^{\prime} is the 1 at $(N-2, N-k-2)$. After deleting its row and column, the only entry in the bottom row of M^{\prime} is the 1 at $(N-3, N-k-3)$. This pattern continues up to the 1 at ($N-k-1, N-2 k-1$). Since M^{\prime} is symmetric, a similar sequence of lone 1's can be removed in the last k columns.

After the last $2 k$ rows and columns have been removed, M^{\prime} has been reduced to $\left.g_{k}(\gamma)\right|_{N-2 k-1}$. The $2 k$ removed 1's contribute a factor of $(-1)^{k}$ to the determinant, which comes from the parity of the permutation $(0 k)(1 k+1) \cdots(k-12 k)$. This cancels with the sign of M_{22}.

Lemma 6.6. For $k<N$, the (i, j) entry of $b_{k}\left(\alpha_{N}\right)$ is 1 if $|i-j|=k, i+j=k-1$, or $i+j=2(N-1)-(k-1)$ and is 0 otherwise. The (i, j) entry of $b_{k}\left(\beta_{N}\right)$ is 1 if $|i-j|=k$ or $i+j=k-1$, is -1 if $i+j=2(N-1)-(k-1)$, and is 0 otherwise. In particular $b_{k}(\gamma)=\gamma^{(k)}$. Moreover,

$$
\left.\operatorname{det} b_{k}(\gamma)\right|_{N}= \begin{cases}(-1)^{k n} & \text { if } N=2 k n \tag{103}\\ (-1)^{k n+\binom{k}{2}} & \text { if } N=2 k n+k \\ 0 & \text { otherwise }\end{cases}
$$

Proof. The first set of claims follow from the Lemma 6.4 and the fact that $b_{k}(x)=$ $g_{k}(x)+g_{k-1}(x)$. The determinant of $\gamma^{(k)}$ was calculated in Lemma 3.3.

7 Calculation of the determinant

In this section we prove the seven formulas mentioned in the introduction. Recall Theorem 5.1 and its notation.

Let $\mu_{i}=\frac{1}{2}\left(\left(\alpha_{N}+2\right)^{i} h_{r}\left(\alpha_{N}\right)+\left(\beta_{N}+2\right)^{i} h_{r}\left(\beta_{N}\right)\right)$ for $0 \leq i \leq l$. From here on we'll suppress the subscripts on α_{N} and β_{N}. By Theorem 5.1, we're interested in calculating $d_{r}(N)=\operatorname{det} \mu_{l}$. Note that

$$
\begin{equation*}
\mu_{i+1}=\mu_{i}(\beta+2)+(\alpha+2)^{i} h_{r}(\alpha) v v^{\top} . \tag{104}
\end{equation*}
$$

The results of the previous section give us control over μ_{0}. We will induct on the above equation to screw the smoothing operators $\alpha+2$ and $\beta+2$ into place, using the matrix determinant lemma to keep track of the determinants. In the seven cases proven here, the determinant or adjugate of μ_{i} is multiplied by a constant factor at each step.

Proposition 7.1 (Matrix determinant lemma). If A is an n-by-n matrix and u and v are n-by- 1 column vectors, then

$$
\begin{equation*}
\operatorname{det}\left(A+u v^{\top}\right)=\operatorname{det}(A)+v^{\top} \operatorname{adj}(A) u \tag{105}
\end{equation*}
$$

Proof. This is a polynomial identity in the entries of A, u, and v, so it suffices to prove it for the dense subset where A is invertible. Consider

$$
\left(\begin{array}{cc}
I & 0 \tag{106}\\
v^{\top} & 1
\end{array}\right)\left(\begin{array}{cc}
I+A^{-1} u v^{\top} & u \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
I & 0 \\
-v^{\top} & 1
\end{array}\right)=\left(\begin{array}{cc}
I & u \\
0 & 1+v^{\top} A^{-1} u
\end{array}\right)
$$

which shows that $1 \cdot \operatorname{det}\left(I+A^{-1} u v^{\top}\right) \cdot 1=\operatorname{det}\left(1+v^{\top} A^{-1} u\right)$. Multiplying through by $\operatorname{det} A$ yields $\operatorname{det}\left(A+u v^{\top}\right)=\operatorname{det}(A)\left(1+v^{\top} A^{-1} u\right)=\operatorname{det}(A)+v^{\top} \operatorname{adj}(A) u$.

7.1 The case that μ_{0} is invertible

Lemma 7.2. Suppose there is an N-dimensional column vector w such that $\mu_{0} w=$ $h_{r}\left(\alpha_{N}\right) v$ and that the last $l-1$ entries of $h_{r}\left(\beta_{N}\right) w$ are 0 . Then

$$
\begin{equation*}
\operatorname{det}\left(\mu_{l}\right)=\operatorname{det}\left(\mu_{0}\right) 2^{l}\left(1+v^{\top}\left(\beta_{N}+2\right)^{-1} w\right)^{l} \tag{107}
\end{equation*}
$$

Proof. By Prop 6.2, $(\alpha+2)^{i}$ and $(\beta+2)^{i}$ differ only in the last i columns. It follows from the second hypothesis that $(\beta+2)^{i} h_{r}(\beta) w=(\alpha+2)^{i} h_{r}(\beta) w$ for $0 \leq i<l$. Thus

$$
\begin{equation*}
\mu_{i} w=(\alpha+2)^{i} h_{r}(\alpha) v \tag{108}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{det}\left(\mu_{i}\right) w=\operatorname{adj}\left(\mu_{i}\right)(\alpha+2)^{i} h_{r}(\alpha) v \tag{109}
\end{equation*}
$$

for $0 \leq i<l$. By (104) and the matrix determinant lemma,

$$
\begin{align*}
\operatorname{det}\left(\mu_{i+1}\right) & =\operatorname{det}(\beta+2)\left(\operatorname{det}\left(\mu_{i}\right)+v^{\top}(\beta+2)^{-1} \operatorname{adj}\left(\mu_{i}\right)(\alpha+2)^{i} h_{r}(\alpha) v\right) \tag{110}\\
& =\operatorname{det}(\beta+2)\left(\operatorname{det}\left(\mu_{i}\right)+v^{\top}(\beta+2)^{-1} \operatorname{det}\left(\mu_{i}\right) w\right) .
\end{align*}
$$

Hence

$$
\begin{equation*}
\operatorname{det}\left(\mu_{i+1}\right)=2 \operatorname{det}\left(\mu_{i}\right)\left(1+v^{\top}\left(\beta_{N}+2\right)^{-1} w\right) . \tag{111}
\end{equation*}
$$

Theorem 7.3.

$$
\begin{align*}
& d_{2 k+1}((2 k+1) n)=(2 n+1)^{k} \tag{112}\\
& d_{2 k+1}((2 k+1) n+k+1)=(-1)^{\left.()_{2}^{k+1}\right)} 4^{k}(n+1)^{k} \tag{113}\\
& d_{2 k}(2 k n)=(-1)^{k n} \tag{114}\\
& d_{2 k}(2 k n+k)=(-1)^{k n+\binom{k}{2}} 4^{k-1}(n+1)^{k-1} \tag{115}
\end{align*}
$$

Proof. Given w, it is straightforward to verify the hypotheses and evaluate the final expression of Lemma 7.2 with the lemmas of Section 6. For the first formula, take w to be the $(2 k+1) n$-dimensional column vector

$$
\begin{equation*}
w_{1}=(-1)^{n-1}\left(\sum_{m=0}^{n-1}(-1)^{m} e_{(2 k+1) m}-\sum_{m=0}^{n-1}(-1)^{m} e_{(2 k+1) m+2 k}\right)+e_{N-1} \tag{116}
\end{equation*}
$$

where $\left\{e_{i}\right\}_{i=0}^{N-1}$ is the standard basis. Then $g_{k}(\alpha) w_{1}=g_{k}(\beta) w_{1}=e_{N-k-1}$.
For the second formula, take w to be the $(2 k+1) n+k+1$-dimensional column vector

$$
\begin{equation*}
w_{2}=(-1)^{n}\left(\sum_{m=0}^{n}(-1)^{m} e_{(2 k+1) m+k-1}-\sum_{m=0}^{n-1}(-1)^{m} e_{(2 k+1) m+k+1}\right)+e_{N-1}, \tag{117}
\end{equation*}
$$

which gives $g_{k}(\alpha) w_{2}=e_{N-k-1}+e_{N-k}$ and $g_{k}(\beta) w_{2}=e_{N-k-1}-e_{N-k}$.
For the third formula, take w to be the $2 k n$-dimensional column vector

$$
\begin{equation*}
w_{3}=(-1)^{n-1}\left(\sum_{m=0}^{n-1}(-1)^{m} e_{2 k m}-\sum_{m=0}^{n-1}(-1)^{m} e_{2 k m+2 k-1}\right)+e_{N-1}, \tag{118}
\end{equation*}
$$

which gives $b_{k}(\alpha) w_{3}=b_{k}(\beta) w_{3}=e_{N-k-1}+e_{N-k}$.
For the fourth formula, take w to be the $2 k n+k$-dimensional column vector

$$
\begin{equation*}
w_{4}=(-1)^{n}\left(\sum_{m=0}^{n}(-1)^{m} e_{2 k m+k-1}-\sum_{m=0}^{n-1}(-1)^{m} e_{2 k m+k+1}\right)+e_{N-1}, \tag{119}
\end{equation*}
$$

which gives $b_{k}(\alpha) w_{4}=e_{N-k-1}+3 e_{N-k}$ and $b_{k}(\beta) w_{4}=e_{N-k-1}-e_{N-k}$.

7.2 The case that μ_{0} is singular

We will make use of the following fact about the adjugate matrix.
Proposition 7.4. The rank of the adjugate $\operatorname{adj}(M)$ of an n-by-n matrix M satisfies

$$
\operatorname{rkadj}(M)= \begin{cases}n & \text { if } \operatorname{rk} M=n \tag{120}\\ 1 & \text { if } \operatorname{rk} M=n-1 \\ 0 & \text { otherwise }\end{cases}
$$

Proof. Recall that $\operatorname{adj}(M) \cdot M=\operatorname{det}(M) I$. If $\operatorname{rk} M=n$ then M is invertible with inverse $\frac{1}{\operatorname{det}(M)} \operatorname{adj}(M)$, which also has rank n.

If $\operatorname{rk} M=n-1$, then $\operatorname{det}(M)=0$, in which case $\operatorname{adj}(M)$ must send all vectors into the kernel of M, which has rank 1 . In this case M also has a nonzero order-n-1 minor, $\operatorname{so} \operatorname{adj}(M)$ has rank 1 .

If $\operatorname{rk} M \leq n-2$, then all order- $n-1$ minors of M are zero, $\operatorname{so} \operatorname{adj}(M)=0$.
Lemma 7.5. Suppose there is a nonzero N-dimensional column vector w such that $\operatorname{det}\left(\mu_{0}\right)=0, \operatorname{det}\left(\left.\mu_{0}\right|_{N-1}\right) \neq 0, \mu_{0} w=0, v^{\top} w=1, v^{\top}(\beta+2)^{-1} w \neq 0$, and entries $N-k-l$ through $N-3$ of w are 0 . Then

$$
\begin{equation*}
\operatorname{det}\left(\mu_{l}\right)=\operatorname{det}\left(\left.\mu_{0}\right|_{N-1}\right)\left(2 v^{\top}\left(\beta_{N}+2\right)^{-1} w\right)^{l}\left(w^{\top}(\alpha+2)^{l-1} h_{r}(\alpha) v\right) . \tag{121}
\end{equation*}
$$

Proof. Let $c=\operatorname{det}\left(\left.\mu_{0}\right|_{N-1}\right)$. We will show by induction that

$$
\begin{equation*}
\operatorname{adj}\left(\mu_{i}\right)=c\left(2 v^{\top}\left(\beta_{N}+2\right)^{-1} w\right)^{i} w w^{\top}, \tag{122}
\end{equation*}
$$

for $0 \leq i<l$. For the base case of $i=0$, note that the first two hypotheses imply that μ_{0} has rank $N-1$. Since w generates the kernel and μ_{0} is symmetric, Lemma 7.4 implies that $\operatorname{adj}\left(\mu_{0}\right)$ is a constant d times $w w^{\top}$. In fact $c=v^{\top} \operatorname{adj}\left(\mu_{0}\right) v=$ $d v^{\top} w w^{\top} v=d$.

Suppose the claim holds for i. Since $\alpha+2$ is tridiagonal, the last hypothesis combined with Lemmas 6.4 and 6.6 imply that $w^{\top}(\alpha+2)^{i} h_{r}(\alpha) v=0$. By (104) and the matrix determinant lemma,

$$
\begin{align*}
\operatorname{det}\left(\mu_{i+1}\right) & =\operatorname{det}(\beta+2)\left(\operatorname{det}\left(\mu_{i}\right)+v^{\top}(\beta+2)^{-1} \operatorname{adj}\left(\mu_{i}\right)(\alpha+2)^{i} h_{r}(\alpha) v\right) \tag{123}\\
& =\operatorname{det}(\beta+2)\left(0+c\left(2 v^{\top}\left(\beta_{N}+2\right)^{-1} w\right)^{i} v^{\top}(\beta+2)^{-1} w w^{\top}(\alpha+2)^{i} h_{r}(\alpha) v\right) \\
& =0
\end{align*}
$$

so μ_{i+1} has rank at most $n-1$. Since $(\alpha+2)^{i} h_{r}(\alpha) v v^{\top}$ doesn't affect the bottomright cofactor,

$$
\begin{align*}
v^{\top} \operatorname{adj}\left(\mu_{i+1}\right) v & =v^{\top} \operatorname{adj}\left(\mu_{i}(\beta+2)+(\alpha+2)^{i} h_{r}(\alpha) v v^{\top}\right) v \\
& =v^{\top} \operatorname{adj}\left(\mu_{i}(\beta+2)\right) v \tag{124}\\
& =c \operatorname{det}(\beta+2) v^{\top}(\beta+2)^{-1}\left(2 v^{\top}\left(\beta_{N}+2\right)^{-1} w\right)^{i} w w^{\top} v \\
& =c\left(2 v^{\top}\left(\beta_{N}+2\right)^{-1} w\right)^{i+1} .
\end{align*}
$$

This is nonzero by assumption, so $\operatorname{adj}\left(\mu_{i+1}\right)$ is nonzero. By Prop 7.4, it is rank 1. The matrix μ_{i+1} is symmetric and w lies in its kernel:

$$
\begin{equation*}
w^{\top} \mu_{i+1}=w^{\top} \mu_{i}(\beta+2)+w^{\top}(\alpha+2)^{i} h_{r}(\alpha) v v^{\top}=0+0, \tag{125}
\end{equation*}
$$

so it is of the form $\operatorname{adj}\left(\mu_{i+1}\right)=c\left(2 v^{\top}\left(\beta_{N}+2\right)^{-1} w\right)^{i+1} w w^{\top}$. This completes the induction.

The final μ_{l} has determinant

$$
\begin{align*}
\operatorname{det}\left(\mu_{l}\right) & =\operatorname{det}(\beta+2)\left(\operatorname{det}\left(\mu_{l-1}\right)+v^{\top}(\beta+2)^{-1} \operatorname{adj}\left(\mu_{l-1}\right)(\alpha+2)^{l-1} h_{r}(\alpha) v\right) \\
& =2\left(0+2^{l-1} c\left(v^{\top}\left(\beta_{N}+2\right)^{-1} w\right)^{l} w^{\top}(\alpha+2)^{l-1} h_{r}(\alpha) v\right) \tag{126}\\
& =c\left(2 v^{\top}\left(\beta_{N}+2\right)^{-1} w\right)^{l}\left(w^{\top}(\alpha+2)^{l-1} h_{r}(\alpha) v\right) .
\end{align*}
$$

Theorem 7.6.

$$
\begin{align*}
& d_{2 k+1}((2 k+1) n+1)=(2 n+1)^{k} \tag{127}\\
& d_{2 k}(2 k n+1)=(-1)^{k n} \tag{128}\\
& d_{2 k}(2 k n+k+1)=-(-1)^{k n+\binom{k}{2} 4^{k-1}(n+1)^{k-1}} \tag{129}
\end{align*}
$$

Proof. Given w, it is straightforward to verify the hypotheses and evaluate the final expression of Lemma 7.5 with the lemmas of Section 6.

For the first formula, take w to be

$$
\begin{equation*}
w_{5}=(-1)^{n}\left(\sum_{m=0}^{n}(-1)^{m} e_{(2 k+1) m}-\sum_{m=0}^{n-1}(-1)^{m} e_{(2 k+1) m+2 k}\right), \tag{130}
\end{equation*}
$$

where $\left\{e_{i}\right\}_{i=0}^{N-1}$ is the standard basis.
For the second formula, w to be

$$
\begin{equation*}
w_{6}=(-1)^{n}\left(\sum_{m=0}^{n}(-1)^{m} e_{2 k m}-\sum_{m=0}^{n-1}(-1)^{m} e_{2 k m+2 k-1}\right) . \tag{131}
\end{equation*}
$$

For the third formula, use

$$
\begin{equation*}
w_{7}=(-1)^{n-1}\left(\sum_{m=0}^{n}(-1)^{m} e_{2 k m+k-1}-\sum_{m=0}^{n}(-1)^{m} e_{2 k m+k}\right) . \tag{132}
\end{equation*}
$$

References

[1] J. Cigler. Catalan numbers, Hankel determinants and Fibonacci polynomials. January 2018. arXiv:1801.05608.
[2] J. Cigler and C. Krattenthaler. Some determinants of path generating functions. Advances in Applied Mathematics, 46(1):144-174, 2011.
[3] Ömer Eğecioğlu, Timothy Redmond, and Charles Ryavec. A multilinear operator for almost product evaluation of Hankel determinants. Journal of Combinatorial Theory, Series A, 117(1):77-103, 2010.

[^0]: *Email: johann.cigler@univie.ac.at
 ${ }^{\dagger}$ Email: mgtyson66@gmail.com

