
NOTES ON THE CONFORMAL METHOD

JAMES D.E. GRANT

Abstract. These notes are an introduction to the conformal method, which is a technique for

producing solutions to the constraint equations that arise when one wishes to solve the vacuum

Einstein equations. They are based on Section 1.7 of [2] and, to a lesser extent, on [1, 4, 5],
where more details may be found.

1. The constraints

Let pM,gq be a Lorentzian manifold of dimension pn � 1q. We assume, for simplicity, that g
satisfies the vacuum Einstein equations Ricg � 0. (The methods we discuss can be developed
more generally.) If Σ is a space-like hypersurface in M with first fundamental form (or induced
metric) h and second fundamental form (or extrinsic curvature) k, then the 00 and 0i components
of the vacuum Einstein equations tell us that these tensor fields must satisfy the equations

sh � |k|2h � ptrkq
2
, (1.1a)

∇ik
i
j � ∇j ptrkq (1.1b)

on Σ. These equations are constraints that ph,kq must satisfy on Σ. In particular, given a
Riemannian manifold pΣ,hq and a symmetric p0, 2q tensor field on Σ, we would like to solve the
vacuum Einstein equations to construct a Lorentzian pn� 1q manifold pM,gq such that Σ may be
viewed as a space-like hypersurface in M with h and k being the first and second fundamental
forms of Σ induced from the embedding in M . Since (1.1) follow from the imposition of the
vacuum Einstein condition on g, it follows that these constraints being satisfied on Σ is a minimal
condition necessary for pΣ,h,kq to arise from such an pM,gq. If we wish to study the initial value
formulation of the vacuum Einstein equations, it is therefore necessary to study methods of solving
the constraint equations.

1.1. The conformal method. The best-known general technique for producing solutions of the
constraint equations is the conformal method. Let pM,gq be a Riemannian manifold of dimension
n ¥ 3 and k a symmetric p0, 2q tensor field on M .1 We assume that g and k satisfy the equations

sg � |k|2g � ptrkq
2
, (1.2a)

∇ik
i
j � ∇j ptrkq . (1.2b)

Here sg denotes the scalar curvature of the metric g and ∇ denotes the Levi-Civita connection.
Given a smooth, non-vanishing function ϕ on M , we define the conformally related metric pg by

g � ϕ
4

n�2 pg.
Lemma 1.1. The Christoffel symbols of the metric pg are related to those of g by

pΓi
jk � Γi

jk � �
2

pn� 2qϕ

�
ϕjδ

i
k � ϕkδ

i
j � gilgjkϕl

�
. (1.3)
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Proof. In local coordinates, we have gij � ϕ
4

n�2 pgij . Taking inverses, we also have gij � ϕ�
4

n�2 pgij .
We then have

pΓi
jk �

1

2
pgil rBjpgkl � Bkpgjl � Blpgjks

� Γi
jk �

1

2
ϕ

4
n�2 gil

��
Bjϕ

� 4
n�2

	
gkl �

�
Bkϕ

� 4
n�2

	
gjl �

�
Blϕ

� 4
n�2

	
gjk

�
.

Simplifying gives (1.3). �

An additional calculation, using this result, gives the following result, the proof of which is left
as an exercise.

Lemma 1.2. The scalar curvature of pg is related to that of g by the relation

sgϕ
n�2
n�2 �

�
�a∆

pg � s
pg

�
ϕ, (1.4)

where a :� 4pn�1q
n�2 and ∆

pg denotes the Laplacian for the metric pg.

The final preliminary result that we will require is the following.

Lemma 1.3. Let Lij be a symmetric, trace-free (i.e. gijL
ij � 0) tensor field on M . Let

pLij :� ϕ
2pn�2q
n�2 Lij .

(Note that pL is still trace-free with respect to g and pg.) Then

p∇i
pLij � ϕ

2pn�2q
n�2 ∇iL

ij , (1.5)

where p∇ denotes the Levi-Civita covariant derivative corresponding to pg.

Proof.

p∇i
pLij � ∇i

pLij �
�pΓi

ik � Γi
ik

	 pLkj �
�pΓj

ik � Γj
ik

	 pLik

� ∇i
pLij �

2

pn� 2qϕ

�
ϕiδ

i
k � ϕkδ

i
i � gilgikϕl

�
ϕ

2pn�2q
n�2 Lkj

�
2

pn� 2qϕ

�
ϕiδ

j
k � ϕkδ

j
i � gjlgikϕl

�
ϕ

2pn�2q
n�2 Lik

� ∇i
pLij �

2pn� 2q

pn� 2qϕ
ϕkϕ

2pn�2q
n�2 Lkj

� ∇i

�
ϕ

2pn�2q
n�2 Lij

	
�

2pn� 2q

pn� 2q
ϕiϕ

2pn�2q
n�2 �1Lij

� ϕ
2pn�2q
n�2 ∇iL

ij . �

We decompose the tensor field k into a trace part τ :� trk and a trace-free part

Lij :� kij �
τ

n
gij .

We define the conformally transformed metric pg and pLij as above.

The main point of these calculations is the following.

Theorem 1.4. The fields pg,kq satisfy the constraint equations (1.2) if and only if the fields

ppg, pL, τ, ϕq satisfy the relations

p∇i
pLij �

n� 1

n
ϕ

2n
n�2 p∇jτ, (1.6a)

�
�a∆

pg � s
pg

�
ϕ � ϕ

2�3n
n�2 |pL|2

pg �
n� 1

n
τ2ϕ

n�2
n�2 . (1.6b)
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Proof. Using Lemma 1.3 and the second constraint equation in the form ∇ik
ij � ∇jτ , we have

p∇i
pLij � ϕ

2pn�2q
n�2 ∇iL

ij

� ϕ
2pn�2q
n�2 ∇i

�
kij �

τ

n
gij

�
� ϕ

2pn�2q
n�2

�
∇jτ �

1

n
∇jτ

�

�
n� 1

n
ϕ

2pn�2q
n�2 ∇jτ.

�
n� 1

n
ϕ

2n
n�2 p∇jτ.

Similarly, �
�a∆

pg � s
pg

�
ϕ � sgϕ

n�2
n�2

�
�
|k|2g � τ2

�
ϕ

n�2
n�2

�
�
gijgklpL

ik �
τ

n
gikqpLjl �

τ

n
gjlq � τ2

�
ϕ

n�2
n�2

�

�
ϕ�

4n
n�2 pgijpgklpLikpLjl �

1

n
τ2 � τ2

�
ϕ

n�2
n�2

� ϕ
2�3n
n�2 |pL|2

pg �
n� 1

n
τ2ϕ

n�2
n�2 . �

1.2. The constant mean curvature equations. In Theorem 1.4, the equations that we need
to solve have decoupled to some extent. This is most easily seen if we specialise to the case of a
constant mean curvature (CMC) foliation, where we fix the t coordinate of our Lorentzian metric
so that trk is constant on the leaves.2 In this case, τ is constant, so equations (1.6) above simplify
giving

p∇i
pLij � 0, (1.7a)�

�a∆
pg � s

pg

�
ϕ � ϕ

2�3n
n�2 |pL|2

pg �
n� 1

n
τ2ϕ

n�2
n�2 . (1.7b)

We view pg as being a given Riemannian metric on M and τ a given constant. We then attempt

to find a solution pLij of (1.6a). Given ppg, τ, pLijq, we attempt to find a solution ϕ of (1.6b). From
this data, we can then reconstruct pg,kq that satisfy the original constraint equations (1.2).3

There is a standard method for solving equation (1.7a). We define the linear differential operator
L that maps a vector field X P XpMq to the trace-free, symmetric p2, 0q tensor field

pLXq
ij

:� ∇iXj �∇jXi �
2

n
p∇ �Xq gij .

Remark 1.5. The kernel of the operator L consists of conformal Killing vector fields of the metric
g, i.e. vector fields with the property that the Lie derivative of the metric LXg is proportional
to the metric g. Such vector fields generate diffeomorphisms φ : M ÑM such that φ�g � λg for
some function λ.

Let Sij be an arbitrary symmetric, trace-free tensor field on M . We now let Lij � Sij�pLXq
ij

,
and wish to solve for a vector field X so that the constraint (1.7a) is satisfied. We therefore require
that X satisfy

divLX � �divS,

where the divergence of a p2, 0q tensor field is defined by pdivSq
j

:� ∇iS
ij . We will require some

properties of the differential operator L :� div �L : XpMq Ñ XpMq.

2Note that one of the limitations of the conformal method is that this is not always possible.
3For notational convenience, from now on we will drop the hats on all of the conformally transformed quantities.
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Assumption. In order to simplify some analytical issues (e.g. integration by parts formulae,
elliptic operator techniques, etc) we will assume, from now on, that M is compact without bound-
ary.

Proposition 1.6. L is (formally) self-adjoint with respect to the L2 inner product on vector fields.
More specifically, let X,Y P XpMq, then xX,YyL2 :�

³
M

gpX,Yq dµg. Then, for all compactly
supported, smooth vector fields X,Y, we have

xX, LYyL2 � xLX,YyL2 � �
1

2
xLX,LYyL2 (1.8)

Proof.

xX, LYyL2 �

»
M

Xi∇j

�
∇iY j �∇jY i �

2

n
p∇ �Yq gij

�

� �

»
M

∇jXi

�
∇iY j �∇jY i �

2

n
p∇ �Yq gij

�

� �
1

2

»
M

�
∇iXj �∇jXi �

2

n
p∇ �Xq gij

� �
∇iY j �∇jY i �

2

n
p∇ �Yq gij

�
(1.9)

� �

»
M

�
∇iXj �∇jXi �

2

n
p∇ �Xq gij

�
∇iY j

�

»
M

∇i

�
∇iXj �∇jXi �

2

n
p∇ �Xq gij

�
Y j

� xLX,YyL2 .

This gives the first part of (1.8), and (1.9) yields the second identity. �

Corollary 1.7. A vector field X satisfies LX � 0 if and only if it is a conformal Killing vector
field.

Proof. If LX � 0, then we deduce that

0 � xX, LXyL2 � �
1

2
xLX,LXyL2 � �

1

2

»
M

|LX|2g.

The right-hand-side is zero if and only if LX � 0, i.e. X is a conformal Killing vector field. �

Recall that an order m linear differential operator L �
°

l¤m ai1...al∇i1 . . .∇il that takes
sections of vector bundle E to sections of vector bundle F is elliptic if the principal symbol
appq :� ai1...ampi1 . . . pim , where p P T�M is an isomorphism for all p � 0.4

Proposition 1.8. The operator L : XpMq Ñ XpMq is elliptic.

Proof. Since L is self-adjoint, it suffices to show that σppq is injective for p � 0. In particular, if
p � 0 and σppqY � 0, then Y � 0. From the explicit form of L, we deduce that the symbol σppq
acting on Y P XpMq takes the form

pσppqYq
i
� pj

�
piY j � pjY i �

2

n
xp,Yygij

�
� |p|2Y i �

�
1 �

2

n



pixp,Yy. (1.10)

If σppqY � 0, then contracting this expression with pi implies that�
2 �

2

n



|p|2xp,Yy � 0.

Since n ¥ 3 and |p|2 � 0, it follows that we must have xp, Y y � 0. From (1.10), we deduce that
Y i � 0. Therefore, σppq is injective for p � 0. �

We now require the following result from the theory of elliptic partial differential equations.

4More precisely, we would like something like L : Hm�kpM,Eq Ñ HkpM,F q, but we shall not concern ourselves

with analytical subtleties.
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Theorem 1.9. Let L be an elliptic partial differential operator of order m on a compact manifold
M . Assume that the equations Lu � 0, L:v � 0 have no non-trivial solutions. Then L defines an
isomorphism L : : Hk�m Ñ Hk. In particular, given Z P Hk, the equation LX � Z has a unique
solution X P Hk�m.

Corollary 1.10. If M admits no non-trivial conformal Killing vector fields, then the equation
divLX � �divS has a unique solution for any given trace-free, symmetric tensor field S.

Proof. L is self-adjoint, and the kernel of L may be identified with the collection of conformal
Killing vector fields. Hence the kernel of L and its adjoint is trivial. An application of the
theorem then gives the result. �

The result also holds if M does admit a non-trivial conformal Killing vector fields. We may
identify the image of L with the orthogonal complement of the collection of conformal Killing
vector fields.5 We wish to solve LX � � divS. Therefore, if we can show that Z :� � divS is
orthogonal to all conformal Killing vector fields, then we deduce that Z P ImL and hence that
there exists an X with the properties that we require. We therefore calculate

xZ, Y y �

»
M

YiZ
i � �

»
M

Yi∇jS
ij �

»
M

p∇jYiqS
ij �

1

2

»
M

�
∇jYi �∇iYj �

2

n
gij∇ � Y



Sij

�
1

2
xLY, Sy,

where we have used the facts that Sij is symmetric and trace-free in the penultimate equality. It
follows that if LY � 0, i.e. Y is a conformal Killing vector field, then Z is orthogonal to Y , as
required.

We therefore have the following result.

Theorem 1.11. Given any trace-free, symmetric tensor field S, there exists a vector field X such

that divLX � �divS. The trace-free, symmetric tensor field Lij :� Sij � pLXq
ij

then satisfies
the constraint (1.7a).

As such, we may solve the first of the constraint equations (1.7a). Solving (1.7b) is more
involved, and well beyond our scope. We will simply state some results. The problem uses the
solution of the Yamabe problem [3] and, with this in mind, we define the Yamabe invariant

λg :� inf
fPC8pMq

f�0

³
M

�
a|∇f |2g � sgf

2
�
dµg�³

M
|f |

2n
n�2 dµg

	n�2
n

.

We restate (1.7b) (without hats) in the form

r�a∆g � sgsϕ � ϕ
2�3n
n�2 |L|2g �

n� 1

n
τ2ϕ

n�2
n�2 .

It is then known that this equation is solvable if and only if one of the following conditions holds:

(1) |L|g � 0 and τ � 0;
(2) λg ¡ 0, |L|g � 0 and τ � 0;
(3) λg � 0, |L|g � 0 and τ � 0;
(4) λg   0, |L|g � 0 and τ � 0;
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