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1. Bose-Einstein condensation

N-boson systems: described by a wave function

YN E LQ(R3N), symmetric w.r.t. permutations.

YN (z1, ... ,:L'N)|2 = probability density = |yl = 1

Dynamics governed by Schrodinger equation

N = Hyone = yg=e¢ Ny = gyl =1 W

Hp; is the Hamiltonian of the system:

N N
Hy =Y (—ij + Vext(iﬂj))-FZ V(x;—x;) actson L2R3Y).



Trivial example of condensate wave function:

N
Y (x) = H @(xj) for all x=(x1,...,2N) € R3N
j=1

Condensation for general ¢y € L2(R3V):

e Density Matrix: orthogonal projection onto ¥y,

YN = YN UNn] = v x) = YN (x) Yy (x).
e Marginal Densities: Define the k-particle marginal density
k , k
WJ(V)(Xk;; X)) = /dXN—k: YN Xk, XN ki Xy XN ) TW](V) =
Xp = (x1,...,25), XN_—k = (Tg+1,---,ZN)

k
In other words: 7% = Tryq1 4o N [ON)(¥N]



e One particle density:

Y =3 Nle) 851 ¢ € L2R3), 0<A <1, Y a=1
J J

Aj — Probability that a randomly chosen particle is in the
one-particle state ¢;.

e Definition: a family {¢n}yen exhibits BEC iff
lim inf maxspec 7](\,1) >0

N —o0
Interpretation: BEC exists if a macroscopic humber of par-

ticles is in the same one-particle state.

o Example: if ¢y (x) = [[!L; ¢(z;), then 4\ = [¢)(¢| and thus

max specv](vl) =1 forall N = (complete) BEC



Condensation of trapped Bose gases: N bosons in volume of
order one, range of interaction N1

N N
Hy = ) (—Aj + Vext(fﬂj)) + 3" N2V(N(z; — )

e Lieb-Seiringer-Yngvason (2000): the ground state energy is
given by

E N
lim Gs(N) = min Egp(y)
N—oo N eillell=1

with

gap(9) = [ da (|9e@)I? + Vext(@)]p(@)]? + 4raglo(x)|*)
ag = scattering length of V(x)

e Lieb-Seiringer (2002): complete condensation of ground state

1 o
7](\/) — |oGp) (PGPl dpgp = Minimizer of £gp



2. Main result

Scattering length of V < Ll(IR%3): defined by one-body equation

(—A + %V(m)) f(x) =0 with f(x) -1 as |z| — c©.

f(x) ~1— 40 < 8mag = /de(a:')f(a:)

||

Rescaled potential: we consider the Gross-Pitaevskii scaling

Vy(z) = N°V(Nz) = Vy has scattering length a = ag/N

The dynamics: is governed by

WO N = HNYn
with Hamiltonian

N N
HN = Z —A;Uj —|— Z VN(QU] — a:k)
j=1 j<k



Theorem [Erdos, S., Yau, 2008]:
Suppose V > 0, |V (z)| < C(1+ z2)~9/2, for some & > 5.

Assume that ¢ has finite energy per particle (¥, Hyvy) < CN
and that it exhibits complete BEC

YW = l@)gl  for some p € L2(R)

Denote by ¢y = e Nty the time evolution of 4. Then, for
every t € R,

1
W) = el as N — oo,

where ¢; is the solution to the time-dependent Gross-Pitaevskii
equation

i0ppr = — Dt + 8mag|er| >t
with @pr—0 = .

Remark: we have 7](\% — o) (0| ®F as N — oo, for any k> 1.



Application:

N N
HE*P = Zl (=2 + Vext(z)) + X V(i — )
j= 1<J

Lieb-Seiringer = 7](\,1) — |pgp){(P¢gp| as N — oo

Here ¢gp is the minimizer of the Gross-Pitaevskii functional

Eop(#) = [ du (IV¢l? + Vextl|? + 4maolel)

Corollary: Suppose the initial wave function ¥, is the ground
state vector of H]t\;ap. Then, for every t € R,

1
51— el as N — oo

where ¢; solves

i0pr = — Ay + 8Tag|et] with  pi=0 = ¢Gp-



Experiments on BEC: in 2001, Cornell-Ketterle-Wieman re-
ceived Nobel prize in physics for experiments which first proved
the existence of BEC for trapped Bose gas.

In the experiments gases are trapped in small volumes by strong
magnetic fields, and cooled down at very low temperatures.
Then one observes the dynamical evolution of the condensate
when the trap is removed.




3. General strategy of the proof

Evolution of marginal densities: Recall that the k-particle
marginal associated with ¢, is:

’YNt(Xerk) —/dXN k YN+ (Xpe, XN o3 Xppr XN k)

= /dXN_k wN,t(XkaxN—k)¢N,t(Xk>XN—k)

The family {y](\lfz}]k\le satisfies the BBGKY Hierarchy

k

107\ ) Z [ ija’)’(k)] + Y [VN(% ), 75
j=1 1<i<j<k :
k
+ (N =k) > Trptr [VN(CBj - $k+1),7](\lf;|_1)
j=1 :

where

(Trk+1 A<k+1)> (Xp; X)) = /d$k+1 AT e g 15 X, Thp1)



Three step strategy:

Compactness: the sequence {y(k)}k:1 IS compact w.r.t. an ap-
propriate weak topology.

Convergence to infinite hierarchy: every limit point {’yélg’)t}kzl
satisfies

k

k
kE+1
D= 3 [~Aeyrdel| + 8o 3 T |90 = o) 2del”

Observe that W( ) = lo1) (0| ®F solves infinite hierarchy iff

oo, T

i0ppr = — Ay + 8mag|pr] 2ot

Uniqueness: in certain Sobolev spaces, the infinite hierarchy has
a unique solution.

k)
t

= ) = e (@ed®  as N — oo



This strategy has been used to derive the Hartree equation

iOpr = —A + (V * [pr]2) gt

in mean field systems with Hamiltonian

e Spohn, 1980: bounded potential.

e Erdds - Yau, 2000: Coulomb potential (partial results by Bar-
dos - Golse - Mauser).

e Elgart - S., 2005: relativistic Coulomb potential.
e Adami - Bardos - Golse - Teta, 2006: one-dim Jd-function.

e Erd6s - S. - Yau, 2006: three-dim d-function.



4. Proof of the convergence

We start from BBGKY hierarchy

k
]:]_ 1<i<5<k
k
+ (N —k) Y Trgiq [VN(xj — fl?k+1),’vj(\¢;rl)]
=1

Assuming yj(\f% — yg?t as N — oo, we want to prove that

k
”&875700 Z [ Aa:],v( )] + 8mag Z Trp41 [5(% — $k+1),7§§t 1)]

: j—l

Problem: formally, we have, as N — oo,

(N — k) Vn(z; — 2pq1) = N3V(N(zj — 2311)) — bod(x; — 254 1)

with by = /dx V(z) # 8rag



Solution: correlation structure. For example, for k =1,

2 _ 5 |
’YJ(V,z(xlvi’?Z 1, 25) ~ fn(z1 — z2) v (z] — 93/2)7&0’)75(331,562, zy, xh)

1
with (—A —|— EVN> fN =0 — fN(ZB) = f(NaZ)
Then

2 2
Tro NVN(le — 5132)’}/](\],2 — 8mag Tro 5(%1 — xg)véo,)t

In fact
(2) W

Tro NV (21 — xg)’yN,t (x1;27)

2
= [ dao N3V (N (21 - 22)) 7{ (w1, 22; 24, 22)

2
~ /d.CUQ N3V(N(371 — 332)) f(N(xl — 372)) ’Vc(x;,)t(xl? T2, x/17 xQ)
2

~ 87Tao/da?2 5(:131 — 332) ’Y(go?t(xLxQ; xlla 372)

= 8mag (Trz 6(z1 — wz)vg,)t) (x1;27)



First attempt, for small potentials [Erdos, S., Yau, 2006]:
Derive the a-priori bound

YN i(x) |2

<C uniformly in N and ¢
fn(z1 —22)

/ dx |Va31 V$2

Proof obtained through an energy estimate

Y (x)

fn(z1 — z2)

<¢N7 H]2V ¢N> > CNQ/dX vxlvxg

Note that

[dx |V, Vayon (%) ~ N
—> cancelations are crucialll
[ dz V2 fy ()] ~ N

Therefore ¥ = fn(x1 —x2)d N (X) With a ¢4 regular in xzq, x>,



Second attempt [Erdos, S., Yau, 2008]: Define the wave
operator

L 1
W = lim et At with b = —A + ZV ().

t—00

W exists and is complete, that is

Wl =W*= lim e Al
t—o0
It satisfies the intertwining relation
W*pW = —-A.

For arbitrary N € N, we also define

: : 1
Wy = lim eInteiit with by = —A + EVN(:}:) :

t—00

= W;{[[]NWN:—A

= Wn(z;2') = N>°W(Nz; Nz')  (|Willmr—rr = |Wp—rpr < 00)



Proposition (a-priori estimate): if V > 0, V € LY (R3)NL2(R3),
we have

2
/dx‘ (Vaq - Va,) Wy (21—22) Yy i(x)| < C, uniformly in N and t

Remarks:

e [T he wave operator acts only in the x1 — x> variable;

=/dv Wi (21 —wg;v)w(

xl—l—azg_l__ v
> >’ > >’ N-2

v x1+x0 W )

e Y IS regularized through the wave operator: compared with
previous approach, this is not a regularization in configuration
space. Effect is similar, since (in a weak sense) Wy fy = 1.

e [ he new estimate only controls the expectation of the dot-
product (Vz,-Vz,): momenta in orthogonal directions may grow!
Fortunately, this weaker estimate is nevertheless enough.



Model computations:

e For ¢ € L2(R3,dx),

(¥, V(@) = [ da V(@) [w@)P < CIVIL b, (1 - 2)2)

e For w c LQ(R3 X ]R3,d:131dx2),

(W, V(1 —22)9) = /dl‘ldxz V(z1 — z2) (1, 22)|°
< CHVHLl <¢a (1 — A:cl)(l — A@W)
(the mixed second derivative is enough).

e It turns out that we also have the bound

(1, V(x1 = 22)¥) < CIV g1 (¥, ((Vay - Vi) = By — Bay + 1) )

This is still not enough: need a Poincaré type inequality to con-
trol the convergence to a delta-function.



5. Uniqueness of the infinite hierarchy
I) Proof of the a-priori bounds

We can prove uniqueness of the infinite hierarchy in the class
of densities {%g(k)}kzl such that

Tr (1= Agy)... (1= Ag )M < oF

with a constant C independent of £ > 1 and ¢t.

Need to prove that any limit point {’Ygg,)t}kzl of the marginals

{vj(\lf%}]kvzl satisfies these a-priori bounds.

Problem: the estimates

Tr(1—Bay) ... (1— Dy)re) < CF

cannot be true uniformly in N (because of short scale structure).



Choose a length scale ¢ with N¢2 > 1 and N¢3 <« 1. For j =
1,..., N define

1 if|a:z-—xj|>>€ Vi £ g
0O otherwise

Qj(X) ~ {

Proposition (higher order energy estimates):

(N, (Hy+N) o) > CENE [ dx01(0) .05 1(0) [Vay - Vo (02

N /dXQl(X) e Op1(X) [Vay - Vit 4 (3)[2 < CF

The cutoff 6;(x) is effective only when z; falls into a volume of
order N¢3 in R3.

Since N3 — 0 as N — oo, the cutoff can be removed in the limit
N — oo, and we obtain the a-priori bounds

Tr (1 — Do) ... (1 - D), < Ok



II) Proof of the uniqueness

Theorem: given a family {y(k)},5; with
Tr(l — Dgy) ... (1= Ay )yF) < CF

there exists at most one solution {’Yt(k)}kzl of

k

k
k-1
ioy ™) Z [ Aazj,’yt )] + 8mag Y Trp4a [5(%' — Tpg1), Y

such that

Tr(l—Al)...(l—Ak)%(k)ng for all teR.



Hierarchy in integral form: rewrite infinite hierarchy

) _ ¥ (k) g (1)
0y = ) [—ij,% ] +8mag ) Try41 [5(%' — Th41)5 Vs
=1 j=1
as
t
,yt(k) — Z/[(k) (t)’}/(gk) _|_/O ds u(k) (t — S)B(k)fygk+1), k> 1
with

A k
L{(k)(t)fy(k) = exp (it Z A:z:j) ,y(k) exp (—it Z Aa:j)

k
B(k)’y(k+1) — —i87‘(‘(10 Z Tl’k_|_1 [5(:179 — $k+1),’y(k+1)]
j=1



Duhamel series: expand arbitrary solution ’y( )

n—1
7 =u® g + 3 €+l

m=1

with

£ _/ dsy .. / " dsm UB (& - s1) BO YD (51 — 55) BEFD

mt_

UOFID BV

7 = / dsi.-- /Sn_ldsn U (¢ — 51) BB+ (51 — 55) BEFD)

L uktn=D(g = ,) B, (kdn)

with

k
B(k)’y(k—l_l) — —?:87'(‘0,0 Z Tl’k_|_1 [5(33] — :Izk_|_1),’y(k+1)
j=1



For example:
) kRl kmed I
mt = (—8miap) S‘ S‘ ' Z / dsy .. / dsm
J1=1 jo=1 Jm=1
x UK (t — 51) Tryqq [5(% — Tp41),
% U(k_I_l)(S]_ — 82)Trk+2 [5(:Ej2 — a:k_|_2), e

xUFTM=D (51— sm) Tram [5(37jm — Thdm), U(k+m)(8m)’yc()k+m)] e

Classical graphs: the graphs should describe the collision history
of the different terms. For example, for k =2, m = 4,

T

— 3 (%%) 3 (%% )8 (X% )8 (% Xs




More generally, contributions to 5,%% can be represented by or-
dered forests of k disjoint trees with m vertices

! N

$k+1

Fpp .
k roots < > k+m leaves

k !
Number of ordered graphs = ( —;:lm)




Doubled graphs: because of the commutators, for every colli-
sion we have a binary choice. To represent all contributions we
double the classical graphs. For example (k =2, m = 4)

\

B 06)B ()Y B (6 )B (e

oL

4 L e

The vertices are still completely ordered, and

(k+m)!
k!

number of doubled graphs = 2™



Removing the order: next we combine the contributions of
topologically equivalent ordered graphs.

1 1

— - S

t S 59
I) = /O dSl/O ' dSQ/O ds3 U(l)(t — Sl)TI’27374 d0(xq — xQ)U(Q)(Sl — 59)

x §(z1 — 23)UP (52 — 53)8(2n — 2 U (53)75"

t S S
II) = /O dsl/o ' dso /O ’ dss3 U(l)(t —51)Tr23 4 6(z1 — 332)2/{(2)(31 — 59)
x 8(w2 — 23)UP) (52 — 53)0(a1 — 2)U (s3)75Y
t S S
= /O d81/0 ' ds3 /O ’ dso U(l)(t — Sl)TI’273,4 d(xq1 — ZEQ)U(Q)(Sl — 59)

x 8(a1 — 23U (s2 — 53)8(a2 — 2D (s3)75")



Removing the order: next we combine the contributions of
topologically equivalent ordered graphs.

— L |

1) :=1) + II)
t S S
— /0 dsl/o . dSQ/O . d83 U(l)(t — Sl)TI’273’4 5(%1 — :132)1/{(2)(81 — 52)

x 8(ar — 23U (s2 — 53)8(a2 — 2)UD (s3)75")



Feynman graphs: different contributions to 5,,(7,’,2 will be repre-
sented by graphs in

J—“m’k — set of forests with 2k disjoint paired trees
with m partially ordered vertices

L -

;ﬁEQ

—

2k roots 2 (k+m) leaves
_

—

Number of graphs in F,, , < C™tk,

Diagrammatic expansion of ggf,)t: we expand

Tra®e®) = S 1 gW R {FE
I‘efm,k



E(I)=setof edgesof I

V (I )=set of verticesof I
_/ L
2Kk roots Y - 2k+m) leaves o (I )=set of rootsof I

L (I )=set of leavesof I

- /

Tr J®) K A FTm) =

— / 11 dacdpe 1 ¢ (Z j:oze) 5 (Z ﬂ:pe)

02 1
ecB(r) ¥ TP T iTele oy \égv e€v

x J®) ({e: D) Yeerry) 15 T™ ({es P)Yecr(ry)

X eXD(—’Lt Z Te(ae _I_ iTeT]e)), Te — +1
ecR(IN)



Control of the integral: use (z) = (1 4+ z2)1/2

></ 1] daedpe IT ¢ (Z :I:ae> 0 (Z :I:pe)

— 2
ccE(r) (e —PE) ,ey(my \eev e€v

X

J® ({(pes ) Yee r(r) ' ‘fyéHm) ({(pes P} eer(r)) '

Singularity at £ = 0 = large momentum problem!!
From a-priori estimates = decay in the momenta of leaves.

Perform integration over all a« and p, starting from the leaves
and moving towards the roots. At each vertex, we propagate
the decay from the son-edges to the father-edge.



Typical example:

Ar Py Ay Pu

Ay Py

Aw Pw

Integrate first the a-variables of the son-edges

VA

/daudavdaw

Then integrate over the momenta of the son-edges

/ dpudpydpw 6(pr = pu + pv — Pw) < const
[pul?TApu] 2T pw 2T (ar — P2 — p3 + p2)1 75 = |pr[2TA

After integrating out all vertices

= 'Tr TR pSEtm) < cmym/t e F

(au — pg){aw — p2){aw — pg) ~ (- —pi — p§ +pa)1 ¢



Convergence of the expansion: Since |F,, | < C™, we find

‘Tr

I‘e}“

Analogously, we prove that |Tr J(k)n(k> < ongn/4,

= if ngt)' yékt) are two solutions with same initial data

|Tr J (k) (ﬁ’? ngt)) ‘ < cnyn/4

Since n € N is arbitrary = uniqueness for short time.

A-priori estimates are uniform in time = uniqueness for all times.



