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1. Bose-Einstein condensation

N-boson systems: described by a wave function

ψN ∈ L2(R3N), symmetric w.r.t. permutations.

|ψN(x1, . . . , xN)|2 = probability density ⇒ ‖ψN‖ = 1

Dynamics governed by Schrödinger equation

i∂tψN,t = HNψN,t ⇒ ψN,t = e−iHN tψN ⇒ ‖ψN,t‖ = 1 ∀t

HN is the Hamiltonian of the system:

HN =
N∑
j=1

(
−∆xj + Vext(xj)

)
+

N∑
i<j

V (xi−xj) acts on L2(R3N) .



Trivial example of condensate wave function:

ψN(x) =
N∏
j=1

ϕ(xj) for all x = (x1, . . . , xN) ∈ R3N

Condensation for general ψN ∈ L2
s(R3N):

• Density Matrix: orthogonal projection onto ψN ,

γN = |ψN〉〈ψN | ⇒ γN(x; x′) = ψN(x)ψN(x′).

• Marginal Densities: Define the k-particle marginal density

γ
(k)
N (xk; x′k) =

∫
dxN−k γN(xk,xN−k; x′k,xN−k) Tr γ(k)

N = 1

xk = (x1, . . . , xk), xN−k = (xk+1, . . . , xN)

In other words: γ
(k)
N = Trk+1,k+2,...N |ψN〉〈ψN |



• One particle density:

γ(1) =
∑
j

λj|φj〉〈φj| φj ∈ L2(R3), 0 < λj ≤ 1,
∑
j

λj = 1

λj = Probability that a randomly chosen particle is in the

one-particle state φj.

• Definition: a family {ψN}N∈N exhibits BEC iff

lim inf
N→∞

max spec γ
(1)
N > 0

Interpretation: BEC exists if a macroscopic number of par-

ticles is in the same one-particle state.

• Example: if ψN(x) =
∏N
j=1ϕ(xj), then γ

(1)
N = |ϕ〉〈ϕ| and thus

max spec γ(1)
N = 1 for all N ⇒ (complete) BEC



Condensation of trapped Bose gases: N bosons in volume of
order one, range of interaction N−1.

HN =
N∑
j=1

(
−∆j + Vext(xj)

)
+

N∑
i<j

N2V (N(xi − xj))

• Lieb-Seiringer-Yngvason (2000): the ground state energy is
given by

lim
N→∞

EGS(N)

N
= min

ϕ:‖ϕ‖=1
EGP(ϕ)

with

EGP(ϕ) =
∫

dx
(
|∇ϕ(x)|2 + Vext(x)|ϕ(x)|2 + 4πa0|ϕ(x)|4

)
a0 = scattering length of V (x)

• Lieb-Seiringer (2002): complete condensation of ground state

γ
(1)
N → |φGP〉〈φGP|, φGP = minimizer of EGP



2. Main result

Scattering length of V ∈ L1(R3): defined by one-body equation(
−∆ +

1

2
V (x)

)
f(x) = 0 with f(x)→ 1 as |x| → ∞ .

f(x) ' 1−
a0

|x|
⇐⇒ 8πa0 =

∫
dxV (x)f(x)

Rescaled potential: we consider the Gross-Pitaevskii scaling

VN(x) = N2V (Nx) ⇒ VN has scattering length a = a0/N

The dynamics: is governed by

i∂tψN,t = HNψN,t

with Hamiltonian

HN =
N∑
j=1

−∆xj +
N∑
j<k

VN(xj − xk)



Theorem [Erdös, S., Yau, 2008]:

Suppose V ≥ 0, |V (x)| ≤ C(1 + x2)−σ/2, for some σ > 5.

Assume that ψN has finite energy per particle 〈ψN , HNψN〉 ≤ CN
and that it exhibits complete BEC

γ
(1)
N → |ϕ〉〈ϕ| for some ϕ ∈ L2(R3)

Denote by ψN,t = e−iHN tψN the time evolution of ψN . Then, for
every t ∈ R,

γ
(1)
N,t → |ϕt〉〈ϕt| as N →∞ ,

where ϕt is the solution to the time-dependent Gross-Pitaevskii
equation

i∂tϕt = −∆ϕt + 8πa0|ϕt|2ϕt
with ϕt=0 = ϕ.

Remark: we have γ
(k)
N,t → |ϕt〉〈ϕt|

⊗k as N →∞, for any k ≥ 1.



Application:

Htrap
N =

N∑
j=1

(
−∆j + Vext(xj)

)
+

N∑
i<j

VN(xi − xj)

Lieb-Seiringer ⇒ γ
(1)
N → |φGP〉〈φGP| as N →∞

Here φGP is the minimizer of the Gross-Pitaevskii functional

EGP(ϕ) =
∫

dx
(
|∇ϕ|2 + Vext|ϕ|2 + 4πa0|ϕ|4

)

Corollary: Suppose the initial wave function ψN is the ground

state vector of Htrap
N . Then, for every t ∈ R,

γ
(1)
N,t → |ϕt〉〈ϕt| as N →∞

where ϕt solves

i∂tϕt = −∆ϕt + 8πa0|ϕt|2ϕt with ϕt=0 = φGP.



Experiments on BEC: in 2001, Cornell-Ketterle-Wieman re-

ceived Nobel prize in physics for experiments which first proved

the existence of BEC for trapped Bose gas.

In the experiments gases are trapped in small volumes by strong

magnetic fields, and cooled down at very low temperatures.

Then one observes the dynamical evolution of the condensate

when the trap is removed.



3. General strategy of the proof

Evolution of marginal densities: Recall that the k-particle
marginal associated with ψN,t is:

γ
(k)
N,t(xk; x′k) =

∫
dxN−k γN,t(xk,xN−k; x′k,xN−k)

=
∫

dxN−k ψN,t(xk,xN−k)ψN,t(x
′
k,xN−k)

The family {γ(k)
N,t}

N
k=1 satisfies the BBGKY Hierarchy

i∂tγ
(k)
N,t =

k∑
j=1

[
−∆xj , γ

(k)
N,t

]
+

∑
1≤i<j≤k

[
VN(xi − xj), γ

(k)
N,t

]

+ (N − k)
k∑

j=1

Trk+1

[
VN(xj − xk+1), γ(k+1)

N,t

]
where(

Trk+1 A
(k+1)

)
(xk; x′k) =

∫
dxk+1A

(k+1)(xk, xk+1; x′k, xk+1)



Three step strategy:

Compactness: the sequence {γ(k)
N,t}

N
k=1 is compact w.r.t. an ap-

propriate weak topology.

Convergence to infinite hierarchy: every limit point {γ(k)
∞,t}k≥1

satisfies

i∂tγ
(k)
∞,t =

k∑
j=1

[
−∆xj , γ

(k)
∞,t

]
+ 8πa0

k∑
j=1

Trk+1

[
δ(xj − xk+1), γ(k+1)

∞,t

]

Observe that γ(k)
∞,t = |ϕt〉〈ϕt|⊗k solves infinite hierarchy iff

i∂tϕt = −∆ϕt + 8πa0|ϕt|2ϕt

Uniqueness: in certain Sobolev spaces, the infinite hierarchy has

a unique solution.

⇒ γ
(k)
N,t → |ϕt〉〈ϕt|

⊗k as N →∞



This strategy has been used to derive the Hartree equation

i∂tϕt = −∆ + (V ∗ |ϕt|2)ϕt

in mean field systems with Hamiltonian

HN =
N∑
j=1

−∆xj +
1

N

N∑
j<k

V (xj − xk)

• Spohn, 1980: bounded potential.

• Erdős - Yau, 2000: Coulomb potential (partial results by Bar-

dos - Golse - Mauser).

• Elgart - S., 2005: relativistic Coulomb potential.

• Adami - Bardos - Golse - Teta, 2006: one-dim δ-function.

• Erdős - S. - Yau, 2006: three-dim δ-function.



4. Proof of the convergence

We start from BBGKY hierarchy

i∂tγ
(k)
N,t =

k∑
j=1

[
−∆xj , γ

(k)
N,t

]
+

∑
1≤i<j≤k

[
VN(xi − xj), γ

(k)
N,t

]

+ (N − k)
k∑

j=1

Trk+1

[
VN(xj − xk+1), γ(k+1)

N,t

]

Assuming γ
(k)
N,t → γ

(k)
∞,t as N →∞, we want to prove that

i∂tγ
(k)
∞,t =

k∑
j=1

[
−∆xj , γ

(k)
∞,t

]
+ 8πa0

k∑
j=1

Trk+1

[
δ(xj − xk+1), γ(k+1)

∞,t

]

Problem: formally, we have, as N →∞,

(N − k)VN(xj − xk+1) ' N3V (N(xj − xk+1))→ b0δ(xj − xk+1)

with b0 =
∫

dxV (x) 6= 8πa0



Solution: correlation structure. For example, for k = 1,

γ
(2)
N,t(x1, x2;x′1, x

′
2) ' fN(x1 − x2)fN(x′1 − x

′
2)γ(2)
∞,t(x1, x2;x′1, x

′
2)

with
(
−∆ +

1

2
VN

)
fN = 0 ⇒ fN(x) = f(Nx)

Then

Tr2 NVN(x1 − x2)γ(2)
N,t → 8πa0Tr2 δ(x1 − x2)γ(2)

∞,t

In fact(
Tr2NVN(x1 − x2)γ(2)

N,t

)
(x1;x′1)

=
∫

dx2N
3V (N(x1 − x2)) γ(2)

N,t(x1, x2;x′1, x2)

'
∫

dx2N
3V (N(x1 − x2)) f(N(x1 − x2)) γ(2)

∞,t(x1, x2;x′1, x2)

' 8πa0

∫
dx2 δ(x1 − x2) γ(2)

∞,t(x1, x2;x′1, x2)

= 8πa0

(
Tr2 δ(x1 − x2)γ(2)

∞,t

)
(x1;x′1)



First attempt, for small potentials [Erdös, S., Yau, 2006]:

Derive the a-priori bound∫
dx

∣∣∣∣∇x1∇x2

ψN,t(x)

fN(x1 − x2)

∣∣∣∣2 ≤ C uniformly in N and t

Proof obtained through an energy estimate

〈ψN , H2
N ψN〉 ≥ CN2

∫
dx

∣∣∣∣∣∇x1∇x2

ψN(x)

fN(x1 − x2)

∣∣∣∣∣
2

Note that∫
dx |∇x1∇x2ψN,t(x)|2 ' N

∫
dx |∇2fN(x)| ' N

 ⇒ cancelations are crucial!!

Therefore ψN,t = fN(x1−x2)φN,t(x) with a φN,t regular in x1, x2.



Second attempt [Erdös, S., Yau, 2008]: Define the wave
operator

W = lim
t→∞

eiht ei∆t with h = −∆ +
1

2
V (x) .

W exists and is complete, that is

W−1 = W ∗ = lim
t→∞

e−i∆te−iht

It satisfies the intertwining relation

W ∗ hW = −∆.

For arbitrary N ∈ N, we also define

WN = lim
t→∞

eihN tei∆t with hN = −∆ +
1

2
VN(x) .

⇒ W ∗N hNWN = −∆

⇒ WN(x;x′) = N3W (Nx;Nx′) (‖WN‖Lp→Lp = ‖W‖Lp→Lp <∞)



Proposition (a-priori estimate): if V ≥ 0, V ∈ L1(R3)∩L2(R3),
we have∫

dx
∣∣∣∣ (∇x1 · ∇x2

)
W ∗N,(x1−x2) ψN,t(x)

∣∣∣∣2 ≤ C, uniformly in N and t

Remarks:

• The wave operator acts only in the x1 − x2 variable;(
W ∗N,(x1−x2)ψ

)
(x1, x2,xN−2)

=
∫

dv W ∗N (x1 − x2; v)ψ
(
x1 + x2

2
+
v

2
,
x1 + x2

2
−
v

2
,xN−2

)

• ψN,t is regularized through the wave operator: compared with
previous approach, this is not a regularization in configuration
space. Effect is similar, since (in a weak sense) W ∗NfN = 1.

• The new estimate only controls the expectation of the dot-
product (∇x1 ·∇x2): momenta in orthogonal directions may grow!
Fortunately, this weaker estimate is nevertheless enough.



Model computations:

• For ψ ∈ L2(R3,dx),

〈ψ, V (x)ψ〉 =
∫

dx V (x) |ψ(x)|2 ≤ C‖V ‖L1 〈ψ, (1−∆)2ψ〉

• For ψ ∈ L2(R3 × R3,dx1dx2),

〈ψ, V (x1 − x2)ψ〉 =
∫

dx1dx2 V (x1 − x2)|ψ(x1, x2)|2

≤ C‖V ‖L1 〈ψ, (1−∆x1)(1−∆x2)ψ〉
(the mixed second derivative is enough).

• It turns out that we also have the bound

〈ψ, V (x1 − x2)ψ〉 ≤ C‖V ‖L1 〈ψ,
(
(∇x1 · ∇x2)2 −∆x1 −∆x2 + 1

)
ψ〉

This is still not enough: need a Poincaré type inequality to con-

trol the convergence to a delta-function.



5. Uniqueness of the infinite hierarchy

I) Proof of the a-priori bounds

We can prove uniqueness of the infinite hierarchy in the class

of densities {γ(k)
t }k≥1 such that

Tr (1−∆x1) . . . (1−∆xk)γ
(k)
t ≤ Ck

with a constant C independent of k ≥ 1 and t.

Need to prove that any limit point {γ(k)
∞,t}k≥1 of the marginals

{γ(k)
N,t}

N
k=1 satisfies these a-priori bounds.

Problem: the estimates

Tr (1−∆x1) . . . (1−∆xk)γ
(k)
N,t ≤ C

k

cannot be true uniformly in N (because of short scale structure).



Choose a length scale ` with N`2 � 1 and N`3 � 1. For j =
1, . . . , N define

θj(x) '
{

1 if |xi − xj| � ` ∀i 6= j
0 otherwise

Proposition (higher order energy estimates):

〈ψN , (HN+N)kψN〉 ≥ CkNk
∫

dx θ1(x) . . . θk−1(x) |∇x1 . . .∇xkψN(x)|2

⇒
∫

dx θ1(x) . . . θk−1(x) |∇x1 . . .∇xkψN,t(x)|2 ≤ Ck

The cutoff θj(x) is effective only when xj falls into a volume of
order N`3 in R3.

Since N`3 → 0 as N →∞, the cutoff can be removed in the limit
N →∞, and we obtain the a-priori bounds

Tr (1−∆x1) . . . (1−∆xk)γ
(k)
∞,t ≤ C

k.



II) Proof of the uniqueness

Theorem: given a family {γ(k)}k≥1 with

Tr(1−∆x1) . . . (1−∆xk)γ
(k) ≤ Ck

there exists at most one solution {γ(k)
t }k≥1 of

i∂tγ
(k)
t =

k∑
j=1

[
−∆xj , γ

(k)
t

]
+ 8πa0

k∑
j=1

Trk+1

[
δ(xj − xk+1), γ(k+1)

t

]
such that

Tr(1−∆1) . . . (1−∆k)γ(k)
t ≤ Ck for all t ∈ R .



Hierarchy in integral form: rewrite infinite hierarchy

i∂tγ
(k)
t =

k∑
j=1

[
−∆xj , γ

(k)
t

]
+ 8πa0

k∑
j=1

Trk+1

[
δ(xj − xk+1), γ(k+1)

t

]

as

γ
(k)
t = U(k)(t)γ(k)

0 +
∫ t

0
ds U(k)(t− s)B(k)γ

(k+1)
s , k ≥ 1

with

U(k)(t)γ(k) = exp

it k∑
j=1

∆xj

 γ(k) exp

−it k∑
j=1

∆xj



B(k)γ(k+1) = −i8πa0

k∑
j=1

Trk+1

[
δ(xj − xk+1), γ(k+1)

]



Duhamel series: expand arbitrary solution γ
(k)
t as

γ
(k)
t = U(k)(t)γ(k)

0 +
n−1∑
m=1

ξ
(k)
m,t + η

(k)
n,t

with

ξ
(k)
m,t =

∫ t
0

ds1 . . .
∫ sm−1

0
dsm U(k)(t− s1)B(k) U(k+1)(s1 − s2)B(k+1) . . .

. . .U(k+m−1)(sm−1 − sm)B(k+m−1)U(k+m)(sm)γ(k+m)
0

η
(k)
n,t =

∫ t
0

ds1 . . .
∫ sn−1

0
dsn U(k)(t− s1)B(k)U(k+1)(s1 − s2)B(k+1) . . .

. . .U(k+n−1)(sn−1 − sn)B(k+n−1)γ
(k+n)
sn

with

B(k)γ(k+1) = −i8πa0

k∑
j=1

Trk+1

[
δ(xj − xk+1), γ(k+1)

]



For example:

ξ
(k)
m,t = (−8πia0)m

k∑
j1=1

k+1∑
j2=1

· · ·
k+m−1∑
jm=1

∫ t
0

ds1 . . .
∫ sm−1

0
dsm

× U(k)(t− s1) Trk+1

[
δ(xj1 − xk+1),

× U(k+1)(s1 − s2)Trk+2

[
δ(xj2 − xk+2), . . .

. . .

× U(k+m−1)(sm−1 − sm) Trk+m

[
δ(xjm − xk+m), U(k+m)(sm)γ(k+m)

0

]
. . .

]

Classical graphs: the graphs should describe the collision history
of the different terms. For example, for k = 2, m = 4,

6

δ (   −   )x x1 3 δ (   −   )x x2 4 δ (   −   )x x3 5 δ (   −   )x x2 6

1

2

3

5

4



More generally, contributions to ξ
(k)
m,t can be represented by or-

dered forests of k disjoint trees with m vertices

k+m  leaves

1

2

k

k+1

k+2

k   roots 

Number of ordered graphs =
(k +m)!

k!



Doubled graphs: because of the commutators, for every colli-

sion we have a binary choice. To represent all contributions we

double the classical graphs. For example (k = 2, m = 4)

6

x x1 3 δ (   −   )x x2 6 γ(6) δ (   −   )x x3 5 δ (   −   )x x2 4

1

2

3

4

5

δ (   −   )

The vertices are still completely ordered, and

number of doubled graphs = 2m
(k +m)!

k!



Removing the order: next we combine the contributions of
topologically equivalent ordered graphs.

I

1

2

4

3

1

2

3

4

II III

I) =
∫ t

0
ds1

∫ s1

0
ds2

∫ s2

0
ds3 U(1)(t− s1)Tr2,3,4 δ(x1 − x2)U(2)(s1 − s2)

× δ(x1 − x3)U(3)(s2 − s3)δ(x2 − x4)U(4)(s3)γ(4)
0

II) =
∫ t

0
ds1

∫ s1

0
ds2

∫ s2

0
ds3 U(1)(t− s1)Tr2,3,4 δ(x1 − x2)U(2)(s1 − s2)

× δ(x2 − x3)U(3)(s2 − s3)δ(x1 − x4)U(4)(s3)γ(4)
0

=
∫ t

0
ds1

∫ s1

0
ds3

∫ s3

0
ds2 U(1)(t− s1)Tr2,3,4 δ(x1 − x2)U(2)(s1 − s2)

× δ(x1 − x3)U(3)(s2 − s3)δ(x2 − x4)U(4)(s3)γ(4)
0



Removing the order: next we combine the contributions of

topologically equivalent ordered graphs.

I

1

2

4

3

1

2

3

4

II III

III) := I) + II)

=
∫ t

0
ds1

∫ s1

0
ds2

∫ s1

0
ds3 U(1)(t− s1)Tr2,3,4 δ(x1 − x2)U(2)(s1 − s2)

× δ(x1 − x3)U(3)(s2 − s3)δ(x2 − x4)U(4)(s3)γ(4)
0



Feynman graphs: different contributions to ξ
(k)
m,t will be repre-

sented by graphs in

Fm,k = set of forests with 2k disjoint paired trees

with m partially ordered vertices

2 k   roots 2 (k+m)  leaves

Number of graphs in Fm,k ≤ Cm+k.

Diagrammatic expansion of ξ(k)
m,t: we expand

TrJ(k)ξ
(k)
m,t =

∑
Γ∈Fm,k

Tr J(k)KΓ,tγ
(k+m)
0



:

) = set of edges ofΓ Γ

V ( )= set of vertices of Γ Γ

L ( )= set of leaves of Γ Γ

R ( )= set of roots of Γ Γ2(k+m) leaves2k  roots

Γ

E (

Tr J(k)KΓ,t γ
(k+m)
0 =

=
∫ ∏
e∈E(Γ)

dαedpe
αe − p2

e + iτeηe

∏
v∈V (Γ)

δ

∑
e∈v
±αe

 δ
∑
e∈v
±pe



× J(k)
(
{(pe, p′e)}e∈R(Γ)

)
γ

(k+m)
0

(
{(pe, p′e)}e∈L(Γ)

)

× exp(−it
∑

e∈R(Γ)

τe(αe + iτeηe)), τe = ±1



Control of the integral: use 〈x〉 = (1 + x2)1/2.∣∣∣∣Tr J(k)KΓ,t γ
(k+m)
0

∣∣∣∣ ≤ Cmtm/4

×
∫ ∏
e∈E(Γ)

dαedpe
〈αe − p2

e 〉
∏

v∈V (Γ)

δ

∑
e∈v
±αe

 δ
∑
e∈v
±pe



×
∣∣∣∣J(k)

(
{(pe, p′e)}e∈R(Γ)

) ∣∣∣∣ ∣∣∣∣γ(k+m)
0

(
{(pe, p′e)}e∈L(Γ)

) ∣∣∣∣
Singularity at x = 0 ⇒ large momentum problem!!

From a-priori estimates ⇒ decay in the momenta of leaves.

Perform integration over all α and p, starting from the leaves

and moving towards the roots. At each vertex, we propagate

the decay from the son-edges to the father-edge.



Typical example:

pr r α pu u

α pv v

α pw w

α

Integrate first the α-variables of the son-edges∫
dαudαvdαw

δ(αr = αu + αv − αw)

〈αu − p2
u〉〈αv − p2

v〉〈αw − p2
w〉
≤

const

〈αr − p2
u − p2

v + p2
w〉1−ε

Then integrate over the momenta of the son-edges∫ dpudpvdpw
|pu|2+λ|pv|2+λ|pw|2+λ

δ(pr = pu + pv − pw)

〈αr − p2
u − p2

v + p2
w〉1−ε

≤
const

|pr|2+λ

After integrating out all vertices

⇒
∣∣∣∣Tr J(k)KΓ,tγ

(k+m)
0

∣∣∣∣ ≤ Cmtm/4 ∀Γ ∈ Fm,k



Convergence of the expansion: Since |Fm,k| ≤ Cm, we find

∣∣∣∣Tr J(k)ξ
(k)
m,t

∣∣∣∣ ≤ ∑
Γ∈Fm,k

∣∣∣∣Tr J(k)KΓ,tγ
(k+m)
0

∣∣∣∣ ≤ Cmtm/4.

Analogously, we prove that
∣∣∣∣Tr J(k)η

(k)
n,t

∣∣∣∣ ≤ Cntn/4.

⇒ if γ(k)
1,t , γ(k)

2,t are two solutions with same initial data∣∣∣∣Tr J(k)
(
γ

(k)
1,t − γ

(k)
2,t

) ∣∣∣∣ ≤ Cntn/4

Since n ∈ N is arbitrary ⇒ uniqueness for short time.

A-priori estimates are uniform in time ⇒ uniqueness for all times.


