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❏ Diffusive rare event: accumulation of diffusing particles

❏ No activation energy

❏ Glassy behaviour

❍ hard disc fluid

❍ Ritort backgammon model

❏ Blockage of membrane pores (Weiss & Argyrakis, 2006)

❏ General question:

How long until large density fluctuation occurs?
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❏ N independent random walkers; discrete time

r := 1 − (p + q)

pq

0

❏ Configurations: s = (s1, ... , sN) ∈ {1, ... , V}N

❏ Density ρ := N/V
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❏ Event with k walkers at distinguished site 0:

Sk := {s :
∑

i

δ(si , 0) = k} = {k walkers at site 0}

0

❏ When first arrive at Sk? mean first-passage time τFP
k

❏ Random initial conditions outside Sk
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❏ Walkers jump to any site: Ehrenfest urn model

❏ Dynamics of n0 is Markov chain:

0 Vk

βkγk

αk := 1 − βk − γk

γk =
k

N
; βk =

N − k

N

1

V − 1

❏ Conditioning gives recurrence relation:

τ +
k = αk (1 + τ +

k ) + βk (1 + τk+1→k+1) + γk (1 + τk−1→k+1)

τ +
k =

1

βk
+

γk

βk
τ +

k−1
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❏ Recurrence time τ rec
A = time from A → A

❏ From Sk almost certainly drop to Sk−1

❏ Reach “random” condition, then first-passage process:

τ rec
k ≃ [1 × P (stay)] + [τFP

k × P (leave)]

≃ 1 + γk (τFP
k − 1)

❏ Exact relation for mean-field:

τ rec
k = 1 + βkτ

−
k+1 + γkτ

+
k−1

❏ Approx:

τFP
k ≃

τ rec
k

γk
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❏ Kac recurrence theorem:

τ rec
A =

1

P (A)

❏ Apply to Sk :

τ rec
k =

1

|Sk | / |Ω|
=

V N

(

N
k

)

(V − 1)N−k

❏ Asymptotics: large N, V ; fixed ρ = N/V ; fixed ρ ≪ k ≪ N

τ rec
k ∼ k ! ρ−k exp(ρ)

❏ First-passage asymptotics:

1

N
τFP

k ≃ (k − 1)! ρ−k exp(ρ)
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❏ What if fluctuation can occur anywhere in system?

❏ Set S̃k roughly V times larger
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❏ Asymptotic first-passage time to density fluctuations

❏ Mean-field and spatial cases similar

❏ Fluctuations anywhere in system

❏ Open questions

❍ Good algorithm for diffusive rare events

❍ Exact results for fluctuations anywhere in system
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❏ Particles: random walks
pq

r

❏ Carry continuous “energy”; motion unaffected by energy

❏ Related to random-halves model (Eckmann, Young, Lin)

❏ Energy E redistributed microcanonically among n particles:

❏ Insert n − 1 partitions randomly

E1 E2 E3 E4 E5

0 E

❏ Particle energy distribution:

P (E1 > e) =

(

E − e

E

)n−1
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❏ Reservoirs with densities ρ0, ρL+1; temperatures T0, TL+1

❏ Number of particles visible in reservoir with density ρ:

P (n) = exp(−ρ)
ρn

n!

❏ Energy of particles from reservoir at temperature T :

P (E) =
1

T
e−E/T



Equilibrium

Diffusive rare events

First-passage times

Energetic walks

• Walkers with energy

• Reservoirs

• Equilibrium

• Profiles

Long-range energy
correlations

Many random walkers: rare events and long-range correlations – David P. Sanders p. 17

❏ Equilibrium conditions: ρ0 = ρL+1; T0 = TL+1

❏ In equilibrium, whole joint distribution factorises:

P(E; n) =
L

∏

i=1

P(ni )P(Ei |ni )

❏ Energy distribution: sum of independent random variables:

P(E |n) =
βnEn−1e−βE

Γ(n)
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❏ Density profile: ρi := 〈ni〉

ρt+1
i = pρt

i−1 + rρt
i + qρt

i+1

❏ Energy profile:

〈Ei〉t+1 = p 〈Ei−1〉t + r 〈Ei〉t + q 〈Ei+1〉t

❏ Non-equilibrium steady state: 〈Ei〉 =: ρiTi

pρi−1Ti−1 + rρiTi + qρi+1Ti+1 = ρiTi

❏ Non-equilibrium joint distribution P(E; n) does not factorise
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❏ Fluctuating hydrodynamics, experiments
(Dorfman, Kirkpatrick, Sengers ∼ 1980)

❏ Mode-coupling theory

❏ Oscillator chain (Kipnis et al., 1982)

❏ Stochastic lattice gas (Spohn, 1983)

❏ Lattice-gas cellular automaton (Boon et al., 1996)

❏ Random-halves model (Lin & Young, 2007)
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❏ Spatial correlations

Ci ,j := 〈EiEj〉 − 〈Ei〉 〈Ej〉

❏ Notation:
(∆1C)i ,j := pCi−1,j + rCi ,j + qCi+1,j

❏ Find in steady state

〈Ei〉 = ∆1 〈Ei〉

〈Ei〉 〈Ej〉 = ∆1∆2

[

〈Ei〉 〈Ej〉
]

❏ From site i , energy s+
i , s−

i and l+
i , l−i particles move right, left

〈EiEj〉 =
〈[

Ei + (s+
i−1 + s−

i+1) − (s+
i + s−

i )
]

×
[

Ej + (s+
j−1 + s−

j+1) − (s+
j + s−

j )
]〉
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❏ Evaluate products:

〈

s+
i−1s+

j+1

〉

=
〈

s+
i−1

〉 〈

s+
j+1

〉

provided i − 1 6= j + 1

〈s+
i |Ei , l+

i , ni〉 =
l+
i

mi
Ei ;

〈

s+
i

2|Ei , l+
i , ni

〉

=
l+
i (l+

i + 1)E2
i

ni(ni + 1)

❏ Finally obtain:
Ci ,j = ∆1∆2Ci ,j + 2νij

❏ Define long-range part

gi ,j := Ci ,j − 2κiδij

❏ Then
gi ,j = ∆1∆2gi ,j + 2µiδij
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❏ Source of long-range correlations:

µi := pκi−1 + qκi+1 + (r − 1)κi

with

κi :=

〈

E2
i

ni + 1

〉

❏ Assume local equilibrium for marginal distribution at site i
(Ravishankar & Young, 2007)

κi = ρiT
2
i =

ρi

β2
i

❏ Source µi assuming local equilibrium:

µi ≃ 2Dρ(x)[∇T (x)]2
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❏ Exact equation for spatial energy correlations

❏ Local equilibrium assumption agrees with numerics

❏ Open questions:

❍ Exact solution of correlation equation

❍ Case where dynamics depends on energy

❏ Money:

❍ PROFIP programme
Universidad Nacional Autónoma de México

❍ DGAPA-UNAM

http://sistemas.fciencias.unam.mx/~dsanders

http://sistemas.fciencias.unam.mx/~dsanders
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Pt+1(n1, E1; n2, E2; ... ; nL, EL) =
∑

{mi}

∑

{l±i }

∫

{ei}
d ei

∫

{s±i }
d s±i Pt (m1, e1; m2, e2; ... ; mL, eL)

×
∏

i

δ
(

ni − [mi + (l+i−1 + l−i+1) − (l+i + l−i )]
)

×
∏

i

δ
(

Ei − [ei + (s+
i−1 + s−i+1) − (s+

i + s−i )]
)

×
∏

i

P
(

s+
i , s−i

∣

∣ l+i , l−i , mi , ei
)

×
∏

i

P
(

l+i , l−i
∣

∣ mi
)

P
(

l+i , l−i
∣

∣ mi
)

:=

(

mi

l+i

)(

mi − l+i
l−i

)

pl+i ql−i rmi−l+i −l−i

P
(

s+
i , s−i

∣

∣ l+i , l−i , mi , ei
)

:=

Γ(mi )

Γ(l+i )Γ(l−i )Γ(mi − l+i − l−i )
(s+

i )l+i −1(s−i )l−i −1 (ei − s+
i − s−i )mi−l+i −l−i −1

emi−1
i
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