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Mean field explains how phases separate in spinodal decomposition
but no spatial patterns, (intrinsic to mean field models)

Relax mean field to observe patterns: introduce Kac potentials

Λ a torus in Zd , γ > 0:

Hγ,Λ(σΛ) = −1

2

∑

x 6=y

Jγ(x , y)σΛ(x)σΛ(y)

Jγ(x , y) = γdJ(γ(y − x))

2



Mean field explains how phases separate in spinodal decomposition
but no spatial patterns, (intrinsic to mean field models)

Relax mean field to observe patterns: introduce Kac potentials

Λ a torus in Zd , γ > 0:

Hγ,Λ(σΛ) = −1

2

∑

x 6=y

Jγ(x , y)σΛ(x)σΛ(y)

Jγ(x , y) = γdJ(γ(y − x))

3



Mean field explains how phases separate in spinodal decomposition
but no spatial patterns, (intrinsic to mean field models)

Relax mean field to observe patterns: introduce Kac potentials

Λ a torus in Zd , γ > 0:

Hγ,Λ(σΛ) = −1

2

∑

x 6=y

Jγ(x , y)σΛ(x)σΛ(y)

Jγ(x , y) = γdJ(γ(y − x))

4



Mean field explains how phases separate in spinodal decomposition
but no spatial patterns, (intrinsic to mean field models)

Relax mean field to observe patterns: introduce Kac potentials

Λ a torus in Zd , γ > 0:

Hγ,Λ(σΛ) = −1

2

∑

x 6=y

Jγ(x , y)σΛ(x)σΛ(y)

Jγ(x , y) = γdJ(γ(y − x))

5



Mean field explains how phases separate in spinodal decomposition
but no spatial patterns, (intrinsic to mean field models)

Relax mean field to observe patterns: introduce Kac potentials

Λ a torus in Zd , γ > 0:

Hγ,Λ(σΛ) = −1

2

∑

x 6=y

Jγ(x , y)σΛ(x)σΛ(y)

Jγ(x , y) = γdJ(γ(y − x))

6



J(x)

x

J(r) ≥ 0. J(r) = 0 for |r | ≥ 1.

∫
J(r) dr = 1
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γ = scaling parameter. It controls:

range of interaction γ−1

intensity of pair interaction = Jγ(x , y) ≈ γd

choice such that the interaction of a spin with all the others is:
≈ γd (interaction with a given spin) times γ−d (number of spins in
ball of radius interaction range = γ−1) ≈ 1.

Also in mean field, total interaction of a spin with all the others

≈ 1 =
1

|Λ| × |Λ|
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If γ−1 ≈ L, L = side of Λ, essentially mean field.

If γ > 0 small and fixed, finite range statistical mechanics model.

If γ → 0, L →∞, γL →∞, i.e. γ−1 ¿ L, “mesoscopic regime”.

Figure: Mesoscopic region on the left and its blowup by γ−1
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Glauber dynamics. Mesoscopic limit.

Empirical magnetization:

uR(r , t) =
1

|BR(r)|
∑

x∈BR(r)∩Zd

σ(x , t)

BR(r) = {r ′ ∈ RD : |r − r ′| ≤ R}.

Let lim
R→∞

lim
γ→0

Pγ

(∫
−
BN(0)

|uR(γ−1r , 0)−m(r , 0)| > ζ
)

= 0, for all

ζ > 0 and all N > 0.

∫
−
Λ

f (r) dr =
1

|Λ|
∫

Λ
f (r) dr
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Then there is b ∈ (0, 1) so that for any t > 0, ζ > 0 and all N > 0

lim
γ→0

Pγ

(∫
−
BN(0)

|uγ−b
(γ−1r , t)−m(r , t)| > ζ

)
= 0,

dm(r , t)

dt
= −m(r , t) + tanh{βJ ∗m(r , t)}
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Spinodal decomposition: β > 1, initial state Bernoulli measure

with average 0: spins independent, P(σ(x) = 1) =
1

2
.

The mesoscopic picture corresponds to a blow-up by γ−1.

Relevant space scale for spinodal decompositions is

Figure: Macroscopic region on the left and its blowup by
`γ := γ−1

√
log γ−1
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Mean field times: t ≤ τc log γ−1, τc = d
2α , α = β − 1 > 0

lim
γ→0

Pγ

(∫
−
BN(0)

|uγ−b
(`γr , t)−m(r , t)| > ζ

)
= 0

for all ζ > 0 and all N > 0
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Exists t∗ > τc log γ−1, lim
γ→0

t∗ − τc log γ−1

log γ−1
= 0 so that:

For any test function φ and any N,

lim
γ→0

Pγ

(∫
−
BN(0)

uγ−b
(`γr , t∗)φ(r)

)
= E

(∫
−
BN(0)

X (r)φ(r)
)

where X (r) = mβsignξ(r) and {ξ(r), r ∈ Rd} is a Gaussian

process with mean zero and variance C (r , r ′) = e−α(r−r ′)2/2.

_+

+
+

Figure: (Random) regions where X (r) = ±mβ
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Deterministic interface dynamics.

dm(r , t)

dt
= −m(r , t) + tanh{βJ ∗m(r , t)}, m(εr , 0) = u(r , 0)

u(r , 0) = mβ outside Ω and u(r , 0) = −mβ in Ω.

Theorem. uε(r , t) := m(ε−1r , ε−2t) → u(r , t) which moves by
mean curvature:

B

A

Figure: Velocity determined by curvature
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If ε → as γ → 0 suitably, result remains valid for Glauber dynamics.

If ε ¿ γ fluctuations become important and no result has been so
far obtained.

In the limit of very small ε, interface becomes flat and
early fluctuations are approximately one dimensional
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Stochastic d = 1 Allen-Cahn evolution

The local version of the mesoscopic evolution is the Allen-Cahn
equation,
to include fluctuations add white noise forcing:

dm(x , t)

dt
=

d2

dx2
m(x , t)− V ′(m(x , t)) +

√
εẇ

V (m) =
m4

4
− m2

2
, ẇ white noise in space and time.

J.B. Walsh: An introduction to stochastic partial differential
equation. Lecture Notes in Mathematics. Springer. 1180, 265–437
(1984).
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The one dimensional diffuse interface m̄(x) is defined as:

the stationary solution of deterministic Allen-Cahn
which converges to ±1 as x → ±∞.

0 =
d2

dx2
m̄(x)− V ′(m(x)), lim

x→±∞ m̄(x) = ±1

Interpret m as position, x as time, then it becomes Newton
equation for a particle in d = 1
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d2

dx2
m̄(x) = −[−V ′(m(x))]

−V(m)

Orbits with energy < 0 are periodic and bounded.
Orbit with energy 0 is bounded and monotone.
Orbit with energy > 0 are unbounded.
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−

−V(m)

− ε ε

_
1

11−

Energy 0 orbit solves:
d2

dx2
m̄(x) = V ′(m(x)), lim

x→±∞ m̄(x) = ±1

Orbit in Fig. with negative energy solves:

d2

dx2
m(x) = V ′(m(x)),

d

dx
m(±ε−1) = 0
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The instanton solution defined modulo translations is
m̄(x) = tanh x

Figure: The instanton m̄(x).
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x is in mesoscopic units, macroscopic coordinates r = εx :

m̄(x) → m̄(r/ε)

In the macroscopic limit (ε → 0), the instanton becomes
H(r) = sign(r)

Macroscopically interface is a point, mesoscopically it is diffuse.

53



x is in mesoscopic units, macroscopic coordinates r = εx :

m̄(x) → m̄(r/ε)

In the macroscopic limit (ε → 0), the instanton becomes
H(r) = sign(r)

Macroscopically interface is a point, mesoscopically it is diffuse.

54



x is in mesoscopic units, macroscopic coordinates r = εx :

m̄(x) → m̄(r/ε)

In the macroscopic limit (ε → 0), the instanton becomes
H(r) = sign(r)

Macroscopically interface is a point, mesoscopically it is diffuse.

55



Translates of the instanton m̄ξ(x) = m̄(x − ξ) are also stationary
solutions connecting ±mβ.

while m̄ is not stable, the manifold M = {m̄ξ, ξ ∈ R} is stable.

Figure: Thick line is instanton manifold M. Vertical arrow indicates an
initial perturbation of an instanton and dashed line its relaxation toward
M, in general not to initial instanton.
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Ingredients of proof.
Linearized Allen-Cahn evolution around m̄:

∂u

∂t
= Au =

∂2u

∂x2
− V ′′(m̄)u

A is self-adjoint in L2(R, dx).

It has an eigenvalue 0 with eigenvector m̃′ =
√

3
2 m̄′.

Proof: Differentiate
d2m̄

dx2
− V ′(m̄) = 0.

Spectrum lies in R−.
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Perron-Frobenius transformation: Lφ =
1

m̄′A(m̄′φ).

Lφ =
1

m̄′
d2(m̄′φ)

dx2
− V ′′(m̄)φ

=
2

m̄′
dm̄′

dx

dφ

dx
+

d2φ

dx2
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Writing u = m̄′φ, Lφ =
1

m̄′A(m̄′φ),

∫
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Theorem. A has a spectral gap namely
0 is a simple eigenvalue and the remaining part of the spectrum
lies in {λ ∈ R : λ ≤ −a, a > 0}.
P. Fife, J.B. McLeod: The approach of solutions of nonlinear
diffusion equations to travelling front solutions. Arch. Rat. Mech.
Anal. 65, 335–361 (1977).

Theorem. There are c and ω > 0 so that ‖eAt ũ‖∞ ≤ ce−ωt‖ũ‖∞,∫
m̄′ũ = 0

71



Theorem. A has a spectral gap namely
0 is a simple eigenvalue and the remaining part of the spectrum
lies in {λ ∈ R : λ ≤ −a, a > 0}.
P. Fife, J.B. McLeod: The approach of solutions of nonlinear
diffusion equations to travelling front solutions. Arch. Rat. Mech.
Anal. 65, 335–361 (1977).

Theorem. There are c and ω > 0 so that ‖eAt ũ‖∞ ≤ ce−ωt‖ũ‖∞,∫
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Results (heuristic).

dm(x , t)

dt
=

d2

dx2
m(x , t)− V ′(m(x , t)) +

√
εẇ , m(x , 0) = m̄

m(x , ε−1t) ≈ m̄ξ(t)(x)

ξ(t) a brownian motion with diffusion D = 3
4 .
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Center of a function. ξ is the center of m if

∫
(m − m̄ξ)m̄

′
ξ = 0‘

m̄′
ξ tangent to M at m̄ξ.

m − m̄ξ is ⊥ to M at m̄ξ.
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Analysis in bounded domain: [−ε−1, ε−1] with Neumann boundary

conditions. H
(ε)
t (x , y) Green function of heat equation.

m(·, t) = H
(ε)
t m(·, 0)−

∫ t

0
H

(ε)
t−s{m(·, s)−m(·, s)3}+

√
εZ (ε)(·, t)

Z (ε)(x , t) =

∫ t

0
dw(x , s)H

(ε)
t−s(x , s)

W. Faris, G. Jona-Lasinio: Large fluctuations for a nonlinear heat
equation with noise. J. Phys. A 15, 3025–3055 (1982).
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Theorem. For any T > 0

lim
ε→0

P(ε)
(

sup
t≤ε−1T

sup
|x |≤ε−1

∣∣m(x , t)− m̄ξ(t)(x)
∣∣ > ε1/4

)
= 0

where ξ(t) is the center of m(·, t). Moreover ξ(t) converges to a
brownian motion with diffusion D = 3

4 .
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