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J J(x)

J(r) >0. J(r) =0 for |r| > 1. /J(r) dr=1



~ = scaling parameter. It controls:

range of interaction y~!

intensity of pair interaction = J,(x, y) ~ ~v9

choice such that the interaction of a spin with all the others is:
~ v (interaction with a given spin) times =9 (number of spins in
ball of radius interaction range = v~ 1) ~ 1.

Also in mean field, total interaction of a spin with all the others

1
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L~ L, L = side of A, essentially mean field.

If v~
If v > 0 small and fixed, finite range statistical mechanics model.

If v — 0, L — 00, yL — 00, i.e. v~} < L, "mesoscopic regime” .

Figure: Mesoscopic region on the left and its blowup by 1
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Glauber dynamics. Mesoscopic limit.

Empirical magnetization:

uR(r,t):’BRl(r S o(x0)

xEBR(r)ﬂZd

Br(r)={r' e RP :|r - r| < R}.

Let lim lim P, <][ |uR(y~1r,0) — m(r,0)| > C) =0, for all
Bn(0)

R—oo v—0

¢>0andall N >0.

]£ f(r)dr:|/1\|//\f(r)dr
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Then there is b € (0,1) so that forany t >0, ( >0and all N >0
lim P, (][ 1w (vl ) = m(r, )] > g) —0,
=0 Bn(0)

dm(r,t)
dt

= —m(r, t) + tanh{3J * m(r, t)}
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Spinodal decomposition: 3 > 1, initial state Bernoulli measure
1

The mesoscopic picture corresponds to a blow-up by y71.

with average 0: spins independent, P(c(x) = 1)

Relevant space scale for spinodal decompositions is

Figure: Macroscopic region on the left and its blowup by
by :=~"1/logy~1
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Mean field times: t < 7. Iog'y_l, e==< a= B-1>0

57
lim P7<][ W7 (Eyr 1) = m(r, )] > ¢) =0
7—0 B (0)

forall ( >0andall N >0
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t* — 1clogyt

1

1

, lim = 0 so that:

~—0 log v~
For any test function ¢ and any N,

Py (f o) =€(f  xtot)

where X(r) = mgsigné(r) and {£(r), r € R9} is a Gaussian
process with mean zero and variance C(r,r') = e=olr=r"7/2

C)

Exists t* > 7. logvy~

Figure: (Random) regions where X(r) = £mg
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Deterministic interface dynamics.

dm(r, t)

b —m(r,t) 4+ tanh{BJ « m(r,t)}, m(er,0) = u(r,0)

u(r,0) = mg outside Q and u(r,0) = —mg in Q.
-2

Theorem. u.(r,t) :== m(e1r,e=2t) — u(r, t) which moves by

mean curvature:

Figure: Velocity determined by curvature
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If ¢ — as v — 0 suitably, result remains valid for Glauber dynamics.

If ¢ <  fluctuations become important and no result has been so
far obtained.

In the limit of very small ¢, interface becomes flat and
early fluctuations are approximately one dimensional
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Stochastic d = 1 Allen-Cahn evolution

The local version of the mesoscopic evolution is the Allen-Cahn
equation,
to include fluctuations add white noise forcing:

dm(x, t d? i
Elt) = Wm(x, t) — V'(m(x, t)) + Vew
4 2

V(m) = mT - m7 W white noise in space and time.

J.B. Walsh: An introduction to stochastic partial differential
equation. Lecture Notes in Mathematics. Springer. 1180, 265-437
(1984).
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The one dimensional diffuse interface m(x) is defined as:

the stationary solution of deterministic Allen-Cahn
which converges to +£1 as x — +oc.

d? _ , oy
0= ﬁm(x) —V'(m(x)), lim m(x)==+1

x—+o00

Interpret m as position, x as time, then it becomes Newton
equation for a particle in d =1
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=V(m)
Orbits with energy < 0 are periodic and bounded.

Orbit with energy 0 is bounded and monotone.
Orbit with energy > 0 are unbounded.
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-V(m)

: d? _ / L
Energy 0 orbit solves: Wm(x) = V'(m(x)), Xﬂrjrgoo m(x) = £1

Orbit in Fig. with negative energy solves:

d2

Wm(x) = V'(m(x)), im(iesfl) =0

dx

No
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The instanton solution defined modulo translations is
m(x) = tanh x

Figure: The instanton m(x).
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X is in mesoscopic units, macroscopic coordinates r = ex:

m(x) — m(r/e)

In the macroscopic limit (¢ — 0), the instanton becomes
H(r) = sign(r)

Macroscopically interface is a point, mesoscopically it is diffuse.
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Translates of the instanton m¢(x) = m(x — &) are also stationary
solutions connecting +mg.

while m is not stable, the manifold M = {m¢, & € R} is stable.

Figure: Thick line is instanton manifold M. Vertical arrow indicates an
initial perturbation of an instanton and dashed line its relaxation toward
M, in general not to initial instanton.
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Ingredients of proof.
Linearized Allen-Cahn evolution around m:

2
gi =Au= gu_ V" (m)u
Ais self-adjoint in L2(R, dx).

It has an eigenvalue 0 with eigenvector m’ = @ﬁ”)’.
, o dPm
Proof: Differentiate 2 V'(m) = 0.

Spectrum lies in R_.
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1
Perron-Frobenius transformation: ~ L¢ = m—A(ﬁf ®).

2( =/

m dx?

2. dm'do  d%¢

m dx dx | dx?
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1
Writing u = m'¢, Lo = ﬁA(mlﬁb):

Juas = [@poro= [yl de &0,

m' dx dx
_,, dm d¢ dp d , _,\»
= /2m¢dxdx_ &a{(m)qﬁ}

- - fn ()
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Theorem. A has a spectral gap namely
0 is a simple eigenvalue and the remaining part of the spectrum
liesin {AeR: X< —a, a>0}.

P. Fife, J.B. McLeod: The approach of solutions of nonlinear
diffusion equations to travelling front solutions. Arch. Rat. Mech.
Anal. 65, 335-361 (1977).

Theorem. There are ¢ and w > 0 so that ||t 1]| < ce™|| ]| o0,

/m’azo
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Results (heuristic).

d , . _
s Wm(x, t) — V/(m(x,t)) +Vew, m(x,0)=m

-1

m(x,e t) ~ ﬁ’lf(t)(x)

&(t) a brownian motion with diffusion D = 3.
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Center of a function. £ is the center of m if

/(m — mg)me = 0°

fm; tangent to M at mg.
m—r'n€ is L to M at r'ng.
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Analysis in bounded domain: [—e~1,e71] with Neumann boundary
conditions. Hga)(x,y) Green function of heat equation.

m(-,t) = HO m(-,0) - / CHE {m(s) - m(s)*) 1 VEZO (1)
0

t
Z@)(x, t) = / dw(x, s)HE).(x, 5)
0

W. Faris, G. Jona-Lasinio: Large fluctuations for a nonlinear heat
equation with noise. J. Phys. A 15, 3025-3055 (1982).
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Theorem. For any T >0

lim PO sup  sup |m(x,t) — men(x)| >e*) =0
lim (@mx@l‘ (x, £) = g (x)] > /%)

where £(t) is the center of m(-, t). Moreover £(t) converges to a

brownian motion with diffusion D = %.
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