Persistence of randomness in the macroscopic limit. II Interface fluctuations.

Errico Presutti

ESI . June 2-6, 2008 Vienna

Mean field explains how phases separate in spinodal decomposition but no spatial patterns, (intrinsic to mean field models)
Relax mean field to observe patterns: introduce Kac potentials
Λ a torus in $\mathbb{Z}^{d}, \gamma>0$:

$$
H_{\gamma, \Lambda}\left(\sigma_{\Lambda}\right)=-\frac{1}{2} \sum_{x \neq y} J_{\gamma}(x, y) \sigma_{\Lambda}(x) \sigma_{\Lambda}(y)
$$

$J_{\gamma}(x, y)=\gamma^{d} J(\gamma(y-x))$

Mean field explains how phases separate in spinodal decomposition but no spatial patterns, (intrinsic to mean field models)
Relax mean field to observe patterns: introduce Kac potentials
Λ a torus in $\mathbb{Z}^{d}, \gamma>0$:

$$
H_{\gamma, \Lambda}\left(\sigma_{\Lambda}\right)=-\frac{1}{2} \sum_{x \neq y} J_{\gamma}(x, y) \sigma_{\Lambda}(x) \sigma_{\Lambda}(y)
$$

$J_{\gamma}(x, y)=\gamma^{d} J(\gamma(y-x))$

Mean field explains how phases separate in spinodal decomposition but no spatial patterns, (intrinsic to mean field models)
Relax mean field to observe patterns: introduce Kac potentials
Λ a torus in $\mathbb{Z}^{d}, \gamma>0$:

$$
H_{\gamma, \Lambda}\left(\sigma_{\Lambda}\right)=-\frac{1}{2} \sum_{x \neq y} J_{\gamma}(x, y) \sigma_{\Lambda}(x) \sigma_{\Lambda}(y)
$$

$J_{\gamma}(x, y)=\gamma^{d} J(\gamma(y-x))$

Mean field explains how phases separate in spinodal decomposition but no spatial patterns, (intrinsic to mean field models)
Relax mean field to observe patterns: introduce Kac potentials
Λ a torus in $\mathbb{Z}^{d}, \gamma>0$:

$$
H_{\gamma, \Lambda}\left(\sigma_{\Lambda}\right)=-\frac{1}{2} \sum_{x \neq y} J_{\gamma}(x, y) \sigma_{\Lambda}(x) \sigma_{\Lambda}(y)
$$

$J_{\gamma}(x, y)=\gamma^{d} J(\gamma(y-x))$

Mean field explains how phases separate in spinodal decomposition but no spatial patterns, (intrinsic to mean field models)
Relax mean field to observe patterns: introduce Kac potentials
Λ a torus in $\mathbb{Z}^{d}, \gamma>0$:

$$
H_{\gamma, \Lambda}\left(\sigma_{\Lambda}\right)=-\frac{1}{2} \sum_{x \neq y} J_{\gamma}(x, y) \sigma_{\Lambda}(x) \sigma_{\Lambda}(y)
$$

$J_{\gamma}(x, y)=\gamma^{d} J(\gamma(y-x))$

$J(r) \geq 0 . J(r)=0$ for $|r| \geq 1 . \int J(r) d r=1$
$\gamma=$ scaling parameter. It controls:
range of interaction γ^{-1}
intensity of pair interaction $=J_{\gamma}(x, y) \approx \gamma^{d}$
choice such that the interaction of a spin with all the others is: $\approx \gamma^{d}$ (interaction with a given spin) times γ^{-d} (number of spins in ball of radius interaction range $=\gamma^{-1}$) ≈ 1.

Also in mean field, total interaction of a spin with all the others
$\approx 1=\frac{1}{|\Lambda|} \times|\Lambda|$
$\gamma=$ scaling parameter. It controls:
range of interaction γ^{-1}
intensity of pair interaction $=J_{\gamma}(x, y) \approx \gamma^{d}$
choice such that the interaction of a spin with all the others is: $\approx \gamma^{d}$ (interaction with a given spin) times γ^{-d} (number of spins in ball of radius interaction range $=\gamma^{-1}$) ≈ 1.

Also in mean field, total interaction of a spin with all the others
$\approx 1=\frac{1}{|\Lambda|} \times|\Lambda|$
$\gamma=$ scaling parameter. It controls:
range of interaction γ^{-1}
intensity of pair interaction $=J_{\gamma}(x, y) \approx \gamma^{d}$
choice such that the interaction of a spin with all the others is: $\approx \gamma^{d}$ (interaction with a given spin) times γ^{-d} (number of spins in ball of radius interaction range $=\gamma^{-1}$) ≈ 1.

Also in mean field, total interaction of a spin with all the others
$\approx 1=\frac{1}{|\Lambda|} \times|\Lambda|$
$\gamma=$ scaling parameter. It controls:
range of interaction γ^{-1}
intensity of pair interaction $=J_{\gamma}(x, y) \approx \gamma^{d}$
choice such that the interaction of a spin with all the others is: $\approx \gamma^{d}$ (interaction with a given spin) times γ^{-d} (number of spins in ball of radius interaction range $=\gamma^{-1}$) ≈ 1.

Also in mean field, total interaction of a spin with all the others
$\approx 1=\frac{1}{|\Lambda|} \times|\Lambda|$
$\gamma=$ scaling parameter. It controls:
range of interaction γ^{-1}
intensity of pair interaction $=J_{\gamma}(x, y) \approx \gamma^{d}$
choice such that the interaction of a spin with all the others is: $\approx \gamma^{d}$ (interaction with a given spin) times γ^{-d} (number of spins in ball of radius interaction range $=\gamma^{-1}$) ≈ 1.

Also in mean field, total interaction of a spin with all the others
$\approx 1=\frac{1}{|\Lambda|} \times|\Lambda|$
$\gamma=$ scaling parameter. It controls:
range of interaction γ^{-1}
intensity of pair interaction $=J_{\gamma}(x, y) \approx \gamma^{d}$
choice such that the interaction of a spin with all the others is: $\approx \gamma^{d}$ (interaction with a given spin) times γ^{-d} (number of spins in ball of radius interaction range $=\gamma^{-1}$) ≈ 1.

Also in mean field, total interaction of a spin with all the others
$\approx 1=\frac{1}{|\Lambda|} \times|\Lambda|$

If $\gamma^{-1} \approx L, L=$ side of Λ, essentially mean field.
If $\gamma>0$ small and fixed, finite range statistical mechanics model.
If $\gamma \rightarrow 0, L \rightarrow \infty, \gamma L \rightarrow \infty$, i.e. $\gamma^{-1} \ll L$, "mesoscopic regime".

Figure: Mesoscopic region on the left and its blowup by γ^{-1}

If $\gamma^{-1} \approx L, L=$ side of Λ, essentially mean field.
If $\gamma>0$ small and fixed, finite range statistical mechanics model.
If $\gamma \rightarrow 0, L \rightarrow \infty, \gamma L \rightarrow \infty$, i.e. $\gamma^{-1} \ll L$, "mesoscopic regime".

Figure: Mesoscopic region on the left and its blowup by γ^{-1}

If $\gamma^{-1} \approx L, L=$ side of Λ, essentially mean field.
If $\gamma>0$ small and fixed, finite range statistical mechanics model.
If $\gamma \rightarrow 0, L \rightarrow \infty, \gamma L \rightarrow \infty$, i.e. $\gamma^{-1} \ll L$, "mesoscopic regime".

Figure: Mesoscopic region on the left and its blowup by γ^{-1}

If $\gamma^{-1} \approx L, L=$ side of Λ, essentially mean field.
If $\gamma>0$ small and fixed, finite range statistical mechanics model.
If $\gamma \rightarrow 0, L \rightarrow \infty, \gamma L \rightarrow \infty$, i.e. $\gamma^{-1} \ll L$, "mesoscopic regime".

Figure: Mesoscopic region on the left and its blowup by γ^{-1}

Glauber dynamics. Mesoscopic limit.
Empirical magnetization:

$$
u^{R}(r, t)=\frac{1}{\left|B_{R}(r)\right|} \sum_{x \in B_{R}(r) \cap \mathbb{Z}^{d}} \sigma(x, t)
$$

$B_{R}(r)=\left\{r^{\prime} \in \mathbb{R}^{D}:\left|r-r^{\prime}\right| \leq R\right\}$.
Let $\lim _{R \rightarrow \infty} \lim _{\gamma \rightarrow 0} P_{\gamma}\left(f_{B_{N}(0)}\left|u^{R}\left(\gamma^{-1} r, 0\right)-m(r, 0)\right|>\zeta\right)=0$, for all $\zeta>0$ and all $N>0$.

$$
f_{\Lambda} f(r) d r=\frac{1}{|\Lambda|} \int_{\Lambda} f(r) d r
$$

Glauber dynamics. Mesoscopic limit.
Empirical magnetization:

$$
u^{R}(r, t)=\frac{1}{\left|B_{R}(r)\right|} \sum_{x \in B_{R}(r) \cap \mathbb{Z}^{d}} \sigma(x, t)
$$

$B_{R}(r)=\left\{r^{\prime} \in \mathbb{R}^{D}:\left|r-r^{\prime}\right| \leq R\right\}$.
Let $\lim _{R \rightarrow \infty} \lim _{\gamma \rightarrow 0} P_{\gamma}\left(f_{B_{N}(0)}\left|u^{R}\left(\gamma^{-1} r, 0\right)-m(r, 0)\right|>\zeta\right)=0$, for all $\zeta>0$ and all $N>0$.

$$
f_{\Lambda} f(r) d r=\frac{1}{|\Lambda|} \int_{\Lambda} f(r) d r
$$

Glauber dynamics. Mesoscopic limit.
Empirical magnetization:

$$
u^{R}(r, t)=\frac{1}{\left|B_{R}(r)\right|} \sum_{x \in B_{R}(r) \cap \mathbb{Z}^{d}} \sigma(x, t)
$$

$B_{R}(r)=\left\{r^{\prime} \in \mathbb{R}^{D}:\left|r-r^{\prime}\right| \leq R\right\}$.
Let $\lim _{R \rightarrow \infty} \lim _{\gamma \rightarrow 0} P_{\gamma}\left(f_{B_{N}(0)}\left|u^{R}\left(\gamma^{-1} r, 0\right)-m(r, 0)\right|>\zeta\right)=0$, for all $\zeta>0$ and all $N>0$.

$$
f_{\Lambda} f(r) d r=\frac{1}{|\Lambda|} \int_{\Lambda} f(r) d r
$$

Then there is $b \in(0,1)$ so that for any $t>0, \zeta>0$ and all $N>0$ $\lim _{\gamma \rightarrow 0} P_{\gamma}\left(f_{B_{N}(0)}\left|u^{\gamma^{-b}}\left(\gamma^{-1} r, t\right)-m(r, t)\right|>\zeta\right)=0$,

$$
\frac{d m(r, t)}{d t}=-m(r, t)+\tanh \{\beta J * m(r, t)\}
$$

Then there is $b \in(0,1)$ so that for any $t>0, \zeta>0$ and all $N>0$ $\lim _{\gamma \rightarrow 0} P_{\gamma}\left(f_{B_{N}(0)}\left|u^{\gamma^{-b}}\left(\gamma^{-1} r, t\right)-m(r, t)\right|>\zeta\right)=0$,

$$
\frac{d m(r, t)}{d t}=-m(r, t)+\tanh \{\beta J * m(r, t)\}
$$

Spinodal decomposition: $\beta>1$, initial state Bernoulli measure with average 0 : spins independent, $P(\sigma(x)=1)=\frac{1}{2}$.
The mesoscopic picture corresponds to a blow-up by γ^{-1}.
Relevant space scale for spinodal decompositions is

Figure: Macroscopic region on the left and its blowup by $\ell_{\gamma}:=\gamma^{-1} \sqrt{\log \gamma^{-1}}$

Spinodal decomposition: $\beta>1$, initial state Bernoulli measure with average 0 : spins independent, $P(\sigma(x)=1)=\frac{1}{2}$.
The mesoscopic picture corresponds to a blow-up by γ^{-1}.
Relevant space scale for spinodal decompositions is

Figure: Macroscopic region on the left and its blowup by $\ell_{\gamma}:=\gamma^{-1} \sqrt{\log \gamma^{-1}}$

Spinodal decomposition: $\beta>1$, initial state Bernoulli measure with average 0 : spins independent, $P(\sigma(x)=1)=\frac{1}{2}$.
The mesoscopic picture corresponds to a blow-up by γ^{-1}.
Relevant space scale for spinodal decompositions is

Figure: Macroscopic region on the left and its blowup by $\ell_{\gamma}:=\gamma^{-1} \sqrt{\log \gamma^{-1}}$

Mean field times: $t \leq \tau_{c} \log \gamma^{-1}, \tau_{c}=\frac{d}{2 \alpha}, \alpha=\beta-1>0$

$$
\lim _{\gamma \rightarrow 0} P_{\gamma}\left(f_{B_{N}(0)}\left|u^{\gamma^{-b}}\left(\ell_{\gamma} r, t\right)-m(r, t)\right|>\zeta\right)=0
$$

for all $\zeta>0$ and all $N>0$

Exists $t^{*}>\tau_{c} \log \gamma^{-1}, \lim _{\gamma \rightarrow 0} \frac{t^{*}-\tau_{c} \log \gamma^{-1}}{\log \gamma^{-1}}=0$ so that:
For any test function ϕ and any N,

$$
\lim _{\gamma \rightarrow 0} P_{\gamma}\left(f_{B_{N}(0)} u^{\gamma^{-b}}\left(\ell_{\gamma} r, t^{*}\right) \phi(r)\right)=E\left(f_{B_{N}(0)} X(r) \phi(r)\right)
$$

where $X(r)=m_{\beta} \operatorname{sign} \xi(r)$ and $\left\{\xi(r), r \in \mathbb{R}^{d}\right\}$ is a Gaussian process with mean zero and variance $C\left(r, r^{\prime}\right)=e^{-\alpha\left(r-r^{\prime}\right)^{2} / 2}$.

Figure: (Random) regions where $X(r)= \pm m_{\beta}$

Exists $t^{*}>\tau_{c} \log \gamma^{-1}, \lim _{\gamma \rightarrow 0} \frac{t^{*}-\tau_{c} \log \gamma^{-1}}{\log \gamma^{-1}}=0$ so that:
For any test function ϕ and any N,

$$
\lim _{\gamma \rightarrow 0} P_{\gamma}\left(f_{B_{N}(0)} u^{\gamma^{-b}}\left(\ell_{\gamma} r, t^{*}\right) \phi(r)\right)=E\left(f_{B_{N}(0)} X(r) \phi(r)\right)
$$

where $X(r)=m_{\beta} \operatorname{sign} \xi(r)$ and $\left\{\xi(r), r \in \mathbb{R}^{d}\right\}$ is a Gaussian process with mean zero and variance $C\left(r, r^{\prime}\right)=e^{-\alpha\left(r-r^{\prime}\right)^{2} / 2}$.

Figure: (Random) regions where $X(r)= \pm m_{\beta}$

Exists $t^{*}>\tau_{c} \log \gamma^{-1}, \lim _{\gamma \rightarrow 0} \frac{t^{*}-\tau_{c} \log \gamma^{-1}}{\log \gamma^{-1}}=0$ so that:
For any test function ϕ and any N,

$$
\lim _{\gamma \rightarrow 0} P_{\gamma}\left(f_{B_{N}(0)} u^{\gamma^{-b}}\left(\ell_{\gamma} r, t^{*}\right) \phi(r)\right)=E\left(f_{B_{N}(0)} X(r) \phi(r)\right)
$$

where $X(r)=m_{\beta} \operatorname{sign} \xi(r)$ and $\left\{\xi(r), r \in \mathbb{R}^{d}\right\}$ is a Gaussian process with mean zero and variance $C\left(r, r^{\prime}\right)=e^{-\alpha\left(r-r^{\prime}\right)^{2} / 2}$.

Figure: (Random) regions where $X(r)= \pm m_{\beta}$

Deterministic interface dynamics.

$$
\frac{d m(r, t)}{d t}=-m(r, t)+\tanh \{\beta J * m(r, t)\}, \quad m(\varepsilon r, 0)=u(r, 0)
$$

$u(r, 0)=m_{\beta}$ outside Ω and $u(r, 0)=-m_{\beta}$ in Ω.
Theorem. $u_{\varepsilon}(r, t):=m\left(\varepsilon^{-1} r, \varepsilon^{-2} t\right) \rightarrow u(r, t)$ which moves by mean curvature:

Figure: Velocity determined by curvature

Deterministic interface dynamics.

$$
\frac{d m(r, t)}{d t}=-m(r, t)+\tanh \{\beta J * m(r, t)\}, \quad m(\varepsilon r, 0)=u(r, 0)
$$

$u(r, 0)=m_{\beta}$ outside Ω and $u(r, 0)=-m_{\beta}$ in Ω.
Theorem. $u_{\varepsilon}(r, t):=m\left(\varepsilon^{-1} r, \varepsilon^{-2} t\right) \rightarrow u(r, t)$ which moves by mean curvature:

Figure: Velocity determined by curvature

Deterministic interface dynamics.

$$
\frac{d m(r, t)}{d t}=-m(r, t)+\tanh \{\beta J * m(r, t)\}, \quad m(\varepsilon r, 0)=u(r, 0)
$$

$u(r, 0)=m_{\beta}$ outside Ω and $u(r, 0)=-m_{\beta}$ in Ω.
Theorem. $u_{\varepsilon}(r, t):=m\left(\varepsilon^{-1} r, \varepsilon^{-2} t\right) \rightarrow u(r, t)$ which moves by mean curvature:

Figure: Velocity determined by curvature

If $\varepsilon \rightarrow$ as $\gamma \rightarrow 0$ suitably, result remains valid for Glauber dynamics.
If $\varepsilon \ll \gamma$ fluctuations become important and no result has been so far obtained.

In the limit of very small ε, interface becomes flat and early fluctuations are approximately one dimensional

If $\varepsilon \rightarrow$ as $\gamma \rightarrow 0$ suitably, result remains valid for Glauber dynamics.
If $\varepsilon \ll \gamma$ fluctuations become important and no result has been so far obtained.

In the limit of very small ε, interface becomes flat and early fluctuations are approximately one dimensional

If $\varepsilon \rightarrow$ as $\gamma \rightarrow 0$ suitably, result remains valid for Glauber dynamics.
If $\varepsilon \ll \gamma$ fluctuations become important and no result has been so far obtained.

In the limit of very small ε, interface becomes flat and early fluctuations are approximately one dimensional

Stochastic d=1 Allen-Cahn evolution
The local version of the mesoscopic evolution is the Allen-Cahn equation,
to include fluctuations add white noise forcing:

$$
\frac{d m(x, t)}{d t}=\frac{d^{2}}{d x^{2}} m(x, t)-V^{\prime}(m(x, t))+\sqrt{\varepsilon} \dot{W}
$$

$V(m)=\frac{m^{4}}{4}-\frac{m^{2}}{2}, \dot{w}$ white noise in space and time.
J.B. Walsh: An introduction to stochastic partial differential equation. Lecture Notes in Mathematics. Springer. 1180, 265-437 (1984).

Stochastic d=1 Allen-Cahn evolution
The local version of the mesoscopic evolution is the Allen-Cahn equation,
to include fluctuations add white noise forcing:

$$
\frac{d m(x, t)}{d t}=\frac{d^{2}}{d x^{2}} m(x, t)-V^{\prime}(m(x, t))+\sqrt{\varepsilon} \dot{W}
$$

$V(m)=\frac{m^{4}}{4}-\frac{m^{2}}{2}, \dot{w}$ white noise in space and time.
J.B. Walsh: An introduction to stochastic partial differential equation. Lecture Notes in Mathematics. Springer. 1180, 265-437 (1984).

Stochastic d=1 Allen-Cahn evolution
The local version of the mesoscopic evolution is the Allen-Cahn equation,
to include fluctuations add white noise forcing:

$$
\frac{d m(x, t)}{d t}=\frac{d^{2}}{d x^{2}} m(x, t)-V^{\prime}(m(x, t))+\sqrt{\varepsilon} \dot{W}
$$

$V(m)=\frac{m^{4}}{4}-\frac{m^{2}}{2}, \dot{w}$ white noise in space and time.
J.B. Walsh: An introduction to stochastic partial differential equation. Lecture Notes in Mathematics. Springer. 1180, 265-437 (1984).

Stochastic d=1 Allen-Cahn evolution
The local version of the mesoscopic evolution is the Allen-Cahn equation,
to include fluctuations add white noise forcing:

$$
\frac{d m(x, t)}{d t}=\frac{d^{2}}{d x^{2}} m(x, t)-V^{\prime}(m(x, t))+\sqrt{\varepsilon} \dot{W}
$$

$V(m)=\frac{m^{4}}{4}-\frac{m^{2}}{2}, \dot{w}$ white noise in space and time.
J.B. Walsh: An introduction to stochastic partial differential equation. Lecture Notes in Mathematics. Springer. 1180, 265-437 (1984).

Stochastic d=1 Allen-Cahn evolution
The local version of the mesoscopic evolution is the Allen-Cahn equation,
to include fluctuations add white noise forcing:

$$
\frac{d m(x, t)}{d t}=\frac{d^{2}}{d x^{2}} m(x, t)-V^{\prime}(m(x, t))+\sqrt{\varepsilon} \dot{W}
$$

$V(m)=\frac{m^{4}}{4}-\frac{m^{2}}{2}, \dot{w}$ white noise in space and time.
J.B. Walsh: An introduction to stochastic partial differential equation. Lecture Notes in Mathematics. Springer. 1180, 265-437 (1984).

The one dimensional diffuse interface $\bar{m}(x)$ is defined as: the stationary solution of deterministic Allen-Cahn which converges to ± 1 as $x \rightarrow \pm \infty$.

$$
0=\frac{d^{2}}{d x^{2}} \bar{m}(x)-V^{\prime}(m(x)), \quad \lim _{x \rightarrow \pm \infty} \bar{m}(x)= \pm 1
$$

Interpret m as position, x as time, then it becomes Newton equation for a particle in $d=1$

The one dimensional diffuse interface $\bar{m}(x)$ is defined as: the stationary solution of deterministic Allen-Cahn which converges to ± 1 as $x \rightarrow \pm \infty$.

$$
0=\frac{d^{2}}{d x^{2}} \bar{m}(x)-V^{\prime}(m(x)), \quad \lim _{x \rightarrow \pm \infty} \bar{m}(x)= \pm 1
$$

Interpret m as position, x as time, then it becomes Newton equation for a particle in $d=1$

The one dimensional diffuse interface $\bar{m}(x)$ is defined as: the stationary solution of deterministic Allen-Cahn which converges to ± 1 as $x \rightarrow \pm \infty$.

$$
0=\frac{d^{2}}{d x^{2}} \bar{m}(x)-V^{\prime}(m(x)), \quad \lim _{x \rightarrow \pm \infty} \bar{m}(x)= \pm 1
$$

Interpret m as position, x as time, then it becomes Newton equation for a particle in $d=1$

The one dimensional diffuse interface $\bar{m}(x)$ is defined as: the stationary solution of deterministic Allen-Cahn which converges to ± 1 as $x \rightarrow \pm \infty$.

$$
0=\frac{d^{2}}{d x^{2}} \bar{m}(x)-V^{\prime}(m(x)), \quad \lim _{x \rightarrow \pm \infty} \bar{m}(x)= \pm 1
$$

Interpret m as position, x as time, then it becomes Newton equation for a particle in $d=1$

The one dimensional diffuse interface $\bar{m}(x)$ is defined as: the stationary solution of deterministic Allen-Cahn which converges to ± 1 as $x \rightarrow \pm \infty$.

$$
0=\frac{d^{2}}{d x^{2}} \bar{m}(x)-V^{\prime}(m(x)), \quad \lim _{x \rightarrow \pm \infty} \bar{m}(x)= \pm 1
$$

Interpret m as position, x as time, then it becomes Newton equation for a particle in $d=1$

$$
\frac{d^{2}}{d x^{2}} \bar{m}(x)=-\left[-V^{\prime}(m(x))\right]
$$

Orbits with energy <0 are periodic and bounded. Orbit with energy 0 is bounded and monotone. Orbit with energy >0 are unbounded.

$$
\frac{d^{2}}{d x^{2}} \bar{m}(x)=-\left[-V^{\prime}(m(x))\right]
$$

Orbits with energy <0 are periodic and bounded. Orbit with energy 0 is bounded and monotone. Orbit with energy >0 are unbounded.

Energy 0 orbit solves: $\frac{d^{2}}{d x^{2}} \bar{m}(x)=V^{\prime}(m(x)), \quad \lim _{x \rightarrow \pm \infty} \bar{m}(x)= \pm 1$
Orbit in Fig. with negative energy solves:

$$
\frac{d^{2}}{d x^{2}} m(x)=V^{\prime}(m(x)), \quad \frac{d}{d x} m\left(\pm \varepsilon^{-1}\right)=0
$$

Energy 0 orbit solves: $\frac{d^{2}}{d x^{2}} \bar{m}(x)=V^{\prime}(m(x)), \quad \lim _{x \rightarrow \pm \infty} \bar{m}(x)= \pm 1$
Orbit in Fig. with negative energy solves:

$$
\frac{d^{2}}{d x^{2}} m(x)=V^{\prime}(m(x)), \quad \frac{d}{d x} m\left(\pm \varepsilon^{-1}\right)=0
$$

Energy 0 orbit solves: $\frac{d^{2}}{d x^{2}} \bar{m}(x)=V^{\prime}(m(x)), \quad \lim _{x \rightarrow \pm \infty} \bar{m}(x)= \pm 1$
Orbit in Fig. with negative energy solves:

$$
\frac{d^{2}}{d x^{2}} m(x)=V^{\prime}(m(x)), \quad \frac{d}{d x} m\left(\pm \varepsilon^{-1}\right)=0
$$

The instanton solution defined modulo translations is $\bar{m}(x)=\tanh x$

Figure: The instanton $\bar{m}(x)$.

The instanton solution defined modulo translations is $\bar{m}(x)=\tanh x$

Figure: The instanton $\bar{m}(x)$.
x is in mesoscopic units, macroscopic coordinates $r=\varepsilon x$:

$$
\bar{m}(x) \rightarrow \bar{m}(r / \varepsilon)
$$

In the macroscopic limit $(\varepsilon \rightarrow 0)$, the instanton becomes $H(r)=\operatorname{sign}(r)$
Macroscopically interface is a point, mesoscopically it is diffuse.
x is in mesoscopic units, macroscopic coordinates $r=\varepsilon x$:

$$
\bar{m}(x) \rightarrow \bar{m}(r / \varepsilon)
$$

In the macroscopic limit $(\varepsilon \rightarrow 0)$, the instanton becomes $H(r)=\operatorname{sign}(r)$

Macroscopically interface is a point, mesoscopically it is diffuse.
x is in mesoscopic units, macroscopic coordinates $r=\varepsilon x$:

$$
\bar{m}(x) \rightarrow \bar{m}(r / \varepsilon)
$$

In the macroscopic limit $(\varepsilon \rightarrow 0)$, the instanton becomes $H(r)=\operatorname{sign}(r)$
Macroscopically interface is a point, mesoscopically it is diffuse.

Translates of the instanton $\bar{m}_{\xi}(x)=\bar{m}(x-\xi)$ are also stationary solutions connecting $\pm m_{\beta}$.
while \bar{m} is not stable, the manifold $\mathcal{M}=\left\{\bar{m}_{\xi}, \xi \in \mathbb{R}\right\}$ is stable.

Figure: Thick line is instanton manifold \mathcal{M}. Vertical arrow indicates an initial perturbation of an instanton and dashed line its relaxation toward \mathcal{M}, in general not to initial instanton.

Translates of the instanton $\bar{m}_{\xi}(x)=\bar{m}(x-\xi)$ are also stationary solutions connecting $\pm m_{\beta}$.
while \bar{m} is not stable, the manifold $\mathcal{M}=\left\{\bar{m}_{\xi}, \xi \in \mathbb{R}\right\}$ is stable.

Figure: Thick line is instanton manifold \mathcal{M}. Vertical arrow indicates an initial perturbation of an instanton and dashed line its relaxation toward \mathcal{M}, in general not to initial instanton.

Translates of the instanton $\bar{m}_{\xi}(x)=\bar{m}(x-\xi)$ are also stationary solutions connecting $\pm m_{\beta}$.
while \bar{m} is not stable, the manifold $\mathcal{M}=\left\{\bar{m}_{\xi}, \xi \in \mathbb{R}\right\}$ is stable.

Figure: Thick line is instanton manifold \mathcal{M}. Vertical arrow indicates an initial perturbation of an instanton and dashed line its relaxation toward \mathcal{M}, in general not to initial instanton.

Translates of the instanton $\bar{m}_{\xi}(x)=\bar{m}(x-\xi)$ are also stationary solutions connecting $\pm m_{\beta}$.
while \bar{m} is not stable, the manifold $\mathcal{M}=\left\{\bar{m}_{\xi}, \xi \in \mathbb{R}\right\}$ is stable.

Figure: Thick line is instanton manifold \mathcal{M}. Vertical arrow indicates an initial perturbation of an instanton and dashed line its relaxation toward \mathcal{M}, in general not to initial instanton.

Ingredients of proof.
Linearized Allen-Cahn evolution around \bar{m} :

$$
\frac{\partial u}{\partial t}=A u=\frac{\partial^{2} u}{\partial x^{2}}-V^{\prime \prime}(\bar{m}) u
$$

A is self-adjoint in $L^{2}(\mathbb{R}, d x)$.
It has an eigenvalue 0 with eigenvector $\tilde{m}^{\prime}=\frac{\sqrt{3}}{2} \bar{m}^{\prime}$.
Proof: Differentiate $\frac{d^{2} \bar{m}}{d x^{2}}-V^{\prime}(\bar{m})=0$.
Spectrum lies in \mathbb{R}_{-}.

Ingredients of proof.
Linearized Allen-Cahn evolution around \bar{m} :

$$
\frac{\partial u}{\partial t}=A u=\frac{\partial^{2} u}{\partial x^{2}}-V^{\prime \prime}(\bar{m}) u
$$

A is self-adjoint in $L^{2}(\mathbb{R}, d x)$.
It has an eigenvalue 0 with eigenvector $\tilde{m}^{\prime}=\frac{\sqrt{3}}{2} \bar{m}^{\prime}$.
Proof: Differentiate $\frac{d^{2} \bar{m}}{d x^{2}}-V^{\prime}(\bar{m})=0$.
Spectrum lies in \mathbb{R}_{-}.

Ingredients of proof.
Linearized Allen-Cahn evolution around \bar{m} :

$$
\frac{\partial u}{\partial t}=A u=\frac{\partial^{2} u}{\partial x^{2}}-V^{\prime \prime}(\bar{m}) u
$$

A is self-adjoint in $L^{2}(\mathbb{R}, d x)$.
It has an eigenvalue 0 with eigenvector $\tilde{m}^{\prime}=\frac{\sqrt{3}}{2} \bar{m}^{\prime}$.
Proof: Differentiate $\frac{d^{2} \bar{m}}{d x^{2}}-V^{\prime}(\bar{m})=0$.
Spectrum lies in \mathbb{R}_{-}.

Ingredients of proof.
Linearized Allen-Cahn evolution around \bar{m} :

$$
\frac{\partial u}{\partial t}=A u=\frac{\partial^{2} u}{\partial x^{2}}-V^{\prime \prime}(\bar{m}) u
$$

A is self-adjoint in $L^{2}(\mathbb{R}, d x)$.
It has an eigenvalue 0 with eigenvector $\tilde{m}^{\prime}=\frac{\sqrt{3}}{2} \bar{m}^{\prime}$.
Proof: Differentiate $\frac{d^{2} \bar{m}}{d x^{2}}-V^{\prime}(\bar{m})=0$.
Spectrum lies in \mathbb{R}_{-}.

Ingredients of proof.
Linearized Allen-Cahn evolution around \bar{m} :

$$
\frac{\partial u}{\partial t}=A u=\frac{\partial^{2} u}{\partial x^{2}}-V^{\prime \prime}(\bar{m}) u
$$

A is self-adjoint in $L^{2}(\mathbb{R}, d x)$.
It has an eigenvalue 0 with eigenvector $\tilde{m}^{\prime}=\frac{\sqrt{3}}{2} \bar{m}^{\prime}$.
Proof: Differentiate $\frac{d^{2} \bar{m}}{d x^{2}}-V^{\prime}(\bar{m})=0$.
Spectrum lies in \mathbb{R}_{-}.

Ingredients of proof.
Linearized Allen-Cahn evolution around \bar{m} :

$$
\frac{\partial u}{\partial t}=A u=\frac{\partial^{2} u}{\partial x^{2}}-V^{\prime \prime}(\bar{m}) u
$$

A is self-adjoint in $L^{2}(\mathbb{R}, d x)$.
It has an eigenvalue 0 with eigenvector $\tilde{m}^{\prime}=\frac{\sqrt{3}}{2} \bar{m}^{\prime}$.
Proof: Differentiate $\frac{d^{2} \bar{m}}{d x^{2}}-V^{\prime}(\bar{m})=0$.
Spectrum lies in \mathbb{R}_{-}.

Perron-Frobenius transformation: $\quad L \phi=\frac{1}{\bar{m}^{\prime}} A\left(\bar{m}^{\prime} \phi\right)$.

$$
\begin{aligned}
L \phi & =\frac{1}{\bar{m}^{\prime}} \frac{d^{2}\left(\bar{m}^{\prime} \phi\right)}{d x^{2}}-V^{\prime \prime}(\bar{m}) \phi \\
& =\frac{2}{\bar{m}^{\prime}} \frac{d \bar{m}^{\prime}}{d x} \frac{d \phi}{d x}+\frac{d^{2} \phi}{d x^{2}}
\end{aligned}
$$

Perron-Frobenius transformation: $\quad L \phi=\frac{1}{\bar{m}^{\prime}} A\left(\bar{m}^{\prime} \phi\right)$.

$$
\begin{aligned}
L \phi & =\frac{1}{\bar{m}^{\prime}} \frac{d^{2}\left(\bar{m}^{\prime} \phi\right)}{d x^{2}}-V^{\prime \prime}(\bar{m}) \phi \\
& =\frac{2}{\bar{m}^{\prime}} \frac{d \bar{m}^{\prime}}{d x} \frac{d \phi}{d x}+\frac{d^{2} \phi}{d x^{2}}
\end{aligned}
$$

Writing $u=\bar{m}^{\prime} \phi, L \phi=\frac{1}{\bar{m}^{\prime}} A\left(\bar{m}^{\prime} \phi\right)$,

$$
\begin{aligned}
\int u A u & =\int\left(\bar{m}^{\prime}\right)^{2} \phi L \phi=\int\left(\bar{m}^{\prime}\right)^{2} \phi\left\{\frac{2}{\bar{m}^{\prime}} \frac{d \bar{m}^{\prime}}{d x} \frac{d \phi}{d x}+\frac{d^{2} \phi}{d x^{2}}\right\} \\
& =\int 2 \bar{m}^{\prime} \phi \frac{d \bar{m}^{\prime}}{d x} \frac{d \phi}{d x}-\int \frac{d \phi}{d x} \frac{d}{d x}\left\{\left(\bar{m}^{\prime}\right)^{2} \phi\right\} \\
& =-\int\left(\bar{m}^{\prime}\right)^{2}\left(\frac{d \phi}{d x}\right)^{2}
\end{aligned}
$$

Writing $u=\bar{m}^{\prime} \phi, L \phi=\frac{1}{\bar{m}^{\prime}} A\left(\bar{m}^{\prime} \phi\right)$,

$$
\begin{aligned}
\int u A u & =\int\left(\bar{m}^{\prime}\right)^{2} \phi L \phi=\int\left(\bar{m}^{\prime}\right)^{2} \phi\left\{\frac{2}{\bar{m}^{\prime}} \frac{d \bar{m}^{\prime}}{d x} \frac{d \phi}{d x}+\frac{d^{2} \phi}{d x^{2}}\right\} \\
& =\int 2 \bar{m}^{\prime} \phi \frac{d \bar{m}^{\prime}}{d x} \frac{d \phi}{d x}-\int \frac{d \phi}{d x} \frac{d}{d x}\left\{\left(\bar{m}^{\prime}\right)^{2} \phi\right\} \\
& =-\int\left(\bar{m}^{\prime}\right)^{2}\left(\frac{d \phi}{d x}\right)^{2}
\end{aligned}
$$

Writing $u=\bar{m}^{\prime} \phi, L \phi=\frac{1}{\bar{m}^{\prime}} A\left(\bar{m}^{\prime} \phi\right)$,

$$
\begin{aligned}
\int u A u & =\int\left(\bar{m}^{\prime}\right)^{2} \phi L \phi=\int\left(\bar{m}^{\prime}\right)^{2} \phi\left\{\frac{2}{\bar{m}^{\prime}} \frac{d \bar{m}^{\prime}}{d x} \frac{d \phi}{d x}+\frac{d^{2} \phi}{d x^{2}}\right\} \\
& =\int 2 \bar{m}^{\prime} \phi \frac{d \bar{m}^{\prime}}{d x} \frac{d \phi}{d x}-\int \frac{d \phi}{d x} \frac{d}{d x}\left\{\left(\bar{m}^{\prime}\right)^{2} \phi\right\} \\
& =-\int\left(\bar{m}^{\prime}\right)^{2}\left(\frac{d \phi}{d x}\right)^{2}
\end{aligned}
$$

Theorem. A has a spectral gap namely
0 is a simple eigenvalue and the remaining part of the spectrum lies in $\{\lambda \in \mathbb{R}: \lambda \leq-a, a>0\}$.
P. Fife, J.B. McLeod: The approach of solutions of nonlinear diffusion equations to travelling front solutions. Arch. Rat. Mech. Anal. 65, 335-361 (1977).

Theorem. There are c and $\omega>0$ so that $\left\|e^{A t} \tilde{u}\right\|_{\infty} \leq c e^{-\omega t}\|\tilde{u}\|_{\infty}$, $\int \bar{m}^{\prime} \tilde{u}=0$

Theorem. A has a spectral gap namely
0 is a simple eigenvalue and the remaining part of the spectrum lies in $\{\lambda \in \mathbb{R}: \lambda \leq-a, a>0\}$.
P. Fife, J.B. McLeod: The approach of solutions of nonlinear diffusion equations to travelling front solutions. Arch. Rat. Mech. Anal. 65, 335-361 (1977).

Theorem. There are c and $\omega>0$ so that $\left\|e^{A t} \tilde{u}\right\|_{\infty} \leq c e^{-\omega t}\|\tilde{u}\|_{\infty}$, $\int \bar{m}^{\prime} \tilde{u}=0$

Theorem. A has a spectral gap namely
0 is a simple eigenvalue and the remaining part of the spectrum lies in $\{\lambda \in \mathbb{R}: \lambda \leq-a, a>0\}$.
P. Fife, J.B. McLeod: The approach of solutions of nonlinear diffusion equations to travelling front solutions. Arch. Rat. Mech. Anal. 65, 335-361 (1977).

Theorem. There are c and $\omega>0$ so that $\left\|e^{A t} \tilde{u}\right\|_{\infty} \leq c e^{-\omega t}\|\tilde{u}\|_{\infty}$, $\int \bar{m}^{\prime} \tilde{u}=0$

Results (heuristic).

$$
\begin{gathered}
\frac{d m(x, t)}{d t}=\frac{d^{2}}{d x^{2}} m(x, t)-V^{\prime}(m(x, t))+\sqrt{\varepsilon} \dot{w}, \quad m(x, 0)=\bar{m} \\
m\left(x, \varepsilon^{-1} t\right) \approx \bar{m}_{\xi(t)}(x)
\end{gathered}
$$

$\xi(t)$ a brownian motion with diffusion $D=\frac{3}{4}$.

Results (heuristic).

$$
\begin{gathered}
\frac{d m(x, t)}{d t}=\frac{d^{2}}{d x^{2}} m(x, t)-V^{\prime}(m(x, t))+\sqrt{\varepsilon} \dot{w}, \quad m(x, 0)=\bar{m} \\
m\left(x, \varepsilon^{-1} t\right) \approx \bar{m}_{\xi(t)}(x)
\end{gathered}
$$

$\xi(t)$ a brownian motion with diffusion $D=\frac{3}{4}$.

Results (heuristic).

$$
\begin{gathered}
\frac{d m(x, t)}{d t}=\frac{d^{2}}{d x^{2}} m(x, t)-V^{\prime}(m(x, t))+\sqrt{\varepsilon} \dot{w}, \quad m(x, 0)=\bar{m} \\
m\left(x, \varepsilon^{-1} t\right) \approx \bar{m}_{\xi(t)}(x)
\end{gathered}
$$

$\xi(t)$ a brownian motion with diffusion $D=\frac{3}{4}$.

Center of a function. ξ is the center of m if

$$
\int\left(m-\bar{m}_{\xi}\right) \bar{m}_{\xi}^{\prime}=0
$$

\bar{m}_{ξ}^{\prime} tangent to \mathcal{M} at \bar{m}_{ξ}. $m-\bar{m}_{\xi}$ is \perp to \mathcal{M} at \bar{m}_{ξ}.

Center of a function. ξ is the center of m if

$$
\int\left(m-\bar{m}_{\xi}\right) \bar{m}_{\xi}^{\prime}=0
$$

\bar{m}_{ξ}^{\prime} tangent to \mathcal{M} at \bar{m}_{ξ}. $m-\bar{m}_{\xi}$ is \perp to \mathcal{M} at \bar{m}_{ξ}.

Analysis in bounded domain: $\left[-\varepsilon^{-1}, \varepsilon^{-1}\right]$ with Neumann boundary conditions. $H_{t}^{(\varepsilon)}(x, y)$ Green function of heat equation.

$$
\begin{gathered}
m(\cdot, t)=H_{t}^{(\varepsilon)} m(\cdot, 0)-\int_{0}^{t} H_{t-s}^{(\varepsilon)}\left\{m(\cdot, s)-m(\cdot, s)^{3}\right\}+\sqrt{\varepsilon} Z^{(\varepsilon)}(\cdot, t) \\
Z^{(\varepsilon)}(x, t)=\int_{0}^{t} d w(x, s) H_{t-s}^{(\varepsilon)}(x, s)
\end{gathered}
$$

W. Faris, G. Jona-Lasinio: Large fluctuations for a nonlinear heat equation with noise. J. Phys. A 15, 3025-3055 (1982).

Analysis in bounded domain: $\left[-\varepsilon^{-1}, \varepsilon^{-1}\right]$ with Neumann boundary conditions. $H_{t}^{(\varepsilon)}(x, y)$ Green function of heat equation.

$$
\begin{gathered}
m(\cdot, t)=H_{t}^{(\varepsilon)} m(\cdot, 0)-\int_{0}^{t} H_{t-s}^{(\varepsilon)}\left\{m(\cdot, s)-m(\cdot, s)^{3}\right\}+\sqrt{\varepsilon} Z^{(\varepsilon)}(\cdot, t) \\
Z^{(\varepsilon)}(x, t)=\int_{0}^{t} d w(x, s) H_{t-s}^{(\varepsilon)}(x, s)
\end{gathered}
$$

W. Faris, G. Jona-Lasinio: Large fluctuations for a nonlinear heat equation with noise. J. Phys. A 15, 3025-3055 (1982).

Analysis in bounded domain: $\left[-\varepsilon^{-1}, \varepsilon^{-1}\right]$ with Neumann boundary conditions. $H_{t}^{(\varepsilon)}(x, y)$ Green function of heat equation.

$$
\begin{gathered}
m(\cdot, t)=H_{t}^{(\varepsilon)} m(\cdot, 0)-\int_{0}^{t} H_{t-s}^{(\varepsilon)}\left\{m(\cdot, s)-m(\cdot, s)^{3}\right\}+\sqrt{\varepsilon} Z^{(\varepsilon)}(\cdot, t) \\
Z^{(\varepsilon)}(x, t)=\int_{0}^{t} d w(x, s) H_{t-s}^{(\varepsilon)}(x, s)
\end{gathered}
$$

W. Faris, G. Jona-Lasinio: Large fluctuations for a nonlinear heat equation with noise. J. Phys. A 15, 3025-3055 (1982).

Theorem. For any $T>0$

$$
\lim _{\varepsilon \rightarrow 0} P^{(\varepsilon)}\left(\sup _{t \leq \varepsilon^{-1}} \sup _{T|x| \leq \varepsilon^{-1}}\left|m(x, t)-\bar{m}_{\xi(t)}(x)\right|>\varepsilon^{1 / 4}\right)=0
$$

where $\xi(t)$ is the center of $m(\cdot, t)$. Moreover $\xi(t)$ converges to a brownian motion with diffusion $D=\frac{3}{4}$.

Theorem. For any $T>0$

$$
\lim _{\varepsilon \rightarrow 0} P^{(\varepsilon)}\left(\sup _{t \leq \varepsilon^{-1}} \sup _{T|x| \leq \varepsilon^{-1}}\left|m(x, t)-\bar{m}_{\xi(t)}(x)\right|>\varepsilon^{1 / 4}\right)=0
$$

where $\xi(t)$ is the center of $m(\cdot, t)$. Moreover $\xi(t)$ converges to a brownian motion with diffusion $D=\frac{3}{4}$.

Theorem. For any $T>0$

$$
\lim _{\varepsilon \rightarrow 0} P^{(\varepsilon)}\left(\sup _{t \leq \varepsilon^{-1}} \sup _{T|x| \leq \varepsilon^{-1}}\left|m(x, t)-\bar{m}_{\xi(t)}(x)\right|>\varepsilon^{1 / 4}\right)=0
$$

where $\xi(t)$ is the center of $m(\cdot, t)$. Moreover $\xi(t)$ converges to a brownian motion with diffusion $D=\frac{3}{4}$.
S. Brassesco, A. De Masi, E. Presutti: Brownian fluctuations of the interface in the $\mathrm{d}=1$ Ginzburg-Landau equation with noise. Ann. Inst. H. Poincaré, Prob. et Stat. 31, 81-118 (1995). T. Funaki, The scaling limit for a stochastic PDE and the separation of phases, Prob. Theory Relat. Fields 102, 221288 (1995) .

