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Even though the macroscopic equations (Euler, Navier-Stokes,..)
are deterministic, there are many examples of stochastic
macroscopic behaviors, e.g. long term weather forecast,
development of HIV,... .

Possible explanations involve:
• Sensitive dependence on initial data (of which we have poor
control).
• Macroscopic equations are approximate equations (derived from
microscopic evolutions in some ideal limit).
• Small external forces are not (cannot be) taken into account by
macroscopic equations.

Small fluctuations are produced which may become macroscopic
after long times due to instabilities of the macroscopic equations.
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When a system is removed far from equilibrium, it will often
undergo a transition from a spatially uniform state to a state with
spatial variations, referred to as patterns.

G. Ahlers. Over two decades of pattern formation, a personal
perspective. Springer Lecture Notes in Physics, pp.91-124 (1995).

Random spatial patterns appear in the course of the
Spinodal decomposition.
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Phase diagram of a ferromagnet

R

T

m

Figure: Temperature versus magnetization, magnetizations in the region
R are “forbidden”

Any magnetization outside R can be realized in a thermodynamic
equilibrium state by applying suitable external magnetic field.
There is no pure phase with magnetization in R
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Time 0−: T > Tc and no external magnetic field, m = 0.
Time 0+: Fast cooling drives system to T < Tc with still m = 0.

No thermodynamic equilibrium state with m = 0.
m∗ and −m∗ equilibrium magnetizations at T < Tc and h = 0.

T

−m* m*
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Time t large but not too large: appearance of “microstructures” of
m∗ and −m∗ states with random geometric patterns.

Large time regime: Deterministic growth of patterns, coarsening.

t =∞: Formation of a single phase (non conservative evolutions),
or Wulff shape (conserved evolution).
Wulff shape is the surface with minimal surface tension dividing
regions of equal volume.
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(some) References.

Glauber (non conservative) dynamics in Ising with Kac potentials,
first stage of decomposition:
A. De Masi, E.Orlandi, E.Presutti, L.Triolo: Glauber evolution with
Kac potentials II. Fluctuations. Nonlinearity. 9, 27–51 (1996).

Cahn-Hilliard (conservative) dynamics with random initial data,
early stage:
S. Maier-Paape, T. Wanner: Spinodal decomposition for the
Cahn-Hilliard equation in higher dimensions. Nonlinear dynamics.
Arch. Ration. Mech. Anal. 151, 187–219 (2000).
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Coarsening (in conservative dynamics):
N.D. Alikakos, G. Fusco, G. Karali: Ostwald ripening in two
dimensions, the rigorous derivation of the equations from the
Mullins-Sekerka dynamics. J. Differential Equations 205, 1–49
(2004).
B. Niethammer, J.J.L. Velzquez: On the convergence to the
smooth self-similar solution in the LSW model. Indiana Univ.
Math. J. 55, 761–794 (2006).
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Spinodal decomposition in a mean field model.

Ising system.

Phase space: {−1, 1}Λ.

Spin configurations: σΛ = {σΛ(x), x ∈ Λ}.

Empirical magnetization density: m :=
1

|Λ|
∑
x∈Λ

σΛ(x)

Mean field Hamiltonian: h external magnetic field,

Hh,Λ(σΛ) = (−1

2
m2 − hm)|Λ|
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Recalls from thermodynamics
Let P(β, h) be the thermodynamic pressure of a magnetic body at
inverse temperature β and magnetic field h.

• For each β, P(β, h) is a convex function of h.

• By general theorems on convex functions D±h P(β, h) exist and
D−h P(β, h) ≤ D+

h P(β, h).

• For each β, the set of values of the magnetization (in a pure
phase) is {D±h P(β, h), h ∈ R}.

• When D−h P(β, h) = D+
h P(β, h) =: DhP(β, h) there is a unique

phase with magnetization DhP(β, h).
When D−h P(β, h) < D+

h P(β, h) there are two phases with
magnetization m±β (h) = D±h P(β, h).
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Gibbs hypothesis.
The Gibbs thermodynamic pressure P(β, h) is:

P(β, h) = lim
|Λ|→∞

1

β|Λ|
log Z (β, h,Λ)

where the “partition function” Z (β, h,Λ) is

Z (β, h,Λ) =
∑

σΛ∈{−1,1}Λ

e−βHh,Λ(σΛ)
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Theorem. P(β, h) is well defined and

P(β, h) = max
m∈[−1,1]

{hm −
(
− m2

2
− S(m)

β

)
}

S(m) = −1−m

2
log

1−m

2
− 1 + m

2
log

1 + m

2

Thus P(β, h) is the Legendre transform of

F (β,m) = −m2

2
− S(m)

β
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Recalls from theory of convex functions

• P(β, h) is a convex function of h (being the Legendre transform
of F (β,m)).

• For each h there exists a highest line of slope h below the graph
of F (β,m).

• Its intersection with the graph has a minimal and maximal
abscissa, m±(β, h), and

D±h P(β, h) = m±(β, h)
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Thus the value m is allowed if the tangent at m of F (β,m) is
below the graph of F (β,m) and:

it has no other intersection with the graph of F (β,m)
or else
the others are all either to the left or to the right of m.
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When β < 1, F (β,m) is strictly convex, F ′′(β,m) > 0,

Figure: The graph of F (β,m) for β ≤ 1.

all tangents to F (β,m) are below the graph with single
intersection, all values of m ∈ [−1, 1] are allowed, P(β, h) is
differentiable at all h.
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β
−1 +10−m +m

β

Figure: The graph of F (β,m) for β > 1; the value at m = ±1 is −1/2,
at m = 0 is − log 2/β. The dashed line is the highest line with slope 0
below the graph, the abscissa of the intersections are ±mβ .
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mβ is the positive solution of mβ = tanh{βmβ},

Figure: Graph of tanhβm, β > 1: the intersections with the diagonal are
at ±mβ .
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When β > 1, the tangent to F (β,m) at m ∈ (−mβ,mβ) are not
below the graph, they are all forbidden values !

|m| ≥ mβ are
allowed.

P(β, h) is differentiable at all h 6= 0, at h = 0

D±h P(β, h)
∣∣∣
h=0

= ±mβ
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Glauber dynamics.

The spin flip Markov semigroup is eLt , t ≥ 0

when L, regarded as
an operator on L∞({−1, 1}Λ,R), is

Lf (σΛ) =
∑
x∈Λ

c(x , σΛ)
(

f (σx
Λ)− f (σΛ)

)
, c(x , σΛ) > 0

σx
Λ(y) =

{
σΛ(y) ify 6= x

−σΛ(x) ify = x

eLt is defined by a power series expansion which converges because
L is bounded.
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Physical interpretation. [eLt f ](σΛ) is the value of the observable f
at time t if at time 0 the state is σΛ.

Lf (σΛ) is then its expected increment at time 0

c(x , σΛ) is the intensity of flipping the spin at x : σΛ → σx
Λ.
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Theorem. For any σΛ and t ≥ 0 there is a probability measure µ
on {−1, 1}Λ such that

[eLt f ](σΛ) =
∑
σ′Λ

f (σ′Λ)µ(σ′Λ)

and eLt is called a spin flip Markov semigroup.

µ(σ′Λ) = [eLt1σ′Λ ](σΛ)
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Glauber dynamics. When c(x , σΛ) has the form

c(x , σΛ) = c0(x , σΛ\x) e−
β
2

[HΛ(σx
Λ)−HΛ(σΛ)]

the spin flip semigroup is called the Glauber semigroup.
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Mean field, notation.

m :=
1

|Λ|
∑
x∈Λ

σΛ(x)

mx :=
1

|Λ|
∑

y∈Λ:y 6=x

σΛ(y) = m − σΛ(x)

|Λ|

Hh,Λ(σΛ) = |Λ| (−m2

2
− hm)
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Mean field intensity rates.

c(x , σΛ) = c0(mx) eβσΛ(x)(h+mx )

c0(mx) =
1

e−β(h+mx ) + eβ(h+mx )
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Theorem. Let g : [−1, 1]→ R and f (σΛ) = g
(
m(σΛ)

)
. Then

eLt f (σΛ) = eLtg(m), m :=
1

|Λ|
∑
x∈Λ

σΛ(x)

To have simpler notation we will replace L by

Lg(m) = |Λ|1 + m

2

eβ(h+m)

eβ(h+m) + e−β(h+m)

(
g(m − 2

|Λ|
)− g(m)

)
+ |Λ|1−m

2

e−β(h+m)

eβ(h+m) + e−β(h+m)

(
g(m +

2

|Λ|
)− g(m)

)
correct value has mx instead of m in the Gibbs factor, the
difference is bounded by c/|Λ|.
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Lg(m) = |Λ|1 + m

2

eβ(h+m)

eβ(h+m) + e−β(h+m)

(
g(m − 2

|Λ|
)− g(m)

)
+ |Λ|1−m

2

e−β(h+m)

eβ(h+m) + e−β(h+m)

(
g(m +

2

|Λ|
)− g(m)

)
correct value has mx instead of m in the Gibbs factor, the
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Theorem. (Macroscopic limit) Let g : [−1, 1]→ R be a smooth
function. Then

‖eLtg(m)− g(u(t; m))‖∞ ≤ ‖g ′‖∞
(

ect c ′

c |Λ|

)1/2

du(t; m)

dt
= −u(t; m) + tanh{β(u(t; m) + h)}, u(0; m) = m
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Proof. Sketch. Define eLt(m,m′) := [eLt1m′ ](m).

eLt(m,m′) ≥ 0,
∑

m′∈MΛ

eLt(m,m′) = 1

shorthand u(t) := u(t; m) and define

〈
(
m(t)− u(t)

)2〉 :=
∑

m′∈MΛ

eLt(m,m′)
(
m′ − u(t)

)2

d

dt
〈
(
m(t)− u(t)

)2〉 =
∑

m′∈MΛ

eLt(m,m′){L+
∂

∂t
}
(
m′ − u(t)

)2
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Computations.

Lm = |Λ|1 + m

2

eβ(h+m)

eβ(h+m) + e−β(h+m)
(− 2

|Λ|
)

+|Λ|1−m

2

e−β(h+m)

eβ(h+m) + e−β(h+m)
(

2

|Λ|
)

= −m + tanh{β(m + h)}

=: V (m)
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Lm2 = |Λ|1 + m

2

eβ(h+m)

eβ(h+m) + e−β(h+m)

(
(m − 2

|Λ|
)2 −m2

)
+|Λ|1−m

2

e−β(h+m)

eβ(h+m) + e−β(h+m)

(
(m +

2

|Λ|
)2 −m2

)

= 2mV (m) +
2

|Λ|
V (m)
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{L+
∂

∂t
}
(
m − u(t)

)2
= Lm2 − 2u(t)Lm

+2u(t)V (u(t))− 2mV (u(t))

= 2
(

u(t)−m
) (

V (u(t))− V (m)
)

+ 0(
1

|Λ|
)

|{L+
∂

∂t
}
(
m − u(t)

)2| ≤ c |m − u(t)|2 +
c ′

|Λ|
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Conclusion of proof.

d

dt
〈
(
m(t)− u(t)

)2〉 ≤
∑

m′∈MΛ

eLt(m,m′){c |m′ − u(t)|2 +
c ′

|Λ|
}

≤ c〈
(
m(t)− u(t)

)2〉+
c ′

|Λ|

〈
(
m(t)− u(t)

)2〉 ≤ ect c ′

c |Λ|

|eLtg(m)− g(u(t; m))| ≤ ‖g ′‖∞
(

ect c ′

c |Λ|

)1/2
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Fix h = 0, β > 1 and initial magnetization m = 0:
u(t; 0) ≡ 0 for all t ≥ 0.

Theorem. (Spinodal decomposition) Let g : [−1, 1]→ R
smooth; α := β − 1. Then:

Escape time. There is a critical time τc =
1

2α
so that:

lim
|Λ|→∞

eL(τ log |Λ|)g(0) = g(0), τ < τc

lim
|Λ|→∞

eL(τ log |Λ|)g(0) =
1

2
{g(mβ) + g(−mβ)} = 0, τ > τc
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Self-similar growth. Fix τ ∈ (0, τc) and “blow up around m = 0”.

Namely let g : R→ R be smooth and bounded; define
gΛ(m) : [−1, 1]→ R as

gΛ(m) = g
( m

eατ log |Λ||Λ|−1/2

)
eατ log |Λ||Λ|−1/2 → 0.
Then there exists C > 0 so that:

lim
|Λ|→∞

eL(τ log |Λ|)gΛ(0) =

∫
R

g(x)
e−x2/(2C)

√
2πC

dx
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Despite the whole phenomenon being random,

yet (in the relevant log |Λ| time units) the escape time is
deterministic: it occurs “precisely” at time τc = 1/(2α).

After an initial time layer (infinitesimal in log |Λ|-time units) the
“normalized magnetization” is self similar at all τ < τc .
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Heuristic proof.
• The linearized equation around m = 0 is

dψ

dt
= −ψ + βψ = αψ

Thus α is the growth rate of linearized equation.

• Suppose initially m = |Λ|−1/2. Its (deterministic) linearized
evolution is:

ψ(t) = eαt |Λ|−1/2

As Λ| → ∞, ψ(t) is infinitesimal for t < τc log |Λ| and explodes for
t > τc log |Λ|.
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• Noise provides initial fluctuation making m ≈ |Λ|−1/2.

• But then it may contrast linearized growth.

• Drift wins against fluctuations !
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The Glauber Markov process. There exists a probability space
(Ω,Pm):

Ω is the space of piecewise constant trajectories m(t), t ≥ 0,
m(t) ∈ MΛ, m(0) = m.

The Markov property.
Let s ≥ 0 and Pm(·|m(s ′), 0 ≤ s ′ ≤ s) the conditional probability
on Ω given the trajectory till time s. Then for any t > s and any
m∗ ∈ MΛ:

Pm

(
m(t) = m∗|m(s ′), 0 ≤ s ′ ≤ s

)
= eL(t−s)1m∗(m(s))
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A deterministic trajectory satisfies:

m(t)−m(0)−
∫ t

0
V (m(s)) ds = 0

Then b(t) := m(t)−m(0)−
∫ t

0
V (m(s)) ds

is a measure of the randomness.

b(t) is a random variable on Ω: given m(·) ∈ Ω we get b(·).

Suppose b(·) known and m(0) = 0, then we can compute m(·) as
solution of

m(t) =

∫ t

0
V (m(s)) ds + b(t)
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A priori information on b(t).

Theorem. b(t) is a martingale.

namely E
(
b(t)|b(s ′), s ′ ≤ s

)
= b(s).

which follows because V (m) = Lm and therefore

b(t) = m(t)−
∫ t

0
Lm(s) ds

113



A priori information on b(t).

Theorem. b(t) is a martingale.

namely E
(
b(t)|b(s ′), s ′ ≤ s

)
= b(s).

which follows because V (m) = Lm and therefore

b(t) = m(t)−
∫ t

0
Lm(s) ds

114



A priori information on b(t).

Theorem. b(t) is a martingale.

namely E
(
b(t)|b(s ′), s ′ ≤ s

)
= b(s).

which follows because V (m) = Lm and therefore

b(t) = m(t)−
∫ t

0
Lm(s) ds

115



A priori information on b(t).

Theorem. b(t) is a martingale.

namely E
(
b(t)|b(s ′), s ′ ≤ s

)
= b(s).

which follows because V (m) = Lm and therefore

b(t) = m(t)−
∫ t

0
Lm(s) ds

116



Doob’s Theorem.

E (max
s≤t

(
b2(s)

)
≤ 4E

(
b2(t)

)

By general properties of Markov processes:

b2(t)−
∫ t

0
{Lm2 − 2mLm} ds =: N(t) is a martingale

E
(
b2(t)

)
= E

(∫ t

0
{Lm2−2mLm} ds

)
= E (N(t)) = E (N(0)) = 0
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|Lm2 − 2mLm| ≤ c

|Λ|

E
(
{sup
t≤T

b(t)2
)
≤ 4E (b(T )2) ≤ 4

cT

|Λ|

P
(

sup
t≤T

b(t)2 ≥ ε
)
≤ 4cTε−2

|Λ|

T = τ log |Λ|, τ < τc =
1

2α
, ε = |Λ|−θ, θ ∈ (ατ, 1/2).

|b(t)| ≤ |Λ|−θ with probability → 1 as |Λ| → ∞.
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If we linearize around m = 0, we get

m0(t) =

∫ t

0
αm0(s) + b(t)

Since |b(t)| ≤ |Λ|−θ:

m0(t) =

∫ t

0
eα(t−s)b(s), |m0(t)| ≤ α−1eαt |Λ|−θ, t ≤ τ log |Λ|

which vanishes for ατ < θ.
By a perturbative argument also m(t) solution of the full equation
has the same property.
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The proof that the escape has occurred after τc log |Λ| requires a
better control of b(t).

It should be strong enough to displace from m = 0
Analysis is based on martingale convergence theorems.
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