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Ordering and phase separation in 1d driven systems (?)

local, noisy dynamics
no detailed balance

A criterion for phase separation in such systems (?)
Types or ordering (?)

This problem is of interest e.g. in studying traffic jam
models.

Steady states of driven systems
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Minimal model: Asymmetric Simple Exclusion Process (ASEP)

Steady State:
q=1 corresponds to an Ising model at T=
All microscopic states are equally probable.
Density is macroscopically homogeneous.
No liquid-gas transition (for any density and q).
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Extensions of the model:

more species (e.g. ABC model)

transition rate (q) depends on local configuration (e.g.
KLS model Katz, Lebowitz, Spohn) 

Ordering and phase separation in such models (?)



Given a 1d driven process, does it exhibit phase separation?

Criterion for phase separation

( )1nj ( )2nj ( )3nj ( )4nj

1n 2n 3n 4n

)(njdomains exchange particles via their current

if              decreases with n: coarsening may be 
expected to take place.

)(nj

quantitative criterion?



Phase separation takes place in one of two cases:
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Zero Range Process

prototype  of non-equilibrium models simple model,
no detailed balance it may be used to probe
non-equilibrium phenomena.



Zero Range Processes

pu(n)(1-p)u(n)

Particles in boxes with the following dynamics:



Steady state distribution of ZRP processes:

product measure
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An interesting choice of u(n) provides a condensation
transition at high densities.
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The correlation length is determined by
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For b<2 there is always a solution with a finite
for any density. Thus no condensation.

ξ

2for        1         : 1 ≤∞→∞→ ∫ − bdn
nbξ

-average number of particles in a box>< n



2for        1         : 1 ≥=∞→ ∫ − bcdn
nbξ

>=<∫ ndnnnp  )( b

n

n
enp

ξ/

)(
−

=

For b>2 there is a maximal possible density, and
hence a transition of the Bose Einstein Condensation
type.

For densities larger than c a condensate is formed which
contains a macroscopically large number of particles.



Phase diagram for b>2
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L-1000, N=3000, b=3

fluid

condensate



Use ZRP to probe possible types of ordering.

Multiple condensates?

Can the critical phase exist over a whole region
rather than at a point in parameter space?
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Non-monotonic hopping rate – multiple condensates
Y. Schwatrzkopf, M. R. Evans, D. Mukamel. J. Phys. A, 41, 205001 (2008)



Typical occupation configuration obtained from simulation
(b=3): 



L=1000, N=2000, b=3



L=1000     b=4     k=1 4=ρ
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Analysis of the occupation distribution
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Up to logarithmic corrections the peak parameters
scale with the system size as:

The peak is broad
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(“condensate” weight)



Number of particles in a condensate: )1/(* +∝ kkLn

Number of condensates: )1/(1**)( +∝Δ= kLnnLpLw

The condensed phase is composed of a large
number (sub-extensive) of meso-condensates
each contains a sub-extensive number of particles
such that the total occupation of all meso-condensates is
extensive.
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Another choice of u(n) – a sharp (exponential)
cutoff at large densities:

Here we expect condensates to contain up to aL
particles (extensive occupation), and hence a
finite number of condensates.



L=1000, N= 2300, a=1, b=4 
critical density = 0.5 
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Results of scaling analysis:

number of condensates is  Lw = O(1)



Dynamics

temporal evolution of the occupation of a single site
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Arrhenius law approach:



b=4, k=5, density=3



Can one have a critical phase for a whole range
of densities (like self organized criticality)?

A ZRP model with non-conserving processes

Connection to network dynamics
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Non conserving ZRP
A. Angel, M.R. Evans, E. Levine, D. Mukamel, PRE 72, 046132 (2005);
JSTAT  P08017 (2007)
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Sum rules:

normalization

hopping current

steady state density
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Steady state distribution

Like a conserving ZRP with an effective hopping rate

and cz += λ
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(s,k) phase diagram

large s - small creation rate (1/Ls) - low density

small s – large creation rate – high density

intermediate s ?



b=2.6, L=10,000

conserving model )66.1(   4 c == ρρ

non-conserving     s=1.96   k=3
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Low density phase
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The density vanishes in the thermodynamic limit.
The lattice is basically empty.



Critical phase A bk/(k+1)<s<k
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critical phase with a cutoff at Ly which diverges
in the thermodynamic limit



Critical phase B      2k/(k+1)<s<bk/(k+1)
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Most of the sites form a fluid with typically low
occupation. In addition a sub-extensive number
of sites  Lw are highly occupied with n=n*

(meso-condensates)
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Weak high density    k/(k+1)<s<2k/(k+1)
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Strong high density phase   s<k/(k+1)
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no fluid, all site are highly occupied by n* particles
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fully connected

+  1d lattice
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Network dynamics

correspondence between networks and ZRP 
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Rewiring dynamics
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Networks with multiple and self links (tadpoles).
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rewiring – creation – evaporation processes

one obtains the same results as for the
non-conserving ZRP
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summary

The Zero-Range-Process may be used to probe 
ordering phenomena in driven systems. 

Multiple meso-condensates may result in certain cases

Generic critical phase (like self organized criticality)

Network dynamics may exhibit similar phenomena
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