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Starting question: Does “iterating a (smooth) map on the com-
puter” reliably reflect the true ergodic properties of that map?

Iterating on the computer: First discretize, then iterate the discretiza-
tion.

The discretized map is qualitatively very different from the original
smooth one. For example, every orbit is eventually periodic.

Which properties of the smooth map should one expect to persist
under discretization? And what can one hope to prove?
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Paul Philipp Flockermann, Discretizations of expanding maps, Diss.,
Mathematische Wissenschaften ETH Zürich, Nr. 14448, 2002, 89pp.

P. P. Flockermann and O. E. Lanford, Discretization of expanding
maps, in preparation. A preliminary version – not for general distri-
bution, read at your own risk – is available at
http://www.math.ethz.ch/˜lanford/9973/paper.pdf

The slides for this lecture are available at
http://www.math.ethz.ch/˜lanford/9973/slides.pdf

For my views on the underlying philosophy, see my paper Some
informal remarks on the orbit structure of discrete approximations to
chaotic maps. Experimental Mathematics 7:4 (1998) pp. 317-324.)
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We study discretization of expanding circle endomorphisms of
degree 2

• very good ergodicity properties (unique absolutely continuous
invariant probability measure ρf .)

• about as simple as possible without being trivial

f̌ will denote a smooth mapping R → R with

• f̌(x + 1) = f̌(x) + 2 (2 = degree)

• f̌ ′(x) ≥ α−1 everywhere, α < 1 (expansive)

Such an f̌ induces by passage to quotients a smooth 2-to-1 map-
ping

f : T → T T := R/Z

Convenient simplification: f̌(0) = 0. 4



“Identify” T with [0,1). In this representation f has a discontinuity
where its value passes through 1. It has two smooth globally defined
smooth contractive “inverse branches” f−1
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Discretization: Put down a grid ΓN of N evenly spaced points in
T:

ΓN :=

{

j

N
: 0 ≤ j < N

}

(T: continuum state space, ΓN : discret(ized) state space. Elements
of Γn are grid points)

Discretized f : Apply (the exact continuum) f to the grid point x and
round the result to the nearest grid point.

fN : ΓN → ΓN
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This model for discretization is only semi-realistic:

• ΓN evenly spaced – not like machine floating point numbers
which are evenly spaced “within octaves” (makes fN locally in-
jective)

• only final result of computing f(x) is rounded – no “rounding of
intermediate quantities”

Which N? Study a limiting regime with N → ∞.

Discretized f is not a “random perturbation of f ” Probability comes
into the story – as it should – by considering not a single grid point
but an ensemble of them with macroscopic fluctuations → 0 in the
N → ∞ limit.
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Orientation: what might one hope to prove? One possibility: Let
δN denote normalized counting measure on ΓN , but regarded as a
probability measure on T. fm

N δN denotes the “push-forward” of δN

under the m-th iterate of fN .

Conjecture: For generic f , fm
N δN → ρf , (weak-∗) as N, m → ∞

with logN ≪ m ≪
√

N . Here ρf denotes the unique absolutely
continuous probability measure invariant under f .

So far as I know, no one has any idea at all about how to prove such
a statement. Compare with the following

Easy theorem:

lim
m→∞ lim

N→∞
fm
N δN = ρf .

8



Disclaimer:

• Our results: N → ∞, m fixed.

• Would like to understand: m, N → ∞, m/logN large.

1/N : grid spacing, m: number of iterations.

m/logN large means that happenings on the scale of the grid can
be magnified by the intrinsic expansivity of the map to the macro-
scopic scale.

9



Notation: For x ∈ R:

• round(x) denotes the nearest integer to x

(round up if x half odd integral), and

• frac(x) denotes x − round(x),

so

x = round(x)+frac(x), round(x) ∈ Z, −1/2 ≤ frac(x) < 1/2.

Then:

fN(x) =
1

N
round(N · f(x)) (only for x ∈ ΓN )
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Object of study: Local structure of fm
N δN for N → ∞, m fixed.

Main result: There is a well-defined limit determined by a non-trivial
probabilistic set-up (percolation on a tree)

Consequences:

δN
(

support(fm
N δN)

) → 0 as N, m → ∞.

δN ({periodic points of fN}) → 0 as N → ∞

Observation:

fm
N δN({y}) =

1

N
·
∣

∣

∣f−m
N {y}

∣

∣

∣

We study: Preimages of points of ΓN under iterates of fN (discrete
preimages.)
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Continuum preimages. The smooth mapping f is precisely 2-to-1;
there is an a, 0 < a < 1, so that f maps each of ∆0 := [0, a) and
∆1 := [a,1) bijectively onto all of [0,1). Thus

every point ȳ ∈ [0,1) has exactly two preimages, one (ȳ0, left
preimage) in ∆0 and another (ȳ1, right preimage) in ∆1.

Each of these has in turn 2 preimages, and so on, so

every point ȳ ∈ [0,1) has exactly 2m preimages under fm. These
can be labelled ȳi1,...im, i1, . . . im ∈ {0,1} (preimage of type i1 . . . im);
the rule is

ȳi1...im ∈ ∆i1 and f(ȳi1...im) = ȳi2...im
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We think of the set of all preimages, of all orders, as arranged in a
tree:

000 100 001 101 010 110 011 111

00 0110 11

0 1

Note: The order of the points in a row is not the same as their order on the circle.
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Discrete primages. Surprisingly, the situation for preimages under
the discretized map is totally different.

Observation: If g is any map of a finite set X to itself, then each
point of X has – on the average – exactly one preimage under g.

Proof. The preimages of the various points are disjoint, and their
union is all of X. Hence, the sum of the cardinalities of the preim-
ages is exactly the cardinality of X.

This applies to fN , but also to its iterates: No matter how fine the
discretization is, and no matter how large m is, each point has on
the average one preimage under fm

N . Some of the continuum preim-
ages “disappear” under discretization.
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Orientation. With our hypotheses, a grid point y has at most one
preimage under fN in ∆0 (y0, left discrete preimage) and at most
one in ∆1 (y1, right discrete preimage) Similarly: At most one dis-
crete i1 . . . im preimage, (written yi1...im, but need not exist.)

Where do the continuum preimages go? f is strictly expansive,
so moving x over one grid spacing moves f(x) up by strictly more
than one grid spacing. For large enough j, as x moves over j grid
spacings, f(x) must move up by at least j + 1, so the rounded
values must skip over at least one of the possible image grid points.
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Observation: The set of discrete preimages which do exist for a
given y ∈ ΓN forms a subtree of the continuum preimage tree. (If y

has no discrete left preimage, it can’t possibly have a discrete preim-
age of type 00 or 10.) Speak of the tree of discrete preimages of y.
Better: describe the existing preimages by giving their combinatorial
types (labels) i1 . . . im.

000 100 001 101 010 110 011 111

00 0110 11

0 1
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As the grid point y varies, the set of combinatorial types of the exist-
ing discrete preimages changes. We have a function:

y 7→ T(y) : Γn → {subtrees}

Technically: Probably best to cut off these trees at some fixed height
m0 (which can be arbitrarily large)
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Ensembles and limiting regime.
We want to study y 7→ T(y) for gridpoints y near to some given
continuum ȳ, as N → ∞.

Pick for each N a “tolerance” ηN > 0 so that

ηN → 0
N · ηN → ∞

}

as N → ∞.

Make a probability measure µN on ΓN by giving equal weight to all
grid points y with |y − ȳ| < ηN and zero weight to the others.

Study: Distribution of the tree-valued random variable T( . ) with
respect to µN in the limit N → ∞.

Next step: Will show concretely how to compute limiting values for
some representative probabilities.
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Weyl’s equidistribution theorem. Let λ1, . . . λm be real numbers
such that

1, λ1, . . . , λm is linearly independent over Q

Then

{(j · λ1, . . . j · λm) : j = 0,1, . . .}
is uniformly distributed modulo Zm.

With apologies, I want to remind you explicitly what “uniformly dis-
tributed modulo Zm” means. Let π denote the canonical projection
Rm → Tm. The assertion is as follows: Let J1, J2, . . . be any se-
quence of positive integers with Jn → ∞. For each n, let νn be
normalized counting measure on the finite subset

{π(j · λ1, . . . , j · λm) : 0 ≤ j < Jn}
of Tm Then νn converges in the weak-∗ topology to normalized
Lebesgue measure as n → ∞ .
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Two small twists:

1. If an is an arbitrary sequence in Rm, then Tanνn (νn translated
by an) again converges weak-∗ to normalized Lebesgue mea-
sure.

2. The canonical projection π : R → T can be replaced by the
fractional part map described above. We get a sequence of
normalized counting measures which converges to Lebesgue
measure on the cube [−1/2,1/2]m. Again, an arbitrary se-
quence of translations – applied before taking fractional parts –
doesn’t change things.
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First example: Probability of existence of a discrete left preim-
age.

The setup: We are fixing the continuum localization point ȳ; ȳ will
be subject to conditions which we will impose as they arise. Grid
points y have the form j/N . We write either j or y as convenient.
Say a grid point is allowed if |y− ȳ| < ηN , i.e., if it carries a non-zero
weight in our ensemble. Allowed grid points correspond to j’s with
J0(N) ≤ j < J1(N), where J1(N) − J0(N) ≈ 2 · N · δN → ∞.

Expository fiction: f−1
0 is exactly affine on the set of allowed grid

points:

f−1
0 (y) = α0y + β0
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Let y = j/N be an allowed grid point. Then

y has a discrete left preimage

⇔ ∃x ∈ ΓN ∩ ∆0 with y − 1/2N ≤ f(x) < y + 1/2N

⇔ f−1
0 [y − 1/2N, y + 1/2N) contains a grid point k/N = x

⇔ ∃ k ∈ Z : α0 · j + Nβ0 − α0/2 ≤ k < α0 · j + Nβ0 + α0/2

⇔ ∃ k ∈ Z : k − α0/2 < α0j + Nβ0 ≤ k + α0/2

⇔ frac(α0 · j + Nβ0) ∈ (−α0/2, α0/2] =: I0

If α0 is irrational then, by the simplest case of Weyl’s theorem,
{frac(α0 · j + Nβ0) : j allowed for N } becomes uniformly dis-
tributed over [−1/2,1/2] as N → ∞, so the fraction of allowed
j’s for which j/N has a discrete left preimage – i.e., the probabil-
ity of having a discrete left preimage – goes to the length α0 of the
interval I0 as N → ∞.
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Summary: If α0 = 1/f ′(ȳ0) is irrational, then the probability of
having a left discrete preimage converges as N → ∞ to α0.

Actually, this much can be proved more easily, and without the irrationality as-

sumption.

A similar argument – making again a local linearity assumption that
f−1
1 (y) = α1 · y + β1 for relevant y’s – shows that

y = j/N has a discrete right preimage if and only if

frac(α1 · j + Nβ1) ∈ (−α1/2,+α1/2] =: I1

and hence

y has both left and right discrete preimages if and only if

(frac(α0 · j + Nβ0), frac(α1 · j + Nβ1)) ∈ I0 × I1
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By Weyl’s theorem with m = 2: If

{1, α0, α1} is linearly independent over Q,

then

{(frac(α0 · j + Nβ0), frac(α1 · j + Nβ1)) : j allowed for N}

becomes uniformly distributed over the square [−1/2,1/2]×[−1/2,1/2]

as N → ∞. Hence, under the irrationality assumption above, the
probability of having both left and right discrete preimages goes to
α0·α1. In particular: The events {discrete left preimage exists} and
{discrete right preimage exists} are asymptotically independent.
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Second example: Probability of existence of discrete 10 preim-
age. y = j/N has a discrete 10 preimage if and only if

1. y has a discrete left preimage y0 = j0/N and

2. y0 has a discrete right preimage

1. holds if and only if

θ0 := frac(j · α0 + Nβ0) ∈ I0 := (−α0/2,+α0/2]

and, further,

j0 = round(j · α0 + Nβ0) = j · α0 + Nβ0 − θ0.
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Assuming – as usual – f−1
1 (y) = α10y +β10 near ȳ0: y0 = j0/N

has a discrete right preimage if and only if

frac(α10 · j0 + Nβ10) ∈ I10 := (−α10/2,+α10/2].

The expression on the left can be written as

frac(α10·(α0j+Nβ0−θ0)+Nβ10) = frac(A10j+NB10−α10θ0)

with A10 := α0 · α10. Putting

θ10 := frac(A10j + NB10),

we can combine the two conditions for the existence of y10 into

(θ0, θ10 − α10θ0) ∈ I0 × I10,
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Summarizing:

θ0(j) := frac(α0 · j +Nβ0), θ10(j) := frac(A10 · j +NB10).

j/N has a discrete 10 preimage if and only if the vertical shear

(φ1, φ2) 7→ (φ1, φ2 − α0 φ1)

sends (θ0, θ10) into the rectangle I0 × I10.

The preimage of the rectangle under the shear is a parallelogram
P10; since the shear is area-preserving

area(P10) = area(I0 × I10) = α0 × α10.
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Irrationality: Assume {1, α0, A10} linearly independent over Q.
By Weyl’s theorem, the (θ0(j), θ10(j))’s become uniformly distributed
over the square [−1/2,1/2] × [−1/2,1/2].

Hence the fraction of allowed j’s for which this pair lands in P10

converges as N → ∞ to the area α0 · α10 of P10.

Summary: Under the irrationality assumption, the probability of ex-
istence of a discrete 10 preimage → α0 · α10 as N → ∞.

30



Notation. For arbitrary i1 . . . im, we write

αi1...im :=
(

f ′(ȳi1...im)
)−1

, Ai1...im := αi1...im ·αi2...im · · ·αim.

Comprehensive irrationality assumption:

{Ai1...im : m = 0,1,2, . . .}

is linearly independent over Q.

Proposition. Under the comprehensive irrationality assumption, the
distribution of the “random discrete preimage tree” converges as
N → ∞. The proof gives an explicit characterization of the limit.
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Orientation on the irrationality assumption. This is a condition
on both f and the continuum localization point ȳ. For given f it is
never satisfied for all ȳ. We show

Proposition. The set of f ’s such that the comprehensive irrational-
ity assumption holds for all but countably many ȳ’s is residual in the
Cr topology for all 2 ≤ r ≤ ∞.

The proof is complicated and ugly.
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Describing the limiting distribution on trees.

Make a bond-percolation system on the (trivial, binary) tree of all
continuum preimages.

• Label the bonds by their lower ends.

• Bond i1 . . . im is present with probability αi1...im.

• Different bonds are independent.

• The connected component of the root is a subtree: tree-valued
random variable on the probability space of bond configura-
tions.

• Distribution of this random variable is the N → ∞ limit of the
finite-N preimage tree distribution.
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α0 α1

α00 α10 α01 α11

000 100 001 101 010 110 011 111

00 0110 11

0 1

000 100 001 101 010 110 011 111

00 0110 11

0 1
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Alternative description.

Describe a preimage tree by splitting it into order-m components:

T = T1 ∪ T2 ∪ . . . ∪ Tm ∪ . . . ; Tm ⊂ {0,1}m

(Many exclusions: If i2, . . . im /∈ Tm−1, then neither 0i2 . . . im nor
1i1 . . . im is in Tm.)

In the limit: T1, T2, . . . Tm, . . . becomes a Markov chain (state space
varying with m) with transition probability . . .

35



Consequence 1.

〈|Tm|〉N −−−−→
N→∞

((Pf)
m1)(ȳ) −−−−→

m→∞ ρf(ȳ)

where | . | denotes cardinality, 〈 . 〉N the mean value in the ensemble
for N , Pf the Ruelle-Perron-Frobenius operator for f , and ρf the
absolutely continuous probability density invariant under f .

In other words: The average number of discrete preimages of order
m converges, as first N → ∞, then m → ∞, to ρf(ȳ).

Remark. This drops out of the above results, but a simple direct
proof – not using the comprehensive irrationality assumption – can
also be given.
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Consequence 2. Let Pm
k denote the probability with respect to the

limiting distribution that |Tm| = k. Then

lim
m→∞Pm

k → 0 for k = 1,2, . . ..

Proof. Using the formula for transition probabilities of the process
(Tm) – which I didn’t give – it is easy to find an ǫk > 0 so that the
conditional probability

Pr{|Tm+1| = 0 : Tm} ≥ ǫk for |Tm| = k.

Then

Pm+1
0 ≥ Pm

0 + ǫk · Pm
k .

Hence,
∑

m
Pm

k ≤ 1

ǫk
.
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Since, by the preceding result,

〈|Tm|〉 =
∞
∑

k=0

k · Pm
k −−−−→

m→∞ ρf(ȳ) 6= 0,∞,

Pm
0 → 1 as m → ∞ – most grid points near ȳ have no high-order

discrete preimages at all – but a few of the remaining ones have
enough of them so that the average number remains of order 1 as
m → ∞.
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Among other things, the above says that, for m large, most grid
points near ȳ have no discrete preimages of order m at all provided
that the comprehensive irrationality condition is satisfied by f at ȳ.

If f is such that the comprehensive irrationality condition holds for
almost all ȳ , we can integrate over ȳ and use the dominated con-
vergence theorem to show that that most points of ΓN have no m-th
order discrete preimages at all, i.e., that (fN)mδN is concentrated
on a small subset of ΓN .
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There are many intriguing questions about the percolation picture
which we have been unable to answer; here is one:

Question: How does the probability of having at least one discrete
preimage of order m behave as m → ∞?

There is a very suggestive hint: If f is affine on each of ∆0 and
∆1, the percolation picture reduces to a classical critical branching
process, and there is a wonderful trick – using a generating function
– for analyzing these. One result: The probability in question is
asymptotic to c/m for a computable constant c. It seems very likely
that something like this remains true in the general situation we are
studying.

Numerical experiments with N = 252 (IEEE double precision num-
bers) show a rough proportionality to 1/m for values of m up to
several hundred, i.e., arguably into the range m/ logN “large”.
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