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Heat conduction

• Nonequlibrium stationary state: finite system, heat bath
(noise) on the boundary

• Approach to equilibrium: Infinite system, initial state
with constant temperature at spatial infinity.

• Models: Coupled maps and Coupled flows

I Subsystems (maps or flows) indexed by x ∈ Zd

I Couple together locally: system at x interacts with
systems at nearby y .
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Local energy and flux

Total energy is sum of local energies Hx :

H =
∑

x

Hx

No coupling: each Hx is conserved, Ḣx = 0.

Turn on coupling: only H is conserved and

Ḣx = −∇ · Jx

Jx flux of energy at site x .

Show: Hx diffuses and Jx is tied to to Hx by Fourier’s law.
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Return to equilibrium

Infinite system V = Zd , µt = φtµ0, φt Hamiltonian flow

Diffusion in hydrodynamic limit:

I Take µ0 s.t. Eµ0Hx = τ(εx)

I Let

τ(t , x) := lim
ε→0

Eµt/ε2
Hx/ε

j(t , x) := lim
ε→0

1
ε
Eµt/ε2

Jx/ε

I Show:

j = −κ(τ)∇τ Fourier law

τ̇ = ∇ · (κ(τ)∇τ) Diffusion



Heating

Local energy

Return to equilibrium

NESS

Coupled dynamics

Coupled chaos

CML

CML1

Coupling

Diffusion for maps

RW

RWRE

Mixing

Slaving

Diffusion

Scaling limit

Renormalization

Asymptotics

Fixed point

Semigroup

Assumptions

Result

General case

Analogy in
continuum

Hamiltonian systems

Conclusions

Linearized RG

Contraction

Contraction1

NESS
Fix Λ ⊂ Rd and t : ∂Λ→ R+.

Lattice box V = Λ/ε ∩ Zd ,
I Hamiltonian dynamics in V
I noise of energy Tx = tx/ε at x ∈ ∂V .

For x ∈ Λ let

jx = 1
ε
E Jx/ε τx = E Hx/ε

E expectation in NESS

Then, as ε→ 0 show

I Fourier law: j(x) = −κ(τ(x))∇τ(x)
I Temperature profile:

∇ · (κ(τ)∇τ) = 0
τ |∂Λ = t
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Coupled dynamics
Models: Coupled flows and Coupled maps

1. Weakly anharmonic coupled oscillators:

I At each x ∈ Zd (an)harmonic oscillator with
(an)harmonic interaction with nearest neighbours

I Lots of numerics.
I In a weak anharmonicity scaling limit (kinetic limit) get

formally a Boltzman equation (Spohn)
I Diffusion and Fourier proved there (J.B., A.K. math-ph

0703014)
I Hard to prove kinetic limit

2. Weakly coupled chaotic systems

I Coupled billiards or Anosov systems
I Coupled maps with a local conservation law
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Coupled chaotic systems

Weakly coupled strongly chaotic flows
I Bunimovich, Liverani, Pellegrinotti, Suhov, Eckmann,

Young, Gaspard, Gilbert,....
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Coupled map lattice

Coupled map lattice: phase spaceM = MZd
.

Local dynamics: φ : M → M

Uncoupled dynamics Φ :M→M

Φ(m)x = φ(mx )

Coupling map Ψ :M→M

Ψ local: Ψ(m)x depends weakly on my for |y − x | large.

CML dynamics: Ψ ◦ Φ :M→M
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Coupled map lattice with a conservation law

Dolgopyat, Liverani.....

We take M = R+ × N and

φ(E , θ) = (E , f (θ)), E ∈ R+, θ ∈ N

with f hyperbolic, e.g. N = S1, f (θ) = 2θ, or N = T2, f torus
automorphism

I Energy of each cell is conserved: Ex → Ex i.e. one
vanishing Lyapunov exponent per unit volume.

I Chaotic dynamics for the rest: θx → f (θx )

I Coupling typically removes the degeneracy
I Look for coupling so that total energy E =

∑
x Ex is

conserved.
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Coupling

Coupling: nearby cells interact, exchange energy

E ′y =
∑
|x−y |=1

pxy (E , θ)Ex

θ′x = f (θx ) + gx (E , θ)

I pxy ,gx depend on θu,Eu for u near x only
I pxy ≥ 0
I

∑
y pxy (E , θ) = 1 for all E , θ

Total energy
∑

x Ex conserved.
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Diffusion

Let, at t = 0, Ex → T as |x | → ∞.
Show Ex (t) diffuses to T almost surely in θ(0)

Ex (t)− T ∼ t−d/2f (x/
√

t)

Hydrodynamic scaling limit:

I Let Ex (0) = τ(εx)

I Show: limε→0 E(t/ε2, x/ε) = τ(t , x) satisfies

τ̇ = ∇ · (κ(τ)∇τ)

almost surely in θ(0).
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Random walk

Iteration of coupled maps

Ey (t + 1) =
∑
|x−y |=1

pxy (E(t), θ(t))Ex

θx (t + 1) = f (θx (t)) + gx (E(t), θ(t))

where pxy ≥ 0 and ∑
y

pxy (E , θ) = 1.

I pxy (E(t), θ(t)) := pxy (t) can be viewed as transition
probabilities of a random walk

I Ex (t) is (proportional to) the probability of finding the
walker at x at time t
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Random walk in random environment

I Transition probabilities pxy (t) depend on space and
time: random walk in a space-time dependent
environment

I pxy (t) completely determined by initial conditions of E , θ
I Prove: walk is diffusive almost surely in θ|t=0

I Typical θ|t=0 =⇒ random pxy (t)
I Prove quenched CLT for such walks i.e. a.s. in the

p-ensemble

What is the statistics of p like?
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Space time mixing environment

Suppose first pxy and gx depend only on θ i.e.

Ey (t + 1) =
∑
|x−y |=1

pxy (θ(t))Ex

θx (t + 1) = f (θx (t)) + gx (θ(t))

Then:

I f hyperbolic, , g small, smooth =⇒ f + g hyperbolic
CML =⇒ θ-dynamics space time mixing

I =⇒ pxy (t) weakly correlated in space and time
I Use Renormalization to prove randomness is

irrelevant =⇒
I Random walk satisfies CLT a.s. in p =⇒
I E diffuses almost surely in θ|t=0 (arxiv 05/08).
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Slow and fast variables

Suppose pxy depends on E too

I θ still space time mixing
I p(θ(t),E(t)) gets long range correlations through E

dependence
I RG =⇒ E dependence irrelevant =⇒
I CLT still holds (in preparation...)

Suppose also gx depends on E

I Fast variables θ get slaved to the slow ones E

Deterministic diffusion is reduced to the study of RW in
weakly correlated environment.
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Diffusion

Random walk with space time dependent transition
probability pxy (t).

Probability of a walk ω = (ω0, . . . , ωT ) in time T

PT (ω) =
T−1∏
t=0

pωtωt+1(t).

ET expectation in walks with ω0 = 0. Diffusion constant

DT = T−1ETω(T )2

Diffusion:
lim

T→∞
DT = D
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Scaling limit

Rescale to space Ω of paths ω : [0,1]→ Rd

ω(t) = T−
1
2ωTt

ET induces expectation ET on such paths

ET F (ω(·)) = ET F (T−
1
2 ωT ·)

Scaling limit
lim

T→∞
ET F := EF

for F : Ω→ R continous on path space.
Prove: allmost surely in the p ensemble E exists and
equals Wiener measure, diffusion constant D:

D = lim
T→∞

DT = Eω(1)2
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Renormalization group

Probability to walk from x to y during time interval [t , t ′]:

Pt ,t ′(x , y ,p) = (p(t) . . . p(t ′ − 1))xy

Define renormalized transition probability matrix

(Rlp)xy (t) = ldPl2t ,l2(t+1)(lx , ly ,p)

for walks on l−1Zd . Then, if l2 divides t , t ′,

Pt ,t ′(x , y ,p) = l−dPt/l2,t ′/l2(l−1x , l−1y ,Rlp).

Rlp is the Renormalization group flow in a space of
random matrices.
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Asymptotics

Scaling limit controlled by Rl as l →∞
I Diffusion constant at time t :

D(t ,p) = t−1
∑

x

P0,t (0, x ,p)x2

reduces to unit time one with rates Rlp:

D(l2,p) = D(1,Rlp).

I Let F : Ω→ Rd depend on ω restricted to τ−1Z and
l2 = T/τ . Then

ET F (ω(·)) = ERl p
τ F (τ

− 1
2 ωτ ·)

= fixed time τ problem with rates Rlp.
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Asymptotics

Scaling limit controlled by Rl as l →∞
I Diffusion constant at time t :

D(t ,p) = t−1
∑

x

P0,t (0, x ,p)x2

reduces to unit time one with rates Rlp:

D(l2,p) = D(1,Rlp).

I Let F : Ω→ Rd depend on ω restricted to τ−1Z and
l2 = T/τ . Then

ET F (ω(·)) = ERl p
τ F (τ

− 1
2 ωτ ·)

= fixed time τ problem with rates Rlp.
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Fixed point

If Rlp → p∗ as l →∞ then

D = D(1,p∗)

and scaling limit is given by

EF (ω(·)) = Ep∗
τ F (τ

− 1
2 ωτ ·).

Convergence to Wiener measure:

p∗xy = (2πD)−d/2e−
(x−y)2

2D .

Thus, we want to prove Rlp becomes nonrandom as
l →∞ and converges to p∗ a.s. in p.
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Semigroup

Rl satisfies Rll ′ = RlRl ′ .

Study Rl iteratively:

I Pick L > 1 and let R := RL

I Let pn = Rnp i.e. pn = RLnp
I Let E be expectation in p ensemble. Write

pn = Epn + bn.

I Show
I bn → 0 almost surely
I Epn → p∗.
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Assumptions

Assume
I Distribution of p translationally and rotationally invariant
I Epxy = T (x − y) exponentially decaying
I Cumulants of p cluster exponentially

E(px1y1(t1); px2y2(t2); . . . ; pxNyN (tN)) ≤ εNe−λτ ,

τ length of shortest tree on the space time support
Assumptions are satisfied by

I p(θ) analytic, local with θ analytic CML
I p(s) local in spins of a high temeperature Ising model

and the like
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Result

Theorem: In all dimensions d ≥ 1

E(Rnpx1y1(t1); Rnpx2y2(t2); . . . ; RnpxNyN (tN)) ≤ εNn e−λτ ,

with εn → 0 as n→∞ (exponentially).

Randomness irrelevant in all dimensions

Implications: D exists, scaling limit Wiener
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General case

Include E dependence of the walk

Ey (t + 1) =
∑
|x−y |=1

p(θ(t),E(t))xyEx (t)

Environment depends on the trajectory E(t).
p(s), p(t) diffusively correlated.
RG for conditional transition probabilities.

I Let En(t , x) = LndE(L2nt ,Lnx)

I pn(t) = pn(t ,En(t)) is conditioned on En(t) i.e. collects
rescaled walks on time interval [L2nt ,L2n(t + 1)]
conditioned on E(L2nt).

I {pn(t ,E)}, E fixed exponentially weakly correlated
I E dependence an irrelevant perturbation in the RG.
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Analogy in continuum

Our CML is a discrete version of the SPDE

Ė = ∂µ(aµν(E)∂νE + bµ(E)E)

where aµν and bµ are random and nonlinear

The RG produces a non random PDE in the scaling limit

Ė = ∂µ(κµν(E)∂νE)

It is a combination of RG for PDE’s (J.B. & A.K., 1992) and
RG for RWRE (J.B. & A.K., 1991).

However, the randomness is deterministic
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Hamiltonian systems

What kind of CML should model the coupled billiards?

Rare configurations of E can slow down mixing of
energies and θ dynamics =⇒

I p(θ,E) may get close to 1 or 0
I Correlation times for p(θ,E) can blow up

These issues can be studied with the RG
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Conclusions

Rather general class of CML with a conservation law can be
studied with the RG

A new approach to study hydrodynamic limits of particle
systems, interacting random walks etc.

Challenge: real Hamiltonian systems
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Linearized RG

Given p = {p(t)xy}, compute Rp = {p′(t ′)x ′y ′} from

p′(t ′)x ′y ′ = Ld (p(L2t ′) . . . p(L2(t ′ + 1)− 1))Lx ′Ly ′

Write
pxy = T (x − y) + bxy

with Ep = T and Eb = 0.
Let Rp = T ′ + b′. To linear order in b

T ′(x ′ − y ′) = LdT L2
(Lx ′ − Ly ′)

and (let t ′ = 0)

b′x ′y ′ = Ld
L2∑

t=1

∑
xy

T t (Lx ′ − x)bxy (t)T L2−t−1(y − Ly ′).
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Contraction

Let T̂ (k) = 1− ck2 + o(k2). As L→∞:

T̂ ′(k) = T̂ L2
(k/L)→ e−ck2

= p̂∗(k)

For b use
∑

y pxy = 1 implying∑
y

bxy = 0

to get

b′x ′y ′ ∼ Ld
L2∑

t=1

∑
xy

T t (Lx ′ − x)bxy (t)∇yT L2−t−1(y − Ly ′)
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For t = O(L2),

T t (Lx ′ − x) ∼ L−de−(x ′−x/L)2

∇yT L2−t−1(y − Ly ′) ∼ L−d−1e−(y ′−y/L)2

so e.g.
b′00(0) ∼ LdL−dL−d−1

∑
t<L2

∑
|x |<L

bxx (t)

so since bxx (t) ∼ i.i.d.

E(Rb)2 ∼ L−2d−2Ld+2Eb2 = L−dEb2

Noise is irrelevant in all dimensions.
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