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We present a self-contained macroscopic description of diffusive systems
interacting with boundary reservoirs and under the action of external fields.
The approach is based on simple postulates which are suggested by a wide
class of microscopic stochastic models where they are satisfied. The
description however does not refer in any way to an underlying microscopic
dynamics: the only input required are transport coefficients as functions of
thermodynamic variables, which are experimentally accessible. The basic
postulates are local equilibrium which allows a hydrodynamic description of
the evolution and a variational principle defining the out of equilibrium free
energy. Associated to the variational principle there is a Hamilton-Jacobi
equation satisfied by the free energy, very useful for concrete calculations.
Correlations over a macroscopic scale are, in our scheme, a generic property
of nonequilibrium states. Correlation functions of any order can be calculated
from the free energy functional which is generically a non local functional of
thermodynamic variables. Special attention is given to the notion of
equilibrium state from the standpoint of nonequilibrium.



L. The macroscopic state is completely described by the local density p =
p(t,x) and the associated current j = j(t,x).

2. The macroscopic evolution is qiven by the continuity equation
Ohp+V.j=0 (2.1)
together with the constitutive equation

J=J(p) ==D(p)Vp+x(p)E (2.2)

The transport coefficients D and x satisfy the local Einstein relation

2D(p) = x(p) fo(p) (2.3)

where fo 1s the equilibrium free energy of the homogencous system.

folp(x)) = Xo(x) r € 0N (2.4)

We denote by p = p(x), © € A, the stationary solution, assumed to be

P T
unique, of (2.1)+(2.4).



To state the third postulate, we need some preliminaries. Consider a
time dependent variation F' = F(t, z) of the external field so that the total
applied field is £+ F. The current then becomes j = J(p) = J(p) + v(p)F.

Given a time interval |0, 7', we then introduce the total power dissipated
by the extra current

1 1

T T
L) (F) = 5/0 dt ([T (p") = J(p")] - F) = 5/0 dt (F-x(p")F) (2.5)

where (-) denotes the integration over A and p! is the solution of the conti-
nuity equation with current j = J*(p).

The argument behind (2.5) is the following. Fix a point (¢,2) and let
p(t,x) be the local density. A local variation dF of the external field induces
the variation of current dj = )((,o(t, r))a’F . The infinitesimal power dissipated
locally is therefore F'-dj = F'- X(p(t_, -:.-:))dF . By integrating firstly over dF,
keeping the value of p(t, z) constant and then over dz and dt we get (2.5).



We define a cost functional on the set of space time trajectories as follows.
Given a trajectory p = p(t, r) we set

lor(p) = inf  Lpr(F) (2.6)
F:pF=p

namely we minimize over all the variation of the applied field F' which pro-

duce the trajectory p. If p solves the hydrodynamic equation (2.1)—(2.4) its

cost vanishes. In view of (2.5), a computation shows that

1

T
Ton() =5 [ @t ([05+V TG K@ op+V - Tp)]) @D

where the positive operator K (p) is defined on functions u : A — R vanishing
at the boundary dA by K(p)u = —V - (x(p)Vu).

Owur third postulate 1s then stated as follows.

3. The nonequilibrium free energy of the system 1s

Flp)= _mf Tjp(p) (2.8)
g p(0)=p
pl+oc)=p



the functional F 1s the maximal solution of the infinite
dimensional Hamilton-Jacobi equation

<v 5’:) <gv T(p )>:o (2.9)

where, for p that satisfies (2.4), 6F /dp vanishes at the boundary of A. The
arbitrary additive constant on such solution 1s determined by the condi-
tion F(p) = 0. Indeed, by considering the functional in (2.7) as an action
functional in variables p and d;p and performing a Legendre transform, the
associated Hamiltonian is

H(p.TI) %(vn XV + (VI J(p) (2.10)

The optimal trajectory p* for the variational prc-b]ém (2.8) is character-

1zed as follows. Let
oF

J*(p) = —x(p )V—p—J( p) (2.11)

then p* is the time reversal of the solution to

Bip+V - J(p) = Bip—V - {D(p)v,o—"s(( )[E+V%H —0  (212)

with the boundary condition (2.4).



The previous claim 1s proven as follows. Let F be the maximal solution
of the Hamilton-Jacobi equation and J* as defined in (2.11). Fix a time
interval [0, 7] and a path p(t), t € [0,7]. We claim that

Loz (p) = F(p(T)) = F (P(O))

T
%fﬂ dt <[a¢,a—v-J*(m] I{(ﬁ)‘l[ag,é—V~J*(ﬁ)]> (2.13)

as can be shown by a direct computation using (2.7), the Hamilton-Jacobi
equation (2.9) and the definition (2.11) of J*. From the identity (2.13) we
immediately deduce that the optimal path for the variational problem (2.8)
is the time reversal of the solution to (2.12).

Since the optimal trajectory is the time reversal of the solution to (2.12),
the applied field 1s

F=-v2
dp

On the other hand, by (2.11) and the Hamilton-Jacobi equation (2.9),

oF oF
9.5 — —{ 7(5) - v >: J(5) - F
(5520) ==(J0) xD)V5-) =) F)
which 1s the power given to system by the applied field F. Hence

oOF

F(p)—f(,ﬁ)z/ﬂ dt<—d¢p> /Dmdt(J(f})-F>

1s the total work done by the external field.



Characterization of equilibrium systems

We define the system to be in equilibrium 1f and only if the current in the
stationary profile p vanishes, 1.e. J(p) = 0. A particular case 1s that of a
homogeneous equilibrium state, obtained by setting the external field E' = 0
and chosing a constant chemical potential potential at the boundary, 1.e.
Mo(x) = A. Let p = const. be the equilibrium density, i.e. p solves A = f4(p).
[t is then readily seen that the functional F defined in (2.8) is given by

Flp) = ] dz {fo(p(@)) = folP) — Fi(P) [p(z) — P]}

in which the first difference 1s the variation of the free energy fu while the
second term 1s due the mteraction with the reservoirs.

We next show that also for a non homogenous equilibrium, characterized
bv a non constant stationarv nrofile 5(z) such that J(5) = 0 the free enerev

functional F can be explicitly computed. Let

Hpe)= [ ar [ ds ) = o) = Rope) — 3(p() o — ple)]
s Jaa)

we claim that the maximal solution of the Hamilton-Jacobi equation (2.9) is

Fip) = [ dr 1 (o). (3.1)



Indeed from the previous expression we get

oF
= folp(z)) = fo(p(x))
op(x) " ’
so that, by an mtegration by parts,

1

(V) = D] X0 [Fe) - (D))

+{[f(o) = PV - | D(0)Vp — X(DE|)
= LU0~ K@) A0 [VHai) 28] ) = 0

where we used (2.3) and (1/2)Vf(p) — E = x(p)~tJ(p) = 0.

In remains to show that F, as defined in (3.1), 1s the maximal solution
to the Hamilton-Jacobi equation (2.9). Recalling (2.7), simple computations
show that

Iom(p) = F(H(T)) - F(p(0))

T
+ /D at ([0 -V - JP K(p) " [0p -V - I(p)]) (32

which clearly implies the maximahty of F.



the condition J(p) = 0 is equivalent to either one of
the following statements.

— There exists a function A : A — R such that

2F(r)=VA(xr), <A Alr) = No(z), zeEIA (3.3)

— The system 1s macroscpically reversible in the sense that for each profile

p we have J*(p) = J(p).

We emphasize that the notion of macroscopic reversibility does not imply
that an underlying microscopic model satisfies the detailed balance condition.

We also note that macroscopic reversibility J(p) = J*(p) implies the in-
variance of the Hamiltonian H in (2.10) under the time reversal symmetry,

(p,II) +— (p, OF [op — H), where JF is the maximal solution of the
Hamilton-Jacobi equation (2.9).



So far we have assumed the Einstein relation and we have shown that
-for equilibrium systems- it implies (3.1). Conversely, we now show that
macroscopic reversibility and (3.1) implies the Einstein relation (2.3). By
writing explicitely J(p) = J*(p) we obtain

—[X(p)R(p) = 2D(p)[Vp+ x(p) [R(p) —2x" (7)) D(p)|Vp=0 (34

where R 1s the second derivative of f; in the case of one-component systems
while Rij = 0,,0,, fo for multi-component systems. In (3.4) we used, be-
sides (3.1), J(p) = 0 to eliminate E. Note that J(p) = 0 follows from the
Hamilton-Jacobi equation and J(p) = J*(p) without further assumptions.

Since Vp and Vp are arbitrary the Einstein relation 20 = v R follows from
(3.4).



We have defined the macroscopic reversibility as the identity between the
currents J(p) and J*(p). We emphasize that this is not equivalent to the
identity between V - J(p) and V - J*(p). Indeed, we next show that there
exists a non reversible system, i.e. satisfying .J(p) % 0, such that the optimal
trajectory for the variational problem (2.8) is the time reversal of the solution
to the hydrodynamic equation (2.1)—(2.5).

Let A = [0,1], D(p) = x(p) = 1, A(0) = Ay(1) = A, and a constant
external field £ #£ 0. In this case hydrodynamic evolution of the density
1s given by the heat equation independently of the field E. The stationary
profile is p = A, the associated current is J(p) = E # 0. By a computation
analogous to the one leading to (3.2), we easily get that

1
Fip) = [ do [otx) =71’

and the optimal trajectory for the variational problem (2.8) is the time rever-
sal of the solution to the heat equation. On the other hand J(p) = —-Vp+ FE
while J*(p) = -Vp - FE



Perturbation theory and correlation func-
tions

We mtroduce the pressure functional as the Legendre transform of free
energy F

G(h) =sup { (hp) — F(p)}
o

By Legendre duality, the Hamilton-Jacobi equation (2.9) can then be rewrit-
ten m terms of G as

l/o A 0G99 OGN\ -\ _ ,
3(Vh x(57) V)~ (Vh-D() Vi +x(57) By =0 @
where h vanishes at the boundary of A.

The functional G 1s the generating functional of the correlation functions:;
in particular by defining

(T'Y(.T__' y) =
we have, since F has a minimum at p,
1

G(h) = (h, 7} + 5 (1, Ch) + ofh?)

or equivalently

1
F(p)=5{(p=p),C7(p = p)) +ol(p = p)*)



By expanding the Hamilton-Jacobi equation (4.1) to the second order in
h, and we using that §G/5h(x) = p(z) + Ch(z) + o(h?), we get the following
equation for C'

1 _ L
(Vh-|3x()Vh=V(D(GECh) + X ()(CRE|) =0 (42)
We now make the change of variable

Clz,y) = Cey(x)d(x —y) + B(x, y)

where C, () is the equilibrium covariance, given by C.,(z) = (1/2)D~Y(p(x))x(p(x)).
Equation (4.2) for the correlation function then gives the following equation
for B

L1B(z,y) = a(z)d(x —y) (4.3)

where £ is the formal adjoint of the elliptic operator £ = L, + L,, where
L, = Di;(p(2))0,,0:, + xi;(p(x)) E; ()0,
and )
a(x) = 0., [xi;(A(x)) Dy (p(x)) Ju(z)]
where we racall J = J(p) = —D(p(2))Vp(x) + x(p(x))E(x) is the macro-

scopic current in the stationary profile.
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