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The classical EY-model

PSfragreplacements
TL

γL γR

TR

(1) (2) (N)

Ref. J.-P. Eckmann and L.-S. Young Commun. Math. Phys. 262 237 (2006)
Ref. H. Larralde, F. Leyvraz and C. Mejía-Monasterio J. Stat. Phys. 113 197 (2003)

Philippe Jacquet A Chain of Quantum Dots with Self-Consistent Reservoirs



Introduction
General Properties

Ohm and Fourier Laws
Conclusion

Motivations
The Model
The Strategy

The classical EY-model

PSfragreplacements
TL

γL γR

TR

(1) (2) (N)

Ref. J.-P. Eckmann and L.-S. Young Commun. Math. Phys. 262 237 (2006)
Ref. H. Larralde, F. Leyvraz and C. Mejía-Monasterio J. Stat. Phys. 113 197 (2003)

Assumption: The system admits a stationary state

Fourier’s law

J = −γ TR − TL

N
(γL = γR = γ)
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The classical EY-model

PSfragreplacements

TL

γL γR

TR

(1) (2) (N)

The problem
Establish a quantum version of the EY-model

Questions
1 Does Fourier’s law still hold ?
2 Interference effects on the profile and current ?
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The classical EY-model

PSfragreplacements

TL

γL γR

TR

(1) (2) (N)

The problem
Establish a quantum version of the EY-model

Difficulty
What are quantum discs ?
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An Effective Disc

PSfrag replacements

RESERVOIR

Idea
Effective disc = Particle reservoir satisfying the self-consistency
conditiona

I = 0 and J = 0
aRef. M. Visscher and M. Rich PRA 12 675 (1975)
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The Scattering Approach

CONDUCTORL R

Idea
View the CONDUCTOR as a TARGET for the particles
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The Scattering Approach

CONDUCTORL R

ψin(E)
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CONDUCTORL R

ψout(E)
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The Scattering Approach

S(E)L R

Scattering Matrix

ψout(E) = S(E) ψin(E)

Particle current conservation needs S(E) to be unitary
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The Scattering Approach

Multi-lead system

Scattering Matrix
ψout(E) = S(E) ψin(E)
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A Chain of Quantum Dots

PSfrag replacements

TL

µL µR

TR

T1 µ1 T2 µ2 TN µN

S(1) S(2) S(N)

1 Transport properties: Scattering matrices S(1), . . . ,S(N)
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PSfrag replacements

TL

µL µR

TR

T1 µ1 T2 µ2 TN µN

S(1) S(2) S(N)

1 Transport properties: Scattering matrices S(1), . . . ,S(N)

2 Effective discs = Particle reservoirs satisfying the
self-consistency condition

Ii = 0 and Ji = 0 for i = 1, . . . ,N
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A Chain of Quantum Dots

PSfrag replacements

TL

µL µR

TR

T1 µ1 T2 µ2 TN µN

S(1) S(2) S(N)

1 Transport properties: Scattering matrices S(1), . . . ,S(N)

2 Effective discs = Particle reservoirs satisfying the
self-consistency condition

Ii = 0 and Ji = 0 for i = 1, . . . ,N

3 Reservoirs : MB, FD or BE
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A Chain of Quantum Dots

PSfrag replacements

TL

µL µR

TR

T1 µ1 T2 µ2 TN µN

S(1) S(2) S(N)

Terminology

All expressions without a superscript (MB, FD or BE) hold
in the three cases
Universality = Independent of f (MB, FD or BE)
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PART 1 : Any Geometry

Multi-lead system with N + 2 leads and any scattering
matrix S

Introduce the framework and present the main
properties in the linear response regime

Philippe Jacquet A Chain of Quantum Dots with Self-Consistent Reservoirs



Introduction
General Properties

Ohm and Fourier Laws
Conclusion

Motivations
The Model
The Strategy

PART 2 : Linear Geometry

PSfrag replacements

TL

µL µR

TR

T1 µ1 T2 µ2 TN µN

S(1) S(2) S(N)

1 Given (TL, µL) and (TR, µR) we find (Ti , µi ), for i = 1 . . . ,N,
satisfying the self-consistency condition

Ii = 0 and Ji = 0 for i = 1, . . . ,N

2 Determine the currents: IL = −IR and JL = −JR
3 Linear geometry : Build S from S(1), . . . ,S(N)

=⇒ IL and JL go from left to right
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The Electric and Heat Currents
Onsager Relations and Entropy Production
Equilibrium and Non-Equilibrium States

The Electric Current
Notations (i , j ∈ {L,1, . . . ,N,R})

The scattering matrix: S
The transmission probability: tij = |Sij |2
The distribution function

fi (E) = exp
(
−E − µi

kBTi

)

︸ ︷︷ ︸
MB

or
[
exp

(
E − µi

kBTi

)
± 1
]−1

︸ ︷︷ ︸
+:FD −:BE

Boltzmann and Planck constants: kB, h Charge: e
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The Electric Current
Notations (i , j ∈ {L,1, . . . ,N,R})

The scattering matrix: S
The transmission probability: tij = |Sij |2
The distribution function

fi (E) = exp
(
−E − µi

kBTi

)

︸ ︷︷ ︸
MB

or
[
exp

(
E − µi

kBTi

)
± 1
]−1

︸ ︷︷ ︸
+:FD −:BE

Boltzmann and Planck constants: kB, h Charge: e

Assumption: No interaction among the particles

Ii =
e
h

∑

j 6=i

∫ ∞

0

[
fi (E)tji (E)− fj(E)tij (E)

]
dE

Ref. Electronic Transport in Mesoscopic Systems by S. Datta (1995)
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The Heat Current

(Particle Current)i =
1
h

∑

j 6=i

∫ ∞

0

[
fi (E)tji(E)− fj (E)tij (E)

]
dE

(Energy Current)i =
1
h

∑

j 6=i

∫ ∞

0

[
fi (E)tji(E)− fj (E)tij (E)

]
E dE
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The Heat Current

(Particle Current)i =
1
h

∑

j 6=i

∫ ∞

0

[
fi (E)tji(E)− fj (E)tij (E)

]
dE

(Energy Current)i =
1
h

∑

j 6=i

∫ ∞

0

[
fi (E)tji(E)− fj (E)tij (E)

]
E dE

First Law of Thermodynamics: δQ = dE − µdN

Ji =
1
h

∑

j 6=i

∫ ∞

0

[
fi (E)tji(E)− fj (E)tij (E)

]
(E − µi)dE

Ref. P. N. Butcher J. Phys.: Condens. Matter 2 (1990)
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Summary

Γij = δij − tij tij = |Sij |2

Electric Current: Ii =
e
h

∑

j

∫ ∞

0
fj(E)Γij (E) dE

Heat Current: Ji =
1
h

∑

j

∫ ∞

0
fj (E)Γij(E)(E − µi) dE
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Summary

Γij = δij − tij tij = |Sij |2

Electric Current: Ii =
e
h

∑

j

∫ ∞

0
fj(E)Γij (E) dE

Heat Current: Ji =
1
h

∑

j

∫ ∞

0
fj (E)Γij(E)(E − µi) dE

Conservation laws

Charge:
∑

i

Ii = 0 Energy:
∑

i

(
Ji +

µi

e
Ii
)

= 0
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Summary

Γij = δij − tij tij = |Sij |2

Electric Current: Ii =
e
h

∑

j

∫ ∞

0
fj(E)Γij (E) dE

Heat Current: Ji =
1
h

∑

j

∫ ∞

0
fj (E)Γij(E)(E − µi) dE

Conservation laws

Charge:
∑

i

Ii = 0 Heat in Linear Regime:
∑

i

Ji = 0
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Linear Response

Notations: Tj = T + δTj and µj = µ+ δµj

f (E ; Tj , µj ) = f (E ; T , µ) +
∂f
∂T

(E ; T , µ) δTj +
∂f
∂µ

(E ; T , µ) δµj
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Linear Response

Notations: Tj = T + δTj and µj = µ+ δµj

f (E ; Tj , µj ) = f (E ; T , µ) +
∂f
∂T

(E ; T , µ) δTj +
∂f
∂µ

(E ; T , µ) δµj

For f MB, FD or BE

f (E ; Tj , µj ) = f
(

E − µj

kBTj

)
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Linear Response

Notations: Tj = T + δTj and µj = µ+ δµj

f (E ; Tj , µj ) = f (E ; T , µ) +
∂f
∂T

(E ; T , µ)
︸ ︷︷ ︸
− ∂f
∂E (E ;T ,µ) ( E−µ

T )

δTj +
∂f
∂µ

(E ; T , µ)

︸ ︷︷ ︸
− ∂f
∂E (E ;T ,µ)

δµj

For f MB, FD or BE

f (E ; Tj , µj ) = f
(

E − µj

kBTj

)
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Linear Response

Notations: Tj = T + δTj and µj = µ+ δµj

f (E ; Tj , µj ) = f (E ; T , µ) +
∂f
∂T

(E ; T , µ)
︸ ︷︷ ︸
− ∂f
∂E (E ;T ,µ) ( E−µ

T )

δTj +
∂f
∂µ

(E ; T , µ)

︸ ︷︷ ︸
− ∂f
∂E (E ;T ,µ)

δµj

For f MB, FD or BE

f (E ; Tj , µj ) = f
(

E − µj

kBTj

)

For f MB, FD or BE

f (E ; Tj , µj ) = f (E ; T , µ)− ∂f
∂E

(E ; T , µ)

[(
E − µ

T

)
δTj + δµj

]
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Linear Response

Ii =
e
h

∑

j

∫ ∞

0
fj (E)Γij(E) dE

Ji =
1
h

∑

j

∫ ∞

0
fj(E)Γij (E)(E − µi) dE

f (E ; Tj , µj ) = f (E ; T , µ)− ∂f
∂E

(E ; T , µ)

[(
E − µ

T

)
δTj + δµj

]

Philippe Jacquet A Chain of Quantum Dots with Self-Consistent Reservoirs



Introduction
General Properties

Ohm and Fourier Laws
Conclusion

The Electric and Heat Currents
Onsager Relations and Entropy Production
Equilibrium and Non-Equilibrium States

Onsager Relations

Ii =
∑

j

L(0)
ij

δµj

e
+ L(1)

ij
δTj

T

Ji =
∑

j

L(1)
ij

δµj

e
+ L(2)

ij
δTj

T

L(0)
ij = −e2

h

∫ ∞

0

∂f
∂E

(E ; T , µ)Γij (E) dE

L(1)
ij = −e

h
kBT

∫ ∞

0

(
E − µ
kBT

)
∂f
∂E

(E ; T , µ)Γij(E) dE

L(2)
ij = −(kBT )2

h

∫ ∞

0

(
E − µ
kBT

)2 ∂f
∂E

(E ; T , µ)Γij(E) dE

Philippe Jacquet A Chain of Quantum Dots with Self-Consistent Reservoirs
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Onsager Relations

Ii =
∑

j

L(0)
ij

δµj

e
+ L(1)

ij
δTj

T

Ji =
∑

j

L(1)
ij

δµj

e
+ L(2)

ij
δTj

T

L(0)
ij = −e2

h

∫ ∞

0

∂f
∂E

(E ; T , µ)Γij(E) dE Γij = δij − |Sij |2

L(1)
ij = −e

h
kBT

∫ ∞

0

(
E − µ
kBT

)
∂f
∂E

(E ; T , µ)Γij(E) dE

L(2)
ij = −(kBT )2

h

∫ ∞

0

(
E − µ
kBT

)2 ∂f
∂E

(E ; T , µ)Γij (E) dE

The Onsager relations hold: Sij = Sji =⇒ Lij = Lji

Philippe Jacquet A Chain of Quantum Dots with Self-Consistent Reservoirs
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The Main Assumption

Assumption
S does not depend on the energy

Interests

Good approximation in some limit cases (e.g. low T in FD)

Consequences of S(E) = Constant

Philippe Jacquet A Chain of Quantum Dots with Self-Consistent Reservoirs
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Consequence of S(E) = Constant

L(0)
ij = −e2

h

∫ ∞

0

∂f
∂E

(E ; T , µ)Γij (E) dE

L(1)
ij = −e

h
kBT

∫ ∞

0

(
E − µ
kBT

)
∂f
∂E

(E ; T , µ)Γij(E) dE

L(2)
ij = −(kBT )2

h

∫ ∞

0

(
E − µ
kBT

)2 ∂f
∂E

(E ; T , µ)Γij(E) dE

Philippe Jacquet A Chain of Quantum Dots with Self-Consistent Reservoirs
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Consequence of S(E) = Constant

L(0)
ij = −e2

h

∫ ∞

0

∂f
∂E

(E ; T , µ) dE · Γij

L(1)
ij = −e

h
kBT

∫ ∞

0

(
E − µ
kBT

)
∂f
∂E

(E ; T , µ) dE · Γij

L(2)
ij = −(kBT )2

h

∫ ∞

0

(
E − µ
kBT

)2 ∂f
∂E

(E ; T , µ) dE · Γij

Philippe Jacquet A Chain of Quantum Dots with Self-Consistent Reservoirs
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Consequence of S(E) = Constant

L(0)
ij =

e2

h

[
−
∫ ∞

0

∂f
∂E

(E ; T , µ) dE
]

︸ ︷︷ ︸
C(0)

·Γij

L(1)
ij =

e
h

kBT
[
−
∫ ∞

0

(
E − µ
kBT

)
∂f
∂E

(E ; T , µ) dE
]

︸ ︷︷ ︸
C(1)

·Γij

L(2)
ij =

(kBT )2

h

[
−
∫ ∞

0

(
E − µ
kBT

)2 ∂f
∂E

(E ; T , µ) dE

]

︸ ︷︷ ︸
C(2)

·Γij

Philippe Jacquet A Chain of Quantum Dots with Self-Consistent Reservoirs
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Consequence of S(E) = Constant

L(0)
ij =

e2

h
C(0)Γij

L(1)
ij =

e
h

kBTC(1)Γij

L(2)
ij =

(kBT )2

h
C(2)Γij

Philippe Jacquet A Chain of Quantum Dots with Self-Consistent Reservoirs
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Consequence of S(E) = Constant

L(0)
ij =

e2

h
C(0)Γij

L(1)
ij =

e
h

kBTC(1)Γij =
kBT

e
C(1)

C(0)
L(0)

ij

L(2)
ij =

(kBT )2

h
C(2)Γij =

k2
BT 2

e2
C(2)

C(0)
L(0)

ij

Philippe Jacquet A Chain of Quantum Dots with Self-Consistent Reservoirs
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Consequence of S(E) = Constant

L(0)
ij =

e2

h
C(0)Γij

L(1)
ij =

e
h

kBTC(1)Γij =
kBT

e
C(1)

C(0)︸ ︷︷ ︸
L̃0

L(0)
ij

L(2)
ij =

(kBT )2

h
C(2)Γij =

k2
BT 2

e2
C(2)

C(0)︸ ︷︷ ︸
L0

L(0)
ij

Philippe Jacquet A Chain of Quantum Dots with Self-Consistent Reservoirs
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The Coefficients C(n)

C(n) = −
∫ ∞

0

(
E − µ
kBT

)n ∂f
∂E

(E ; T , µ) dE

Philippe Jacquet A Chain of Quantum Dots with Self-Consistent Reservoirs



Introduction
General Properties

Ohm and Fourier Laws
Conclusion

The Electric and Heat Currents
Onsager Relations and Entropy Production
Equilibrium and Non-Equilibrium States

The Coefficients C(n)

C(n) = −
∫ ∞

0

(
E − µ
kBT

)n ∂f
∂E

(E ; T , µ) dE

CMB(n) =

∫ ∞

x0

xne−x dx

C±(n) =

∫ ∞

x0

xnex

(ex±1)2 dx

where

x0 = − µ

kBT




∈ (−∞,∞) in MB
∈ (−∞,∞) in FD
∈ (0,∞) in BE

Philippe Jacquet A Chain of Quantum Dots with Self-Consistent Reservoirs
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The Coefficients C(n)

C(n) = −
∫ ∞

0

(
E − µ
kBT

)n ∂f
∂E

(E ; T , µ) dE

CMB(n) =

∫ ∞

x0

xne−x dx

C±(n) =

∫ ∞

x0

xnex

(ex±1)2 dx

where

x0 = − µ

kBT




∈ (−1,∞) in MB
∈ (−∞,∞) in FD
∈ (0,∞) in BE

We need C(n) > 0 for n = 0,1,2
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Summary

Ii =
∑

j

L(0)
ij

δµj

e
+ L(1)

ij
δTj

T

Ji =
∑

j

L(1)
ij

δµj

e
+ L(2)

ij
δTj

T

Consequence of S(E) = Constant

L(0)
ij =

e2

h
C(0)Γij L(1)

ij = L̃0L(0)
ij and L(2)

ij = L0L(0)
ij

L0 =
k2

BT 2

e2
C(2)

C(0)
> 0 and L̃0 =

kBT
e

C(1)

C(0)
> 0
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The Transport Matrix

L(k)
ij ∼ Γij = δij − tij (tij ∈ (0,1))

Properties

1 L(k)
ij

{
> 0 if i = j
< 0 if i 6= j

2 ∑

i

L(k)
ij = 0 , ∀j and

∑

j

L(k)
ij = 0 , ∀i
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The Transport Matrix

L(k)
ij ∼ Γij = δij − tij (tij ∈ (0,1))

Properties

1 L(k)
ij

{
> 0 if i = j
< 0 if i 6= j

2 ∑

i

L(k)
ij = 0 , ∀j and

∑

j

L(k)
ij = 0 , ∀i

For f MB, FD or BE (L(1)
ij = L̃0L(0)

ij and L(2)
ij = L0L(0)

ij )

R ≡ L̃0√
L0

=
C(1)√

C(0) · C(2)
∈ (0,1), ∀x0 = −µ/(kBT )
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Entropy Production
Theorem

L =

(
L(0) L(1)

L(1) L(2)

)
, L(k) =




L(k)
LL L(k)

L1 . . . L(k)
LN L(k)

LR

L(k)
1L L(k)

11 . . . L(k)
1N L(k)

1R
...

...
...

...
...

L(k)
NL L(k)

N1 . . . L(k)
NN L(k)

NR

L(k)
RL L(k)

R1 . . . L(k)
RN L(k)

RR




The matrix L is real positive semi-definite:

σs =
∑

i

∑

j

LijViVj ≥ 0

Vi =

{
δµi/e if i = 1, . . . ,N + 2
δTi/T if i = N + 3, . . . ,2N + 4
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Main Trick of the Proof σs ≥ 0

Notations: Xi = δµi/e and Zi =
√

L0 δTi/T

σs =
∑

i<j

(−L(0)
ij )

︸ ︷︷ ︸
>0

Iij

Iij = (Xi−Xj)
2+(Zi−Zj)

2−2RCij , Cij = XiZj +XjZi−XiZi−XjZj

TRICK : 0 < R < 1

Cij ≤ 0 : Iij ≥ (Xi − Xj)
2 + (Zi − Zj)

2 ≥ 0

Cij > 0 : Iij > (Xi−Xj)
2+(Zi−Zj)

2−2Cij = (Xi−Xj +Zi−Zj)
2 ≥ 0

Ref. M. Büttiker IBM J. Res. Dev. 3 317-334 (1988)
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Equilibrium and Non-Equilibrium States

Definition (Equilibrium)
µL = µ1 = · · · = µN = µR and TL = T1 = · · · = TN = TR
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Equilibrium and Non-Equilibrium States

Definition (Equilibrium)
µL = µ1 = · · · = µN = µR and TL = T1 = · · · = TN = TR

Theorem
{System is at equilibrium} ⇐⇒ {Ii = 0 and Ji = 0, ∀i}
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The Electric and Heat Currents
Onsager Relations and Entropy Production
Equilibrium and Non-Equilibrium States

Equilibrium and Non-Equilibrium States

Definition (Equilibrium)
µL = µ1 = · · · = µN = µR and TL = T1 = · · · = TN = TR

Theorem
{System is at equilibrium} ⇐⇒ {Ii = 0 and Ji = 0, ∀i}

Theorem
{

System is at
equilibrium

}
⇐⇒ σs = 0

{
System is

out of equilibrium

}
⇐⇒ σs > 0

Main trick in the proofs: 0 < R < 1
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The Self-Consistency Condition

PSfrag replacements

TL

µL µR

TR

T1 µ1 T2 µ2 TN µN

S(1) S(2) S(N)

The problem

Given (TL, µL) and (TR, µR), find (Ti , µi ), for i = 1 . . . ,N, such
that

Ii = 0 and Ji = 0 for i = 1, . . . ,N
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The Self-Consistency Condition

For i = 1, . . . ,N:

Ii =
∑

j

L(0)
ij

δµj

e
+ L(1)

ij
δTj

T
= 0

Ji =
∑

j

L(1)
ij

δµj

e
+ L(2)

ij
δTj

T
= 0

N∑

j=1

(
L(0)

ij
δµj

e
+ L(1)

ij
δTj

T

)
= −

∑

j=L,R

(
L(0)

ij
δµj

e
+ L(1)

ij
δTj

T

)

N∑

j=1

(
L(1)

ij
δµj

e
+ L(2)

ij
δTj

T

)
= −

∑

j=L,R

(
L(1)

ij
δµj

e
+ L(2)

ij
δTj

T

)
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The Self-Consistency Condition

Notations: Xi = δµi/e, Yi = δTi/T , Mij = L(0)
ij , (D`)i = L(0)

i`

M
(

X + L̃0Y
)

= −
∑

`=L,R

(
X` + L̃0Y`

)
D`

M
(

L̃0X + L0Y
)

= −
∑

`=L,R

(
L̃0X` + L0Y`

)
D`

TRICK: R 6= 1 =⇒ L0 6= (L̃0)2

MX = −
∑

`=L,R

D`X` and MY = −
∑

`=L,R

D`Y`
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The profiles

Theorem (i = 1, . . . ,N, Γij = δij − tij )

µi = µL + Ai (µR − µL)

Ti = TL + Ai(TR − TL) with Ai =
N∑

j=1

(Γ−1)ij tjR

Consequences of S(E) = Constant

The profiles of µ and T are decoupled 6= EY-model
The profiles are universal: they do not depend on f
The profiles are given by A1, . . . ,AN
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The profiles

Lemma (i = 1, . . . ,N, Γij = δij − tij )

We have

Ai =

∑N
j=1(−1)i+j det (Γ(j , i)) tjR

∑N
j=1(−1)i+j det (Γ(j , i)) [tjL + tjR]

where Γ(j , i) is the (j , i) minor of Γ
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The Self-Consistency Condition
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The profiles

Lemma (i = 1, . . . ,N, Γij = δij − tij )

We have

Ai =

∑N
j=1(−1)i+j det (Γ(j , i)) tjR

∑N
j=1(−1)i+j det (Γ(j , i)) [tjL + tjR]

where Γ(j , i) is the (j , i) minor of Γ

Example (N = 1)

A1 =
t1R

t1L + t1R
=⇒ µ1 =

t1LµL + t1RµR

t1L + t1R

Ref. M. Büttiker IBM J. Res. Dev. 3 317-334 (1988)
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The Self-Consistency Condition
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The profiles

Lemma (i = 1, . . . ,N, Γij = δij − tij )

We have

Ai =

∑N
j=1(−1)i+j det (Γ(j , i)) tjR

∑N
j=1(−1)i+j det (Γ(j , i)) [tjL + tjR]

∈ (0,1)

where Γ(j , i) is the (j , i) minor of Γ

Consequence: µL < µi < µR and TL < Ti < TR

Example (N = 1)

A1 =
t1R

t1L + t1R
=⇒ µ1 =

t1LµL + t1RµR

t1L + t1R

Ref. M. Büttiker IBM J. Res. Dev. 3 317-334 (1988)
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The currents

Theorem (i = 1, . . . ,N, Γij = δij − tij )

IL = σ0

(
µR − µL

e

)
+ σ1

(
TR − TL

T

)

JL = σ1

(
µR − µL

e

)
+ σ2

(
TR − TL

T

)

σ0 = L(0)
LR +

N∑

j=1

Aj L(0)
Lj , σ1 = L̃0σ0 and σ2 = L0σ0

Remarks

L(1)
ij = L̃0L(0)

ij and L(2)
ij = L0L(0)

ij σk < 0
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The currents

Ohm’s law (TL = TR, µ = eV ):

IL = −κe
VR − VL

N
, κe = −Nσ0 > 0

Fourier’s law (IL = 0):

JL = −κh
TR − TL

N
, κh = N

σ2
1 − σ0σ2

σ0T
= −(L0 − L̃2

0)

T
Nσ0
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The Self-Consistency Condition
Simulations (RMT)

The currents

Ohm’s law (TL = TR, µ = eV ):

IL = −κe
VR − VL

N
, κe = −Nσ0 > 0

Fourier’s law (IL = 0):

JL = −κh
TR − TL

N
, κh = N

σ2
1 − σ0σ2

σ0T
= −(L0 − L̃2

0)

T
Nσ0> 0

TRICK : 0 < R < 1 =⇒ Heat flows from HOT to COLD
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The Self-Consistency Condition
Simulations (RMT)

The currents

Ohm’s law (TL = TR, µ = eV ):

IL = −κe
VR − VL

N
, κe = −Nσ0 > 0

Fourier’s law (IL = 0):

JL = −κh
TR − TL

N
, κh = N

σ2
1 − σ0σ2

σ0T
= −(L0 − L̃2

0)

T
Nσ0> 0

TRICK : 0 < R < 1 =⇒ Heat flows from HOT to COLD

Universal conductivity (Γij = δij − tij )

σ(N) = − h
e2C(0)

Nσ0 = N


tLR +

N∑

i ,j=1

tLj(Γ−1)ji tiR



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The Self-Consistency Condition
Simulations (RMT)

The currents

Ohm’s law (TL = TR, µ = eV ):

IL = −κe
VR − VL

N
, κe = −Nσ0 > 0

Fourier’s law (IL = 0):

JL = −κh
TR − TL

N
, κh = N

σ2
1 − σ0σ2

σ0T
= −(L0 − L̃2

0)

T
Nσ0 > 0

Example (N = 1)

σ(1) = tLR +
tL1 t1R

t1L + t1R

Ref. M. Büttiker IBM J. Res. Dev. 3 317-334 (1988)
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The Self-Consistency Condition
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The currents

Ohm’s law (TL = TR, µ = eV ):

IL = −κe
VR − VL

N
, κe = −Nσ0 > 0

Fourier’s law (IL = 0):

JL = −κh
TR − TL

N
, κh = N

σ2
1 − σ0σ2

σ0T
= −(L0 − L̃2

0)

T
Nσ0 > 0

Universal conductivity (Γij = δij − tij )

σ(N) = − h
e2C(0)

Nσ0 = N


tLR +

N∑

i ,j=1

tLj(Γ−1)ji tiR




Philippe Jacquet A Chain of Quantum Dots with Self-Consistent Reservoirs



Introduction
General Properties

Ohm and Fourier Laws
Conclusion

The Self-Consistency Condition
Simulations (RMT)

Random Matrix Theory

Question
For which {SN}∞N=1 does the limit limN→∞ σ(N) exist ?

Assumption

The 3x3 complex matrices S(1), . . . ,S(N) are independent and
identically distributed over U(3) with some measure:

1 COE = Circular Orthogonal Ensemble
Time-reversible S(k)

ij = S(k)
ji

2 CUE = Circular Unitary Ensemble
Not time-reversal S(k)

ij 6= S(k)
ji (e.g. magnetic field)
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Random Matrix Theory

Question
For which {SN}∞N=1 does the limit limN→∞ σ(N) exist ?

Assumption

The 3x3 complex matrices S(1), . . . ,S(N) are independent and
identically distributed over U(3) with some measure:

1 COE = Circular Orthogonal Ensemble B = 0
Time-reversible S(k)

ij = S(k)
ji

2 CUE = Circular Unitary Ensemble B 6= 0
Not time-reversal S(k)

ij 6= S(k)
ji (e.g. magnetic field)
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Quantum versus Classical

Universality

A1, . . . ,AN and σ(N) do not depend on f

Interference effects ?

Quantum

ϕ1, ϕ2 ∈ C =⇒ P = |ϕ1 + ϕ2|2 = |ϕ1|2 + |ϕ2|2 + Interferences

Classical

ϕ1, ϕ2 ∈ C =⇒ P = |ϕ1|2 + |ϕ2|2

Philippe Jacquet A Chain of Quantum Dots with Self-Consistent Reservoirs



Introduction
General Properties

Ohm and Fourier Laws
Conclusion

The Self-Consistency Condition
Simulations (RMT)

Quantum versus Classical

Universality

A1, . . . ,AN and σ(N) do not depend on f

Interference effects ?

Quantum

S(1), . . . ,S(N) =⇒ S =⇒ tij = |Sij |2

Classical

S(1), . . . ,S(N) =⇒ P(1), . . . ,P(N) where P(k)
ij = |S(k)

ij |2
=⇒ P =⇒ tij = Pij
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The Statistical Averages COE and CUE

1 The Average Transmission Probabilities 〈 tij 〉

2 The Average Universal Conductivity 〈 σ(N) 〉

3 The Average Universal Profiles 〈 A1 〉, . . . , 〈 AN 〉
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The Average Transmission Probabilities 〈 tij 〉

When N � 1

1 tcl
ij 6= tqu

ij but 〈 tcl
ij 〉 = 〈 tqu

ij 〉

2 〈 tij 〉 do not depend on N

3 Symmetric: 〈 tij 〉 = 〈 tji 〉

4 〈 tij 〉 depend on |i − j |
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The Average Transmission Probabilities 〈 tij 〉

1 Short range: 〈 tij 〉 ' 0 if |i − j | > 2
2 〈 ti ,i+1 〉B 6=0 > 〈 ti ,i+1 〉B=0

0 5 10 15 200

0.2

0.4

0.6

0.8

0 5 10 15 200

0.2

0.4

0.6

0.8
B = 0 B 6= 0

N = 20 : 〈 tij 〉 for j = 10 and i = j , j ± 1, j ± 2 and j ± 3
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The Average Universal Conductivity 〈 σ(N) 〉

0 100 200 300 400 500
N

0

0.2

0.4

0.6

Classical
Quantum

0 100 200 300 400 500
N

0

0.2

0.4

0.6

Classical
Quantum

B = 0 B 6= 0

1 Good fit: 〈 σ∞ 〉+ c/N, where
〈 σ∞ 〉 = limN→∞〈 σ(N) 〉 ∈ (0,1)

2 Ohm and Fourier laws hold on average
3 Conductivity (B 6= 0) > Conductivity (B = 0) weak

localization
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The Average Universal Conductivity 〈 σ(N) 〉

0 100 200 300 400 500
N

0

0.2

0.4

0.6

Classical
Quantum

0 100 200 300 400 500
N

0

0.2

0.4

0.6

Classical
Quantum

B = 0 B 6= 0

Classical conductivity > Quantum conductivity weak
localization

〈 σ(N) 〉 = N


〈 tLR 〉+

N∑

i ,j=1

〈 tLj(Γ−1)ji tiR 〉



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The Average Universal Profiles 〈 A(x) 〉 (N = 5)

0 0.2 0.4 0.6 0.8 1
Cell  x = i/(N+1)

0

0.2

0.4

0.6

0.8

1

A
(x

)

Classical
Quantum

0 0.2 0.4 0.6 0.8 1
Cell  x = i/(N+1)

0

0.2

0.4

0.6

0.8

1

A
(x

)

Classical
Quantum

B = 0 B 6= 0

1 Not linear/convex/concave 6= EY-model
2 Linear in the limit N →∞
3 Monotone increasing
→ Heat also flows locally from Hot to Cold
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Some Realizations (N = 5)

0 0.2 0.4 0.6 0.8 1
Cell  x = i/(N+1)

0

0.2

0.4

0.6

0.8

1

A
(x

)

Local Negative Conductivity

The heat current may flow locally from Cold to Hot

Ref. M. Büttiker PRB 38 17 (1988)

Philippe Jacquet A Chain of Quantum Dots with Self-Consistent Reservoirs



Introduction
General Properties

Ohm and Fourier Laws
Conclusion

Summary of PART 1 (General Properties)

Onsager relations: (Ii , Ji ) and (Xi = δµi/e,Yi = δTi/T )
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Summary of PART 1 (General Properties)

Onsager relations: (Ii , Ji ) and (Xi = δµi/e,Yi = δTi/T )

Assumption : The S-matrix does not depend on the energy

{Equilibrium} ⇐⇒ {Ii = 0 and Ji = 0, ∀i} ⇐⇒ σs = 0
{Out of equilibrium} ⇐⇒ σs > 0
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Summary of PART 1 (General Properties)

Onsager relations: (Ii , Ji ) and (Xi = δµi/e,Yi = δTi/T )

Assumption : The S-matrix does not depend on the energy

{Equilibrium} ⇐⇒ {Ii = 0 and Ji = 0, ∀i} ⇐⇒ σs = 0
{Out of equilibrium} ⇐⇒ σs > 0

For f MB, FD or BE

f (E ; Tj , µj ) = f (E ; T , µ)− ∂f
∂E

(E ; T , µ)

[(
E − µ

T

)
δTj + δµj

]

R ≡ L̃0√
L0

=
C(1)√

C(0) · C(2)
∈ (0,1), ∀x0 = −µ/(kBT )
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Summary of PART 2 (Ohm and Fourier laws)

The self-consistency condition can be solved
The profiles are universal, i.e. independent of f
Heat flows globally from Hot to Cold
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Summary of PART 2 (Ohm and Fourier laws)

The self-consistency condition can be solved
The profiles are universal, i.e. independent of f
Heat flows globally from Hot to Cold

Simulation (RMT)

On average heat also flows locally from Hot to Cold
Heat may flow locally from Cold to Hot
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Summary of PART 2 (Ohm and Fourier laws)

The self-consistency condition can be solved
The profiles are universal, i.e. independent of f
Heat flows globally from Hot to Cold

Simulation (RMT)

On average heat also flows locally from Hot to Cold
Heat may flow locally from Cold to Hot
The average profiles are not convex nor concave
The average profiles become linear as N →∞
Ohm and Fourier laws hold on average
Classical conductivity > Quantum conductivity weak
Conductivity (B 6= 0) > Conductivity (B = 0) localization
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Future

PSfrag replacements

TL

µL µR

TR

T1 µ1 T2 µ2 TN µN

S(1) S(2) S(N)

1 Investigate the energy dependent S-matrix situation
→ 1D crystal

2 Analyse the effects of non-linear contributions
→ thermal rectifier

3 Prove the existence of the finite limit σ∞ = limN→∞ σ(N)
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