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Introduction Motivations

The Model
The Strategy

The classical EY-model
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Introduction Motivations

The Model
The Strategy

The classical EY-model

T Tr
B (1) (2) (N) -
Assumption: The system admits a stationary state
Fourier's law
TR — T
JZ—’Y% (L =7mr=7)

Ref. J.-P. Eckmann and L.-S. Young Commun. Math. Phys. 262 237 (2006)
Ref. H. Larralde, F. Leyvraz and C. Mejia-Monasterio J. Stat. Phys. 113 197 (2003)
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Introduction Motivations

The Model
The Strategy

The classical EY-model
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The problem
Establish a quantum version of the EY-model

@ Does Fourier’s law still hold ?
@ Interference effects on the profile and current ?
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Introduction Motivations

The Model
The Strategy

The classical EY-model

(1) (@)

The problem
Establish a quantum version of the EY-model
What are quantum discs ?

© @ ,---<X ©
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Introduction VR

The Model
The Strategy

An Effective Disc

Job ¢

Effective disc = Particle reservoir satisfying the self-consistency
condition?
/=0 and J=0

2Ref. M. Visscher and M. Rich PRA 12 675 (1975)
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Introduction VR

The Model
The Strategy

The Scattering Approach

L CONDUCTOR R

View the CONDUCTOR as a TARGET for the particles
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The Scattering Approach
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Introduction VR

The Model
The Strategy

The Scattering Approach

'
}

L S(E) R

}
'

Scattering Matrix

VO (E) = S(E) v (E)

Particle current conservation needs S(E) to be unitary
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Introduction VR

The Model
The Strategy

The Scattering Approach

Multi-lead system

Scattering Matrix _
U (E) = S(E) v"(E)
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Introduction VR

The Model
The Strategy

A Chain of Quantum Dots
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@ Transport properties: Scattering matrices S(), ..., S(V)
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The Model
The Strategy

A Chain of Quantum Dots
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@ Transport properties: Scattering matrices S(), ..., S(V)

@ Effective discs = Particle reservoirs satisfying the
self-consistency condition

=0 and J;=0 for i=1,....N
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Introduction Motivations

The Model
The Strategy

A Chain of Quantum Dots

NN
s s2) S

AL

Ty p To po Tn i

@ Transport properties: Scattering matrices S(), ..., S(V)

@ Effective discs = Particle reservoirs satisfying the
self-consistency condition

=0 and J;=0 for i=1,....N
© Reservoirs : MB, FD or BE
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Introduction VR

The Model
The Strategy

A Chain of Quantum Dots

Terminology

@ All expressions without a superscript (MB, FD or BE) hold
in the three cases

@ Universality = Independent of f (MB, FD or BE)
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Introduction Motivations

The Model
The Strategy

PART 1 : Any Geometry

@ Multi-lead system with N + 2 leads and any scattering
matrix S

@ Introduce the framework and present the main
properties in the linear response regime
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Introduction VR

The Model
The Strategy

PART 2 : Linear Geometry

s s S

et}

T pa Ta p2 TN i
@ Given (T, L) and (Tg, ur) we find (T;, pj), fori=1... N,
satisfying the self-consistency condition
=0 and J;=0 for i=1,....N

@ Determine the currents: |, = —k and J. = —
© Linear geometry : Build S from S ... S(N)
= I and J. go from left to right
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The Electric and Heat Currents
Onsager Relations and Entropy Production
Equilibrium and Non-Equilibrium States

General Properties

The Electric Current

Notations (i,j € {L,1,...,N,R})
@ The scattering matrix: S
@ The transmission probability: t; = |S;|2
@ The distribution function

E— E— i !
f(E) = exp (— kBTl,-LI> or [exp( kBTl,-LI> i1]

MB +:FD  —:BE
@ Boltzmann and Planck constants: kg, h Charge: e
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The Electric and Heat Currents
Onsager Relations and Entropy Production
Equilibrium and Non-Equilibrium States

General Properties

The Electric Current

Notations (i,j € {L,1,...,N,R})
@ The scattering matrix: S
@ The transmission probability: t; = |S;|2
@ The distribution function

E— E— i !
f(E) = exp (— kBTl,-LI> or [exp( kBTl,-LI> i1]

MB +:FD  —:BE
@ Boltzmann and Planck constants: kg, h Charge: e

Assumption: No interaction among the particles
b= 53 [ HEE) ~ (EN(E)) dE

Ref. Electronic Transport in Mesoscopic Systems by S. Datta (1995)

Philippe Jacquet A Chain of Quantum Dots with Self-Consistent Reservoirs



The Electric and Heat Currents
Onsager Relations and Entropy Production
Equilibrium and Non-Equilibrium States

General Properties

The Heat Current

(Particle Current); = %Z / h [f(E)ti(E) — f(E)t;(E)] dE
j#i 0

(Energy Curent), = 15~ [ [HE)H(E) — 1(EV4(E)) E o
j#i 70
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The Electric and Heat Currents
Onsager Relations and Entropy Production
Equilibrium and Non-Equilibrium States

General Properties

The Heat Current

(Particle Current); = %Z / T IHEYL(E) - H(E)4(E)] dE
0

(Energy Current), = 3~ [~ [1EV(E) ~ H(EV(E)] E cE
J#i

First Law of Thermodynamics: 6Q = dE — udN

-1y / E)ti(E) — H(E)4(E)] (E — uy)0E

hiz

Ref. P. N. Butcher J. Phys.: Condens. Matter 2 (1990)
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The Electric and Heat Currents
Onsager Relations and Entropy Production
Equilibrium and Non-Equilibrium States

General Properties

Summary

D=0t =15

Electric Current: [; = %Z/ f(E)Tj(E) dE
~ Jo
j

Heat Current:  J; — %Z/O FE)J(E)(E — ) dE
;

Philippe Jacquet m Dots with Self-Consistent Reservoirs



The Electric and Heat Currents
Onsager Relations and Entropy Production
Equilibrium and Non-Equilibrium States

General Properties

Summary

D=0t =15

Electric Current: [; = %Z/ f(E)Tj(E) dE
~ Jo
j

Heat Current: J; = %Z/O F(E)(E)(E — i) dE
i

Conservation laws

Charge: > ;=0 Energy: > (J,- o %l,-) =0
i i
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The Electric and Heat Currents
Onsager Relations and Entropy Production
Equilibrium and Non-Equilibrium States

General Properties

Summary

D=0t =15

Electric Current: = = / F(E)T(E) dE
~ /o
]

Heat Current:  J; = %Z/o fi(E)i(E)(E — pi) dE
J

Conservation laws

Charge: » /=0 Heat in Linear Regime: » " J; =0
I. .

l
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The Electric and Heat Currents
Onsager Relations and Entropy Production
Equilibrium and Non-Equilibrium States

General Properties

Linear Response

Notations: T; = T+ 0T; and pj = p1 + oy

of of
F(E: Tjopj) = F(E: To) + 5 (E: Topr) 6T + a_u(E; T, p) opy
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The Electric and Heat Currents
Onsager Relations and Entropy Production
Equilibrium and Non-Equilibrium States

General Properties

Linear Response

Notations: T; = T+ 0T; and pj = p1 + oy

of of
F(E: Tjopj) = F(E: To) + 5 (E: Topr) 6T + O_M(E; T, p) opy

For f MB, FD or BE

. _(E-w
f(E’ T]?Hj)_f< kBT/ >
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The Electric and Heat Currents
Onsager Relations and Entropy Production
Equilibrium and Non-Equilibrium States

General Properties

Linear Response

Notations: T; = T +¢6T;and pj = pu + oy

of of
f(E; T, i) = f(E; T, p) + W(E; T, ) 57—/*@(5 T 1) op
of E—p
—SLET) (554) —DL(E:T )
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The Electric and Heat Currents
Onsager Relations and Entropy Production
Equilibrium and Non-Equilibrium States

General Properties

Linear Response

Notations: T; = T +¢6T;and pj = pu + oy

For f MB, FD or BE

of E—
f(E; Ty pj) = F(E; T, p) — a—E(E: T, ) [(%) oTj +5u/]
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The Electric and Heat Currents
Onsager Relations and Entropy Production
Equilibrium and Non-Equilibrium States

General Properties

Linear Response
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The Electric and Heat Currents
Onsager Relations and Entropy Production
Equilibrium and Non-Equilibrium States

General Properties

Onsager Relations

j
M1 @97

]
(0) < of
LY = h 8E(ET,JJ) i(E) dE
L = ST 8f E:T
i = ks S (E: T.w(E) dE
@ _(kBT)Z/ E—,u of
1P = ) (e g (E: T j(E) dE
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General Properties The Electric and Heat Currents
P Onsager Relations and Entropy Production
Equilibrium and Non-Equilibrium States

Onsager Relations

5
o= ZL(O L

5
J = ZLU Ofj L(2 =

0 > of
Ly = h aE(E T, w)Tj(E)dE T =d;—|S?
L = ——kBT/ < ) 8f(E T, 1) j(E) dE

@ _ (ksT) / E—pn 3f

The Onsager relations hold: S; = S = Lj = L;;
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The Electric and Heat Currents
Onsager Relations and Entropy Production
Equilibrium and Non-Equilibrium States

General Properties

The Main Assumption

S does not depend on the energy

@ Good approximation in some limit cases (e.g. low T in FD)

@ Consequences of S(E) = Constant
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The Electric and Heat Currents
Onsager Relations and Entropy Production
Equilibrium and Non-Equilibrium States

General Properties

Consequence of S(E) = Constant

o) < Of
[ - = [ SEE T dE
E-
L = ——kBT/ < “) 9 E T, wry(E) dE
@ _(kBT)2/°° E—u of
1 = S [T (S SEE T ryE) o
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The Electric and Heat Currents
Onsager Relations and Entropy Production
Equilibrium and Non-Equilibrium States

General Properties

Consequence of S(E) = Constant

) < of
L = h | GE(EiTmaE-T,
L) ——kBT/ ( > —_(E; T, ) dE - T
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The Electric and Heat Currents
Onsager Relations and Entropy Production
Equilibrium and Non-Equilibrium States

General Properties

Consequence of S(E) = Constant

2
0 _ € > of )
LY = 7[— G Tu)dE} T
c(0)
M _ e _ *(E—u\ of
Li” = thT[ /0 <kBT>aE(ET“)dE
cm
@ (kBT)2 _/oo E—,u of
Li" = 5 . \Ter ) gE(ET-WAET
c)

Philippe Jacquet A Chain of Quantum Dots with Self-Consistent Reservoirs



The Electric and Heat Currents
Onsager Relations and Entropy Production
Equilibrium and Non-Equilibrium States

General Properties

Consequence of S(E) = Constant

2
e
L0 — =)

LM = i Te()ry
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The Electric and Heat Currents
Onsager Relations and Entropy Production
Equilibrium and Non-Equilibrium States

General Properties

Consequence of S(E) = Constant

LW = ChaTC()r = Gy

y h

@ (ksT)? _kET2C(2) (o)
Lj” = ——C@)r;= Bez C0) "
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The Electric and Heat Currents
Onsager Relations and Entropy Production
Equilibrium and Non-Equilibrium States

General Properties

Consequence of S(E) = Constant

(1) _ € kT C(1) (0
Ly = +ks TC(1) = o C0) L
Lo
@ (keT)? kT2 C(2) (o)
Li/'_ hC()U— ezmi/
L,
0
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The Electric and Heat Currents
Onsager Relations and Entropy Production
Equilibrium and Non-Equilibrium States

General Properties

The Coefficients C(n)

C(n) = _/OOO (%) SL_(E T.u) dE

Philippe Jacquet i ots with Self-Consistent Reservoirs



The Electric and Heat Currents
Onsager Relations and Entropy Production
Equilibrium and Non-Equilibrium States

General Properties

The Coefficients C(n)

0
" B [ele] Xnex
C*(n) /XO oy o
where
i € (—o0,00) in MB
Xo = —m S (—O0,00) in FD

€ (0,00) in BE
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The Electric and Heat Currents
Onsager Relations and Entropy Production
Equilibrium and Non-Equilibrium States

General Properties

The Coefficients C(n)

C(n) = _/O°° (i;TM)"g_f(E; T, 1) dE

CMB(n) / Me™* dx
" x”ex
where
€ (—1,00)in MB
Xo = —% € (—00,00) in FD
8T | < (0,00) in BE

We need C(n) >0forn=0,1,2
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The Electric and Heat Currents
Onsager Relations and Entropy Production
Equilibrium and Non-Equilibrium States

General Properties

Summary

o © 91 (1) 9T;
= ; Ly — + L =

5T
A (1) (2)
J = Ej: Lj Iy L =

Consequence of S(E) = Constant
Ly =+ C(O)F,-j L) =LY and L = 1oL
_ KET?C(2) - kT C(1)
0= 62W>0 and Lo——m>0

Philippe Jacquet
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The Electric and Heat Currents
Onsager Relations and Entropy Production
Equilibrium and Non-Equilibrium States

General Properties

The Transport Matrix
L~ Ty =8y — 1y (1€ (0.1)

k) | >0 ifi=j
¢ Ly {<O if i#j
o

S =0,v and Y L¥=0, vi
i J
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The Electric and Heat Currents
Onsager Relations and Entropy Production
Equilibrium and Non-Equilibrium States

General Properties

The Transport Matrix

L ~ Ty =0 —t; (t; € (0.1))

k) [ >0 ifi=j
° Ly {<O if i
o

S =0,v and Y L¥=0, vi
i

/
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The Electric and Heat Currents
Onsager Relations and Entropy Production
Equilibrium and Non-Equilibrium States

General Properties

Entropy Production

(Theoem .

L
(1O (O ") _ Lg.li) Lg.ﬁ) e b Lix
L—<L(1) L(z)): s :
A T 1 AR}
T R

The matrix L is real positive semi-definite:
os=>_ > LjV;V;=0
i

v _ fowije ifi=1,.. N+2
PT\STT ifi=N+3,....,2N+4
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The Electric and Heat Currents
Onsager Relations and Entropy Production
Equilibrium and Non-Equilibrium States

General Properties

Main Trick of the Proof o5 > 0

Notations: X; = du;j/e and Z; = /Ly 6T;/ T
os= > (~L) Jj
——

>0
b= (XX +(Zi- 2 -2RCy. Gy = XZjXZi-XZi- X7
TRICK:0 <R <1

Cj<0:ly>(Xi—X)*+(Z—2)*>0
Cji> 0 lj > (X=X)?+(Z~Z)?~2C; = (Xi~X+2Z~Z)* > 0

Ref. M. Buttiker IBM J. Res. Dev. 3 317-334 (1988)
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The Electric and Heat Currents
Onsager Relations and Entropy Production
Equilibrium and Non-Equilibrium States

General Properties

Equilibrium and Non-Equilibrium States

Definition (Equilibrium)
po=pmpr=-=puy=pr and To=Ti=-=Ty=Tr
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The Electric and Heat Currents
Onsager Relations and Entropy Production
Equilibrium and Non-Equilibrium States

General Properties

Equilibrium and Non-Equilibrium States

Definition (Equilibrium)

pr=p1=--=py=pr and To=Ti=---=Ty=Tr

{System is at equilibrium} <— {l;=0 and J;=0, Vi}
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The Electric and Heat Currents
Onsager Relations and Entropy Production
Equilibrium and Non-Equilibrium States

General Properties

Equilibrium and Non-Equilibrium States

Definition (Equilibrium)
ML = 4 = - = UN = UR and To=Ti=---=Ty=Tx

{System is at equilibrium} <— {l;=0 and J;=0, Vi}

System is at
equilibrium

USZO

{ System is

out of equilibrium} = 0s>0

Main trick in the proofs: 0 < R < 1

Philippe Jacquet A Chain of Quantum Dots with Self-Consistent Reservoirs



The Self-Consistency Condition
Ohm and Fourier Laws Simulations (RMT)

The Self-Consistency Condition

The problem
Given (Tp, ur) and (T, pr), find (Tj, w;), fori=1... N, such
that

i =0 and J;=0 for i=1,....N

Philippe Jacquet A Chain of Quantum Dots with Self-Consistent Reservoirs



The Self-Consistency Condition
Ohm and Fourier Laws Simulations (RMT)

The Self-Consistency Condition

Fori=1,...,N:

j
(1) on 2 07;
JI XI:LI/ e +LI] T—O

© 01 0T\ _ ©0) Ot (1) 0T;
(5 T) - -5 (0%
j=1 j=L,R
N

Mo @0\ _ 1)5M/ 1@ 97
Z(Lf‘f - L 7) —‘Z( S
J=1 j=L,R
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The Self-Consistency Condition
Ohm and Fourier Laws Simulations (RMT)

The Self-Consistency Condition

Notations: X; = du;/e, Yi=6T;/T, My = L9 (Dy); = L/('g)

[/

M(X+Ly) = =3 (X+LY.) D
¢=LR
M(Zox+ LOY) - -y (ZOXHLOYE) D,
¢=LR

TRICK: R # 1 = Lo # (Lp)?

MX=-> DX and MY=-> DY,

¢=LR ¢=LR

Philippe Jacquet A Chain of Quantum Dots with Self-Consistent Reservoirs



The Self-Consistency Condition
Ohm and Fourier Laws Simulations (RMT)

The profiles

Theorem (i =1,...,N, [ =6; — t;)

pi = pL+Ai(ur — po)
N

Ti = TL+A(TR—To) with A=) (")t
J=1

Consequences of S(E) = Constant

@ The profiles of p and T are decoupled # EY-model
@ The profiles are universal: they do not depend on f
@ The profiles are given by Ay, ..., An

Philippe Jacquet A Chain of Quantum Dots with Self-Consistent Reservoirs



The Self-Consistency Condition
Ohm and Fourier Laws Simulations (RMT)

The profiles

Lemma (i=1,...,N, [ = §; — t;)
We have

N (1) det (T, 1) tr
YN (-~ det (TG, ) [t + tr]

where I'(j, i) is the (j, i) minor of T

i

Philippe Jacquet A Chain of Quantum Dots with Self-Consistent Reservoirs



The Self-Consistency Condition
Ohm and Fourier Laws Simulations (RMT)

The profiles

Lemma (i=1,...,N, [ = §; — t;)
We have

N (1) det (T, 1) tr
YN (-~ det (TG, ) [t + tr]

where I'(j, i) is the (j, i) minor of T

i

Example (N = 1)

b + tr b + tr
Ref. M. Buttiker IBM J. Res. Dev. 3 317-334 (1988)

Aj
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The Self-Consistency Condition
Ohm and Fourier Laws Simulations (RMT)

The profiles

Lemma (i=1,...,N, Tj=d; — t;)

We have

X (=) det (T, ) tr
YN (-~ 1) det(T(, 1) [t + trl

where I'(j, i) is the (j, i) minor of T

€ (0,1)

i

Consequence: up, < pj < prand Tp < T; < Tg

Example (N = 1)

br . _ Hropr + Hrer

b + tr b + tr
Ref. M. Bilttiker IBM J. Res. Dev. 3 317-334 (1988)

Aj
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The Self-Consistency Condition
Ohm and Fourier Laws Simulations (RMT)

The currents

N
oy = L](gz) T ZAJ L](S) , 01 = ZQO’Q and oo = Lgog
j=1
LD = LY and L = 1oL ox < 0
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The Self-Consistency Condition
Ohm and Fourier Laws Simulations (RMT)

The currents

Ohm’s law (T

Tr, p=eV)
-V
b= —ke RNL, = —Nog >0
Fourier’s law (i = 0):
_ TR—TL N 0'12—0'00'2_ (Lo—L)
e I Il s T

Philippe Jacquet
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The Self-Consistency Condition
Ohm and Fourier Laws Simulations (RMT)

The currents

Ohm’s law (Ty = Tg, u = €V):

Wz — V;
% s Re — —NO'O > O
Fourier's law (I, = 0):

]R_ 7L 0"12—0'00'2 (Lo—zg)
=N = N
N ooT T 70> 0

TRICK : 0 < R < 1 = Heat flows from HOT to COLD

JL = —kp
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The Self-Consistency Condition
Ohm and Fourier Laws Simulations (RMT)

The currents

Ohm’s law (Ty = Tg, u = €V):

/L:—neVR_VL, ke = —Nog >0
N
Fourier's law (I, = 0):
TR— TL 0"12—0'00'2 (Lo—zg)
= — = = — N
Jo e VIR N 0T T op> 0

TRICK : 0 < R < 1 = Heat flows from HOT to COLD
Universal conductivity (T = d; — t;)

h
O'(N) = —mNUO =N

N
e+ tLj(r1)jitiR:|

ij=1
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The Self-Consistency Condition
Ohm and Fourier Laws Simulations (RMT)

The currents

Ohm’s law (Ty = Tg, u = €V):

/L:_,ieu . ke=—Noy>0
N
Fourier's law (I, = 0):
TR— TL 0y — 0002 (Lo—zg)
= —Kp——— = — N
Jo K fh N e T oo >0

Example (N = 1)

i1 br
by + tr
Ref. M. Biittiker /BM J. Res. Dev. 3 317-334 (1988)

0‘(1): Lr +
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The Self-Consistency Condition
Ohm and Fourier Laws Simulations (RMT)

The currents

Ohm’s law (Ty = Tg, u = €V):

R — WL

N , kKe=—Nog>0

/L = —Re
Fourier’s law (I = 0):

TR —ToL N 012 — 0002 (Lo — Z%)
N R kh=N ooT = — T Nog > 0

J= —kp

Universal conductivity (T = d; — t;)

N
h _
O'(N) = _W(O)NUO =N hr + I./Z_% tLj(r 1)jitiR
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The Self-Consistency Condition
Ohm and Fourier Laws Simulations (RMT)

Random Matrix Theory

For which {Sy}¢7_, does the limit limy_,. o(N) exist ?

The 3x3 complex matrices S, ..., SN) are independent and
identically distributed over U(3) with some measure:
@ COE = Circular Orthogonal Ensemble
Time-reversible S,-(jk) = S},-k)
© CUE = Circular Unitary Ensemble
. (K) (k) o
Not time-reversal S,.j # Sj, (e.g. magnetic field)
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The Self-Consistency Condition
Ohm and Fourier Laws Simulations (RMT)

Random Matrix Theory

For which {Sy}¢7_, does the limit limy_,. o(N) exist ?

The 3x3 complex matrices S, ..., SN) are independent and
identically distributed over U(3) with some measure:

@ COE = Circular Orthogonal Ensemble B=0
Time-reversible S,-(jk) = S},-k)
@ CUE = Circular Unitary Ensemble B+#0

Not time-reversal S,(jk) # Sj(,k) (e.g. magnetic field)
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The Self-Consistency Condition
Ohm and Fourier Laws Simulations (RMT)

Quantum versus Classical

Ay, ..., Ay and o(N) do not depend on f

Interference effects ?

©1,02 € C = P =|p1 + 22 = |¢1]? + 2|2 + Interferences

©1,02 € C = P = |p1]2 + |2
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The Self-Consistency Condition
Ohm and Fourier Laws Simulations (RMT)

Quantum versus Classical

Ay, ..., Ay and o(N) do not depend on f

Interference effects ?

Quantum
8(1), ey SN) — 5§ — ti = |S,’j‘2

Classical

sM,...,8N) — p() _ PN) where P |S )2
— P — t,, = Pj
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The Self-Consistency Condition
Ohm and Fourier Laws Simulations (RMT)

The Statistical Averages COE and CUE

@ The Average Transmission Probabilities ( t; )
© The Average Universal Conductivity ( o(N) )

© The Average Universal Profiles ( A1 ),...,( Ax)
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The Self-Consistency Condition
Ohm and Fourier Laws Simulations (RMT)

The Average Transmission Probabilities ( #; )

When N > 1
Q ¢ #t]"but (1) = (1)
Q (tj) donotdependon N
© Symmetric: ( tj) = (t;)

Q (tj) dependon |i—j|
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Ohm and Fourier Laws

The Self-Consistency Condition
Simulations (RMT)

The Average Transmission Probabilities ( #; )

@ Shortrange: (t; ) ~0if [i — j] > 2

Q (tiiy1 )80 > (tiis1 )B=0

0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2

N=20:(tj)forj=10andi=j,j+1,j+2andj+3
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The Self-Consistency Condition
Ohm and Fourier Laws Simulations (RMT)

The Average Universal Conductivity ( o(N) )

T T T T
0.6 B 0.6 B
0.4 oo Classical | 4 0.4 e Classical | 4
= Quantum = Quantum
0.2 B 0.21 B
0 . 0 | | | |
0 100 200 N 300 400 500 0 100 200 N 300 400 500

@ Good fit: { ¢ ) + ¢/N, where
(o) =limy_o(a(N)) € (0,1)
© Ohm and Fourier laws hold on average

© Conductivity (B # 0) > Conductivity (B =0)  weak
localization
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Ohm and Fourier Laws

The Self-Consistency Condition
Simulations (RMT)

The Average Universal Conductivity ( o(N) )

B=0 B+#0
0.6/ 1 0.6 1
s Quantum & s Quantum
0.2 B 0.2 sessemagas
0 00200300 400 3 0 00 200 300 400 5
N N
Classical conductivity > Quantum conductivity =~ weak
localization
N
-1
(o(N)) =N |{tr)+ > (t;(T )t )
i j=1

f Quantum Dots with Self-Consistent Reservoirs
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The Self-Consistency Condition
Ohm and Fourier Laws Simulations (RMT)

The Average Universal Profiles ( A(x) ) (N

1 ; ; I

0.8k — 0.8-
_0.6f . _ 06
X X
“oar 1 “0af

P-4 co Classical
02k zeQuantum| | 0.2-
~ L L

B+0

c-oClassical
o Quantum

04 06
Cell x = i/(N+1)

1 %02

04 06 08 1
Cell x =1i/(N+1)

@ Not linear/convex/concave # EY-model

@ Linearin the limit N — oo
© Monotone increasing

— Heat also flows locally from Hot to Cold

Philippe Jacquet
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The Self-Consistency Condition
Ohm and Fourier Laws Simulations (RMT)

Some Realizations (N = 5)

A(x)

0.4r N

0.2r N

0.4 0.6
Cell x =i/(N+1)

I
0.2 0.8 1

Local Negative Conductivity
The heat current may flow locally from Cold to Hot

Ref. M. Biittiker PRB 38 17 (1988)
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Conclusion

Summary of PART 1 (General Properties)

@ Onsager relations: (/;,J;) and (X; = dui/e, Yi=4T;/T)
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Conclusion

Summary of PART 1 (General Properties)

@ Onsager relations: (/;,J;) and (X; = dui/e, Yi=4T;/T)
Assumption : The S-matrix does not depend on the energy

@ {Equilibrium} < {/i=0and J; =0, Vi} < 0s=0

@ {Out of equilibrium} <= o5 >0
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Conclusion

Summary of PART 1 (General Properties)

@ Onsager relations: (/;,J;) and (X; = dui/e, Yi=0T;/T)
Assumption : The S-matrix does not depend on the energy

@ {Equilibrium} < {/i=0and J; =0, Vi} < 0s=0
@ {Out of equilibrium} <= o5 >0

For f MB, FD or BE

HE: i) = HE: Ton) — o (E T [(E52) o+ o]

_ L c(1) _
R:\/L—o \/0(07 €(0,1), Yxo=—pu/(ksT)
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Conclusion

Summary of PART 2 (Ohm and Fourier laws)

@ The self-consistency condition can be solved
@ The profiles are universal, i.e. independent of f
@ Heat flows globally from Hot to Cold
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Conclusion

Summary of PART 2 (Ohm and Fourier laws)

@ The self-consistency condition can be solved
@ The profiles are universal, i.e. independent of f
@ Heat flows globally from Hot to Cold

Simulation (RMT)

@ On average heat also flows locally from Hot to Cold
@ Heat may flow locally from Cold to Hot
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Conclusion

Summary of PART 2 (Ohm and Fourier laws)

@ The self-consistency condition can be solved
@ The profiles are universal, i.e. independent of f
@ Heat flows globally from Hot to Cold

Simulation (RMT)

@ On average heat also flows locally from Hot to Cold
@ Heat may flow locally from Cold to Hot

@ The average profiles are not convex nor concave

@ The average profiles become linearas N — oo
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Conclusion

Summary of PART 2 (Ohm and Fourier laws)

@ The self-consistency condition can be solved
@ The profiles are universal, i.e. independent of f
@ Heat flows globally from Hot to Cold

Simulation (RMT)

@ On average heat also flows locally from Hot to Cold
@ Heat may flow locally from Cold to Hot

@ The average profiles are not convex nor concave

@ The average profiles become linearas N — co

@ Ohm and Fourier laws hold on average
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Conclusion

Summary of PART 2 (Ohm and Fourier laws)

@ The self-consistency condition can be solved
@ The profiles are universal, i.e. independent of f
@ Heat flows globally from Hot to Cold

Simulation (RMT)

@ On average heat also flows locally from Hot to Cold

@ Heat may flow locally from Cold to Hot

@ The average profiles are not convex nor concave

@ The average profiles become linearas N — oo

@ Ohm and Fourier laws hold on average

@ Classical conductivity > Quantum conductivity =~ weak

@ Conductivity (B # 0) > Conductivity (B = 0) localization
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Conclusion

Future

NN
s) s S

-

Ty p To po Tn i

@ Investigate the energy dependent S-matrix situation
— 1D crystal

@ Analyse the effects of non-linear contributions
— thermal rectifier

© Prove the existence of the finite limit 0> = limy_, ., o(N)
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