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› Derivation of the model
› Mathematical results
› Illustrations, Approximations

The model is inspired by the scatterer model Lai-Sang
Young and I developed, but in 1 spatial dimension. Novelty:
a continuum of scatterers (1 per cell).
Under a Boltzmann approximation in this limit we show
existence of unique non-equilibrium steady states
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Discrete Space (Finite Number of Cells)
Particles of mass m and

N scatterers of mass M in a row. The scattering rules
for the momenta in 1D are elastic
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The scatterers have finite mass M but they do NOT move
The particles move in direction of sign of momenta
They are injected (and leave) at the ends of the chain

A souvenir of the turning discs in the EY model

The ‘‘inertial’’ mass of the scatterers is infinite. . .
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Assume M 2 (0; 1), that is 0 < m < M

We arrange space in N cells (of length L each) and for
each cell we have probability distributions:

FL;i;in(p): probability that particles with momentum p > 0
enter cell i from the left (per second)
. . .
gi(q): probability that the i-th scatterer has momentum
q 2 IR

(R g = 1)

Important remark: (1D!!!) Expected time to stay in cell is
F(p)=jpj ) Expected number of particles in cell is infinite
(when F(0) =/ 0)

We want to find time-stationary distributions when particles
are injected from outside (out of equilibrium)
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The corresponding equations are of the form (omitting
index of cell)

g(q̃) = 1
I ZIR dp g(q) F(p)

where F = FL;in + FR;in and I = RIR F ı particle flux

What comes out of the cell?

FL;out(̃p) = Zq : p̃ <0
dq g(q) F(p)

FR;out(̃p) = Zq : p̃ >0
dq g(q) F(p)

And the cells are coupled by FL;i;in = FR;i`1;out
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Continuum Limit
N ! B, i=N = x 2 [0; 1], scattering probability 1=N. After
some gymnastics, using things like

FL;i;in(p) ` FR;i;out(p) = FL;i;in(p) ` FL;i+1;in(p) ı N @xF(p; x)

one gets the Boltzmann equations

m@tF(t; p; x) + p@xF(t; p; x) =jpj Z dq
“

F(t; p̃; x)g(t; q̃ ; x) ` F(t; p; x)g(t; q ; x)
”

@tg(t; q ; x) = Z dp
“

F(t; p̃; x)g(t; q̃ ; x) ` F(t; p; x)g(t; q ; x)
”

The closure assumption is hidden in the independence of
the F and g at different x

(It is still a good approximation)
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The stationary equation x 2 [0; x0]

@xF(p; x) =sign(p)Z dq
“

F(̃p; x)g(q̃ ; x) ` F(p; x)g(q ; x)
”

0 = Z dp
“

F(̃p; x)g(q̃ ; x) ` F(p; x)g(q ; x)
”

Remark:

F(p; x) = Ie
`D(p`ma)2

; g(q ; x) = e
`D(m=M)(q`Ma)2

are solutions for all D > 0, I > 0, and a 2 IR
Want R dq g = 1 (but not necessarily R dp F = 1)
I omit the normalizing square roots
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We would like to ‘‘bifurcate’’ from these equilibrium solutions
by imposing F(p; x = 0) for p > 0 and F(p; x = 1) for p < 0
We want to impose nonequilibrium INCOMING fluxes

Main result :
This problem has solutions

Several difficulties make the result less general than
Pierre and I expected (but perhaps there are better
tricks)
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We write F(p;0) = exp(`p2) ´ v(p) and define

C =

8

<

:

v : v(p) – 0; v 6== 0;Z jdv(p)j + Z e
`p2

jv(p)j < B

and 0 < lim
p! +̀ B

Z ´ v(p) < 1

9

=

;

with Z =
p

K
‹R dp F(p;0)

This is a convex Banach cone ensuring that
› v has limits (and is positive, F is a rate...)
But also
› F(p;0) cannot be Gaussian, since we require

limp! +̀ B

F(p) ep
2 R e`s

2
ds

R F(s)ds
< 1

› The temperatures (but not the distributions!)
are the same for p > 0 and p < 0
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Main Result : For any v˜ in the interior of the cone
C and for all initial conditions v(´; x = 0) near v˜ the
Boltzmann equation has a (unique) solution in C for x 2

[0; x0] with x0 > 0. The map v(x = 0) 7! v(x0) is a
diffeomorphism

Consequence : In the image of the neighborhood, I can
choose v(p; x0) for p < 0. In other words, within the limits
of applicability of the main result, I can choose
v(p>0; x=0) and v(p<0; x0), that is, I can prescribe the
incoming (slightly different) momentum and particle flux
profiles (at the ends x = 0, x = x0) and obtain a unique
steady state
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Remarks about the proof - which hopefully explains why
we take these ‘‘funny’’ conditions on the cone

› It is not obvious that the density of F(x; ´) remains a
positive function

› The Boltzmann equation has two parts, for F with a
space derivative, for g it is simpler. So we solve first
for g(x; ´), given F(x; ´), and then integrate to find F

@xF(p; x) =sign(p)Z dq
“

F(̃p; x)g(q̃ ; x) ` F(p; x)
”

g(q ; x) =
R dp F(̃p; x)g(q̃ ; x)

R dp F(p; x)

We view the second equation as a fixed point problem. Solve, and
substitute into the first equation and integrate. The difficult part is
the second equation. To study it fix the integral of F to 1
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Since x is a spectator in the g-equation, we consider
instead

g(q) = R dp F(̃p)g(q̃)

N.B. p̃ = `Mp + (1 ` M )q
q̃ = (1 + Mp) + Mq

This is a convolution operator, and we use spectral
properties. The cone C guarantees that the r.h.s. is
( for F 2 int C ) a quasi-compact operator with isolated
largest eigenvalue (equal to 1)

Conjecture: the essential spectral radius ends at the
larger of the 2 limits of v(p):
the numerical spectrum is fM

n
g
B
n=0
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Let P == m
M = 1`M

1+M and g(q) = exp(`Pq2)u(q) and define

k uk 1 = Z dq e
`Pq2

ju(q)j

and

k uk 2 = Z dq e
`Pq2

ju(q)j + Z jdu(q)j :

The main estimate is then for any v 2 C:

There exist a “ < 1 and an R > 0 (both depend on v
continuously) such that the convolution operator Kv ,

R dpF(̃p)g(q̃) satisfies for any k uk 2 < B the bound

Z jdKv(u)j » “ Z jduj + Rk uk 1

Souvenirs de Lasota-Yorke détails pour amateurs en privé...
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Why can’t we have D =/ D’?

F(p;0) =

(

exp(`Dp2); p > 0
exp(`D’p2); p < 0

The problem is that convolution mixes contributions from
positive and negative p. The reflection by the scatterer
exchanges temperature information between the positive
to the negative momentum side

This makes us lose compactness, and we dont know how to show existence

and uniqueness of g without some information. Numerics shows it is much

better...
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The discontinuity of F at p = 0 is a realistic phenomenon
and is the reason why we consider the variation norm

R jdv(p)j instead of R dp jv’(p)j. With such norms the compactness
of convolution is well known (one gains a derivative) and
in fact the probability densities are smooth in p and q
except at p = 0
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Numerical study
Compare the Boltzmann model to the discrete model from
which it is derived
› One does not need the cone C
› The role of x0 should become clear
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Reconsider

@xF(p; x) =E sign(p)Z dq
“

F(̃p; x)g(q̃ ; x) ` F(p; x)g(q ; x)
”

0 = Z dp
“

F(̃p; x)g(q̃ ; x) ` F(p; x)g(q ; x)
”

This Boltzmann limit is obtained by assuming in the particle
model that

particles interact (in 1 cell) with probability E=N and cross
the cell without collision with probability 1 ` E=N

As N ! B the cross-section of the scatterers is assumed
to be E=N.
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Boltzmann simulations

@xF(p; x) =sign(p)Z dq
“

F(̃p; x)g(q̃ ; x) ` F(p; x)
”

g(q ; x) =
R dp F(̃p; x)g(q̃ ; x)

R dp F(p; x)

We discretize the space of p and q and integrate from
x = 0 to x = 1. The second equation is an eigenvalue
problem with unknown eigenfunction g = gF(´;x)
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Substitute the g:

@xF(p; x) =sign(p)Z dq
“

F(̃p; x)gF(´;x)(q̃ ; x) ` F(p; x)
”

Take as initial condition

F0(p;0) =

(

I exp(`Dp2) ; p > 0
I’exp(`D’p2) ; p < 0

and see if F(p; x = 1) for p < 0 is the desired incoming

Gaussian I’exp(`D’p2). Iteratively correct F0 ! F1 !

poor man’s inverting the diffeomorphism of the Theorem
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Particle simulations: TL = 3TR, jL = jR Will take E = 1.
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This is a typical problem of non-normalizable measures.
The number of particles is proportional to F(p)=jpj which is
non-integrable in 1 dimension.

Similar to tangents in 1-d maps: Collet-Ferrero Annales de l’Institut Henri
Poincaré (A) Physique théorique, 52 (1990), p. 283-301
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Conclusion
Back to Boltzmann: We found the solution by iterating
the initial distribution until the other end was what we
wanted. F0 ! F1 ! ´ ´ ´

Interesting problem: What if in this problem Fn(p;0) ceases
to be positive after n iterations when p < 0?

Cannot extract arbitrary energy profiles for p < 0 at
x = 0 by injecting something at x = 1. (This is why we had
x0 in the theorem)

QUESTION: What ARE the possible exit distributions?
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