next up previous

 

Home     Back to book

 

Franz J. Vesely:
Computational Physics - An Introduction
Second Edition

Kluwer Academic / Plenum Publishers, New York-London 2001.
ISBN 0-306-46631-7

Here are a few errata I have detected since publication

  Es irrt der Mensch, solang er strebt  [Goethe]
If anything can go wrong, it will  [Murphy]
Status: Sep-04


Page 34: Equation 2.53 should read


$\displaystyle a_{ii}   x_{i}^{(k+1)}$ $\textstyle =$ $\displaystyle b_{i} - \sum_{j > i} a_{ij}   x_{j}^{(k)}
- \sum_{j<i} a_{ij}   x_{j}^{(k+1)}
\; ; \;\;\;
i=1,\dots,N$  

[May 02; thanks to Steve Knudsen]
Page 34: Equation 2.58 should read


$\displaystyle \left[ \mbox{${\bf D}$} + \mbox{${\bf L}$} \right] \cdot \mbox{$\bf x$}_{k+1}$ $\textstyle =$ $\displaystyle \omega   \mbox{$\bf b$} - \left[ \omega   \mbox{${\bf R}$} - (1-\omega)   \mbox{${\bf A}$} \right]
\cdot \mbox{$\bf x$}_{k}$  

[and in 2.59, the last $(k)$ should be a superscipt]

[May 02; thanks to Steve Knudsen]
Page 39: Equation 2.72 should read
\begin{displaymath}
\vec{h}_{1}=
\vec{g}_{1}-\frac{(\mbox{${\bf A}$} \cdot \vec...
... \mbox{${\bf A}$} \cdot \vec{g}_{0} \right\vert^{2}}
\nonumber
\end{displaymath}  

(Note that $\vec{h}_{0} \equiv \vec{g}_{0} $). Accordingly, eq. 2.75 should be
\begin{displaymath}
\vec{h}_{2} =
\vec{g}_{2} - \frac{(\mbox{${\bf A}$} \cdot \...
... \mbox{${\bf A}$} \cdot \vec{h}_{1} \right\vert^{2}}
\nonumber
\end{displaymath}  

With these corrections the example calculation following eq. 2.77 converges faster - as it should.

[Sep 04; thanks to Greg Hammett]
Page 82: The last five lines should read:

In our simple example the fitness is bound to the value $f_{i} \equiv f(x_{i}^{0})$: the lower $f_{i}$, the higher the fitness of $x_{i}^{0}$. It is always possible, and convenient, to assign the fitness $g_{i} \equiv g(x_{i}^{0})$ such that it is positive definite.

A relative fitness, or probability of reproduction, is defined as $p_{i} \equiv g_{i}/\sum_{i=1}^{N}g_{i}$. It has all the markings of a probability density, and accordingly we may also ...

[Dec 03]


Page 117: Equ. 4.153 should read:

\begin{displaymath}
\mbox{$\bf q$}_{n+1}=\mbox{$\bf q$}_{n}+\mbox{$\bf P$}(\mbox...
...mbox{$\bf p$}_{n}+\mbox{$\bf F$}(\mbox{$\bf q$}_{n+1})\Delta t
\end{displaymath}



- Somewhat later, the sentence beginning ``Incidentally, ..'' should read:

A very similar first-order symplectic scheme, also known as the Euler-Cromer algorithm,

\begin{displaymath}
\mbox{$\bf p$}_{n+1}=\mbox{$\bf p$}_{n}+\mbox{$\bf F$}(\mbox...
...mbox{$\bf q$}_{n}+\mbox{$\bf P$}(\mbox{$\bf p$}_{n+1})\Delta t
\end{displaymath}

exactly conserves the perturbed Hamiltonian

\begin{displaymath}
\tilde{H}=H_{ho}-\frac{\textstyle \omega^{2} \Delta t}{\textstyle 2}pq
\end{displaymath}

When applied to oscillator-like equations of motion it is a definite improvement over the (unstable) Euler-Cauchy method ...

[Dec 03, thanks to Denis Donnelly]
Page 154: Equ. 5.137 is printed as

\begin{displaymath}
\beta_{l}= 2 \cos\left[ \frac{2(l-1)\pi}{2^{p+1}}\right]
\end{displaymath}

but should read

\begin{displaymath}
\beta_{l}= 2 \cos\left[ \frac{(2l-1)\pi}{2^{p+1}}\right]
\end{displaymath}

Note: the same error appears in Hockney's book

[Jan 04, thanks to the class of 03/04]
Page 168: The text following equ. 6.8 should read

... where $u^{*} \equiv u_{LJ}/\epsilon$ and ...

[Oct 03]
Page 187: Eq. 6.60: the second term in the brackets should read
\begin{displaymath}
\sum_{\vec{n}} \frac{L^{3}}{\vert\vec{r}_{i,j,\vec{n}}\vert}F(\eta \vert\vec{r}_{i,j,\vec{n}}\vert)
\end{displaymath} (1)



[Apr 06]
Page 217: Eq. 8.12: should be

$\displaystyle \frac{d e}{dt}$ $\textstyle =$ $\displaystyle - (e+p) \nabla \cdot \mbox{$\bf v$} -(\mbox{$\bf v$} \cdot \nabla)\, p$  
  $\textstyle =$ $\displaystyle -e (\nabla \cdot \mbox{$\bf v$}) - \nabla \cdot (p \mbox{$\bf v$})$ (2)



[May 06]

Page 218: Eq. 8.18: first line should be

$\displaystyle e_{j}^{n+1}$ $\textstyle =$ $\displaystyle \frac{1}{2}\left(e_{j+1}^{n}+e_{j-1}^{n} \right)$ (3)
    $\displaystyle - \dots$ (4)



[May 06]

Page 232: In Figure 8.6 the shading of some cells is barely visible.



MAC method: the 4 types of surface cells and the appropriate boundary conditions for $v_{x}, v_{y}$ (see POTTER).

[May 02]

next up previous
F. J. Vesely / University of Vienna