next up previous
Next: 5.1 Initial Value Problems Up: II. Differential Equations Everywhere Previous: 4.3.2 Relaxation Method


5. Partial Differential Equations (PDE)



Waves: a hyperbolic-advective process

Most important in physics: quasilinear PDEs of second order:
$\displaystyle a_{11} \frac{\partial^{2} u}{\partial x^{2}}+
2 a_{12} \frac{\par...
... y^{2}}+
f(x,y,u, \frac{\partial u}{\partial x},
\frac{\partial u}{\partial y})$ $\textstyle =$ $\displaystyle 0$  

hyperbolic:      $a_{11}a_{22}-a_{12}^{2}<0$ (e.g. $a_{12}=0,\;a_{11}a_{22}<0$)  
parabolic: $a_{11}a_{22}-a_{12}^{2}=0$ (or $a_{12}=0,\;a_{11}a_{22}=0$)  
elliptic: $a_{11}a_{22}-a_{12}^{2}>0$ (or $a_{12}=0,\;a_{11}a_{22}>0$)  


Examples:
hyperbolic $c^{2} \frac{\textstyle
\partial^{2}u}{\textstyle \partial x^{2}}
- \frac{\textstyle \partial^{2}u}{\textstyle \partial t^{2}}=f(x,t)$ Wave equation
  $c^{2} \frac{\textstyle \partial^{2}u}{\textstyle \partial x^{2}}
- \frac{\texts...
...\partial t^{2}}
-a\,\frac{\textstyle \partial u}{\textstyle \partial t}
=f(x,t)$ Wave with damping
     
parabolic $ D \, \frac{\textstyle \partial^{2}u}{\textstyle \partial x^{2}}-
\frac{\textstyle \partial u}{\textstyle \partial t} =f(x,t)$ Diffusion equation
  $\frac{\textstyle \hbar^{2}}{\textstyle 2m} \,
\frac{\textstyle \partial^{2}u}{...
...^{2}}
+i\hbar \, \frac{\textstyle \partial u}{\textstyle \partial t}-U(x)\,u =0$ Schroedinger equation
     
elliptic $ \frac{\textstyle \partial^{2}u}{\textstyle \partial x^{2}}+
\frac{\textstyle \partial^{2} u}{\textstyle \partial y^{2}}
=- \rho(x,y)$ Potential equation
  $\frac{\textstyle \partial^{2}u}{\textstyle \partial x^{2}}
+\frac{\textstyle \p...
...xtstyle \partial y^{2}}
-\frac{\textstyle 2m}{\textstyle \hbar^{2}}\,U(x)\,u =0$ Schroedinger equation,
  $({\rm or}\;\dots =\epsilon \, u)$ stationary case


$\textstyle \parbox{8em}{hyperbolic \\ parabolic \\ \mbox{} \\ elliptic \\ }$$\textstyle \parbox{2.5em}{\huge \} \\ \vspace{2ex} }$ $\textstyle \parbox{15.5em}{$\Longleftrightarrow \;$\ initial value problems \\
\mbox{} \\ [12pt] $\Longleftrightarrow \;$\ boundary value problems \\ }$

Conservative hyperbolic and parabolic equations, describing the transport of conserved quantities, may be written as
$\displaystyle \fbox{$ \displaystyle
\frac{\partial u}{\partial t} = - \mbox{$\bf \nabla$} \cdot \mbox{$\bf j$}
$}$      

where $u(\mbox{$\bf r$},t)$ (scalar or vector) is the density of a conserved quantity, and $\mbox{$\bf j$}(\mbox{$\bf r$},t)$ the respective local ``flux density'', or ``current density''.

Proof:

Let the transported quantity (mass, energy, momentum, charge, etc.) be conserved as a whole.
$\Longrightarrow$Law of continuity leads to conservative (hyperbolic or parabolic) equations.
Figure 5.1: Derivation of the conservative PDE
\begin{figure}\includegraphics[width=180pt]{figures/f5khdg.ps}\end{figure}
Spatial distribution: ``density'' $u(\mbox{$\bf r$},t)$.

Total amount in a volume $V$: $M_{V}(t) \equiv \int\limits_{V} u(\mbox{$\bf r$},t) \, d\mbox{$\bf r$}$

``Flux'' $J$ through the surface $S$: net amount entering $V$ per unit time.

``Flux density'', or ``current density'' $\mbox{$\bf j$}(\mbox{$\bf r$},t)$: local contribution to the total influx (see Figure):
$\displaystyle J$ $\textstyle \equiv$ $\displaystyle - \int\limits_{O} \mbox{$\bf j$} (\mbox{$\bf r$},t) \cdot d \mbox{$\bf S$} \;\;\;
{\rm (per \; def.)}$  
  $\textstyle =$ $\displaystyle - \int\limits_{V} (\mbox{$\bf\nabla$} \cdot \mbox{$\bf j$})\, d \mbox{$\bf r$} \;\;\;\;
{\rm (Gauss \; law)}$  

Continuity equation:

\begin{displaymath}
\frac{dM_{V}}{dt} = J
\;\;\;\; {\rm or} \;\;\;\;
\int\limits...
...\bf\nabla$} \cdot \mbox{$\bf j$}\, \right] d\mbox{$\bf r$} = 0
\end{displaymath}

Thus

\begin{displaymath}
\fbox{$ \displaystyle
\frac{\partial u}{\partial t} = - \mbox{$\bf \nabla$} \cdot \mbox{$\bf j$}
$}
\end{displaymath}

Usually $\mbox{$\bf j$}$ does not depend explicitly on $\mbox{$\bf r$}$ and $t$, but only implicitly via $u(\mbox{$\bf r$},t)$ or its spatial derivative, $\mbox{$\bf\nabla$} u(\mbox{$\bf r$},t)$:

\begin{displaymath}
\mbox{$\bf j$} = \mbox{$\bf j$}(u) \;\;\; {\rm or} \;\;\; \mbox{$\bf j$} = \mbox{$\bf j$}(\mbox{$\bf\nabla$} u)
\end{displaymath}



Examples:

(1) Consider the electromagnetic wave equation in 2D:
$\displaystyle \frac{\partial^{2} E_{y}}{\partial t^{2}}$ $\textstyle =$ $\displaystyle c^{2}
\frac{\partial^{2} E_{y}}{\partial x^{2}}$  

which is equivalent to
$\displaystyle \frac{\partial E_{y}}{\partial t} = c\,\frac{\partial B_{z}}{\partial x}
\;\;\;$   $\displaystyle \frac{\partial B_{z}}{\partial t} = c\,\frac{\partial E_{y}}{\partial x}$  

$\Longrightarrow$conservative-hyperbolic, with $u \equiv \mbox{$\bf u$} = (E_{y}, B_{z})$, and $j \equiv \mbox{$\bf j$}(\mbox{$\bf u$}) = -c\, (B_{z}, E_{y})$.



(2) Consider the diffusion equation in 1D:
$\displaystyle \frac{\partial u}{\partial t} = D \frac{\partial^{2} u}{\partial x^{2}}$ $\textstyle \equiv$ $\displaystyle \frac{\partial}{\partial x}
(D \frac{\partial u}{\partial x})$  

$\Longrightarrow$conservative-parabolic, with $j \equiv j(\nabla u) = D \partial u / \partial x$.



Subsections
next up previous
Next: 5.1 Initial Value Problems Up: II. Differential Equations Everywhere Previous: 4.3.2 Relaxation Method
Franz J. Vesely Oct 2005
See also:
"Computational Physics - An Introduction," Kluwer-Plenum 2001