next up previous
Next: 2.2 Exact Methods Up: 2. Linear Algebra Previous: 2. Linear Algebra


2.1 General remarks

Given $f(x)$ , introduce finite differences
$\Longrightarrow$Vector $\mbox{$\bf f$} \,\equiv\,(f_{k}\,;\;k=1,\dots,M)$


Similarly, given $f(x,y)$ or $f(x,t)$
$\Longrightarrow$Matrix $
\mbox{${\bf F}$}\equiv[f_{i,j}]\equiv[f(x_{i},y_{j})\,;\;i=1,\dots M;\,j=1,\dots N]
$


Approximate the various differentials by differences:
$\Longrightarrow$ Convert Partial Differential Equations (PDEs) into Systems of Linear Equations $\mbox{${\bf A}$} \cdot \mbox{$\bf x$}=\mbox{$\bf b$}$.


As a rule $\mbox{${\bf A}$}$ has a simple structure: sparse, diagonally dominated, positive definite, etc.


Fundamental manipulations:

Franz J. Vesely Oct 2005
See also:
"Computational Physics - An Introduction," Kluwer-Plenum 2001