FINITE GROUPS ADMITTING A COPRIME AUTOMORPHISM
SATISFYING AN ADDITIONAL POLYNOMIAL IDENTITY

W. A. MOENSt

ABSTRACT. It is known that a finite group with an automorphism ¢ of coprime order
has a soluble radical of (|¢|, |Ca(p)|)-bounded Fitting height and index. We extend
this classical result as follows. Let f(z) = ap+ a1 -z + -+ aq - 2% € Z[z] be a
primitive polynomial and let G be a finite group with an automorphism ¢ of coprime
order satisfying g% - p(g)® ---¢%(g)? =1 for all g € G. Then the soluble radical of G
has (d, |Cg(p)|)-bounded Fitting height and index. The bounds are made explicit and
are particularly good for small values of the degree d.

1. INTRODUCTION

We study the structure of finite groups GG with an automorphism ¢ satisfying a given
ordered identity f(z). We recall that a polynomial ag+a; -z +ag- 22+ -+ aq- 2 € Z[z]
is said to be an ordered identity of ¢ if
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g - (g)* - (pQ(g)“2 e gpd(g)“d =1 for every g € G.

The most obvious example of such an identity can be obtained as follows. Let d := |¢|
be the order of the automorphism. Then the polynomial f(z) := —1 + 2¢ is clearly an
ordered identity of ¢, and much can be said about the structure of G in terms of d and
m := |Cq(p)], the number of elements fixed by ¢. We make the additional assumption
that the order of the automorphism is coprime to the order of the group. Then the
automorphism is said to be coprime and G has a large soluble subgroup that can be
obtained by few extensions of nilpotent groups. More precisely, the soluble radical of G
has (d, m)-bounded index in G and (d, m)-bounded Fitting height. Such a bound on the
index can be found in Hartley’s generalization [15] of the famous Brauer-Fowler theorem
[5], and a bound on the Fitting height appears as a special case in the early work of
Thompson [44]. We note that Thompson’s bound, and later improvements on that bound
by Kurzweil [14] and Turull [45], depend only on k(d) (the number of prime divisors
of d, counted with multiplicity) and on the Fitting height of Cg(¢) (which is naturally
bounded by m). Other relevant results are due to Brauer—Fong [4], Hartley—Meixner [17],
Hartley—Turau [I8], Pettet [38], and Hartley—Isaacs [16]; cf. Turull’s survey [46].

Still under the assumption that f(z) = —1 + 2¢, we further specialize m to 1. Then
the automorphism ¢ is said to be fized-point-free and the classification of the finite simple
groups implies that the group is soluble [39]. In this case, the work of Schult [41], Gross
[11], and Berger [3] gives the sharp upper bound k(d) on the Fitting height of G. By
further specializing d to a prime, we force the group to be nilpotent. This is Thompson’s
celebrated solution [43] of the Frobenius conjecture. Higman [19] showed that the nilpo-
tency class of G is then d-bounded, but he did not make the bound explicit. Kreknin and
Kostrikin [34] later found the explicit bound d2”.

All of these results for f(z) = —1+2% and m = 1 have recently been generalized to non-
zero polynomials f(z) := ag+ay -+ -+ aq-2? € Z[z] satisfying ged(ag, ay, . .., aq) = 1.
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Such a polynomial is said to be primitive. In fact, consider any finite group G with
any fixed-point-free automorphism ¢ satisfying the primitive ordered identity f(z) of
degree d. Then the Fitting height of G is at most 2 + 112 - d?>. Moreover, there exist
finitely-many primes py, ..., p;, depending only on f(z), with the following property. If
ged(|G|,p1---p) = 1, then the bound on the Fitting height of G can be improved to
4+ (1+ ¢)?, where c is the number of irreducible factors of f(z). These two theorems of
Khukhro-Moens [32] depend on the deep results of Hall-Higman [13], Shult—Gross—Berger
[41], 11], B], and Dade—Jabara [7, 23]. The upper bound can still be improved to the linear
bound ¢ for almost all polynomials f(z) [37]. If f(x) is irreducible, then G is nilpotent of
d-bounded class [35] at most d2* [36].

These recent generalizations required m to be 1 but they did not require the automor-
phism to be coprime. In contrast, we now consider coprime automorphisms but we do not
require m to be 1. The results of Hartley [I5] and Thompson—Kurzweil-Turull [44] [14], [45]
will then be generalized as follows.

Main Theorem. Let G be a finite group with a coprime automorphism ¢ that fives m
elements and satisfies the primitive ordered identity f(z) = ag +ay -z + -+ aq - 2%

g o(g) o) =1 forallgeG.

Then the soluble radical of G has (d, m)-bounded index in G and has (d, ho)-bounded
Fitting height, where hq is the Fitting height of Ca(p).
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The bounds will be made explicit in Section [0} In the same section, we will also show
that the theorem is no longer true without the primitivity condition ged(aq, .. .,aq) = 1.
Examples of Thompson [44] show moreover that the coprimeness condition ged (|G|, |¢|) =
1 cannot be removed either. If “(d, hg)-bounded Fitting height” is replaced with the
weaker conclusion “(d, m)-bounded Fitting height”, then the theorem may still be true
without the coprimeness condition (but this has not even been proven in the ‘classical
case’ f(z) = —1+ x¢, cf. Problem 13.8 in the Kourovka Notebook [33]).

The general strategy to prove the theorem is straightforward. We begin by combining
the recent results of [32] with those of Turull [45] in order to obtain an upper bound
on the Fitting height of the soluble radical. This is done in Section [3] It then suffices
to obtain an upper bound on the order of G under the additional assumption that the
soluble radical is the trivial group. In Section 4] we do this for simple groups by means of
the classification. In fact, we first prove that the automorphism has order at most d, and
we then derive a suitable upper bound on the order of the group (without using Hartley’s
theorem [I5]). In Section [§, we treat the general case by reducing it to the simple case.

2. DEFINITIONS AND EXAMPLES

An automorphism ¢ of a finite group G is coprime if ged(|G|, |¢]) = 1. A polynomial
f(x) =ap+ar-x+ay 2>+ +aq- 2% € Z[z] is primitive if it is non-zero and if its
content ged(ag, ay,ag, ..., aq) is 1. The following notions were introduced by the author
(cf. [36], B37]).

Definition 2.1. Let f(z) = ag+ a1 -z +as-2? + - + aq - % € Z[z] be a polynomial.
We say that f(x) is an ordered identity of an endomorphism 7 of a group G if

ao “ L 2(g)2 .yl g)d =1 for all g € G.

g* -v(9)

In this case, we also say that v satisfies the ordered identity f(x).
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Definition 2.2. More generally, we say that f(z) = ag+a-z+ay 2>+ +aq-2¢ € Z[z]
is an identity of an endomorphism 7 of a group G if there exist by, by, bs, ..., b € Z and
Mo, M1, Mo, . .., My € Lo such that f(z) = by-x™ +by-x™ +by- 2™+ -+ b - 2" and

Y (g)% A" () 2 (g)2 ™ (g)% =1 forall g € G.

In this case, we also say that 7 satisfies the identity f(z).

Remark 2.3. Note that for non-abelian groups the notion of identity in Definition
depends not only on the polynomial f(x) but also on the integers b;, m; and the order of
terms 7™ (g)% in the product. But for an abelian group the notions of ordered identity
and identity in Definitions [2.1] and are the same. Every ordered identity of v is clearly
also an identity of ~, but examples show that the converse is not true.

Some identities naturally correspond to work in the literature.

Example 2.4. Let n € Z;.

(a) A finite group G has exponent dividing n if and only if the constant polynomial
f(z) :=n is an ordered identity of some (any) automorphism. These groups have
been studied extensively in the context of the restricted Burnside problem. We
highlight the work of Hall-Higman [I3] and Zelmanov [48, [49].

(b) A group is n-abelian if and only if it has an endomorphism ~ satisfying the linear
ordered identity f(x) := —n + x. These groups were introduced by Baer [2] and
classified by Alperin [I] (for n > 1).

(¢) An automorphism ¢ of a group G has order dividing n if and only if the polynomial
f(z) == —1 + 2™ is an ordered identity of ¢. Automorphisms with prescribed
order have been studied extensively in the literature, as we had already observed:
I3, 5, 17, (LT, (15, (16, (17, (18, [19, 23, 54, BS), 41, 13, 44, 45].

(d) An automorphism ¢ of a group G is n-splitting if and only if the polynomial
f(z):=1+x+2*+---+2" ! is an ordered identity of ¢. These n-splitting auto-
morphisms have been studied in various contexts, including the Hughes subgroup
problem and the compact Burnside problem. We mention [, [9] 20} 211 22, 25|, 26,
27, 28, 29, 30, B1], 50] and we refer to the references therein. We also highlight
Zelmanov’s powerful generalization [51] of his solution of the compact Burnside
problem to (a different kind of) polynomial identities.

The identity in (a) is primitive if and only if n = 1. The identities in (b), (c), and (d)
are all monic and therefore primitive. We refer to the introductions of [32} [35], 36], 37] for
more examples and context.

3. THE SOLUBLE CASE

In this section, we obtain an upper bound on the Fitting height of the soluble radical.
We first fix some notation. For a finite soluble group G, the Fitting subgroup of G is
denoted by F'(G) and the Fitting height of G is denoted by h(G). The composition length
of a finite cyclic group C'is denoted by k(C'), and it coincides with the number k(|C]) of
prime divisors of |C|, counted with multiplicity.

The following result of Thompson [44], Kurzweil [14], and Turull [45] has already been
mentioned in the introduction. The sharp bound in the theorem was obtained Turull.

Theorem 3.1. Let GG be a finite soluble group with a soluble group of operators A of
coprime order and of composition length k(A). Then h(G) < 2k(A) + h(Cg(A)).
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Our second auxiliary result is the following slight modification of Proposition 4.1 in
Khukhro-Moens [32]. We recall that, if ¢ is a prime divisor of the order of a group G,
then Oy (G) is defined to be the largest normal ¢’-subgroup of G and Oy ,(G) is defined
to be the inverse image of the largest normal g-subgroup of G/O,(G).

Proposition 3.2. Let G be a finite soluble group and let ¢ be a coprime automorphism
that satisfies a primitive identity f(x) of degree at most d. Let q be any prime divisor
of G and define the quotients G := GOy ,(G) and H := G/F(G). Then the automor-
phism group induced by () on H has d-bounded order |(p},,)| < (2d)*? and d-bounded
composition length k({|¢|,|)) < 4d.

Proof. We consider the analogous Proposition 4.1 in [32], which is formulated for ele-
mentary abelian identities that do not vanish modulo any prime divisors of |G|, and for
automorphisms that are fized-point-free. We first note that f(x) is an identity of the
automorphism induced by ¢ on any characteristic elementary abelian section of G, so
that f(x) is also an elementary abelian identity of ¢ in the sense of [32]. We next note
that f(x) does not vanish modulo any prime divisors of |G| since f(z) is assumed to be
primitive. We finally note that the fixed-point-freeness of ¢ is only used in the proof of
that proposition in order to obtain the existence of Hall subgroups of G that are invariant
under . But it is known that, if ¢ is a set of primes and if ¢ is a coprime automorphism
of a finite soluble group G, then ¢ leaves some Hall o-subgroup of G invariant. So we
need only replace [32, Lemma 2.2] with [23] Remark 2.13] in the proof of [32, Proposition
4.1). OJ

Definition 3.3. We define By : Zsg X Zzo — Z>1 : (d,m) — 8d + m + 2.
We are now in a position to prove the first part of the main theorem.

Proposition 3.4. Let G be a finite soluble group with an automorphism ¢ of coprime or-
der that satisfies a primitive identity f(x) of degree at most d. Then h(G) < Bi(d, h(Ca(p))).

Proof. We may assume that G is non-trivial, since otherwise h(G) = 0 < By(d,m).
So we may select an arbitrary prime divisor ¢ of |G| and consider the automorphism
group induced by (g) on the characteristic section H := G /Oy 4(G)/F(G/Oy 4(G)) of G.
According to Theorem we have the bound h(H) < 2k({y¢|,)) + MCu({¥|,))). Since
ged(|C], [¢]) = 1, the group Cir({g},)) is a quotient of C({)). so that A({Ch () <
h(Ca({p))). And, according to Proposition [3.2, we also have the bound k((y),)) < 4d.

Altogether, we obtain h(H) < 2(4d) + h(Cs(y)), and therefore h(G/Oy 4(G)) < 8d +
hCq(p)) + 1. Since F(G) =, Oy 4(G), where g runs over the prime divisors of |G|, we
conclude that h(G) < 8d+ h(Ca(p)) + 2. O

Remark 3.5. Examples of Thompson [44] show that one cannot obtain a bound on
the Fitting height of G in terms of d and h(Cg(y))) without the coprimeness condition

ged(|G, lol) = 1.
If f(1) # 0, then we can even obtain a bound that depends only on f(z).

Corollary 3.6. Let G be a finite soluble group with an automorphism p of coprime order
that satisfies a primitive identity f(x). If f(1) # 0, then h(G) < 8deg(f(x))+2|f(1)|+2.

Proof. For every x € Cq(y), we clearly have 1 = 27| so that the exponent of the soluble
group Ce(¢p) divides the integer | f(1)]. Let | f(1)] = p{* - - - p;* be the factorisation of | f(1)]
into distinct prime divisors py,...,p;. A result of Shalev [40, Lemma 2.5|, based on the
fundamental Hall-Higman theorem [13], gives the bound h(Cs(p)) < (2e1+1) -+ (2¢,+1)
and therefore the bound h(Cg(p)) < 2|f(1)|. Proposition |3.4] finishes the proof. O
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4. THE SIMPLE CASE

In this section, we prove the main theorem for the special case of simple groups H. First
we recall the well-known fact about coprime automorphisms, which is a consequence of
the classification of finite simple groups.

Lemma 4.1. Let H be a finite simple non-abelian group with a coprime automorphism
¢ of order > 1. Then H is (isomorphic to) a group of Lie type, and the automorphism
is an Aut(H)-conjugate of a pure field automorphism.

Here, an automorphism ¢ : H — H of H is said to be a pure field automorphism if it
can be obtained by extending an automorphism K — K of the defining field K to H via
the root subgroups of H in the usual way: cf. Definition 2.5.1 in [10], or Chapter 12 in
[6], or Chapter 10 in [42]. This automorphism of K is then denoted by ¢.

The next lemma shows that we may assume that the automorphism ¢ in Theorem [} is
in fact a pure field automorphism.

Lemma 4.2. Let H be a group with automorphism o of order e fixing at most m points
and satisfying the identity f(x). Let v € Aut(H). Then also the conjugate automorphism
B:=~opoy ! of H has order e, fizes at most m points, and satisfies the identity f(z).

Proof. Since " = yo " o~~! for all n € Z, we conclude that |3| = |¢|. It is clear that
Cu(B) = v(Cy(p)), so that |Cy(5)] = |Cr(e)|. By definition, there exist by, ..., b, € Z
and mo, ..., my € Zso such that f(x) = by - 2™ + --- + by - 2™ and such that, for all
h € G, we have @™ (h)b . ™2 (h)%2 ... ™k (h)b = 1. For every g € H, we set h := vy 1(g),
and we verify that: 570(g)" - 57 (g)" -+ 7(g)"t = y(@™ (h)? ™2 (R) - - - ™ (R)) =
(1) = 1. O

For each of the groups in Lemma {4.1, we now define a subgroup with good properties.

Lemma 4.3. Let H be a simple group of Lie type with defining field K, other than ? Ay(q?),
and let ¢ be a pure field automorphism of H. Then there is an injective homomorphism
X (K, +) — H that satisfies o(X(t)) = X(¢k(t)) for allt € K.

Proof. Suppose first that H is one of the untwisted groups of Lie type. Then H is
generated by its root subgroups: H = (X,(t) | « € ¢, € K), where ® is the defining
root system and K is the defining field. Moreover, any such root subgroup defines an
injective homomorphism X,, : (K, +) — H from the additive group (K, +) of the field to
H and it satisfies p(X,(t)) = Xo(@k(t)), by definition. All of these claims are well-known
and can be found in [42], [6], and [10].

Suppose next that H is a twisted group of Lie type realized as a subgroup of an
untwisted group G that is fixed element-wise by a distinguished automorphism o (the
twist). The map t — X(t) cannot be selected from the root subgroups of G in this case,
since the image of such a root subgroup need not be contained in H. But a suitable
product of root subgroups, with an added twist, will naturally give rise to an injective
homomorphism into H that is compatible with all pure field automorphisms.

We will define the map by using the results, terminology, and notation of Chapter 13
in Carter’s book [6]. (Alternatively, the reader may consult Chapter 11 of Steinberg’s
lecture notes [42], and the exact parametrizations that are given in [42] Lemma 63]. A
third reference is Chapter 2 in the book of Gorenstein—Lyons—Solomon [10], with exact
parametrizations in [10, Table 2.4]. The reader is advised, however, to take into account
subtle differences in notation, especially regarding the field parameters and structure
constants.) We recall that Lemma 13.2.1 of [6] partitions the root system ® of G into
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equivalence classes. The opening paragraph of [6, 13.5] lists, for each such ®, exactly
which equivalence classes appear.

Suppose first that H is of type 24, (¢?) (for some n > 2), or of type ?Eg(q?), or of
type 2D, (¢?) (for some n > 3), or of type 2Fy(¢q). Then the root system contains an
equivalence class {r,7} of positive roots of type A; x A;. If the roots have the same
length, then the map X : (K,+) — H : t — X.(t) - X:(1) is a well-defined, injective
homomorphism according to [0, Proposition 13.6.3 (ii)], [0, Proposition 13.6.4 (ii)], and
[6, Theorem 5.3.3]. Suppose next that r is a short root and 7 is a long root. Then the map
X (K, +)— H:tw X.(t% - X:(t) is a well-defined, injective homomorphism according
to [0, Proposition 13.6.3 (v)], [6, Proposition 13.6.4 (v)], and [6, Theorem 5.3.3].

Suppose next that H is of type *Dy(¢?). In this case, the root system contains an
equivalence class {r,7,7} of positive roots of type A; x A; x A;. Then the map X :
(K,+) = H :t — X.(t) - X:(t) - X5(¢) is a well-defined, injective homomorphism, according
to [0, Proposition 13.6.3 (iii)], [6, Proposition 13.6.4 (iii)] and [6l Theorem 5.3.3].

Suppose next that H is of type ?Bs(q). In this case, the root system contains an equiv-
alence class {a,b,a + b,2a + b} of positive roots of type By. Then the map X : (K, +) —
H:u X, p(u) - Xogrp(u??) is a well-defined, injective homomorphism, according to [6],
Proposition 13.6.3 (vi)], [0, Proposition 13.6.4 (vi)], and [0, Theorem 5.3.3].

Suppose finally that H is of type *G(q). In this case, the root system contains an
equivalence class {a,b,a + b,2a + b,3a + b, 3a + 2b} of positive roots of type Gy. Then
the map X : (K, +) = H : v — Xoqip(v?) - Xsar0p(v) is a well-defined, injective homo-
morphism, according to [0, Proposition 13.6.3 (vii)], [0, Proposition 13.6.4 (vii)], and [6]
Theorem 5.3.3].

By definition, the maps X, X1, . .. all commute with . Moreover, all automorphisms
t = t,v — 0% ... of the defining field commute with ¢x. So each of the above maps X
commutes with ¢. O

Remark 4.4. We have avoided using the equivalence classes of positive roots of type A;
because the corresponding (well-defined, injective) homomorphism is defined only on a
proper subfield of the defining field. This will not be enough to prove Proposition 4.7

For technical reasons, we treat the projective special unitary groups 24, (¢?) separately.

Lemma 4.5. Let K be a field of ¢> elements and let N be an integer. Then the subset
Dyrk ={(s,u) e K xK |u+ul=—-N-s-57}

of K x K is a group with respect to the operation x : (K X K) x (K x K) - K x K :
((s,u), (t,v)) — (s+t,u+v—N-s?-t), the inversion . : K — K : (s,u) — (—s,u?), and
the neutral element (0,0). The projection of Dy x onto its first coordinate is all of K. If
i is an automorphism of K and if (s,u) € Dy i, then also (pk(s), px(u)) € Dy k.

Proof. The first and third claim can be verified by a routine computation. For the second
claim, we consider the unique subfield L of K that consists of exactly ¢ elements and
we consider the map K — K : § +— [+ (9. Then the kernel of this map is L and the
image of the map is contained in L. So there exist « € L'\ {0} and § € K \ L such that
(B+ p9)/a = 1. Now let s € K be arbitrary. Then clearly s - s € L, and we define
u:=—N-s-s7-F/a. Sinceu+u?=—-N-s5-57-f/a—N-s?-s-01/a=—N-5-59 we
have (s,u) € Dy k. O

One can verify that (Dy k, *) is a special group of order ¢*.
Lemma 4.6. Let H be a finite simple adjoint group of type ?As(q?) with defining field
K and let ¢ be a pure field automorphism of H. Then there is an integer N and an
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injective homomorphism X : (Dy i, *) — H such that o(X(s,u)) = X(pk(s), px(u)) for
all (s,u) € Dy k.

Proof. As in the proof of Lemma , we obtain an equivalence class {r,7} of positive
roots of type Ay with corresponding structure constant N, ; (still in the notation of [6]).
Set N := N, ; and consider the group (Dy k, *) that was defined in Lemma . Then the
map X : (Dy.,*) — 2A2(¢%) : (s,u) = X.(s) - X:(8) - Xpyr(u) is a well-defined, injective
homomorphism, according to [6, Proposition 13.6.3 (iv)], [6, Proposition 13.6.4 (iv)], and
[6, Theorem 5.3.3]. Since ¢ commutes with the X, X5, X7, and since px commutes with
the automorphism s +— 5 of the field, we once more obtain p(X'(s,u)) = X (v (s), pr(u))
for all (s,u) € Dy k. O

We now use these subgroups to pull the identity f(z) of ¢ down to the level of the
defining field. This allows us to bound the order of ¢.

Proposition 4.7. Let H be a group of Lie type and let @ be a pure field automorphism
of H satisfying the primitive identity f(x). Then |p| < deg(f(x)).

Proof. As before, we consider H to be a subgroup of an untwisted group G with (possibly
trivial) twist 0. Let the pure field automorphism ¢ : H — H be induced by the auto-
morphism ¢ : K — K : t — t% of the defining field K. Let the identity f(z) be given
by ag+ay -z + -+ + aq - 2%, with ag # 0. By definition, there exist by, ...,b, € Z and
mo, ..., My € Zso such that f(z) = by - 2™ 4 -+ - + by - 2™ and such that, for all h € H,
we have

P (R)" - @™ ()™ (R) = 1 (4.1)
Suppose first that H is of type 2As(¢?). Let X : (Dyx,*) — H be the injective homo-
morphism of Lemma [4.6| and select an arbitrary s € K. According to Lemma 4.5, there
exists some u € K such that (s,u) € Dy k. By evaluating in h:= X(s,u), we obtain

L= @"™(X(s,u)" @™ (X(s,u))" - - " (X (s,u))™
= X((PR(5), 0" (W)™ * (P (5), 0" (W)™ # - (0 (s), 0 (u)™)
= X(bo- £ () + b1~ P (s) + -+ + b - 9" (5),v)
= X(ag-s+ay-ox(s)+ - +aq pk(s),v),
for some v € K such that (ag-s+ay - pr(s)+--+aq-9%(s),v) € Dy . Since the map
X is injective, we have Ox = ag - s+ ay - px(s) + -+ + aq - P%(s), and therefore
O = ag - s 1 4 aj - sy aq - sqodfl, (4.2)

for all s € K*. Let w be a generator of the cyclic group (K*,-) of the finite field K.
By evaluating (4.2)) in the iterated powers w® w!, ..., w? of w, we see that the vector

(ag,...,aq)"T € K% is a solution of the homogeneous Vandermonde system
wo(qoo_l) wo(qol_l) wo(qo2_1) Ce wo(qod_l) ao 0
wila’=1) wila=1) wlla?=1) - wila?=1) ay 0

w(d_l)(qoo_l) w(d_l)(qol_l) w(d_l)(qo2_l) P w(d_l)(qu_l) ad*l O
wd(qoo_l) wd(qol_l) wd(qog_l) e wd(qod_l) a/d 0

The determinant &[], ;< (@ =1 — %=1 of this matrix vanishes in K, since otherwise
the coefficients ay,...,aq of f(x) all vanish modulo p, which would contradict the fact
that f(x) is primitive. So there exist 0 < i < j < d such that w® ! = w® =1 and
therefore @i (t) = @l (t) for all t € K. We see, in particular, that the order of g is at
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most d. So the order of ¢ on the generating set {X,(t) |« € ®,¢t € K} of G is at most d.
The order of ¢ on the subgroup H of G is therefore also at most d.

Suppose next that H is a group of Lie type, but not of type 245(¢?). Let X : (K, +) —
H be the injective homomorphism of Lemma We then select an arbitrary s € K and
evaluate in h:= X(s) in order to obtain

L= @™ (X () ™ (X(s))" - ™ (X ()™
= X(bo- @™ (5) + by - P (s) + - 4 by - 9T (s))
= X(ag-s+ar-¢k(s) +"'+ad'90§l<(3))-

Since the map X is injective, we have Ox = ag - s + a1 - pg(s) + -+ + aq - P%(s), for all
s € K. The rest of the proof can now be repeated verbatim. O

Definition 4.8. We define Bs : Z>g X Z>1 — Z1 : (d,m) = m + m10904,

The following lemma gives us an explicit upper bound on the order of our simple group
H in terms of || and |Cy(¢)|. We have made no attempt to make this bound optimal.

Lemma 4.9. Let H be the adjoint version of a finite group of Lie type. Suppose that H
has a pure field automorphism ¢ of coprime order. Then |H| < Bs(|¢|, |Cr(¢)])

Proof. Let n be the (untwisted) rank of H and let K be the defining field. We first claim
that Cy(p) contains a subgroup S that is isomorphic to a group of exactly the same
adjoint type as H, but that is defined over a subfield K, of K such that |K| < |Ky|¥l.
Let us prove this claim by induction on the number k& = k(|g|) of prime divisors of |¢|,
counted with multiplicity. The base of the induction corresponds with k& = 0, in which case
Cu(p) = H, so that there is nothing to prove. So we assume k > 0 and we let p be a prime
divisor of |¢|. According to [0, Proposition 4.9.1 (a) and (b)], M := O (Cy(¢!¥/?)) is a
group of the same Lie type as H and it is also adjoint, but M is defined over the subfield
K; of K satisfying |K| = |K;[P. By construction, ¢(M) = M and the order of ¢ on
M divides |f|/p. Since ged(|M|,|¢},,]) = 1, Lemma allows us to conclude that ¢
is again a field automorphism of M. According to Lemma [£.2] it now suffices to prove
the claim under the additional assumption that ¢y,, is a pure field automorphism of M.
Induction then gives us a subgroup S of Ci(¢},,) € Cr(yp) of exactly the correct type
over a subfield K, of K satisfying |K;| < |Ko|'?la! < | K|/ and therefore | K| < |Ko|#l.
This establishes the claim.

Some coarse estimates for adjoint groups of Lie type will finish the proof. Since S has
rank n and defining field K, we have the (coarse) bound |Ko|" < |S|* and therefore the
bound |K|" < |Ko|" el < |S]*#l < |C(p)|*1¥!. Since H has rank n and defining field
K, we have the (coarse) bound |H| < |K[>*"* and therefore |H| < |C ()21, O

Remark 4.10. An upper bound on |G| that does not require |G| and |¢| to be coprime
can be found in Hartley’s generalization [15, Theorem A’] of the classical Brauer—Fowler
theorem [5]. That more generally applicable bound is, however, not explicit and it appears
to grow rather quickly. On the other hand, particularly good bounds for involutions
have recently been obtained by Guralnick—Robinson [12]. Bounds using only elementary
methods have also recently been obtained by Jabara [24].

We can finally prove the main theorem for simple groups.

Proposition 4.11. Let H be a finite simple non-abelian group with a coprime automor-
phism @, fizing at most m points and satisfying a primitive identity of degree at most d.
Then |H| < Bs(d,m).



Proof. We may assume that |p| > 1, since otherwise |H| = |Cu(p)] < m < Bs(d,m).
According to Lemma [£.1], H is a group of Lie type and ¢ is a conjugate of a pure field
automorphism. Lemma therefore allows us to assume that ¢ is a pure field automor-
phism. According to Proposition [£.7, this automorphism has order at most d. Lemma
therefore allows us to conclude that |H| < Bs(|g|, |Cu(p)|) < Bs(d,m). O

5. THE ‘SEMI-SIMPLE’ CASE

We now consider the main theorem for groups modulo their soluble radical, i.e. the
‘semi-simple’ case. We begin by recalling a well-known consequence of the classification
of the finite simple groups.

Theorem 5.1 (Rowley [39]). Let G be a finite group with a fixed-point-free automorphism.
Then G is soluble.

We introduce minor variations on the auxiliary polynomials of previous papers (cf.
35, 36, B37]).
Definition 5.2. Let f(z) =ag+a;-x+ -+ aq-x? € Z[z]. For each positive integer n
and each nonnegative integer j < n — 1, we define the partial sums

foj(@™) 2! = Z a; - ',

i=jmodn

0. that f(z) = fao(@") + fun(@™) 2+ o+ fapr(5) - am

Remark 5.3. Let f(z) € Z[z] \ {0} and n > 1. If f(x) is primitive, then there is some
0 < j <n—1such that also f, ;(x) is primitive.

Definition 5.4. We recursively define

1 ifm =1,

By :7Z Zisw — Zi>1 - (d, —
2t E30 X Byn = T : (&) {Bg(d,m)m'd!~Bz(d,Lm/2J> > 1

We are now in a position to prove the second claim of our main theorem.

Proposition 5.5. Let G be a finite group with a coprime automorphism ¢ fixing at
most m points and satisfying the primitive ordered identity f(x). Then |G/R(G)| <

By (deg(f(x)),m).

We consider Hartley’s generalized Brauer—Fowler theorem [I5, Theorem A] and we
generalize its proof in a straightforward way.

Proof. Suppose first that there is a simple, non-abelian group H and a non-negative
integer k such that G = H; x --- x Hj and such that each H; is isomorphic to H. The
automorphism induced on G permutes these factors H;, so that G breaks up into orbits
Ti,...,T;. On each such orbit, the induced automorphism must have a non-trivial fixed
point by Theorem [5.1] So the number of orbits ! satisfies | < |Ca(p)| < m.

Now consider any one of these orbits, say 7;, and let n; be the number of simple
factors of T;. Then n; > 1 and each factor is isomorphic to H. After re-labeling, we
may assume that 7, = Hy x --- x H,,_; and that ¢ cyclically permutes these simple
factors: p(H;) = Hjmodn,- Let f(z) be given by ag + ay - + - -+ + a4 - 2%, with aq # 0.
Suppose first that d < n; — 1. For each g € H;, we have by assumption the equality
1= g% p(g»)---p?(g*). Since the elements g, p(g)™, ..., ¢%(g)% belong to different
H;, we have g% = ... = g% = 1, so that g = g®"*(/@) = 1. We conclude that H = {1}.
This contradiction shows that each orbit T; has at most d simple factors: n; < d. We
conclude therefore that the number k& of simple factors of GG satisfies k = ny+- - -+n; < m-d.



As in the previous paragraph, we observe that ¢’(g)% € Hjmodn,, for all ¢ € Hy and
all j € {0,1,...,n; — 1}. So we may conclude that each f,, ;(x) is an ordered identity
of the automorphism induced by ¢™ on Hy. According to Remark [5.3] we can select
some j € {0,1,...,n; — 1} such that f,, ;(x) is primitive. One can further verify that
]CHO(goiZO)\ < |Cale)| < m. So the assumptions of Proposition [4.11| are satisfied for the

simple group Hy, the automorphism gp‘”;o, and the identity f,, j(x). We may therefore

conclude that |H| = |Hy| < Bs(d,m). Altogether, we obtain the bound |G| = |H|* <
Bs(d,m)™? =: B, and therefore the coarse bound | Aut(G)| < B!.

We finally consider the general case, which we prove by induction on m = |Cg(¢)|. By
passing from G to G/R(G), we may assume that R(G) = {1}. Define N := (4 Cs(S5),
where S runs over the characteristic, characteristically simple, non-abelian sections of G.
Then N is a normal soluble subgroup of G and therefore the trivial group. By the above,
every characteristic section S of GG that is characteristically simple but not abelian satisfies
|G/Cq(S)| < B!. So we obtain a family A of normal, g-invariant subgroups of G of index
at most B! and with trivial intersection. If m = 1, then Theorem [5.1| implies |G| = 1 <
Bs(d, m). So we may assume that m > 1. Then there is some L € A that does not contain
all the fixed points of ¢ in G. In this case, we have |CL ()| < [m/2], so that we may apply
the induction hypothesis to L, ¢, , and f(x) in order to obtain |L/R(L)| < By(d, [m/2]).
So we have [G : R(L)] < [G : L] -[L: R(L)] < B!- By(d,|m/2]) = Ba(d, m). Since the
soluble radical R(L) of L is characteristic in L, it is a soluble normal subgroup of G, and
therefore trivial. So we may indeed conclude that |G| =[G : R(L)] < By(d, m). O

Remark 5.6. This proof uses the fact that f(z) is an ordered identity of the auto-
morphism. The proof can also be made to work (in the obvious way) for identities
{pmo(g)bo - mr(g)% | g € G} = {1} that are not necessarily ordered, at the cost of
replacing the invariant deg(f(x)) = deg(by - ™ + - - - + by - ™) with the possibly larger
invariant max{my, ..., my}.

6. PROOF OF THE MAIN THEOREM
We can now prove the main theorem with the bounds of Definitions and

Theorem 6.1. Let G be a finite group with a coprime automorphism ¢ fixing m elements
and satisfying an ordered identity that is primitive and of degree at most d. Then the

soluble radical R of G satisfies
M(R) < Bi(d, h(Co(9)) < Bu(d,m) and |G/R| < Ba(d,m).

Proof. Let ), be the restriction of ¢ to R. Then ¢, satisfies the same ordered identity
and Cr(y),) = Cal(p) N R C Cg(p). We may therefore apply Proposition [3.4]in order to
obtain the bound h(R) < Bi(d, h(Cr(yp|,))) < Bi(d, h(Cg(p))) < Bi(d,m). According
to Proposition [5.5 we also have the bound |G/R| < Bs(d,m). O

In view of Remark [5.6] we also obtain the following analogue of the main theorem for
identities that are not necessarily ordered. Let my,...,my € Zxo, let by, ..., b, € Z, and
define the polynomial f(z) := by - 2™ + by - 2™ + -+ + by - ™ € Z[z].

Theorem 6.2. Let G be a finite group with a coprime automorphism o fixing m elements
and satisfying the primitive identity

()" @ ()" @™ (g) = 1,

for all g € G. Then the soluble radical R of G satisfies h(R) < Bi(d,h(Cgq(p))) <
Bi(d,m) and |G/R| < Ba(d,m), where d :== max{mq, ..., my}.
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Both theorems are generally false for polynomials with non-trivial content.

Example 6.3. Let S be a finite simple non-abelian group and let n € Zs;. Then
each G, := S x --- x S (with n factors) admits an automorphism ¢ : G, — G, :
(91,92, ---,9n) > (Gn, 91, --,9n_1) that fixes exactly |S| elements and that satisfies the
constant ordered identity f(x) := |S|. But lim, 00 |Gn/R(Gp)| = limy, 00 |S|" = +00.
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